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Using the boundary state formalism, we study rotating and moving Dp-branes in the presence of the Kalb—Ra-
mond field, U(1) gauge potential and tachyon background fields. The rotation and motion are in the brane
volumes. The interaction amplitude of two Dp-branes is studied, and especially the contribution of the super-
string massless modes is segregated. Because of the tachyon fields, rotations and velocities of the branes, the
behavior of the interaction amplitude reveals obvious differences from what is conventional.
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1. INTRODUCTION

D-branes, as essential ingredients of superstring the-
ory [1], have important applications in different aspects
of theoretical physics. These objects are classical solu-
tions of the low-energy string effective action and hence
can be described in terms of closed strings. Besides,
D-branes with nonzero background internal fields have
shown several interesting properties [2-7]. For exam-
ple, these fields affect the emitted closed strings of the
branes and therefore modify the brane interactions.

On the other hand, we have the boundary state for-
malism for describing the D-branes [2,8-14], which is
a useful tool in many complicated situations. This is
because the boundary state encodes all relevant prop-
erties of the D-branes, and that is why the formalism
has been widely used recently in studying properties
of D-branes in string theory. A boundary state can
describe creation of a closed string from the vacuum,
or equivalently it can be interpreted as a source for a
closed string, emitted by a D-brane. Among achieve-
ments in this formalism is its extension to superstring
theory and the analysis of the contribution of confor-
mal and super-conformal ghosts. The overlap of two
boundary states corresponding to two D-branes, via a
closed-string propagator, gives the amplitude of inter-
action of the branes. So far, this method has been
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suitably applied to various configurations in the pres-
ence of different background fields, including station-
ary branes, moving branes with constant velocities, an-
gled branes [15-19], various configurations in a com-
pact spacetime [15], in the presence of the tachyon
field [19,20], a bound state of two D-branes [13], and

SO On.

Previously, we studied a general configuration of ro-
tating and moving Dp-branes in bosonic string theory
in the presence of the following background fields: the
Kalb-Ramond field, U(1) gauge potentials that live in
the D-branes worldvolumes, and tachyon fields [20]. In
this paper, the same setup is considered in superstring
theory. The novelty of the results is considerable. Our
procedure is as follows. For this setup, we obtain the
boundary state associated with the brane and then
compute the interaction between two such Dp-branes
as a closed superstring tree-level diagram in the covari-
ant formalism. The generality of the setup strongly re-
casts the feature of boundary states and interaction of
the branes. We observe that the interaction amplitude
and its long-range part, which occurs between distant
branes, exhibit some appealing behaviors.

We note that we consider rotation of each brane
in its volume and its motion along the brane direc-
tions. Due to the various fields inside the brane, there
are preferred directions, which indicates the breaking
of the Lorentz symmetry, and hence such rotation and
motion are meaningful.

This paper is organized as follows. In Sec. 2, the
boundary state of a closed superstring, correspond-
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ing to a rotating moving Dp-brane with various back-
ground fields is constructed. In Sec. 3, interaction of
two Dp-branes in the NS-NS and R-R. sectors of the
superstring is calculated. In Sec. 4, the long-range force
of the interaction is extracted. Section 5 is devoted to
the conclusions.

2. BOUNDARY STATE ASSOCIATED WITH A
ROTATING MOVING D-BRANE WITH
BACKGROUND FIELDS

We use the following sigma-model action for a
closed string to describe a rotating and moving Dp-bra-
ne in the presence of the Kalb—-Ramond, photonic, and
tachyonic fields:

1
S=—1 / A0 (V=gg™ G0, X 0, X" +
b

+ 2% B,,0, X 0, X") +

1

2ma

+ /da(AaaaX“+waﬁJ?B+T(X“))7 (1)

ox

where ¥ is the worldsheet of a closed string emitted
(absorbed) by the brane, and 9% is the boundary of
the worldsheet. Besides, “a” and “/” are indices along
the brane worldvolume and “7” is used for the directions
perpendicular to it. In addition, the background fields
Guv, Buv, Aa, T and the antisymmetric variables wqg
and J2% are respectively the spacetime metric, a Kalb—
Ramond (antisymmetric tensor) field, a gauge field, a
tachyon field, the angular velocity, and the angular mo-
mentum density of the brane. We consider the follo-
wing forms for these variables:

Guu = Nuv = diag(_lv ..., 1)7
Buu Bai = 07

const,

Aq

1
—~F,3X", F,5= const,

2
1 (2)
T(X) = angXaXB7 Uap = Ugq = const,

Uni = Ui =0,
WapJP = 2,5 X0, XP.

The last equation indicates the rotation and motion
of the brane. The components {wosl@ = 1,2,...,p}
denote the velocity of the brane, while the elements
{w@5|d,5 =1,2,...,p} represent its rotation.

We note that in the presence of a Dp-brane, the
10-dimensional U (1) gauge field A,, is decomposed into
a longitudinal U(1) gauge field A,, which lives in the
worldvolume of the Dp-brane, and a transverse part A;

associated with the 9 — p scalar fields, from the world-
volume point of view. These scalars represent coordi-
nates of the brane. We keep them fixed, that is, assume
that the branes do not execute transverse motion. For
the gauge field A,, we have chosen the special gauge in
the third equation in (2).

In the literature, the tachyon field is usually nonzero
just in one dimension and its effects are studied on a
space-filling brane, while we here consider a Dp-brane
with an arbitrary value of p. Besides, the square form
of the tachyon profile is used to produce a Gaussian in-
tegral. Hence, the tachyon field has components along
all directions of the brane worldvolume. The gauge
and tachyon fields are in the spectrum of open strings
attached to the Dp-brane.

In fact, in the presence of an antisymmetric field
and a local gauge field, there are preferred alignments
in the brane, and hence the rotation and motion of the
brane in its volume is sensible.

2.1. Bosonic part of the boundary state

In the closed-string operator formalism, the D-bra-
nes of the type-ITA and type-IIB theories can be de-
scribed by boundary states. These are closed-string
states that insert a boundary on the closed-string
worldsheet and enforce appropriate boundary condi-
tions on it. We now extract the corresponding bound-
ary state in our setup. Requiring the vanishing of
the variation of the action with respect to the closed
string coordinates X* (o, 7), we obtain the boundary-
state equations

(0 + 4wap)0-X° + Fapds X° +
+ UaBXﬁ]T=0|BbOS> =0, (3)
(6Xi)‘r=0|BbOS> =0,
where Fop = 0uAg — 03Aq
strength.
It is worthwhile to show that the Lorentz symmetry

is broken along the worldvolume of the brane. Equa-
tions (3) leads to

— Byg is the total field

JaB |Bbos> =

bos

- /da {(A—lf)%XBaUX”—(A‘lf)BanavX“
0

n (A_lU)a,YXBX’Y _ (A_lU)B ,YXOKXV |Bbos>7 (4)

where A,g = 103 + 4waz. We observe that for restor-
ing the Lorentz invariance, all elements of the tachyon

770



MIT®, Tom 146, Bemn. 4 (10), 2014

Rotating moving D-branes with background fields . ..

matrix U,z and the total field strength F,z must van-
ish. We demonstrated this for the bosonic part of the
boundary state. This procedure can also be applied to
the total boundary state, which includes the bosonic
and fermionic parts, to prove the breakdown of the
Lorentz invariance along the worldvolume of the brane.
Introducing the closed-string mode expansion

XH"(o,1) —x“+2ap T+
[ Z a,u —2in(t—0) _l_a,u —Zzn(‘r—i-a))
n;éO
in Eq. (3) gives

i
|:(17a3 + 4wap — Fap + %UCw) a,ﬁn +

X | Bpos) ™) = 0, (5)

[2al(77a5 + 4wa6)p6 + Uaﬁxﬁ] |Bbos>(0) = 07

(aly — & )|Bhos) ) =0,

(xi - yi)|Bbos>(0) =0,

where the set {y*|i = p+1,...,9} indicates the position
of the brane. Besides, for the boundary state

|Bbos> = |Bbos>(0) ® |Bbos>(OSC)7

the components |Bbos)(0) and |Bbos)(osc) respectively
represent boundary states for the zero modes and os-
cillating modes.

The solution of the oscillating part, which can be
found by the coherent state method, is given by

|Bbos>(OSC) = H [det Q(n)]_1
n=1
=1
— —a’ S a” 0 0)~ 6
X exp [ mZ:1 mafm (m)uyam] | >a ® | >oz7 ( )
where the matrices are defined as
i
Qem)ap = Nas + 4was = Fap + 5 -Uas,

1 -1
Stmyuw = (— [Am) + (A<T—m>) LB ; —52’3')7 -

Aimyas = (Q(m) m))aB
)

Nimyas = 1lag + 4wap + Fas = 5~ Uap-
Because the mode-dependent matrix A(,,) is not or-
thogonal in general, the matrix (Ag:m))_ also ap-

pears in the definition of S(,).,. In Eq. (6), the

normalization factor [] 7, [det Q(n)]fl can be deduced
from the disk partition function.
The boundary state for the zero modes is given by

x P

|Bos)”) = /exp i | > (UT'A), ") +
s a=0
p
+ > (UTTA+ATUTY) 0| x
a,B3=0,a#3

x (H |pa>dpa> o[1o — o)l =0). (3)

The integration over the momenta indicates that the
effects of all values of the momentum components have
been taken into account. As we see, unlike the oscillat-
ing part, the total field strength does not enter Eq. (8).

We note that for calculating the interaction ampli-
tude, the contribution of the conformal ghosts b, c, b
and ¢ in the bosonic boundary state must also be taken
into account.

2.2. Fermionic part of the boundary state
The supersymmetric version of action (1) is invari-
ant under the global worldsheet supersymmetry

SXH = E)pH,

SpH = —ip®0,X*e, a€{r,o},

where € is an infinitesimal constant anticommuting
spinor. Because we need the explicit forms of the com-
ponents of the worldsheet fermions

P*
H —
v <¢i>’

we write them here:

Wl =) dhe T (R,

neZ

Z b¢672ir(770),

reZ+1/2

Wi = dhe™®0F,(R),

nezZ

Z l;;fe—Zir'(T—i-fr)7

reZ+1/2

(NS),

(NS),

where the integer and half-integer modes respectively
represent the Ramond (R) and Neveu-Schwarz (NS)
solutions.
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Now we can apply supersymmetry transformations S’,w = (AQB ) 5ij)

to bosonic boundary-state equations (3) and transform Aos = (Q7'N)ags,

them into their fermionic partners. We can use the (15)

replacements
8+Xu (07 T) — _ani (Ua T) B (9)
0-X"(0,7) =Y (0,7),

where 7 = =41 has been introduced for the GSO
(Gliozzi-Scherk—Olive) projection of the boundary-
state. As it was seen in the bosonic boundary-state
equations, due to the presence of the tachyon field, a
replacement for X# in terms of the fermionic compo-
nents is also needed. To obtain that, by using the re-
placements (9) and 04 = (9r + 0,)/2 and integration,
we receive

X" (o,7) —

1 . —2ik(T—0 T —2ik(t+o
—>Zﬂ(upge“( >+mpge“(+)>. (10)
k

Now, by introducing replacements (9) and (10) in
Eqgs. (3), for the closed string boundary at 7 = 0, we
obtain

—in (77(15 +4dwap + Fap — 2kU ) Jék] X (11)
x |Bfoe,

(Wk + int )| Bl ) =0,

for the oscillating parts of the R—R and NS—NS sectors,
and

m =0,

(g + dwas — Fag)¥l —
— in(ag + 4wap + Fag)0)|B.)W =0,  (12)
(Wb + i) | B,n)) =0,

for the zero-mode part of the R—R sector. As we see,
the tachyon is omitted from the zero-mode boundary
state in this sector. The importance of this part is to
be revealed in the R-R sector of the boundary state.
Equations (11) and (12) can be rewritten as

)|B (osc)

ferm’

(W —in Sty , 0 =0 (13
for the oscillating parts of both sectors, and

(d —in 5", d3)|B, )y =0 (14)

for the zero-mode part of the R-R sector. The matrix
Sk, is defined as

Qaﬁ = Nap + 4WozB - -7:01B7
Nag = 1lap + 4wap + Fap-

We note that in the fermionic parts, we should also
consider the boundary states associated with the super-
conformal ghosts, which are needed in calculating the
interaction amplitude.

2.2.1. The Neveu—Schwarz sector

Similarly to the bosonic case, with the help of
the coherent state method, the oscillating part of the
fermionic boundary state including both sectors can be
calculated. Thus, Eq. (13) implies that the NS-NS-
sector boundary state has the form

o0

|Bferm777>NS = H [det Q(r)] X
r=1/2
<exp i 3 (0, )| 005 (16)
r=1/2

When the path integral is computed, the determinant is
reversed compared to the bosonic case in Eq. (6). This
is due to the Grassmannian property of the fermionic
variables [2].

2.2.2. The Ramond—Ramond sector

Solving Eqs. (13) and (14) in the R-R sector yields
the boundary state

|Bferm777>R = H[det Q(n)] X

n=1

X exp [in Z (d”,,.5 ),“,

m=1

)| 1B,y (17)

The explicit form of the zero-mode state in both type-
ITA and type-IIB theories is

IB,n)y) =
- [crorl...rp (%>9] |4) @ |B), (18)
1+ AB

where A and B are the 32-dimensional indices for
spinors and [-matrices in the 10-dimensional space-
time, |4) @ |B) is the vacuum of the zero modes dy
and gg, C' is the charge-conjugation matrix, and
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Q = *xexp (%@agl"o‘[‘ﬁ> *,
(19)
b5 = ((A -1)(A+ 1)1> .
ap
The notation “x...*” implies that one should expand
the exponential and then antisymmetrize the indices
of the I'-matrices. Therefore, because all terms in the
expansion with repeated Lorentz indices are dropped,
there are a finite number of terms for each value of p.
As an example, for the D3-brane, the matrix 2 takes
the form

3
1
_ - B8
Q=1+ > DaplT7+
a,3=0
+ (P01 P2z — P02 P13 + ‘1’03‘1’12)F0F1F2F3-

In fact, this convention implies that the matrix A
should be orthogonal, which gives the restriction that
the matrices w and F should anticommute with each
other. For the D1-brane, there is an electric field along
the brane. Hence, according to this restriction, the only
element of the matrix w, i.e., the speed of the brane
along itself, vanishes. This is an expected result, be-
cause of the direction of the electric field, motion of the
D-string along itself is not sensible. Other branes can
be involved in both rotation and motion.

3. INTERACTION OF THE BRANES

Unbroken supersymmetry ensures that the Casimir
energy of open superstrings is zero. Therefore, D-
branes in supersymmetric configurations exert no net
force on each other. A rotating/moving brane can
generically break all the supersymmetries and leads to
orientation /velocity-dependent forces.

In this section, we calculate the interaction of two
rotating and moving parallel Dp-branes, equipped with
background fields, via a closed-string exchange. For
both the NS-NS and R—R sectors, the complete bound-
ary state can be written as the product

T,
|B,m)ns,r = 7p|Bbos> ® |Bgn) @
@ |Berm>N)Ns,R @ |Bsghs M) NS,Rs

where the overall normalization factor T}, is the Dp-
brane tension. We note that the ghost and superghost
boundary states are not affected by the rotation, mo-
tion, and background fields. The explicit expressions
for |Bgn) and |Bsgn)ns,r can be found in the litera-
ture, and hence we do not write them here.
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For eliminating unwanted states, e.g., the closed-
string tachyon, and at the same time making the num-
ber of spacetime bosonic and fermionic physical excita-
tions equal at each mass level, as is needed for super-
symmetry, one should use the GSO projection. There-
fore, the total boundary states that are used in calcu-
lating the interaction acquire the forms

1
(IB,+)ns =B, —)ns) ,
(20)

N = |

(IB,+)r + B, =)r) -

The interaction amplitude of two D-branes can be
obtained by either the open-string one-loop or the
closed-string tree-level diagram. The former is a quan-
tum process, while the latter is a classical process. In
the closed-string picture, the interaction between two
D-branes is viewed as an exchange of a closed string
between two boundary states, geometrically describing
a cylinder. From this standpoint, the interaction is
computed with a tree-level diagram. In this process, a
closed string is created by one D-brane; it propagates
in the transverse space between the two D-branes, and
then the other D-brane absorbs it. Therefore, the inter-
action amplitude between two D-branes in each sector
is given by the overlap of the boundary states

Ans—ns.r—r = Ns,r(B1|D|B2)~Ns,Rs

where D is the closed-string propagator. In other

words, we have
o0
0

The total closed superstring Hamiltonian Hyg g is
the sum of the Hamiltonians of worldsheet bosons,
fermions, conformal ghosts, and super-conformal
ghosts in each sector. The complete interaction
amplitude is given by the combination

Ans—ns.r—r =2 [ dt ns r(B1| x

x exp(—tHns,r)|B2) NS,k

Atotal = ANns—ns + Ar—r.

According to this formula, boundary states are con-
venient tools for summing over all forces between two
D-branes, which are mediated by the NS-NS and R-R
states of a closed superstring.

3.1. The NS—NS sector interaction

For maintaining the generality, we consider the d-di-
mensional spacetime instead of d = 10. Using the
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GSO-projected boundary states (20), we obtain the in-
teraction amplitude between two parallel Dp-branes in
the NS-NS sector as

TngHa’ %

8(2m)d-—p-1

> det[Qf,, 1 o)1 Qm—1/2)2]
det |:QJ(rm)1Q(m)2j|

i 1 T d=p=t
Jal e (F)T
o det ) @

(RiR»
X exXp <—

s Z(yé—yi)2> x
A
1 o ]

T

q
det(l + H(Tn)lH(n)2 q2n—1)‘|

Ans—ns =

X

m=1

"t
1— q2n
1 +q2n—1

det(1 — H ), Himya ")
3+p—d
1—¢q 2n
N H [(1 — 2 1) .
det(1 H(n)1H< 2 ") D (21)
det(1 H(n)lH( )2 2n)

where the indices “1” and “2” refer to the first brane or
|B1) and the second brane or |Bs), V41 is the common
worldvolume of the two Dp-branes,

-1
+ [A(—n)a

2

A(n)a ]T
Hnya =

qg=e 7,

with ¢ = 1,2, and the symmetric matrices Ry and R»
contain nonzero elements only along the worldvolumes
of the branes:

(Ra)ap = 20/ (=iM, — iU, A, —

—iATUS 4 1) 05, a=1,2,
U 'A 0
( a 11)00 (22)
Mﬂ: )
-1
0 (U'Aq),,

(Aa)ag = Nap + 4(Wa)as

In addition, we used the relations

(P*p°) = 2m5(p™ — p°),

(2m)PH! s+ (0) = Vpps.
In this amplitude, the exponential is a damping fac-

tor with respect to the distance of the branes. In the

last two products, the determinant in the denominators
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reflects the portion of the boson oscillators along the
brane worldvolumes, and the determinants in the nu-
merators are due to fermion oscillators, also along the
branes worldvolumes. The other factors in the products
are contributions of the boson and fermion oscillators
perpendicular to the brane worldvolume, and also of
the conformal and superconformal ghosts. Explicitly,
the power 3+ p—d =2—(d—p—1) is decomposed
as follows: 2 in the numerators for the ghosts, 2 in
the denominators for the superghosts, —(d —p — 1) in
the numerators for transverse oscillators of the bosons,
and —(d — p — 1) in the denominators for transverse
oscillators of the fermions. The remaining part of the
integrand of the amplitude is the overlap of the bound-
ary states of bosonic zero modes, i.e. Eq. (8). This
part is completely determined by the internal tachyon
fields, the motion and rotation of the branes.

Contributions of all closed superstring states in the
NS-NS sector that the two branes can emit are gath-
ered in amplitude (21). One part of the strength of the
interaction is given by the constant overall factor of this
amplitude, i.e., two first lines in Eq. (21), which pos-
sesses contributions from the field parameters, linear
and angular velocities, and the brane tensions.

3.2. The R—R sector interaction

Applying the total GSO-projected boundary states
(20), we obtain the following interaction amplitude in
the R—R sector:

T2V, 10

_ p Vp+1

Arr = g a1 X

1— an
1+ q2n

Jo{ (-1

n=1

3+p—d
) .
+ n') X

(

det(1+ H{ )| Hin>g*")
det(1 — H \ Hinog®")

1 7\
det(RIRy) NV @

1 i i\ 2

X exp T aolt Z (y2 - y1) ;o (23)
where
1

k= 5(—1)1’+1 e[, 0~ Ql 7,
(24)

K =i(=1)P Te[Q, O QF ¢ Ty
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In these relations, the matrices €1y 5 are defined by
Eq. (19) via the matrices wy o and Fy 5 for the first
and second branes. We see that in the R—R-sector
boundary state, and hence in the corresponding am-
plitude, the normalizing determinant factors of bosons
and fermions cancel each other.

We are now interested in the total amplitude, i.e.,
the combination of the amplitudes in the NS-NS and
R-R sectors. In the total amplitude of the described
system, attraction due to the exchange of NS-NS
states of a closed string is not compensated by repul-
sion of R-R states. Thus, we can conclude that our
setup does not satisfy the BPS (Bogomol'nyi-Prasad-—
Sommerfield) no-force condition. This is because this
configuration of two D-branes does not preserve enough
value of the spacetime supersymmetries of the type-ITA
and type-IIB theories. In fact, in the absence of back-
ground fields, motions, and rotations, the total ampli-
tude vanishes because this setup of the branes preserves
half of the supersymmetry.

A gpecial feature of non-BPS branes is the presence
of a tachyon field in their worldvolumes. In fact, it is
not, evident how the spacetime supersymmetry is re-
alized with the tachyons, and the existence of broken
supersymmetry in the presence of tachyons has never
been explicitly proved [21]. However, setting the branes
in relative motion (or rotating them) breaks all the
supersymmetries generically, and leads to velocity- or
orientation-dependent forces [22].

We observe that in the amplitudes of both sectors,
for a system of two D(d —3)-branes, the effect of ghosts
(superghosts) eliminates the contribution of the trans-
verse oscillators of the bosons (fermions).

3.3. An example

To clarify our system, we study a special case, i.e.,
parallel D2-branes. We consider the ath brane (a =
= 1,2) with the linear velocity {(vs)s|@ = 1,2}, the
angular velocity (wi2), = Wa, and the fields (Fys)o =
= (Ea)a, (Fi2)a = Ba, and (Uag)a. Therefore, the
interaction amplitude for the NS—NS sector is given by

_ T22V3Oél
ANS*NS - 8(27T)d73 X
> det[Q],,,_1 /21 Qem—1/2)2]
X X
m=1 det I:QJ(rm)lQ(m)2j|

o0 1 p d—3
Jal ()
/ \Jdet(RIRy) \V @
1 = 2
X exp <—4a,t2(y§—yi) > x
i=3
1 o) 1_q2n 5—d
Xg(ﬂl;[l <1+q2n+1> X

det(l + H(Tn)lH(n)Qq2n1)‘| B
det(1 — H{ | Hin>g>")

00 1_ an 5—d
N H (1 _ q2n—1) x
n=1

det(1 — H{n)lH(n)qu”‘l)D (25)
det(1 — H | Hnog®) ’

where the matrix H(,), is defined in terms of Q(4n)a
and N(4p)q, as before, with

U Ul Ul
—1+m 47)1—E1+m 47)2—E2+m
2n 2n 2n
U U U
Qua=| 4o +B+52 14512 4m-B+ 22 a=1,2,
2n 2n 2n
iU U iU
A+ By + =2 _gm+ B+ 2 1+ 22
2n 2n 2n a
(26)
U Ul Ul
—1—m 4U1+E1—m 4U2+E2—m
2n 2n 2n
1U1o iUy _ U2
Nipya = —4v, — B — —— - — 4 B—- —— =1,2
(m) 1 ! 2n 2n ©t 2n “
U U U
_4U2_E2_Zﬁ 45 B2 _ W
2n 2n 2n a
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The matrix elements of the symmetric matrix R, are
given by
(Ra)oo = —2ia/[(U™")go — 401 (U™ )o1 —
— 4va (U )2 + it]a,
(Ra)or = —2ia'[2(U Yo —
—4v1 (U oo + (U™ 11) —
—45(U o2 — 4v2(U™ )21 + it]a,
(Ra)o2 = —2ia’ [2(U ")o2 —
—4vy (U Moo + (U 1)a2) +
+4o(U o1 — 401 (U™ 12 +itle,  (27)
(Ro)11 = —2iad/[(U™" )11 — v (U™
— 45U )12 + it]a,
(Ro)12 = —2ia/[2(U )12 +
+4w (U™ = (U 1)22) -

)10 —

— 4y (UM — 401 (U o2 + it]a,
(Rg)az = —2ia/[(U ™ )an — dva (U 1)a0 +
+4@(U )9y + it]a,

with ¢ = 1, 2. Also, for the R-R-sector amplitude
becomes

T3Vsza! "
8(27)d—3

o0 p d—3
X /dt ( _’t> X
, det RTRZ) @
1 ol 2
><eX1>< o7 2 W —w1) ) x
=3
[e's) 5—d
1— q2n
X k H < 2n> X
< n=1 1+q

det(1 + H  Himp ™"
% ( g- ( )2 ) + I‘LI , (28)
det( ( )1 H(n)2q2”)

Ar-r =

where
k=16 (=1 + ®(1)01P2)01 +

+ ‘I’( )02‘1’(2)02 - o )12‘1’(2)12)

= ——Z Z Z aB(I) Yo! B X (29)

a,f=0a',5'=0
x Tr(DTPT* TP Ty,).

We note that we have used the relation (T*)T =
= —CT*C~!. In fact, the D2-brane is the simplest
brane whose rotation and motion along its directions
are sensible. We see that in this simple case, the inter-
action amplitudes are already very complicated.

4. INTERACTION BETWEEN DISTANT
D-BRANES

For distant D-branes, only the closed-superstring
massless states make a considerable contribution to
the interaction. Technically, the contribution of these
states to the interaction amplitude is obtained by tak-
ing the limit of the oscillators portions of Egs. (21) and
(23). This is because for a massive state with a mass
m”, the interaction vanishes as exp(—2ra’m?t) (see,
e. g., the Coleman—Weinberg formula in the open-string
channel [23]). Therefore, for a sufficiently long time,
which is equivalent to a large distance of the branes,
the contribution of the massive states vanishes, while
the contribution of the massless ones becomes domi-
nant. This procedure clarifies why we do not expand
the interaction amplitude with respect to the length
scale to separate the contribution of the massless closed

superstrings.
Let,
f f
Py €{-1, 1, —H|,,, Hny2, H},,), Hn)2}
and
In € {an7 _q2n’ q2n—17_ q2n—1}.

By applying the relation
oo
H det(l + an(n)) =
n=1
_1)’f ol
1 ZT\I,(an(n))kJrl ) (30)
n=1

1) and (23) and sending ¢ to zero,
we can obtain the contribution of the massless states.
Therefore, in the 10-dimensional spacetime, we obtain
the amplitudes

o0

= exp
k=0

in amplitudes (2

A(massless) _ TngHO" %
NS—NS - 4(27r)9—p

ﬁ det[QIm71/2)1Q(m_1/2)Q] «
m=1 det I:erm)lQ(mﬂ]

T T\ P T+ Te(H] ) Hio)
X /dt _'t X
@ det(R R,)

X exp <—4;,t Z (v — y§)2>} (31)

for the NS—-NS sector and
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Tg Vp+1 Oé’

8(2m)*r
x]odt ( %) X
- )} o

for the R—R sector. We did not put the limit on the
exponential factors and the two other time-dependent

parts (\/ﬂ'/alt)g " and 1/y/det(RIRy) in Egs. (31)
and (32). The exponential parts indicate the locations
of the branes, while closed-string emission (absorption)
does not depend on the positions of the branes. The
other two factors originate in the zero modes, but not in
the oscillators that define the closed string states. The

provenance of the factor 1/4/ det(Rllr R5) is the tachyon
fields, which for large time weaken the interaction am-
plitudes. Precisely, because the presence of the open
string tachyon makes the system unstable, the tachyon
will roll down toward its potential minimum after a
sufficiently long time, which causes a decrease in the
amplitude. In the absence of the tachyonic fields, this
slowing down factor disappears.

We observe that for large-distance branes, the am-
plitude of the NS—NS sector depends on the total field
strengths F; and JF», while these fields are absent in the
R-R sector. In other words, the internal electric and
magnetic fields of the branes suppress the exchange of
the graviton, dilaton, and Kalb—Ramond states, but do
not modify the R—R repulsion force between the distant
branes.

The total amplitude

(massless) __
R—R

A (k +

9

k') x

4

v
det(RI R,)

S (W -ul)’

i

1
4/t

A(massless) :AS\%{S]S\%;SS) +A%ﬂﬁa];sless) _
1 TEVP‘H

T @R 4(2m)0 P

1
X 5(& +r') + (7 —p+ T‘r(H(Tl)lH(l)2)) X
y ﬁ det (Ql(rmfl/2)1Q(m—1/2)2) “
m=1 det (sz)lQ(mﬂ)
1
X

X/dt <\/§)9_p det(R R,)
)}

L2
4a't

X exp <—
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exhibits a long-range force between the Dp-branes in-
teraction, where T, = Ty|ar—1, Ri2 = Rialar=1 and
L2=%.(y? - yll)2 is the square distance between the
branes. We observe that o' appears only in the prefac-
tor and in the exponential part, while the other factors
are independent of a’. However, for very large time,
we have L2/4a't < 1, and hence

(£

4a't

The NS-NS part indicates the exchange of the gravi-
ton, dilaton and Kalb—Ramond fields, in which the dila-
ton and the graviton give an attraction force, while
the Kalb—Ramond field gives a repulsion one. In the
same way, the R—R part indicates the repulsive con-
tribution of the (p + 1)-form potentials in the R-R
sector. The net force for the static branes with zero
background fields vanishes, because the branes are BPS
states. But when the branes have velocity, rotation,
and background fields, the total force is nonzero, i.e.,
the various contributions are not balanced.

2 L2
T 4alt

5. CONCLUSIONS

We have constructed a closed-superstring boundary
state corresponding to a rotating and moving Dp-brane
incorporating configurations of electric, magnetic, and
tachyonic background fields. The bosonic boundary
state includes an exponential factor that is absent in
the conventional boundary states, i.e., that one with-
out a tachyon. This factor originates from the bosonic
zero modes, rotation motion, and tachyon terms in the
boundary action.

It should be mentioned that in this article, we con-
sidered the rotation axis perpendicular to the branes.
In addition, the branes move along their volumes. Ac-
cording to the background fields, we then have pre-
ferred directions in the branes, which break the Lorentz
invariance. Therefore, these rotations and motions are
meaningful.

According to the eigenvalues in the boundary-state
equations, we deduce the constraint equation

(e

p

= — 51+ 4w) 0T o,
This implies that along the worldvolume of the brane,
the momentum of an emitted (absorbed) closed string
depends on its center of mass position. The source of
this relation is entirely the tachyon field. Thus, in the
presence of the tachyon, a closed string feels an exotic
potential affecting its evolution.
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The boundary states enabled us to calculate the
interaction amplitude of two moving and rotating
Dp-branes with background fields. This amplitude ex-
ponentially decreases with the squared distance be-
tween the branes, but it is a very complicated func-
tion of the configuration parameters. The variety of
adjustable parameters controls the treatment of the in-
teraction. For example, for two D(d — 3)-branes, which
can have different background fields and different mo-
tions, the contribution of the (super)ghosts removes
the effects of all transverse oscillators. It was shown
that even for co-dimension parallel branes with similar
fields, the total amplitude is nonzero. That is, our sys-
tem does not satisfy the BPS no-force condition. This
is due to the presence of rotations, velocities, and tachy-
onic and photonic fields on the branes.

The long-range part of the interaction was ex-
tracted. In this domain, the instability of the branes
due to the background tachyon fields weakens the inter-
action. This decreasing behavior can be understood as
dissipation of the branes to the bulk modes because of
the rolling of the tachyon to its potential minimum in
the long-time regime. Finally, we observed that the in-
ternal electric and magnetic fields of the branes do not
suppress the R—R repulsion force between the distant
branes.
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