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EFFECT OF THREE-BODY CLUSTERS IN THE GROUND-STATEPROPERTIES OF SPIN-POLARIZED LIQUID 3HeZ. Razavifar *, A. RajabiPhysi
s Department, Shahid Rajaee Tea
her Training University16788, Lavizan, Tehran, IranRe
eived Mar
h 15, 2014The ground-state energy of polarized and unpolarized liquid 3He is 
al
ulated using the variational theory. Avariational wave fun
tion is 
onstrained to be normalized appropriately by in
luding the three-body terms in the
luster expansion of the two-body radial distribution fun
tion. The higher-order terms have been found to beimportant to obtain an equation of state whi
h is in agreement with experimental data. The saturation densityof unpolarized liquid 3He was found to be 0:267��3, whi
h de
reases by enhan
ing the polarization. For allrelevant densities, the ground-state energy of the spin-polarized system is higher than that in the unpolarized
ase.DOI: 10.7868/S00444510141000341. INTRODUCTIONLiquid 3He is an interesting system in whi
h ma-ny-body 
orrelations play an important role in deter-mining its properties [1℄. This system obeys Fermi�Di-ra
 statisti
s the same as neutron stars, whereas de-s
ribing 3He is easer than neutron stars be
ause of thesimpli
ity of inter-parti
le intera
tion. Moreover, wehave a

umulated a huge amount of experimental in-formation about 3He. Hen
e, for theoreti
ians, liquid3He 
an be 
onsidered an ex
ellent laboratory to testmany-body theories applied to neutron stars.Experimentally, the zero-temperature equation ofstate of liquid 3He is known and the density of equilib-rium is �0 = 0:277��3 with � = 2:556Å [2℄. Theore-ti
ally, most of the available many-body methods havebeen applied for investigating the properties of liquid3He, two su

essful approa
hes are Fermi hypernet-ted-
hain (FHNC) and quantum Monte Carlo (QMC)methods. Viviani et al. used a variational wave fun
-tion whi
h in
ludes pair, triplet, ba
k�ow, and spindependent 
orrelations in the FHNC method to obtainan equation of state whi
h is in very 
lose agreementwith the experimental data [3℄. Casulleras and Boronatin 2000, using optimized ba
k�ow 
orrelations, appliedthe di�usion Monte Carlo (DMC) method and gene-rated an equation of state of liquid 3He whi
h is in*E-mail: Zahrarazavifar62�gmail.
om

ex
ellent agreement with experimental data from equi-librium up to freezing [4℄. In 2003, this 
omputationwas revisited by using exa
tly the same potential, wavefun
tion, and number of parti
les as used by Casullerasand Boronat, but their results were not 
on�rmed [5℄.In addition, in 1979 liquid 3He was polarized by arapid melting of a highly polarized solid 3He [6℄. Inthis state, nu
lear spins of 3He aligned and be
ause ofnu
lear magneti
 intera
tion, the intrinsi
 relaxationtime of partially polarized 3He is long, whi
h allowsusing it for magneti
 resonan
e imaging [7℄. Mostof the theoreti
al investigations based on QMC pre-di
t the fully polarized state with a lower energy thanfor the unpolarized state [8, 9℄. By 
onsidering ba
k-�ow and three-body wave fun
tions and twist-averagedboundary 
onditions in the QMC approa
h, it wasfound that the energy of the polarized state was higherthan the unpolarized one, but the obtained sus
epti-bility had dis
repan
y with extrapolated experimentaldata [5, 10℄. Manosuki et al., by using the FHNC te
h-nique, found that the energy of spin-polarized phasewas above that of the normal phase [11℄. They 
on
ludethat the three-body and ba
k�ow 
orrelations are veryimportant for their variational wave fun
tion. Theypredi
ted that this system 
ould exhibit new phasetransitions to ferromagnetism, while no su
h new phasehas been dis
overed so far.The lowest-order 
onstrained variational (LOCV)method is a many-body approa
h whi
h has been de-veloped to study the bulk properties of the quantum693
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ent years, this method has been ap-plied to study homogeneous normal liquid 3He [15�18℄.In this variational approa
h, as we see in the next se
-tion, we use a 
luster expansion to 
al
ulate the energyand other properties of system. Convergen
e of the ex-pansion and the e�e
t of higher-order 
luster terms inthe energy of unpolarized liquid 3He was studied andit has been shown that higher-order 
luster terms inthe normalization 
onstraint improve the equation ofstate [14℄. The LOCV method has several advantageswith respe
t to the other many body methods whi
h gobeyond the lowest order [14℄. Two of them are: (i) theLOCV method is fully self-
onsistent, i. e., there are nofree parameters in this variational approa
h. (ii) It 
on-siders a parti
ular form for the long-range part of the
orrelation fun
tion in order to perform an exa
t fun
-tional minimization of the energy. It is shown that 
or-relation fun
tions obtained from the extended LOCV(ELOCV) lead to more a

urate results for the mo-mentum distribution [19, 20℄, 3He droplets [21℄, and3He atoms in nanotube [22℄. In a series of papers, Bor-dbar et al. applied the LOCV method to the polar-ized 
ase and 
al
ulated some properties of this sys-tem [18; 23�25℄. In their re
ent work, they 
onsideredthe ground-state properties with the three-body 
lus-ter 
ontributions [26℄. But they did not 
onsider thee�e
t of three-body 
luster expansion of the two-bodyradial distribution fun
tion (ELOCV). We expe
t thatthe same as in QMC and FHNC methods, three-body
orrelations are very important in spin-polarized sys-tems. Hen
e, in this paper, we intend to 
onsider thee�e
t of higher-order terms in the 
luster expansion ofthe radial distribution fun
tion and 
al
ulate the ener-gy by the extended LOCV approa
h with the three-bo-dy 
luster 
ontributions.2. SCHEME OF CALCULATIONS2.1. Cluster expansion of energyThe Hamiltonian of the normal liquid 3He 
onsistsof N atoms intera
ting with ea
h other and is usuallywritten as H = NXi=1 p2i2m + 12Xi 6=j V (ij); (2.1)where V (ij) is the two-body inter-atomi
 potential. Inthis work, we use the Lennard�Jones potential. In theLOCV method, we use an ideal Fermi gas type wave

fun
tion (�) for single-parti
le states to �nd the varia-tional wave fun
tion of the intera
ting system: v = F�; (2.2)where F is a 
orrelation fun
tion whi
h in
orporatesthe 
orrelations indu
ed by intera
tions. To 
al
ulatethe energy expe
tation value, we use the variationalprin
iple and a 
luster expansion developed in Ref. [27℄,E([f ℄) = 1N h v jH j vih v j vi = E1 +E2 +E3 + : : : (2.3)The one-body term E1 is just the familiar Fermi-gaskineti
 energy, i. e.,E1 = 1N NXi=1 �i ����~2k2i2m ���� i� : (2.4)The two-body energy E2 isE2 = 12N Xij hijjW (12)jijia (2.5)and the �e�e
tive intera
tion operator� W (12) is givenby W (12) = ~2m (rf(12))2 + f2(12)V (12); (2.6)where f(12) and V (12) are the two-body 
orrelationand inter-atomi
 potential.Higher-order 
orrelations are 
onsidered in terms ofstatisti
ally irredu
ible two-body 
orrelations. So, thethree-body energy is written asE3 = E3h +E3hh +E3t; (2.7)whereE3h = 1N Xijk [hijkjh(13)W (12)jijkia �� hikjh(13)jikiahijjW (12)jijia℄ ; (2.8)E3hh = 12N Xijk hijkjh(13)h(23)W (12)jijkia; (2.9)E3t = 12N ��Xijk �ijk ���� ~24mf2(31)r2h(12)r2h(23)���� ijk�a ;(2.10)and h(ij) = f2(ij)� 1: (2.11)694
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t of three-body 
lusters : : :We note that in Eq. (2.3), to 
olle
t all 
ontributionswhi
h are 
onventionally assigned to the �rst order inthe smallness parameter, we have to 
ompute a spe-
ial portion of the four-body terms, like the three-body
luster terms [27℄:E4h = 14N Xijklhijjh(34)jkliahkljW (12)jijia: (2.12)In the LOCV formalism we 
onstrain the two-body 
or-relation fun
tion to normalize the wave fun
tion of thesystem. We hope this 
onstraint makes the 
luster ex-pansion 
onverge very rapidly.2.2. Spin polarized 
al
ulationsWe now spe
ialize the above 
luster expansion tothe spin-polarized system in
ludingN atoms withN (+)spins up and N (�) spins down, with� = N
 = �(+) + �(�) (2.13)being the total number density and the spin asymmetryparameter � de�ned as� = N (+) �N (�)N : (2.14)By 
onsidering the single-parti
le states jii as planewaves, we 
an 
al
ulate the energy terms introdu
ed inthe last se
tion. The one-body energy term E1 isE1 = 310 ~22m (3�2�)2=3[(1+�)5=3+(1��)5=3℄: (2.15)The two-body energy E2 introdu
ed in Eq. (5) isE2 = 2�� Z r212dr12 �1� 14(1 + �)2`2(k(+)F r12) �� 14(1� �)2`2(k(�)F r12)�W (r12); (2.16)wherè (x) = 3j1(x)x = 3x3 (sin(x) � x 
os(x)) (2.17)is 
alled the statisti
al 
orrelation fun
tion or theSlater fa
tor [28℄; k(+)F = (6�2�(+))1=3 and k(�)F == (6�2�(�))1=3 are the Fermi momenta of spin up andspin down states, respe
tively.The three-body 
luster energies in Eqs. (8), (9), and(10) areE3h = �38N �� Z dr1dr2dr3h(r13)W (r12)�1(r1; r2; r3); (2.18)

E3hh = �32N Z dr1dr2dr3h(r13)��W (r12)h(r23)�2(r1; r2; r3); (2.19)E3t = �32N Z dr1dr2dr3 ~24m �� f2(r31)r2h(r12)r2h(r23)�2(r1; r2; r3): (2.20)Here, the three-body energy terms �1(r1; r2; r3) and�2(r1; r2; r3) are de�ned as follows:�1(r1; r2; r3) == (1 + �)3`(k(+)F r12)`(k(+)F r23)`(k(+)F r31) ++ (1� �)3`(k(�)F r12)`(k(�)F r23)`(k(�)F r31)�� [(1 + �)3 + (1 + �)2(1� �)℄`2(k(+)F r23)�� [(1� �)3 + (1� �)2(1 + �)℄`2(k(�)F r23) (2.21)and�2(r1; r2; r3) = 1� 18 [(1 + �)3 + (1 + �)2(1� �)℄�� [`2(k(+)F r12) + 2`2(k(+)F r23)℄��18[(1��)3+(1��)2(1+�)℄[`2(k(�)F r12)+2`2(k(�)F r23)℄++ 14(1 + �)3`(k(+)F r12)`(k(+)F r23)`(k(+)F r31) ++ 14(1� �)3`(k(�)F r12)`(k(�)F r23)`(k(�)F r31): (2.22)And �nally,E4h = 132N �4 Z dr1dr2dr3dr4h(r34)W (r12)�� f(1 + �)4[`2(k(+)F r13)`2(k(+)F r24)� `(k(+)F r31)�� `(k(+)F r23)`(k(+)F r14)`(k(+)F r24)℄ ++ (1� �)4[`2(k(�)F r13)`2(k(�)F r24)� (`(k(�)F r31)�� `(k(�)F r23)`(k(�)F r14)`(k(�)F r24)℄g: (2.23)The above terms 
an be simpli�ed by putting parti
le1 at the origin and repla
ing � R dr1 = N .2.3. Normalization 
onstraint and theEuler�Lagrange equationNow, we minimize the energy with respe
t to f(r),whereas in LOCV formalism we are interested in ob-taining a more physi
al 
orrelation fun
tion that sa-tis�es the normalization 
onstraint h v j vi = 1. In695
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onstraint is givenby [28℄ � Z (g2(r12)� 1) d3r12 = �1; (2.24)where g2(r12) is the two-body radial distribution fun
-tion, whi
h has the 
luster expansiong2(r12) = f2(r12) NXn=2[�g(r12)℄n: (2.25)The �rst two terms of above expansion are[�g(r12)℄2 = gF (r12) (2.26)and[�g(r12)℄3 = 14� Z d3r3h(r13)�1(r1; r2; r3) ++ � Z d3r3h(r13)h(r23)g3F (r1; r2; r3); (2.27)where gF (r12) and g3F (r1; r2; r3) are the two- andthree-body radial 
orrelation fun
tions of the nonin-tera
ting Fermi gas ground state,gF (r12) = 1� 14(1 + �)2`2(k+F r)�� 14(1� �)2`2(k�F r); (2.28)g3F (r1; r2; r3) = �2(r1; r2; r3):In most of the previous 
al
ulations, based on theLOCV method, only the n = 2 term was in
luded inthe two-body distribution fun
tion, Eq. (2.25). Butin the extended version of the lowest-order 
onstrainedvariational formalism (ELOCV) applied in this work,we extend the above 
luster expansion to the n = 3term. In other words, the ELOCV formalism leads toa more a

urate variational wave fun
tion, so that thenormalization 
onstraint is satis�ed more properly. So,we expe
t our obtained wave fun
tion and the pair ra-dial distribution fun
tion to be more physi
al.The normalization 
onstraint, Eq. (2.24), intro-du
es another parameter into our formalism, i. e., theLagrange multiplier �. By using the Euler�Lagrangeequation, we minimize the fun
tional L(r; f; �f) == r2fE+�h v j vig with respe
t to f(r) and we 
hoose� su
h that the above normalization 
onstraint is sa-tis�ed, i. e., �L�r � ��r �L�f 0(r) = 0: (2.29)

We solve this equation to �nd 
orrelation fun
tions andthe ground-state energy of spin polarized liquid 3He.Note that in LOCV formalism, in 
ontrast to othervariational approa
hes, we set the 
orrelation fun
tionequal to the Pauli fun
tion instead of 1 [15℄.3. RESULTS AND DISCUSSIONThe obtained two-body 
orrelation fun
tions forfully polarized (� = 1 situation) and unpolarized (� = 0situation) liquid 3He are shown in Fig. 1. This �gureshows that the 
orrelation fun
tion for the fully po-larized 
ase, espe
ially the 
orrelation fun
tion of theELOCV formalism, tends to the Pauli fun
tion morerapidly than unpolarized one. So, when atom spinsare aligned with ea
h other, they have a shorter 
or-relation length than in a misaligned state. The 
al
u-lated two-body radial distribution fun
tions introdu
edin Eq. (2.25) are plotted in Fig. 2 for fully polarized andunpolarized liquid 3He. It is 
lear that in
luding then = 3 term leads to better results.We have plotted the equation of state results ofLOCV and ELOCV 
al
ulations for unpolarized liq-

1 2 r, σ0

1 2 r, σ0

0.4

0.8

1.2
f

0.4

0.8

1.2
f

ζ = 0

ζ = 1

Fig. 1. ELOCV (solid lines) and LOCV (dashed lines)
orrelation fun
tions of unpolarized (� = 0) and fullypolarized (� = 1) liquid 3He at � = 0:277��3696
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Fig. 2. Comparison of our ELOCV (solid lines) andLOCV (dashed lines) two-body radial distribution fun
-tions with the FHNC method (
ir
les) [11℄ for unpolar-ized (� = 0) and fully polarized (� = 1) liquid 3He at� = 0:277��3uid 3He (� = 0 situation) as a fun
tion of the den-sity in Fig. 3. To see the e�e
t of the three-body en-ergy, Eq. (2.7), we present results with and without thethree-body 
luster energy. The experimental data [2℄are also given for 
omparison. As we see, the ELOCVresults are 
loser than the LOCV ones to the exper-imental data. In both 
ases, the three-body energyimproves the results. As we explained in the pre
edingse
tion, in the ELOCV 
al
ulation, we insert the ra-dial distribution fun
tion, Eq. (2.25), in the normaliza-tion 
onstraint, Eq. (2.24), up to the three-body 
lusterterm.Our binding energies E0 at the equilibrium density�0 obtained from the LOCV and ELOCV approa
heswith the three-body 
luster energy are tabulated in theTable. In 
omparison with experimental values, there isgood agreement between the ELOCV and experiment.In Fig. 3, we also show the energy of fully polar-ized (� = 1) liquid 3He as a fun
tion of liquid densi-ties for the LOCV and ELOCV approa
hes separately.This �gure indi
ates that as polarization in
reases, the

� = 0
� = 1

LOCV ELOCV
ELOCV LOCV

�4�20
24E; K

�4�20
24E; K
0:12 0:18 0:24 0:30 0:36
0:12 0:18 0:24 0:30 0:36�; ��3

�; ��3Fig. 3. Comparison of our 
al
ulated ground-state ener-gy of unpolarized (� = 0) and fully polarized (� = 1)liquid 3He with experiment [2℄ and FHNC results [11℄.Solid lines and dashed lines represent energy with andwithout the 
ontribution of the three-body 
luster ener-gy E3, respe
tivelyTable. Saturation density and equilibrium energy ofunpolarized liquid 3HeLOCV ELOCV Experiment�0, ��3 0.205 0.267 0.277E0, K �1:88 �2:61 �2:47energy takes higher values and there is no 
rossing pointbetween the energy 
urves of polarized and unpolarized
ases. This behavior is in agreement with experiment.The equilibrium density and the polarization energy donot vary with density 
onsiderably, in the LOCV 
ase.But in the ELOCV situation, the equilibrium densityde
reases and polarization energy in
reases with in-
reasing spin polarization. Be
ause of the Pauli ex-
lusion prin
iple, we expe
t that when fermions su
has 3He atoms are polarized, they ex
lude ea
h otherand so the density de
reases with in
reasing the pola-697
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LOCV without 3-body

Exp.QMC [10℄QMC [5℄0:50:40:30:20:100:010:020:030:040:050:060:070:08E(�)�E(0); K

�

LOCVwith 3-body

Fig. 4. Polarization energy versus spin polarizationof liquid 3He at the experimental equilibrium density.QMC [5, 10℄ and experimental [29℄ 
urves are a �t ofdata using a quadrati
 polynomialrization parameter, the same as ELOCV results.To investigate the e�e
t of spin polarization onthe polarization energy, in Fig. 4 we plot our 
om-puted energy at the experimental equilibrium den-sity �0 = 0:277��3 versus polarization of 3He. Wehave shown the extrapolations of experimental [29℄and QMC [5, 10℄ method data obtained by assumingE = E0 + �2=(2�=C) for the relation between energyand the spin polarization parameter. This �gure showsthat the 
ontribution of the three-body energy makesthe 
urve of the LOCV formalism 
loser to the experi-mental 
urve.In 
on
lusion, in this paper, we have extendedLOCV 
al
ulations to in
lude the three-body 
on-tributions. We �nd that the three-body 
orrelationsimprove the radial distribution fun
tion, the equationof state, and the polarization energy of liquid 3He.It is found that as the polarization of liquid 3Hein
reases, the two-body 
orrelation length be
omesshorter. The obtained results show that the internalenergy of liquid 3He in
reases with in
reasing the spinasymmetry parameter with no 
rossing point betweenpolarized and unpolarized energy 
urves. It is also seen

that there is a bound state for polarized liquid 3He.Our results indi
ate that in the framework of 
lusterexpansion, the role of the normalization 
onstraintis very important in many-body 
al
ulations, andhigher-order normalization leads to more physi
alresults. In the QMC [5, 10℄ and FHNC [11℄ methods,besides the three-body e�e
t, the ba
k�ow e�e
t isalso in
luded. In (E)LOCV, it is possible to 
onsiderthis e�e
t by 
hoosing the momentum-dependent
orrelation fun
tion and obtain new equations forenergy terms. We expe
t that the ba
k�ow e�e
t hassome e�e
ts in both polarized and unpolarized 
ases,but we leave it for future work.This work was supported by Shahid Rajaee Tea
herTraining University under 
ontra
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