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The ground-state energy of polarized and unpolarized liquid *He is calculated using the variational theory. A
variational wave function is constrained to be normalized appropriately by including the three-body terms in the
cluster expansion of the two-body radial distribution function. The higher-order terms have been found to be
important to obtain an equation of state which is in agreement with experimental data. The saturation density
of unpolarized liquid *He was found to be 0.2670 2, which decreases by enhancing the polarization. For all
relevant densities, the ground-state energy of the spin-polarized system is higher than that in the unpolarized

case.
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1. INTRODUCTION

Liquid ®He is an interesting system in which ma-
ny-body correlations play an important role in deter-
mining its properties [1]. This system obeys Fermi-Di-
rac statistics the same as neutron stars, whereas de-
scribing *He is easer than neutron stars because of the
simplicity of inter-particle interaction. Moreover, we
have accumulated a huge amount of experimental in-
formation about *He. Hence, for theoreticians, liquid
3He can be considered an excellent laboratory to test
many-body theories applied to neutron stars.

Experimentally, the zero-temperature equation of
state of liquid >He is known and the density of equilib-
rium is pg = 0.2770 3 with 0 = 2.556 A [2]. Theore-
tically, most of the available many-body methods have
been applied for investigating the properties of liquid
3He, two successful approaches are Fermi hypernet-
ted-chain (FHNC) and quantum Monte Carlo (QMC)
methods. Viviani et al. used a variational wave func-
tion which includes pair, triplet, backflow, and spin
dependent correlations in the FHNC method to obtain
an equation of state which is in very close agreement
with the experimental data [3]. Casulleras and Boronat
in 2000, using optimized backflow correlations, applied
the diffusion Monte Carlo (DMC) method and gene-
rated an equation of state of liquid *He which is in
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excellent agreement with experimental data from equi-
librium up to freezing [4]. In 2003, this computation
was revisited by using exactly the same potential, wave
function, and number of particles as used by Casulleras
and Boronat, but their results were not confirmed [5].

In addition, in 1979 liquid *He was polarized by a
rapid melting of a highly polarized solid *He [6]. In
this state, nuclear spins of 3He aligned and because of
nuclear magnetic interaction, the intrinsic relaxation
time of partially polarized *He is long, which allows
using it for magnetic resonance imaging [7]. Most
of the theoretical investigations based on QMC pre-
dict the fully polarized state with a lower energy than
for the unpolarized state [8, 9]. By considering back-
flow and three-body wave functions and twist-averaged
boundary conditions in the QMC approach, it was
found that the energy of the polarized state was higher
than the unpolarized one, but the obtained suscepti-
bility had discrepancy with extrapolated experimental
data [5, 10]. Manosuki et al., by using the FHNC tech-
nique, found that the energy of spin-polarized phase
was above that of the normal phase [11]. They conclude
that the three-body and backflow correlations are very
important for their variational wave function. They
predicted that this system could exhibit new phase
transitions to ferromagnetism, while no such new phase
has been discovered so far.

The lowest-order constrained variational (LOCV)
method is a many-body approach which has been de-
veloped to study the bulk properties of the quantum



Z. Razavifar, A. Rajabi

MIT®, Tom 146, Bomn. 4 (10), 2014

fluids [12—-14]. In recent years, this method has been ap-
plied to study homogeneous normal liquid *He [15-18].
In this variational approach, as we see in the next sec-
tion, we use a cluster expansion to calculate the energy
and other properties of system. Convergence of the ex-
pansion and the effect of higher-order cluster terms in
the energy of unpolarized liquid *He was studied and
it has been shown that higher-order cluster terms in
the normalization constraint improve the equation of
state [14]. The LOCV method has several advantages
with respect to the other many body methods which go
beyond the lowest order [14]. Two of them are: (i) the
LOCYV method is fully self-consistent, i.e., there are no
free parameters in this variational approach. (ii) It con-
siders a particular form for the long-range part of the
correlation function in order to perform an exact func-
tional minimization of the energy. It is shown that cor-
relation functions obtained from the extended LOCV
(ELOCV) lead to more accurate results for the mo-
mentum distribution [19, 20|, 3*He droplets [21], and
3He atoms in nanotube [22]. In a series of papers, Bor-
dbar et al. applied the LOCV method to the polar-
ized case and calculated some properties of this sys-
tem [18,23-25]. In their recent work, they considered
the ground-state properties with the three-body clus-
ter contributions [26]. But they did not consider the
effect of three-body cluster expansion of the two-body
radial distribution function (ELOCV). We expect that
the same as in QMC and FHNC methods, three-body
correlations are very important in spin-polarized sys-
tems. Hence, in this paper, we intend to consider the
effect of higher-order terms in the cluster expansion of
the radial distribution function and calculate the ener-
gy by the extended LOCV approach with the three-ho-
dy cluster contributions.

2. SCHEME OF CALCULATIONS

2.1. Cluster expansion of energy

The Hamiltonian of the normal liquid *He consists
of N atoms interacting with each other and is usually
written as

where V (ij) is the two-body inter-atomic potential. In
this work, we use the Lennard—Jones potential. In the
LOCV method, we use an ideal Fermi gas type wave

function (¢) for single-particle states to find the varia-
tional wave function of the interacting system:

¢v:F¢7

where F' is a correlation function which incorporates
the correlations induced by interactions. To calculate
the energy expectation value, we use the variational
principle and a cluster expansion developed in Ref. [27],
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The one-body term FE; is just the familiar Fermi-gas
kinetic energy, i.e.,
> (2.4)

B = z<
B = 5 YW 02,

(2.2)

=FE1+FEy+FE3+... (23)

Rk}

The two-body energy FEs is

2.5)

and the “effective interaction operator” W (12) is given
by

I (w022 + 202V (12)

where f(12) and V(12) are the two-body correlation
and inter-atomic potential.

Higher-order correlations are considered in terms of
statistically irreducible two-body correlations. So, the
three-body energy is written as

W(12) = (2.6)

E3 = E3p, + Ezpp + Es, (2.7)
where
Bun = 3 [HIBW (12)]ijk) -
ijk
= (ik|h(13)]ik)a(ij|W (12)[if)a],  (2.8)
By = 5z S UGHAASRE3)W (2)lijK)e,  (29)
ijk
Egt = W X
X Zk: <ijk ‘f—mfZ(Bl)V2h(12)V2h(23) ijk>a,
(2.10)
and
h(ij) = f2(ij) — 1. (2.11)
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We note that in Eq. (2.3), to collect all contributions
which are conventionally assigned to the first order in
the smallness parameter, we have to compute a spe-
cial portion of the four-body terms, like the three-body
cluster terms [27]:

By, = % %(ij|h(34)|kl>a(kl|W(12)|ij>a.

(2.12)

In the LOCYV formalism we constrain the two-body cor-
relation function to normalize the wave function of the
system. We hope this constraint makes the cluster ex-
pansion converge very rapidly.

2.2. Spin polarized calculations

We now specialize the above cluster expansion to
the spin-polarized system including N atoms with N(+)
spins up and N() spins down, with

p= )
being the total number density and the spin asymmetry
parameter ¢ defined as

= p(t) 4 p(o) (2.13)

NG —
N

By considering the single-particle states |i) as plane
waves, we can calculate the energy terms introduced in
the last section. The one-body energy term Fj is

3 n?
10 2m

The two-body energy E» introduced in Eq. (5) is

(-)
N (2.14)

By = = o (370)**[(14+0)**+(1-¢)*/].

(2.15)

1
E, = 27rp/r%2dr12 {1 - 1(1 + 4)252(k%+)r12) _

1 22 (1.(=)
_ Z( — Q)2 (K 7'12)] W(ri2), (2.16)

= E(sin(x) — zcos(z)) (2.17)

xr

is called the statistical correlation function or the
Slater factor [28]; k.7 = (672p(H)!/3 and k)
= (672p())/% are the Fermi momenta of spin up and
spin down states, respectively.

The three-body cluster energies in Eqs. (8), (9), and
(10) are

3

p
Eap = 12—
3h 8Nx

X /drlerdrgh(T13)W(7’12)F1(1'171'271'3)7 (218)
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3
Eghh = ;—N/dl‘ldl‘zdl‘3h(7'13) X

x W(ria)h(ra3)Ta(ry,ra,1r3), (2.19)
3 h2
FEs = Qp_N /drldl‘gdl‘gﬁ X
><f2(7‘31)V2h(7‘12)v2h(7‘23)r2(1‘1,1‘2,1‘3)- (2-20)

Here, the three-body energy terms T'y(ry,rs,r3) and
[y(ry,ra,r3) are defined as follows:

Fl(l‘l,l‘g,l‘g) =

= (1+ Ok ria) (kY m)é(/e”) 1)+
+ (1= QPR r12) (kS g ) (kS ) 7a1) —
[+ QP+ L+ O’ = O (R ras) -
~ (1= + (=) (1+<1€2<k; ra3)  (2.21)
and
Daer,ma,ms) = 1= <[(14+ 0P + (14071 - Q)] %

X [€2(k§;~+)’r12) + 262(k§,~+)r23)] —
110+

%(1 + Ok ) O
(1-

1-0)2 (1O (k% r12) 4203 (kY rag )]+
Vrag) (kS ray) +
OP Uk ri2) (kG ra) (R

7"31). (222)

m»—

And finally,

E4h = 32—Np4 /dl‘ldl‘gdl‘gdl‘4h(’f‘34)W(’f‘12) X

X {(L+ O ED 1) P (kG r20) — 0k 131) %
X Lk rog) 0k P a) Lk )] +
— QM (K 11s) Pk 1a0) — (kS 731) x
s O(ST rog) 0T ) 0 o). (2.23)

+(1

The above terms can be simplified by putting particle
1 at the origin and replacing p [ dr; = N

2.3. Normalization constraint and the
Euler—Lagrange equation

Now, we minimize the energy with respect to f(r),
whereas in LOCV formalism we are interested in ob-
taining a more physical correlation function that sa-
tisfies the normalization constraint (¢,[¢,) = 1. In
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the lowest-order approximation, this constraint is given
by [28]
P/(gz(rlz) —1)d’rp = —1, (2.24)

where g»(712) is the two-body radial distribution func-
tion, which has the cluster expansion

N
g2(r12) = f*(r12) Z[Ag(r12)]n- (2.25)
n=2
The first two terms of above expansion are
[Ag(ri2)]2 = gr(r12) (2.26)

and

1
[Ag(ri2)]s = Zp/d37‘3h(7‘13)F1(I‘1,I‘2,1‘3) +
+p/d3r3h(r13)h(1“23)93F(1‘1,1‘2,1‘3)» (2.27)

where gp(ri2) and gsp(ri,ro,r3) are the two- and
three-body radial correlation functions of the nonin-
teracting Fermi gas ground state,

gr(r2) = 1= (14 (k) -

1

— 1(1 — )2 (kpr), (2.28)

g3r(r1,r2,r3) = Ia(r1, 12, 13).

In most of the previous calculations, based on the
LOCYV method, only the n = 2 term was included in
the two-body distribution function, Eq. (2.25). But
in the extended version of the lowest-order constrained
variational formalism (ELOCV) applied in this work,
we extend the above cluster expansion to the n = 3
term. In other words, the ELOCV formalism leads to
a more accurate variational wave function, so that the
normalization constraint is satisfied more properly. So,
we expect our obtained wave function and the pair ra-
dial distribution function to be more physical.

The normalization constraint, Eq. (2.24), intro-
duces another parameter into our formalism, i.e., the
Lagrange multiplier A\. By using the Euler-Lagrange
equation, we minimize the functional L(r, f, f)
= r2{E+ (b |1y) } with respect to f(r) and we choose
A such that the above normalization constraint is sa-
tisfied, i.e.,

oL 0 0L

or  or af'(r)

(2.29)
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We solve this equation to find correlation functions and
the ground-state energy of spin polarized liquid ®He.
Note that in LOCV formalism, in contrast to other
variational approaches, we set the correlation function
equal to the Pauli function instead of 1 [15].

3. RESULTS AND DISCUSSION

The obtained two-body correlation functions for
fully polarized (¢ = 1 situation) and unpolarized ({ =0
situation) liquid 3He are shown in Fig. 1. This figure
shows that the correlation function for the fully po-
larized case, especially the correlation function of the
ELOCYV formalism, tends to the Pauli function more
rapidly than unpolarized one. So, when atom spins
are aligned with each other, they have a shorter cor-
relation length than in a misaligned state. The calcu-
lated two-body radial distribution functions introduced
in Eq. (2.25) are plotted in Fig. 2 for fully polarized and
unpolarized liquid 3He. It is clear that including the
n = 3 term leads to better results.

We have plotted the equation of state results of
LOCV and ELOCV calculations for unpolarized lig-

0.8

0.4

0.8

0.4

o

Fig.1. ELOCV (solid lines) and LOCV (dashed lines)
correlation functions of unpolarized (¢ = 0) and fully
polarized (¢ = 1) liquid *He at p = 0.2770 2
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Fig.2. Comparison of our ELOCV (solid lines) and

LOCV (dashed lines) two-body radial distribution func-

tions with the FHNC method (circles) [11] for unpolar-

ized (¢ = 0) and fully polarized (¢ = 1) liquid *He at
p=027702

uid 3He (( = 0 situation) as a function of the den-
sity in Fig. 3. To see the effect of the three-body en-
ergy, Eq. (2.7), we present results with and without the
three-body cluster energy. The experimental data [2]
are also given for comparison. As we see, the ELOCV
results are closer than the LOCV ones to the exper-
imental data. In both cases, the three-body energy
improves the results. As we explained in the preceding
section, in the ELOCV calculation, we insert the ra-
dial distribution function, Eq. (2.25), in the normaliza-
tion constraint, Eq. (2.24), up to the three-body cluster
term.

Our binding energies Ey at the equilibrium density
po obtained from the LOCV and ELOCV approaches
with the three-body cluster energy are tabulated in the
Table. In comparison with experimental values, there is
good agreement between the ELOCV and experiment.

In Fig. 3, we also show the energy of fully polar-
ized (( = 1) liquid *He as a function of liquid densi-
ties for the LOCV and ELOCYV approaches separately.
This figure indicates that as polarization increases, the
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0.36
pyo?

0.30

Fig.3. Comparison of our calculated ground-state ener-

gy of unpolarized (¢ = 0) and fully polarized (¢ = 1)

liquid ®He with experiment [2] and FHNC results [11].

Solid lines and dashed lines represent energy with and

without the contribution of the three-body cluster ener-
gy E, respectively

Table. Saturation density and equilibrium energy of
unpolarized liquid >He
LOCV ELOCV Experiment
po, 00 0.205 0.267 0.277
FEy, K —1.88 —2.61 —2.47

energy takes higher values and there is no crossing point
between the energy curves of polarized and unpolarized
cases. This behavior is in agreement with experiment.
The equilibrium density and the polarization energy do
not vary with density considerably, in the LOCV case.
But in the ELOCYV situation, the equilibrium density
decreases and polarization energy increases with in-
creasing spin polarization. Because of the Pauli ex-
clusion principle, we expect that when fermions such
as He atoms are polarized, they exclude each other
and so the density decreases with increasing the pola-
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Fig.4.

of liquid 3He at the experimental equilibrium density.

QMC [5, 10] and experimental [29] curves are a fit of
data using a quadratic polynomial

Polarization energy versus spin polarization

rization parameter, the same as ELOCYV results.

To investigate the effect of spin polarization on
the polarization energy, in Fig. 4 we plot our com-
puted energy at the experimental equilibrium den-
sity po = 0.2770~2 versus polarization of *He. We
have shown the extrapolations of experimental [29]
and QMC [5, 10] method data obtained by assuming
E = Eg + ¢?/(2x/C) for the relation between energy
and the spin polarization parameter. This figure shows
that the contribution of the three-body energy makes
the curve of the LOCV formalism closer to the experi-
mental curve.

In conclusion, in this paper, we have extended
LOCV calculations to include the three-body con-
tributions. We find that the three-body correlations
improve the radial distribution function, the equation
of state, and the polarization energy of liquid ®He.
It is found that as the polarization of liquid 3He
increases, the two-body correlation length becomes
shorter. The obtained results show that the internal
energy of liquid *He increases with increasing the spin
asymmetry parameter with no crossing point between
polarized and unpolarized energy curves. It is also seen
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that there is a bound state for polarized liquid *He.
Our results indicate that in the framework of cluster
expansion, the role of the normalization constraint
is very important in many-body calculations, and
higher-order normalization leads to more physical
results. In the QMC [5, 10] and FHNC [11] methods,
besides the three-body effect, the backflow effect is
also included. In (E)LOCV, it is possible to consider
this effect by choosing the momentum-dependent
correlation function and obtain new equations for
energy terms. We expect that the backflow effect has
some effects in both polarized and unpolarized cases,
but we leave it for future work.

This work was supported by Shahid Rajaee Teacher
Training University under contract number 10548.
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