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We report on stabilizing the chaotic dynamics of semiconductor lasers under optical feedback (OFB) by means
of sinusoidal modulation at frequencies far beyond the relaxation frequency of the laser. The laser is assumed
to be coupled to a short external cavity, which is characterized by a resonance frequency spacing higher than
the relaxation frequency. The study is based on a time delay rate equation model of OFB, which is suitable for
treating the regime of strong OFB and considering multiple reflections in the external cavity. We show that the
intensity modulation response of the chaotic laser under strong OFB is enhanced over a narrow frequency band
near the doubled relaxation frequency due to a photon—-photon resonance. Within this high-frequency band,
the sinusoidal modulation may convert the chaotic attractor to a limit cycle, and the small-signal modulation
suppresses the relative intensity noise (RIN) to a level only 2 dB higher than the RIN level of the solitary laser.
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1. INTRODUCTION

In most of its applications, a semiconductor laser
is subjected to an amount of external optical feedback
(OFB), such as the back reflection by the reflecting
surface in the optical disc system or by the fiber facet
in the optical fiber links. OFB may stabilize the laser
operation, but on the other extreme, it may cause vi-
olent instabilities in the form of chaos, depending on
the feedback parameters [1]. The chaotic dynamics un-
der OFB is associated with a state of coherence col-
lapse, which is manifested as significant broadening of
the laser line shape and enhanced noise levels [2-5].
Experiments show that the noise level is increased by
20 dB or more as a result of OFB [6]. Intensive research
activities have been focused on the control of the chaos
dynamics and suppression of the associated noise of
lasers [7-18]. Superposition of a high-frequency (HF)
current is the most popularly used method to suppress
the OFB noise. The OFB noise is well suppressed by
suitable selections of the frequency and amplitude of
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the superposed current. It has been established that
the frequency window of the sinusoidal modulation for
stabilizing the chaotic dynamics is around the relax-
ation frequency of the laser. Beyond the relation fre-
quency, the intensity modulation (IM) response drops
to lower orders and reaches the —3 dB level at the
modulation bandwidth. It was shown in [17] that in
the vicinity of the relaxation frequency, chaos is con-
verted into period-1 oscillations or period doubling, de-
pending on the modulation depth. The noise level in
the low-frequency regime was predicted to be about
8 dB/Hz higher than the quantum noise level of the
solitary laser [17]. This noise difference occurs mainly
because the regime of the relaxation frequency is char-
acterized by a strong coupling between the emitted
photons and the injected carriers and by harmonic dis-
tortions of the laser signal [19], which contribute to
the increase in relative intensity noise (RIN). It is also
worth noting that previous studies on controlling chaos
by sinusoidal modulation were concerned with interme-
diate OFB strengths. However, chaos is also induced
by strong OFB [5], and hence extending the previous
studies to the regime of strong OFB is necessary.

With the external OFB strength varied, the semi-
conductor laser exhibits a number of chaos regions.
The length of the external cavity controls not only the
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number and the OFB range of these chaotic regions
but also the route to chaos [20,21]. In semiconductor
lasers coupled to a short external cavity, the route to
chaos is of the period-doubling type [20,21]. The os-
cillation frequency along these chaos regions increases
with the increase in the OFB strength; it starts with
the relaxation frequency and ends with the resonance
frequency separation of the external cavity in the re-
gion of strong OFB [20]. Therefore, OFB has been
used to increase the modulation bandwidth of semi-
conductor laser subjected to strong OFB by a short-
distant reflector [5,22,23]. Recent investigations by
the authors have shown that strong OFB suppresses
the IM response below the —3 dB level at the modu-
lation frequencies lower than the carrier-photon reso-
nance (relaxation) frequency [24]. This suppression of
the IM response is then followed by enhancement of
the modulation response over a narrow band of mod-
ulation frequencies much higher than the relaxation
oscillation. The enhanced modulation response over
the millimeter-wave band 54.5-56.5 GHz was reported
for a laser diode with an external cavity 0.15 cm in
length [24]. This modulation response enhancement
was explained as the photon—photon resonance between
two spectrally neighbored longitudinal modes at fre-
quencies exceeding the relaxation oscillation [24, 25]. It
has been shown that within the frequency band of the
enhanced IM response, the sinusoidal modulation re-
leases period-1 oscillations with low signal distortion
and suppressed noise levels [26]. These findings moti-
vate the authors to examine the possibility of stabiliz-
ing the OFB-induced chaotic dynamics and suppressing
the associated noise of the laser by modulation the laser
far beyond the relaxation frequency.

In this paper, we investigate the stability of the
chaotic dynamics under modulation frequencies within
the frequency band of the enhanced IM response and
examine the noise suppression effect. The study is
based on an improved time-delay rate equation model
of semiconductor lasers augmented by a sinusoidal cur-
rent signal as well as intrinsic noise sources. The mul-
tiple reflections of laser radiation in the external cavity
are taken into account. The present model is appli-
cable to laser cavities supporting single-mode oscilla-
tions. Examples include distributed feedback (DFB)
lasers, vertical-cavity surface-emitting lasers (VCSELs)
with selective oxidation for current and photon con-
finement [27], and Fabry—Perot (FP) lasers with well-
controlled transverse structures, in which mode com-
petition induces the side-mode suppression ratio higher
than 20 dB [28]. The model can also be generalized to
treat OFB in semiconductor lasers with multimode os-

cillations [29]. The noise properties of the modulated
signal are determined in terms of RIN and its aver-
age value, LF-RIN, in the low-frequency regime. The
laser dynamics are analyzed and classified based on the
waveform of the laser and its fast Fourier transform
(FFT) as well as on the phase portrait of the photon
number versus the injected carrier number. We apply
the present study to a 1.55 um InGaAsP laser coupled
to a short external cavity with a relaxation frequency
of 4.5 GHz. We show that the modulation response of
the chaotic laser due to strong OFB is enhanced over a
narrow frequency band beyond 9 GHz, which is twice
the relaxation frequency. Within this high-frequency
band, the sinusoidal modulation turns out to attract
the chaotic attractor to a stable state with periodic-1
oscillations, and the small-signal modulation could sup-
press RIN to that of a solitary laser.

In the next section, the time-delay rate equation
model of laser dynamics and noise under OFB is in-
troduced. Section 3 introduces the procedures of nu-
merical calculations. Section 4 presents the results of
modulation dynamics and noise under OFB. The con-
clusions of the present work appear in the last section.

2. THEORETICAL MODEL

The proposed laser structure is composed of a laser
diode oscillating in a single mode and coupled to an ex-
ternal cavity formed by placing an external reflector of
power reflectivity R, at a distance L., from the front
facet of the laser. The laser has a length Lp, a refrac-
tive index np and power reflectivities Ry and Ry at the
front and back facets. OFB is treated as the time delay
of laser light of the electric field due to round trips in
the external cavity. The round-trip time, or time delay,
is 7 = 2neyLes /c, where ne, is the refractive index of
the external cavity. The present time-delay model of
OFB is illustrated by the scheme in Fig. 1. At a time ¢,
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Fig.1. Scheme of the proposed model of semiconductor
lasers under OFB
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the boundary conditions of the laser at the back facet
(z = 0) and the front facet (z = Lp) are then modified
to [30]

ESD (0,6) = /Ry exp{—igp} E,)L(0,), (1)

E) (Lp,t) =

laser

= /Ry exp{—ips} Ut —7)E.) (Lp,t). (2)

laser

Here, El(js)er and El(;s)er are the forward and backward
propagating components of the electric field inside the
laser cavity, and U(t — 7) is the time-delay function,
which accounts for the OFB due to multiple round trips

(reflections) in the external cavity and is given by [30]
Ut —7) = [Ulexp{—jp} =

=1-Y (Keo)? <1 fz;f)p_l x

p=1

(t —pr) exp{if(t — p7)}
S(t) exp{if(t)}

where S(t) and () are respectively the photon num-
ber and optical phase of the field, S(t — 7) and 6(t — 1)
are the corresponding time-delay values, and p is an
index for the round trips. The exponent w7, where w
is the angular frequency of the laser emission, repre-
sents the OFB phase due to delay of the optical field in
one round trip. The OFB strength is measured by the
coefficient

(3)

x exp{—ipwT} &

Re,
Ry’

Kep = (1 - Rf) n (4)
with 1 being the coupling efficiency of light injected
into the laser cavity. In equations (1) and (2), ¢y and
¢y are the optical phases at the front and back facets.
Therefore, the exponentional gain per pass is modified
to

1= /RsRy|U(t = 7)|exp{(g — k) Lp} x
x exp{—i(2B8Lp + s+ +¢)}, (5)

where g, k, and 3 are the gain per unit length, internal
loss, and the propagation constant in the laser cavity.
The threshold gain and phase conditions of the laser
are then modified to

c

= — 1 t—
Gin = G wolp 2 |U(t =), (6)
QﬂLD+99f+99b+g0:237T, (7)
where s is an integer and
c 1
G = — —1 8
thD np ot 2121) . sz}%b ( )

is the threshold gain (per sec) in the solitary laser.

The modulation characteristics and noise of the
semiconductor laser under both external OFB and IM
are then described by the following time-delay rate
equations for the carrier number N(t), the photon num-
ber S(t), and the optical phase 6(t) [30]:

dN _ 1 N a&
ds  [a§
% - V(N_Ng) _BC(N_NS)S -

— Gwwp + ln|U(t—T)|]S+
npLp
N
+C0—+Fs(t), (10)

a1

1 a& — c
%‘%A”_Q(O‘V(N ) nDLD9°>+
+'Fb(t)7 (11)

where Av(t) is the shift of the lasing frequency (fre-
quency chirp) associated with the intensity modulation.
The laser parameters in Eqs. (9)-(11) are defined as
follows: a is the differential gain coefficient, Gy,p is
the threshold gain of the solitary laser, ¢ is the field
confinement factor, V' is the volume of the laser cavity
whose length is Lp and refractive index is np, N, is
the electron density at transparency, N is an electron
number characterizing the nonlinear gain suppression
whose coefficient is B., and 75 is the electron lifetime
due to the spontaneous emission whose fraction into the
stimulated emission is C. In Eq. (11), N is the time
average value of N(¢) in the solitary laser. The injec-
tion current is composed of a bias component I, and a
modulation component. The latter is characterized by
the modulation current I,,, and the frequency fo,:

I(t) = I + L sin(27 fiut). (12)

Both I, and I,, define the modulation depth m =
= I /1.

The last terms Fy (t), Fs(t), and Fp(t) in rate equa-
tions (9)-(11) are Langevin noise sources with zero
means, and are added to the equations to account for
intrinsic fluctuations of the laser [31]. These noise
sources are assumed to have Gaussian probability dis-
tributions and to be d-correlated processes [31]. The
noise content of the fluctuations in the photon number
S(t) around its time average value S is determined in
terms of RIN over a finite time T as [31]
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RIN = L x
S
2

T
/ (S(t) — S) exp {—i2rfr}dr ,  (13)
0

X

Nl =

where f is the Fourier frequency. According to the
above equation, the RIN spectrum includes not only
the noise but also the signal power spectral density.

3. NUMERICAL CALCULATIONS

Rate equations (9)—(11) are solved by the 4th-
order Runge-Kutta method using the time integra-
tion step At 5 ps. We adapt the length of the
external cavity to be neyLe, = 1.5 cm, which corre-
sponds to the external-cavity resonance frequency spac-
ing fep = 10 GHz. We count five roundtrips (p =1 — 5
in Eq. (3)), each of the duration 7 = 1/f.., = 0.1 ns,
in the calculations. The integration is taken over a
long period of time T = 6 us, with all terms S(t — p7)
and 6(t — pr) regarded as time delayed values. Both
the modulation response and the spectrum of RIN are
calculated over the time period between 4 and 6 us,
during which the state of the laser operation does not
change. At each integration step, the noise sources
Fn(t), Fs(t), and Fp(t) are generated by applying the
technique in [31] using a set of uniformly distributed
random numbers generated by the computer. In Ta-
ble, we list the values of the laser parameters used in
the calculations, which correspond to 1.55 pum semi-
conductor lasers. In these narrow bandgap lasers, the
spontaneous emission lifetime is given in terms of the
nonradiative recombination rates due to crystal defects
Apnr and Auger processes Capg, and the radiative re-
combination rate B, as

7o = [Aur + B (N/V) + Cava(N/V)?] 7' (14)

We computed RIN from the calculated values of
S(t;) by using the FFT to calculate the discrete ver-
sion of Eq. (13) as

1 A

RIN = ZT [FFT (S(t;) — S5)]

(15)
4. RESULTS AND DISCUSSION

The laser is assumed to be biased far above the
threshold, I, = 3I;,, with I;,p being the threshold
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current of the solitary laser. The corresponding relax-
ation frequency f,. is determined approximately from
the small-signal approach as [32]

1
fr ~ % X

a& |a&e Iy—Iinp | Iy—Iinp

— I,—1,)+B 16
><\/V {eV(b B G | eGnn 1Y

where I, is the transparency current and B
= B.(Ny, — N;). The calculated value is f, ~ 4.5 GHz,
which means that the frequency ratio fe./f, = 2.22.
Therefore, the present laser dynamics under OFB are
characterized by a period-doubling route-to-chaos, as
illustrated in Refs. [20,21]. The frequency of possi-
ble oscillations under strong OFB increases with an
increase in the OFB strength; it starts with the re-
laxation oscillation f, in the route to chaos in the weak
OFB regime and approaches the external-cavity reso-
nance frequency fe, = 10 GHz in the regime of strong
OFB [20].

4.1. Chaotic dynamics and noise in a solitary
laser

4.1.1. Temporal characteristics of the chaotic state

In this section, we characterize the chaotic dynam-
ics of the laser induced by OFB. These characteristics
include the temporal trajectories of both the intensity
and frequency chirp of the laser as well as the phase
portrait. These characteristics are plotted in Fig. 2
for three chaotic states induced when K., = 0.16 (in-
termediate OFB), 0.27 (rather strong OFB), and 0.56
(strong OFB). The injection current is I, = 3I;,p. Fig-
ures 2a—c plot the temporal trajectories of the emit-
ted photon number S(t), Figs. 2d-f plot the tempo-
ral variations of the associated frequency chirp Av(t),
and Figs. 2¢g—i plot the phase portraits of the photon
number S(t) versus the carrier number N(¢). In these
figures, both S(t) and N(t) are normalized by the cor-
responding time-averaged values S and N. In these
relevant three cases of chaos, Figs. 2a—f show that both
S(t) and Av(t) are characterized by irregular varia-
tions as time progress. The maximum induced chirps
are 144, 149, and 182 GHz for the respective values
K¢, = 0.16, 0.27, and 0.56. These temporal irregu-
larities of the chaos states are manifested as chaotic
attractors in the phase portraits in Figs. 2¢-i.



MKIT®, Tom 146, Boin. 4 (10), 2014 Stabilizing optical feedback-induced chaos . ..

Table. List of the parameters of 1.55 um InGaAsP lasers and their typical values used in the calculations

Parameter Value
Emission wavelength A 1550 nm
Tangential gain coefficient a 7.96-10712 m3 -5t
Field confinement factor in the active layer £ 0.2
Volume of the active region V 150 pm?
Length of the active region Lp 300 pm
Refractive index of the active region np 3.53
Electron number at transparency N, 1.32-108
Electron number characterizing gain suppression Ng 1.012- 108
Coefficient characterizing gain suppression B, 3.18-107* 57!
Linewidth enhancement factor « 5
Front facet reflectivity Ry 0.2
Back facet reflectivity R, 0.9
Threshold gain level Gy;p 2.44- 10 1
Threshold current I;;,p 8 mA
Nonradiative recombination coefficient A, 108 s71
Radiative recombination coefficient B, 3.6-1071 m? /s
Auger recombination coefficient C' g 0.3-10~*" cm®/s
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Fig.2. Characteristics of the chaotic dynamics: a—c temporal trajectories of S(t), d—f temporal trajectories of Av(t), and
g-1 (S(t) versus N(t)) phase portraits, with K., = 0.16, 0.27, and 0.56
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Fig.3. Frequency spectrum of RIN of the solitary laser
and the chaotic laser under OFB with K., = 0.16 when
Iy = 3Linp

4.1.2. Intensity noise of a nonmodulated laser

The spectral properties of RIN of the chaotic non-
modulated laser are described in Fig. 3. The figure
plots an example of the frequency spectrum of RIN and
compares it with the RIN spectrum of the solitary laser.
In this case, K., = 0.23 and I, = 3I;;,p. The RIN spec-
trum of the solitary laser exhibits a peak around the
relaxation frequency f,.. The relaxation oscillations are
manifestation of the electron—photon resonance. Below
the regime of f,., RIN is flat (white noise), and the low-
frequency RIN, which determines the signal-to-noise ra-
tio, is LF-RIN = —160 dB/Hz. As the figure shows, the
chaotic RIN spectrum is higher than that of the solitary
laser; the high-frequency regime is almost three orders
of magnitude higher, while the low-frequency regime
is almost six orders of magnitude higher. The level
of the low-frequency noise is LF-RIN = —112 dB/Hz.
Another indication of the chaotic dynamics is that the
resonance peak is hardly indicated in the RIN spec-
trum. These effects along with the large values of the
frequency chirp are manifestations of a state of coher-
ence collapse in the lasing action. These characteristics
agree with those reported in [4] and [5].

4.2. Dynamics of the chaotic laser under
sinusoidal modulation

Examination of the IM response spectrum of the
chaotic laser due to OFB helps explore the modula-
tion frequencies at which the chaotic state could be
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Fig.4. IM responses of the chaotic laser with K., =
=0.16 (1), 0.27 (2), and 0.56 (3) and the nonchaotic
solitary laser (4) when m = 0.5

converted into stable operation. The FFT is used to
calculate the IM response as

IM repsonse = ay (fm)/a1(fm — 0), (17)
where a1 (fp,) is the amplitude of the fundamental har-
monic of the FFT spectrum of the laser intensity at the
modulation frequency f,,. In Fig. 4, we plot the calcu-
lated IM responses of the laser under the three relevant
OFB strengths K., = 0.16, 0.27, and 0.56, and com-
pare them with the IM response of the solitary laser.
The modulation depth is set to be m = 0.5. The figure
shows that the IM response of the solitary laser re-
veals a peak due to the photon-carrier resonance when
the modulation frequency f,, is close to the relaxation
frequency f. = 4.5 GHz. The calculated value of the
3 dB-modulation bandwidth is f345 = 7.2 GHz.

In the case of the chaotic dynamics under the in-
termediate OFB with K., = 0.16, the IM response
becomes almost flat, and the modulation bandwidth
f3ap increases to 9.1 GHz. This increase in f34p could
be due to the increase in the laser intensity [32]; S in-
creases from 3.9 - 10° in the solitary laser to 4 - 10° in
the chaotic laser. As the OFB strength increases to
K., = 0.27, the IM response of the chaotic laser ex-
hibits the interesting feature that it drops under the
—3 dB level at the modulation frequency of 3.7 GHz,
which is much lower than f34p of the solitary laser.
The further increase in f,, results in enhancement
of the IM response over the narrow frequency band
6.6-9.3 GHz, which then extends beyond f34p of the
solitary laser. This IM response enhancement can be
interpreted as a photon—photon resonance between the
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modulating field and an oscillating mode of the exter-
nal cavity [24,25]. The further increase in K¢, to 0.56
results in 1) more reduction in the photon—carrier res-
onance frequency, with the value of the normal f34p
reducing to 1.6 GHz, and 2) a shift of the photon—
photon resonance frequency band to higher frequen-
cies (8.2-9.8 GHz). This shift of the frequency band
of the enhanced modulation response with the increase
in the OFB strength is consistent with the prediction
in [24] that the photon—photon resonance frequency in-
creases toward the external-cavity resonance frequency
fex with the increase in K.

Investigation of the dynamics of the chaotic laser
within the frequency band of the enhanced IM response
indicated that the laser exhibits period-1 signals over
certain frequencies. Examples of these large-signal reg-
ular dynamics are given in Figs. 5 and 6 for the cases
where K., = 0.27 and 0.56. The modulation frequency
is then f,, =9 GHz, which is twice the relaxation fre-
quency f. Figures 5a and 6a plot the temporal tra-
jectories of the emitted photon number S(t), and show
that the modulated signal is of the period-1 type with
a high degree of uniformity. The corresponding peri-
odic variation in the frequency chirp Av(t) is shown in
Figs. 50 and 6b, which indicate not only the periodic
and uniform variation with time but also a remarkable
reduction in the maximum frequency chirp. The maxi-
mum chirp reduces from Av(t)| e, = 144 and 149 GHz
of the chaotic states with K., = 0.27 and 0.56 to the
much smaller respective values 31 and 27 GHz under
the high-frequency modulation. The high degree of reg-
ularity of the modulated laser signal is indicated by the
phase portraits in Figs. 5¢ and 6¢, which show that the
sinusoidal modulation converts the chaotic attractors
to a single attractor of stable operation. The attrac-
tors are not circular because the emitted signals are
not sinusoidal in this case of rather deep modulation,
m = 0.5 [17]. The periodicity and the distortion in the
simulated signals are examined by using the FFT power
spectrum plotted in Figs. 5d and 6d. The signal period-
icity is manifested in the figures as a sharp and strong
peak at the modulation frequency f,, as well as weaker
peaks at the higher harmonics. These higher harmon-
ics correspond to 2nd-order harmonic distortion (2HD)
and 3rd-order harmonic distortion (3HD) of the signal.
These higher-order harmonic distortions are calculated
as

2HD = 10log(az/a1), 3HD = 10log(as/a1), (18)
where as and ag are the amplitudes at the 2nd and

3rd harmonics. The calculated values of 2HD and
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3HD are less than —3 dB; they are 2HD = —4.4 and
3HD = —8.4 dB for K., = 0.27, and 2HD = —5.1 and
3HD = —9.8 dB for K., = 0.27.

It is worth noting that the large varations of the
photon number in both the nonmodulated chaotic laser
(Fig. 2) and the modulated chaotic laser (Figs. 5 and
6) with respect to the average value may induce rather
large temporal variations in the laser temperature.
This temperature variation may induce variations in
the laser characteristics and affect the device perfor-
mance. But in this paper, the frequency regime of in-
terest ranges between 4 and 10 GHz, whereas the ther-
mal frequency response of the laser is below 10 MHz
[33,34]. Therefore, the thermal dynamics is beyond
the scope of the present study. Nevertheless, studying
the thermal dynamics under the rich dynamics of the
semiconductor laser under OFB is needed for further
understanding of the laser physics and could be the
subject of future research.

4.3. Suppression of the chaotic RIN by
small-signal modulation with f,, > f.

In the techniques of superposing a high-frequency
current, the modulating signal is small and the mod-
ulation frequency is in the vicinity of the relaxation
frequency f,. of the laser, i.e., in the regime of the
photon-carrier resonance. In this subsection, we newly
show that small-signal modulation can also be applied
to suppress RIN at modulation frequencies much higher
than f,.; namely, within the frequency band of the en-
hanced IM response due to the photon—photon reso-
nance. Figure 7 plots the frequency spectrum of RIN of
the chaotic laser when the OFB strength is K., = 0.16,
0.27, and 0.56 under the application of small-signal
modulation (m = 0.1) with the modulation frequen-
cies fp, much higher than f,.. Figure 7a corresponds
to the case of the chaotic laser with K., = 0.16 un-
der modulation with f,, = 8.6 GHz. The figure has an
enhanced peak at the modulation frequency f,, and a
much weaker peak at the 2nd harmonic. In contrast to
the RIN spectrum of the nonmodulated chaotic laser
in Fig. 3a, the RIN is flat (white noise) in the low-
frequency regime. This feature is similar to the noise
spectrum of the nonmodulated solitary laser in Fig. 3a.
Moreover, the level of the low-frequency RIN is close to
that of the solitary laser, LF-RIN = —158 dB/Hz, i.e.,
the noise is just 2 dB higher than that of the solitary
laser. This value is smaller than the RIN difference of 8
dB obtained when the chaotic laser is modulated close
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Fig.5. Characteristics of modulated signal of the chaotic laser with K., = 0.27 and m = 0.5: a) temporal trajectory of
S(t), b) temporal trajectory of Av(t), c) (S(t) versus N(t)) phase portraits, and d) frequency FFT spectrum of S(t)
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Fig.6. Characteristics of modulated signal of the chaotic laser with K., = 0.56 and m = 0.5: a) temporal trajectory of
S(t), b) temporal trajectory of Av(t), ¢) (S(t) versus N(t)) phase portraits, and d) frequency FFT spectrum of S(t)

to the f, [17]. Similar results are shown in Fig. 7b for =~ the modulated signal and the small-signal frequency
the chaotic laser with K., = 0.27 when modulated at spectrum of RIN.

fm = 9.1 GHz and in Fig. 7¢ for the chaotic laser with ) ) )
Koy = 0.56 when modulated at f,, = 9.6 GHz. The obtained results show that under intermedi-

ate and strong OFB, the laser may exhibit chaotic

dynamics characterized by chaotic attractors. Under

5. CONCLUSIONS intermediate OFB, the IM response of the chaotic laser

is flat, does not reveal the carrier-photon resonance

We investigated the stability and noise suppression  peak of the solitary laser, and has a higher modulation

of semiconductor lasers coupled to a short external cav- bandwidth f34p = 9.1 GHz. Under stronger OFB,
ity by means of sinusoidal modulation at frequencies the IM response drops below the —3 dB level at the
exceeding twice the relaxation frequency of the laser. modulation frequencies lower than the conventional
These frequencies lie in a narrow band of the modu- bandwidth, and is enhanced over a narrow frequency
lation frequencies within which the IM response is en- band. This interesting frequency band extends beyond
hanced due to a photon—photon resonance. The per- 2f, and is close to the resonance frequency of the ex-

formance of this high-frequency modulation technique ternal cavity. Within this characteristic high frequency
is assessed in terms of the waveform and distortion of = band, the sinusoidal modulation happens to stabilize
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Fig.7. Frequency spectra of RIN of the chaotic laser under sinusoidal modulation with m = 0.1, for K., = 0.16 (a), 0.27

(b), and 0.56 (c)

the chaotic dynamics; it converts the chaotic attractor
to a periodic single state. The stabilized dynamics are
characterized by periodic and uniform output signals
with harmonic distortions as low as 2HD ~ —5 dB
and 3HD —9 dB. Under small-signal modulation
(m = 0.1), the photon—photon resonance suppresses
the frequency spectrum of chaotic RIN to that of the
solitary laser. Examples are given for modulation at
fm = 9.1 GHz with K., = 0.27 and f,, = 9.6 GHz
with K., = 0.56. The reported noise suppression due
to the photon—photon resonance is 6 dB stronger than
the noise suppression reported in the literature due
to the carrier-photon resonance around the relaxation

~
~

frequency.
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