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The theory of Raman scattering in half-metals by optical phonons interacting with conduction electrons is
developed. We evaluate the effect of electron—phonon interactions at ferromagnetic ordering in terms of the
Boltzmann equation for carriers. The chemical potential is found to decrease as the temperature decreases.
Both the linewidth and frequency shift exhibit a dependence on temperature.
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1. INTRODUCTION

Recently, the Raman scattering in the half-metallic
CoS, was studied [1] in a wide temperature region.
The w = 400 cm ' Raman line, observed previously at
room temperature in Refs. [2,3], demonstrates a par-
ticular behavior near the ferromagnetic transition at
T. = 122 K. The unusual large Raman linewidth and
shift of the order of 10 em ™! were observed. The reflec-
tivity singularities of CoS, were explained in Ref. [4]
by the temperature variation of the electronic struc-
ture. Another example of electron—phonon interactions
is adduced in Ref. [5] in order to explain the phonon
singularity at the I' point in graphene. The electron—
phonon interactions should also be considered in in-
terpreting the observed Raman scattering around the
Curie temperature.

Thermal broadening of phonon lines in Raman scat-
tering is usually described in terms of the three-phonon
anharmonicity, i.e., by the decay of an optical phonon
with a frequency w into two phonons. The simplest case
where the final state has two acoustic phonons from one
branch (the Klemens channel) was theoretically studied
by Klemens [6], who obtained the temperature depen-
dence of the Raman linewidth. The corresponding line
shift was considered in Refs. [7,8]. This theory was
compared in Refs. [7-9] with experimental data for Si,
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Ge, C, and a-Sn. A model was also considered with
the final-state phonons from different branches. It was
found that anharmonic interactions of the forth order
should be taken at high temperatures 7' > 300 K into
account.

The situation is more complicated in substances
with magnetic ordering. The interaction of phonons
with magnons in antiferromagnets was discussed in
review article [10] and more recently in the analy-
sis of thermal conductivity [11], the spin Seebeck ef-
fect [12, 13], high-temperature superconductivity [14],
and optical spectra [15]. The magnon—phonon interac-
tion results in the magnon damping [16], but no effect
for phonons was observed. The influence of antiferro-
magnetic ordering is considered in Ref. [17], where only
the line shift was calculated. Damping of the optical
phonons was found [18] to become large in the rare-
earth Gd and Th below the Curie temperature, achiev-
ing a value of 15 cm ™', which is much greater than the
three-phonon interaction effect.

A contradiction is known to exist in the Migdal the-
ory [19] of electron—phonon interaction. On one hand,
Migdal showed that the vertex corrections for acoustic
phonons are small by the adiabatic parameter /m /M,
where m and M are the respective electron and ion
masses (the “Migdal theorem”). The theory correctly
described the electron lifetime and renormalization of
the Fermi velocity vp. But on the other hand, the the-
ory resulted in a strong renormalization of the sound
velocity 5 = s(1 —2X)'/2, where X is the dimensionless
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coupling constant. For a sufficiently large electron—
phonon coupling constant A — 1/2, the phonon fre-
quency approaches zero, marking an instability point
of the system. Instead, one would intuitively expect
the phonon renormalization to be weak along with the
adiabatic parameter.

This discrepancy was resolved by Brovman and Ka-
gan [20] almost a decade later (see also [21]). They
found that there are two terms in the second-order
perturbation theory that compensate each other and
produce a result small by the adiabatic parameter.
Namely, in calculating the phonon self-energy function
II(w, k) with the help of the diagram technique, one
should eliminate an adiabatic contribution of the Froh-
lich model by subtracting II(w, k) — II(0, k).

The interaction of electrons with optical phonons
was considered first. A splitting of the optical
phonon into two branches at finite wavenumbers
k was predicted by Engelsberg and Schrieffer [22]
within Migdal’s many-body approach for dispersion-
less phonons. Later, Ipatova and Subashiev [23] cal-
culated the optical phonon attenuation in the col-
lisionless limit and pointed out that the Brovman-—
Kagan renormalization should be carried out for op-
tical phonons in order to obtain the correct phonon
renormalization. In Ref. [24], Alexandrov and Schri-
effer corrected the calculational error in Ref. [22] and
argued that no splitting was in fact found. Instead,
they predicted an extremely strong dispersion of opti-
cal phonons, wy, = wy + M%k? /3wy, due to the cou-
pling to electrons. The large phonon dispersion is a
typical result of Migdal’s theory [25] using the Frolich
Hamiltonian. No such dispersion has ever been ob-
served experimentally. The usual dispersion of optical
phonons in metals has the order of the sound velocity.
Reizer [26] stressed the importance of taking screen-
ing effects into account. Papers [24, 26] are limited to
the case where both electron and phonon systems are
collisionless. Moreover, only the phonon renormaliza-
tion was considered, with no results available for the
attenuation of optical phonons.

A semiclassical approach, which is different from
the many-body technique and is based on the Boltz-
mann equation and the elasticity theory equations was
developed by Akhiezer, Silin, Gurevich, Kontorovich,
and many others (we refer the reader to review [27]).
This approach was compared with various experiments,
such as attenuation of sound waves, the effects of strong
magnetic fields, crystal anisotropy, and sample surfaces
on sound attenuation, and so on. It can be applied
to the problem of the electron—optical-phonon interac-
tion [28] as well.

In the previous paper [29], we developed a quantum
theory for the optical-phonon attenuation and shift in-
duced by the interband electron transitions and tuned
with a temperature variation. Here, we consider the op-
tical phonon renormalization as a result of the electron—
phonon interaction taking ferromagnetic ordering into
account. We argue that the reasonable phonon damp-
ing and shift can be obtained using the semiclassical
Boltzmann equation for electrons and the equation of
motion for phonons coupled by the deformation poten-
tial.

2. ELECTRON-PHONON INTERACTIONS AT
FERROMAGNETIC ORDERING

We assume that the electron bands in CoS, have
the shape shown in Fig. 1. The ferromagnetic ordering
results in a spin splitting upH, of the unfilled half-
metallic band,

2 2

p
~unH =
omr  HBHe S (p) 2m*

ET(p) = +upH, (1)

in the effective Weiss field H,. As the temperature
decreases, the magnetization, determined in the mean-
field approximation as

m =moy/1— (T/T.)2, 2)

y y

T>T.

T<T.

Fig.1. Proposed band scheme for two-electron spin

projections
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appears according to experimental data in CoSs at ap-
proximately 7. = 122 K, and the spin splitting is pro-
portional to the magnetization.

We write the interaction of electrons with the opti-
cal phonon u; as the deformation potential

u;
znt Z / 271'FL

where N ~ 1/a® is the number of cells in unit volume
and a is the interatomic distance. For the acoustic
phonon—electron interaction, we should substitute the
strain tensor u;; instead of the displacement u; in order
to satisfy the translation symmetry of the lattice.

The Boltzmann equation for the nonequilibrium
part of the distribution function f(p) has the form

p)f(p), (3)

[—i(w—k-v)+7]f(p)

= %{;0 [ev-E —
where fy is the equilibrium distribution function. In
Boltzmann equation (4), we omit the spin index s that
determines all the electron parameters. The electron
collision frequency 77! takes the collisions with impuri-
ties and phonons into account. The collision frequency
is calculated for CoS, in the Debye model with the tem-
perature Tp = 500 K [30]. Tt follows from Eq. (4) that
the condition

iwuiGi(p)], (4)

(G)=0

must be satisfied for the current continuity equation
to hold; here, the brackets denote averaging over the
Fermi surface for temperatures T < cp.

In the ferromagnetic phase, as the temperature
changes, the carriers overflow from one spin state to
another, but the total number of carriers

3
N = Z / (;fr—,fﬁfo(m (5)

remains constant. This condition determines the chem-
ical potential and the concentration of carries with spin
up and spin down, shown in Fig. 2. All figures corre-
spond here and in what follows to the carrier concen-
tration N = 102! cm~? in the considered band with
the chemical potential © = 0.36 eV above the Curie
temperature.

We write the equation of motion for the phonon
mode in the form

— QEz 1 8I{znt
M M Ou;

(6)
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Fig.2. Calculated temperature dependence of the car-

rier concentration for spin up Ny and spin down N

(relative to the total concentration at temperatures

above the ferromagnetic ordering temperature), and
the dependence of the chemical potential x

where M is the reduced ion mass of the cell, () is the
charge corresponding to the optical vibration, and wq
is the frequency of the considered mode. Here, the last
term represents the electron—phonon interaction. Using
Boltzmann equation (4), we rewrite this term as

1 8Hznt _ Ui
M ou;

Z/OZTCH (‘%) (chif)S' @

The term with the electric field in the Boltzmann equa-
tion disappears in integrating over p due to the velocity
inversion v.— —v. The term with the wave vector k
has to be omitted for a Raman phonon, because the
vector k is determined in this case by the laser fre-
quency w; and the optical-phonon frequency satisfies
the condition w > w;v/c.

The electric field is not excited in TO vibrations.
Therefore, setting £ = 0 and integrating over the en-
ergy ¢ instead of p, we use Egs. (6) and (7) to find
the line shift dw and linewidth 6" determined by the
electron—phonon interaction as
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6wTO — Z'(srTo =

2MN Z/

where dS is an element of the Fermi surface and v is
the Fermi velocity. Estimating S = 4mp%, ((p) ~ €0/a,
and 2 ~ w?M/m., where g9 ~ 3 €V is the typical elec-
tron energy in metals, we obtain

p)dS
(2rh)3|._.

S5

(wr — 1)
(w?r2 4+ 1)v

(8)

2
APFRTWTo

— 0l ~ ——9
wLTo 2m2h(Twro + 1)

5UJTO
To find the LO mode frequency, we should evaluate
the dielectric function (w). Equations (6) and (7) al-
low us to express the phonon displacement v in terms
of the electric field E and to calculate the phonon con-
tribution uN@ to the polarization. We find the total
dielectric permittivity by adding the contributions €4
of the filled bands:

() = 47re Z/ =t al
xl Z/ o r. (9)

The frequency of the longitudinal phonon mode is
determined by the condition e(w) = 0. In the absence
of free carriers, we find the frequency of the LO mode
as

TvdS
)(27h)3

(p)dS
v(27h)3

47T NQ?

UJLO = (JJO + wp“

where w =47 NQ?/Me is the ion plasma frequency
squared
Using Eq. (9), we find the LO frequency in the pres-

ence of carriers as

Wop—wi= o x
Lo =70 (o h)3MN

% (p wfn’ ]
X 10
S [ Tt~ i, 0

where the electron plasma frequencies squared

47re vdS
2

11
Z / 27h)3 (11)
is assumed to be large in comparison with w?;. We can

also set w = wro in the right-hand side of Eq. (10).
Here, the last term takes the screening of the elec-
tric field by free carriers into account. For the typical
carrier concentrations in conductors, the main role is
played by the first term, which coincides with the re-
sult for the TO mode, Eq. (8), shown in Figs. 3 and 4
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Fig.3. Calculated shift of the Raman line w =

= 400 cm ™! due to the electron-phonon interaction

and anharmonicity (solid line), and the line shift in the
Klemens channel (dashed line)

(the results for the Klemens channel are taken from
Ref. [29]).

We emphasize that the temperature dependence of
the linewidth and shift, Eq. (8), is determined mainly
by the electron collision rate 7! | for instance, also in-
volved in the dc conductivity. For a cubic crystal, the
dec conductivity (i. e., the conductivity at w = k = 0) is
given by

62
U—;W/Tvds.

The details of the electron density of states and of the
deformation potential are responsible for peculiarities
of the Raman line temperature dependence.

3. SUMMARY

The Klemens formula describes the optical phonon
width due to three-phonon anharmonic interactions.
The corresponding line shift matches the linewidth.
In ferromagnets with a low Curie temperature, such
as CoSz, these interactions are found to be too weak
to describe the experimental data quantitatively
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Fig.4. Calculated temperature dependence of the

width for the Raman line w = 400 cm™" at the fer-
romagnetic ordering (solid line), and the linewidth in
the Klemens channel (dashed line)

and to explain the very large Raman linewidth
and shift. Therefore, we propose the mechanism of
electron—phonon interaction attended with the effect
of ferromagnetic ordering on the electron bands. The
deformation potential couples the Boltzmann equation
for electrons and the equation of motion for phonons,
producing a renormalization of the phonon frequency.
The corresponding Raman line width and shift are in
agreement with experiments in Ref. [1].
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