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KINEMATIC SPIN-FLUCTUATION MECHANISMOF HIGH-TEMPERATURE SUPERCONDUCTIVITYN. M. Plakida a*, V. S. Oudovenko baJoint Institute for Nu
lear Resear
h141980, Dubna, Mos
ow Region, RussiabRutgers University08854, New Jersey, USARe
eived February 20, 2014We study d-wave super
ondu
tivity in the extended Hubbard model in the strong 
orrelation limit for a largeintersite Coulomb repulsion V . We argue that in the Mott�Hubbard regime with two Hubbard subbands, thereemerges a new energy s
ale for the spin-�u
tuation 
oupling of ele
trons of the order of the ele
troni
 kineti
energy W mu
h larger than the ex
hange energy J . This 
oupling is indu
ed by the kinemati
 intera
tion forthe Hubbard operators, whi
h results in the kinemati
 spin-�u
tuation pairing me
hanism for V . W . Thetheory is based on the Mori proje
tion te
hnique in the equation of motion method for the Green's fun
tions interms of the Hubbard operators. The doping dependen
e of the super
ondu
tivity temperature T
 is 
al
ulatedfor various values of U and V .DOI: 10.7868/S00444510140902351. INTRODUCTIONOne of 
ru
ial issues in the super
ondu
tivity the-ory is to dis
lose the me
hanism of high-temperaturesuper
ondu
tivity (HTSC) in 
uprates (see, e. g., [1,2℄). In early studies of the problem, a model of strongly
orrelated ele
trons was proposed by Anderson [3℄,where super
ondu
tivity o

urs at �nite doping in theresonating valen
e bond state due to the antiferromag-neti
 (AF) superex
hange intera
tion J . However, theintersite Coulomb intera
tion (CI) V that in 
upratesis of the order of J may destroy the resonating valen
ebond state and super
ondu
ting pairing. Re
ently, a
ompetition of the intersite CI V and pairing indu
edby the on-site CI U in the Hubbard model [4℄ or bythe intersite CI V was a
tively dis
ussed. In parti
-ular, it was stressed in [5℄ that a 
ontribution fromthe repulsive well-s
reened weak CI in the �rst orderstrongly suppresses the pairing indu
ed by 
ontribu-tions of higher orders, and a possibility of super
on-du
tivity �from repulsion� was questioned. Using therenormalization group method, the extended Hubbardmodel with CI V was studied in [6℄, where super
on-du
ting pairing of various symmetries, extended s-, p-,*E-mail: plakida�theor.jinr.ru

and d-wave types was found depending on the ele
-tron 
on
entration and V . Following the original ideaof Kohn�Luttinger [7℄, it was shown in [8℄ that thep-wave super
ondu
tivity exists in the ele
troni
 gas atlow density with a strong repulsion U and a relativelystrong intersite CI V (also see [9℄ and the referen
estherein). Studies of the phase diagram within the ex-tended Hubbard model in the weak 
orrelation limithave shown that super
ondu
ting pairing of di�erenttypes of symmetry, s, p, dxy, and dx2�y2 , 
an o

urdepending on the CI between the nearest V1 and thenext V2 neighbor sites and ele
tron hopping parame-ters between distant sites in a broad region of ele
tron
on
entration [10℄.However, the Fermi-liquid model was 
onsidered inthe weak 
orrelation limit U . W in these investiga-tions, while 
uprates are Mott�Hubbard (more a

u-rately, 
harge-transfer) doped insulators, where a the-ory of strongly 
orrelated ele
troni
 systems should beapplied for U & W . Here, W � 4t is the ele
troni
kineti
 energy for the two-dimensional Hubbard modelwith the nearest-neighbor hopping parameter t. In thelimit of strong 
orrelations, various numeri
al methodsfor �nite 
lusters are 
ommonly used. There are manyinvestigations of the 
onventional Hubbard model (see,e. g., [11�14℄), but only a few studies of the extendedHubbard model in whi
h the intersite CI V is taken631
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ount. In parti
ular, in Refs. [15�17℄, the ex-tended Hubbard model was 
onsidered in a broad re-gion of U and V . The results in Refs. [15, 16℄ showthat a strong on-site repulsion U e�e
tively enhan
esthe d-wave pairing, whi
h is preserved for large valuesof V � J . In Ref. [17℄, using the slave-boson represen-tation, it was found that super
ondu
tivity is destroyedat a small value of V = J . We dis
uss these results inmore detail in Se
. 4.3 by 
omparing them with our�ndings.In our re
ent paper [18℄, we studied the extendedHubbard model in the limit of strong 
orrelations bytaking the CI V and ele
tron�phonon 
oupling intoa

ount. It was found that the high-T
 d-wave pair-ing is mediated by the strong kinemati
 intera
tion ofele
trons with spin �u
tuations. Contributions 
omingfrom a weak CI V and phonons turned out to be smallsin
e only l = 2 harmoni
s of the intera
tions make a
ontribution to the d-wave pairing.In this paper, we 
onsider super
ondu
tivity in thetwo-dimensional extended Hubbard model with a largeintersite Coulomb repulsion V in the limit of strong
orrelations to elu
idate the spin-�u
tuation me
ha-nism of high-temperature super
ondu
tivity. We ar-gue that in the two-subband regime for the Hubbardmodel with U & 6t, a spin�ele
tron kinemati
 inter-a
tion results from 
ompli
ated 
ommutation relationsfor the Hubbard operators (HOs) [19℄. This intera
-tion leads to the weak ex
hange intera
tion J = 4t2=Udue to interband hopping, and at the same time in-traband hopping results in a mu
h stronger kinemati
intera
tion gsf � W � J of ele
trons with spin ex
i-tations. Therefore, the ex
hange intera
tion J is notso important for the spin-�u
tuation pairing driven bythe strong kinemati
 intera
tion gsf . We 
al
ulate thedoping dependen
e of the super
ondu
ting T
 for var-ious values of U and V and show that as long as Vdoes not ex
eed the kinemati
 intera
tion, V . W ,the d-wave pairing is preserved. In 
al
ulations, we usethe Mori-type proje
tion te
hnique [20℄ in the equati-on-of-motion method for thermodynami
 Green's fun
-tions (GFs) [21℄ expressed in terms of the HOs. Theself-energy in the Dyson equation is 
al
ulated in theself-
onsistent Born approximation (SCBA) as in ourprevious publi
ations [18; 22℄.In Se
. 2, the two-subband extended Hubbardmodel is introdu
ed and equations for the GFs in theNambu representation are derived. A self-
onsistentsystem of equations for GFs and the self-energy is for-mulated in Se
. 3. Results and dis
ussion are presentedin Se
. 4. Con
luding remarks are given in Se
. 5.

2. GENERAL FORMULATION2.1. Extended Hubbard modelWe 
onsider the extended Hubbard model on asquare latti
e,H = Xi 6=j;� tijayi�aj� � �Xi Ni ++ U2 Xi Ni�Ni�� + 12Xi 6=j Vij NiNj ; (1)where ti;j are the single-ele
tron hopping parameters,ayi� and ai� are the Fermi 
reation and annihilationoperators for ele
trons with spin �=2 (� = �1 == ("; #); �� = ��) on the latti
e site i, U is the on-siteCI, and the Vij is the intersite CI. Furthermore, Ni ==P� Ni� , Ni� = ayi�ai� is the number operator and �is the 
hemi
al potential.In the strong 
orrelation limit, the model de-s
ribes the Mott�Hubbard insulating state at half-�lling (n = hNii = 1) when the 
ondu
tion bandsplits into two Hubbard subbands. In this 
ase, theFermi operators ayi� and ai� in (1) fail to des
ribe sing-le-parti
le ele
tron ex
itations in the system and theFermi-liquid pi
ture be
omes inappli
able to 
uprates.The proje
ted-type operators, the HOs, referring to thetwo subbands, singly o

uped ayi�(1�Ni��) and doublyo

upied ayi�Ni�� , must be introdu
ed. In terms of theHOs, model (1) be
omesH = "1Xi;� X��i + "2Xi X22i + 12Xi 6=j VijNiNj ++ Xi 6=j;� tij �X�0i X0�j +X2�i X�2j ++ � (X2��i X0�j +H:
:)	; (2)where "1 = �� is the single-parti
le energy and "2 == U � 2� is the two-parti
le energy. The matrix HOX��i = ji�ihi�j des
ribes transition from the state ji; �ito the state ji; �i on a latti
e site i taking four possiblestates for holes into a

ount: an empty state (�; � = 0),a singly o

upied hole state (�; � = �), and a doublyo

upied hole state (�; � = 2). The number operatorand the spin operators are de�ned in terms of the HOsas Ni =X� X��i + 2X22i ; (3)S�i = X���i ; Szi = (�=2)[X��i �X ����i ℄: (4)The 
hemi
al potential � is determined from the equa-tion for the average o

upation number for holes632
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 spin-�u
tuation me
hanism : : :n = 1 + Æ = hNii; (5)where h: : : i denotes the statisti
al average with Hamil-tonian (2).The HOs obey the 
ompleteness relation X00i ++P� X��i + X22i = 1, whi
h rigorously preserves the
onstraint that only one quantum state � 
an be o

u-pied on any latti
e site i. The 
ommutation relationsfor the HOshX��i ; X
Æj i� = Æij �Æ�
X�Æi � ÆÆ�X
�i � ; (6)with the upper sign for Fermi-type operators (su
has X0�i ) and the lower sign for Bose-type operators(su
h as Ni in (3) or the spin operators in (4)), re-sult in the so-
alled kinemati
 intera
tion. To demon-strate this, we 
onsider the equation of motion for theHO X�2i = ayi�ai�ai�� in the Heisenberg representation(~ = 1):i ddtX�2i = [X�2i ; H ℄ =  U��+Xl VilNl! X�2i ++Xl;�0 til �B22i��0X�02l � � B21i��0X0��0l ���Xl tilX02i �X�0l + �X2��l � ; (7)where B��i��0 are the Bose-type operatorsB22i��0 = (X22i +X��i ) Æ�0� +X���i Æ�0�� == (Ni=2 + � Szi ) Æ�0� + S�i Æ�0�� ; (8)B21i��0 = (Ni=2 + �Szi )Æ�0� � S�i Æ�0�� : (9)We see that the hopping amplitudes depend on thenumber operator in (3) and spin operators (4), whi
hresults in the kinemati
 intera
tion des
ribing e�e
tives
attering of ele
trons on spin and 
harge �u
tuations.In phenomenologi
al models for 
uprates, a dynami
al
oupling of ele
trons with spin and 
harge �u
tuationsis introdu
ed spe
i�ed by �tting parameters, while theintera
tion in Eq. (7) is determined by the hopping en-ergy tij �xed by the ele
troni
 dispersion.2.2. Green's fun
tionsTo 
onsider the super
ondu
ting pairing in model(2), we introdu
e the two-time thermodynami
 GF [21℄expressed in terms of the four-
omponent Nambu op-erators X̂i� and X̂yi� = (X2�i X ��0i X ��2i X0�i ):Gij�(t� t0) = �i�(t� t0)hfX̂i�(t); X̂yj�(t0)gi �� hhX̂i�(t)jX̂yj�(t0)ii; (10)

where fA;Bg = AB + BA, A(t) = eiHtAe�iHt, and�(x) = 1 for x > 0 and �(x) = 0 for x < 0. TheFourier representation in the (k; !)-spa
e is de�ned bythe relationsGij�(t� t0) = 12� 1Z�1 dt exp [�i(t� t0)℄Gij�(!); (11)Gij�(!) = 1N Xk exp[ik � (i� j)℄G�(k; !): (12)Green's fun
tion (12) 
an be 
onveniently written inthe matrix formG�(k; !) =  Ĝ�(k; !) F̂�(k; !)F̂ y�(k; !) �Ĝ��(�k;�!) ! ; (13)where the normal Ĝ�(k; !) and anomalous (pair)F̂�(k; !) GFs are 2� 2 matri
es for two Hubbard sub-bands: Ĝ�(k; !) = hh X�2kX0��k ! jX2�k X ��0k ii! ; (14)F̂�(k; !) = hh X�2kX0��k ! jX ��2�kX0��kii! : (15)To 
al
ulate GF (10), we use the equation-of-motionmethod by di�erentiating the GF with respe
t to thetimes t and t0. As des
ribed in detail in Refs. [18; 22℄,using the Mori-type proje
tion method [20℄, we derivean exa
t representation for GF (13) in the form of theDyson equationG�(k; !) = [!~�0 � E�(k) �Q��(k; !)℄�1Q; (16)where ~�0 is a 4�4 unit matrix. The ele
tron ex
itationspe
trum in the generalized mean-�eld approximation(GMFA) is determined by the time-independent matrixof 
orrelation fun
tions:E�(k) = 1N Xk exp[ik � (i�j)℄hf[X̂i� ; H ℄; X̂yj�giQ�1 ==  "̂(k) �̂�(k)�̂��(k) �"̂��(k) ! ; (17)where "̂(k) and �̂�(k) are the normal and anoma-lous parts of the energy matrix. The parameter Q == hfX̂i�; X̂yi�gi = �̂0 � Q̂, where �̂0 is the unit 2 � 2matrix and Q̂ =  Q2 00 Q1 !633
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ribes the redistribution of spe
tral weights withdoping the Hubbard subbandsQ2 = hX22i +X��i i = n=2; Q1 = hX00i +X ����i i = 1�Q2:The self-energy operator in Eq. (16),Q��(k; !) = hhẐ(ir)k� jẐ(ir)yk� ii(pp)! Q�1; (18)is determined by irredu
ible operatorsẐ(ir)i� = [X̂i� ; H ℄�Xl Eil�X̂l�and des
ribes pro
esses of inelasti
 s
attering of ele
-trons (holes) on spin and 
harge �u
tuations due tothe kinemati
 intera
tion and the CI Vij (see Eq. (7)).Self-energy operator (18) 
an be written in the samematrix form as GF (13):Q��(k; !) = � M̂�(k; !) �̂�(k; !)�̂y�(k; !) � M̂��(k;�!)�Q�1 ; (19)where the matri
es M̂ and �̂ denote the respe
tivenormal and anomalous (pair) 
omponents of the self-energy operator.The system of equations for the 4 � 4 matrix GF(13) and the self-energy (19) 
an be redu
ed to a systemof equations for Ĝ�(k; !) and F̂�(k; !), the respe
tivenormal and pair 2�2matrix 
omponents. Using repre-sentations for energy matrix (17) and self-energy (19),we derive the following system of matrix equations forthese 
omponents:Ĝ(k; !) = �ĜN (k; !)�1 ++ '̂�(k; !) ĜN (k;�!) '̂��(k; !)��1 Q̂; (20)F̂�(k; !) = �ĜN (k;�!) '̂�(k; !) Ĝ(k; !); (21)where we introdu
ed the normal-state GFĜN (k; !) = �!�̂0 � "̂(k)� M̂(k; !)=Q̂��1; (22)and the super
ondu
ting-gap fun
tion'̂�(k; !) = �̂�(k) + �̂�(k; !)=Q̂: (23)Dyson equation (16) with the zeroth-order quasi-parti
le ex
itation energy (17) and self-energy (19)gives an exa
t representation for GF (10). To obtain a
losed system of equations, the multiparti
le GF in self-energy operator (18) should be evaluated as dis
ussedbelow.

3. APPROXIMATE SYSTEM OF EQUATIONSIn this se
tion, we derive an approximate system ofequations for the GFs and the self-energy 
omponentsin Eqs. (20)�(23) for the two Hubbard subbands byadopting several approximations to make the systemof equations numeri
ally tra
table.3.1. Generalized mean-�eld approximationEnergy matrix (17) is 
al
ulated using 
ommutationrelations (6) for the HOs. The normal part of the en-ergy matrix "̂(k) after diagonalization determines thequasiparti
le spe
trum in two Hubbard subbands in theGMFA (see [22℄ for the details):"1;2(k) = 12 [!2(k) + !1(k)℄� 12�(k); (24)!�(k) = 4t ��
(k) + 4�� t0
0(k) + 4�� t00
00(k) ++ !(
)� (k) + UÆ�;2 � �; (� = 1; 2); (25)where �(k) = f[!2(k)� !1(k)℄2 + 4W (k)2g1=2;W (k) = 4t�12
(k) + 4t0�12
0(k) + 4t00�12
00(k);the hopping parameter is de�ned bytij = 1N Xk exp[ik � (i� j)℄t(k); (26)t(k) = 4t
(k) + 4t0 
0(k) + 4t00 
00(k); (27)the nearest-neighbor hopping is t, the diagonal hop-ping is t0, and the third-neighbor hopping is t00. The
orresponding k-dependent fun
tions are
(k) = (1=2)(
os kx+
os ky); 
0(k) = 
os kx 
os ky;
00(k) = (1=2)(
os 2kx + 
os 2ky)(the latti
e 
onstants ax = ay are set equal to unity).The 
ontribution from the CI Vij in (25) is given by!(
)1(2)(k) = 1N Xq V (k� q)N1(2)(q); (28)where N1(q) = hX0��q X ��0q i=Q1 and N2(q) == hX�2q X2�q i=Q2 are o

upation numbers in therespe
tive single-parti
le and two-parti
le subbands,and V (q) is the Fourier transform of Vij .634



ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014 Kinemati
 spin-�u
tuation me
hanism : : :The kinemati
 intera
tion for the HOs results ina renormalization of spe
trum (24) determined by theparameters�� = Q��1 + C1Q2� � ; �� = Q��1 + C2Q2� � ;�12 =pQ1Q2�1� C1Q1Q2� ;�12 =pQ1Q2�1� C2Q1Q2� :In addition to the 
onventional Hubbard-I renormaliza-tion given by the Q1 and Q2 parameters, an essentialrenormalization is 
aused by the AF spin 
orrelationfun
tions for nearest-neighbors and next neighbors:C1 = hSiSi+a1i; C2 = hSiSi+a2i: (29)These fun
tions strongly depend on doping, resultingin a 
onsiderable variation of the ele
troni
 spe
trum,as is shown below and is dis
ussed in detail in Ref. [22℄.The anomalous 
omponent �̂�(k) of matrix (17) de-termines the super
ondu
ting gap in the GMFA. Thediagonal matrix 
omponents in the 
oordinate repre-sentation are given by the equations�22ij�Q2 = ��t21ij hX02i Nji � VijhX�2i X ��2j i; (30)�11ij�Q1 = �t12ij hNjX02i i � VijhX0��i X0�j i; (31)where we introdu
ed upper indexes for the hopping pa-rameter t12ij and t21ij to stress that the anomalous 
om-ponents hX02i Nji are indu
ed by the interband hop-ping. Cal
ulating the 
orrelation fun
tion hX02i Njifrom the equation of motion for the GF Lij(t � t0) == hhX02i (t)jNj(t0)ii yields a super
ondu
ting gap in thetwo-parti
le subband (see Ref. [23℄ for the details):�22ij� = (Jij � Vij) hX�2i X ��2j i=Q2; (32)where Jij = 4(t12ij )2=U is the AF ex
hange intera
-tion. A similar equation holds for the gap in the single-parti
le subband:�11ij� = (Jij � Vij) hX0��i X0�j i=Q1:Therefore, the pairing in the Hubbard model in theGMFA is similar to super
ondu
tivity in the t�J modelmediated by the AF ex
hange intera
tion Jij .

3.2. Self-energy operatorThe self-energy matrix (19) due to the kine-mati
 intera
tion, as shown in Eq. (7), is de-termined by the multiparti
le GFs su
h ashhX̂l�0 (t)Bi��0 (t)jX̂yl0�00 Byj��00ii. We 
al
ulate theself-energy matrix in the SCBA using the mode-
o-upling approximation for the multiparti
le GFs. Inthis approximation, the propagation of ex
itationsdes
ribed by Fermi-like operators X̂l� and Bose-likeoperators Bi��0 for l 6= i is assumed to be indepen-dent. Therefore, the 
orresponding time-dependentmultiparti
le 
orrelation fun
tions 
an be writtenas produ
ts of fermioni
 and bosoni
 
orrelationfun
tions,hX2�00l0 Byj��00 jBi��0 (t)X�02l (t)i == Æ�0;�00hX2�0l0 X�02l (t)ihByj��0 jBi��0 (t)i; (33)hX ��002l0 Bj����00 jBi��0 (t)X�02l (t)i == Æ�0;�00hX ��02l0 X�02l (t)i hBj����0Bi��0 (t)i: (34)The time-dependent single-parti
le 
orrelation fun
-tions are 
al
ulated self-
onsistently using the 
orre-sponding GFs. This approximation results in a self-
onsistent system of equations for self-energy (19) andGFs (20) and (21) similar to the strong-
oupling Eliash-berg theory [24℄ (see Ref. [18℄ and Ch. A in Ref. [2℄ forthe details).In this approximation, the normal-state GF (22) fortwo subbands takes the form [22℄G11(22)N (k; !) = [1� b(k)℄G1(2)(k; !) ++ b(k)G2(1)(k; !); (35)G1(2)(k; !) = 1! � "1(2)(k) � �(k; !) ; (36)with the hybridization parameter b(k) = ["2(k)�!2(k)℄==["2(k) � "1(k)℄. The self-energy �(k; !) 
an beapproximated by the same fun
tion for two sub-bands. In the imaginary frequen
y representation,i!n = i�T (2n+ 1), n = 0;�1;�2; : : : it is given by�(k; !n) = � TN Xq Xm �(+)(q;k� qj!n � !m)�� [G1(q; !m) +G2(q; !m)℄ �� i!n [1� Z(k; !n)℄ +X(k; !n): (37)The normal GF (36) for the two subbands takes theform635



N. M. Plakida, V. S. Oudovenko ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014fG1(2)(k; !n)g�1 = i!n � "1(2)(k)� �(k; !n) == i!nZ(k; !n)� ["1(2)(k) +X(k; !n)℄ : (38)To 
al
ulate T
, we 
an use a linear approximation forthe pair GF in (21). In parti
ular, Eq. (23) for thetwo-parti
le subband gap '(k; !) = �'2;�(k; !) 
an bewritten as'(k; !n) = T
N Xq Xm f J(k� q)� V (k� q) ++ �(�)(q;k� qj!n � !m)g �� [1� b(q)℄2 '(q; !m)[!mZ(q; !m)℄2 + ["2(q) +Xq; !m)℄2 : (39)The intera
tion fun
tions in (37) and (39) in the imag-inary frequen
y representation are given by�(�)(q;k � qj�n) = �jt(q)j2 �sf (k� q; �n)�� fjV (k� q)j2 + jt(q)j2=4g�
f(k� q; �n): (40)The spe
tral densities of bosoni
 ex
itations are deter-mined by the dynami
 sus
eptibility for spin (sf) andnumber (
harge) (
f) �u
tuations�sf (q; !) = �hhSqjS�qii! ; (41)�
f (q; !) = �hhÆNqjÆN�qii! (42)written in terms of the 
ommutator GFs [21℄ for thespin Sq and number ÆNq = Nq � hNqi operators.Thus, we have derived a self-
onsistent system ofequations for the normal GF (38), self-energy (37), andgap fun
tion (39). In the SCBA, vertex 
orre
tions tothe kinemati
 intera
tion t(q) of ele
trons with spin-and 
harge-�u
tuations (41) and (42) indu
ed by theintraband hopping are negle
ted. It is assumed that thesystem is far away from a 
harge instability or a stripeformation and 
harge �u
tuations give a small 
ontri-bution to the pairing. The largest 
ontribution fromspin �u
tuations 
omes from wave ve
tors 
lose the AFwave ve
tor Q = (�; �), where their energy !s(Q) ismu
h smaller than the Fermi energy, !s(Q)=� � 1(see, e. g., [25℄). Therefore, vertex 
orre
tions to thekinemati
 intera
tion should be small as in the Eliash-berg theory [24℄ for ele
tron intera
tion with phonons,where !ph(q)=�� 1. Consequently, the SCBA for theself-energy and the GFs 
al
ulated self-
onsistently isquite reliable and allows 
onsidering the strong 
ou-pling regime, whi
h is essential in the study of renor-malization of the quasiparti
le spe
trum and the su-per
ondu
ting pairing, as shown in Refs. [18; 22℄ and isdis
ussed below.

4. RESULTS AND DISCUSSIONIn numeri
al 
omputations, we have used modelsfor the CIs and the sus
eptibility in (41) and (42). Forthe intersite CI Vij ; we 
onsider a model for repulsionof two ele
trons (holes) on neighboring latti
e sites,V (q) = 2V (
os qx + 
os qy); (43)with the values V = 0; 0:5 t; 1:0t, 2:0t. For the on-siteCI, we 
onsider U = 8t; 16t, 32t. The AF ex
hange in-tera
tion for neighboring sites is des
ribed by the fun
-tion J(q) = 2J(
os qx + 
os qy). We note that in theGMFA, the CIs Vij give no 
ontribution to the ex
hangeintera
tion Jij , and it is therefore assumed to be thesame for all values of V (
f. Refs. [15, 16℄). In mostof the 
al
ulations, we take J = 0:4t, but to study therole of the spin-�u
tuation intera
tion in the super
on-du
ting pairing, we also 
onsider other values of theintera
tion, J = 0:2t; 0:6t, 1:0t.Due to a large energy s
ale of 
harge �u
tuations,of the order of several t, in 
omparison with the spinex
itation energy of the order of J , the 
harge �u
tua-tion 
ontributions 
an be 
onsidered in the stati
 limitfor sus
eptibility (42):�
f (k) = �(1)
f (k) + �(2)
f (k);�(�)
f (k) = � 1N Xq N (�)(q+ k)�N (�)(q)"�(q+ k)� "�(q) ; (44)where the o

upation numbers N (�)(q) are de�ned asN (1)(k) = [Q1 + (n� 1)b(k)℄N1(k);N (2)(k) = [Q2 � (n� 1)b(k)℄N2(k);N�(k) = 12 + TXm G�(k; !m): (45)For the dynami
al spin sus
eptibility �sf (q; !)in (41), we used a model suggested in Ref. [26℄Im�sf (q; ! + i0+) = �sf (q)�00sf (!) == �Q1 + �2[1 + 
(q)℄ th !2T 11 + (!=!s)2 : (46)This type of the spin-ex
itation spe
trum was found inthe mi
ros
opi
 theory for the t�J model in Ref. [25℄.The model is determined by two parameters: the AF
orrelation length � and the 
ut-o� energy of spin ex-
itations of the order of the ex
hange energy !s � J .The strength of the spin-�u
tuation intera
tion givenby the stati
 sus
eptibility �Q = �sf (Q) at the AFwave ve
tor Q = (�; �),�Q = 3(1� Æ)2!s ( 1N Xq 11 + �2[1 + 
(q)℄)�1 ; (47)636
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Fig. 1. Ele
tron dispersion "2(k) in the GMFA for (a and 
) V = 0 and (b and d) V = 2 at (a and b) U = 8 and (
 and d)U = 16 along the symmetry dire
tions �(0; 0)!M(�; �)! X(�; 0)! �(0; 0) and X(�; 0)! Y (0; �) for Æ = 0:05 (solidline), Æ = 0:10 (dashed line), and Æ = 0:25 (dash-dotted line). The Fermi energy for hole doping is at ! = 0is de�ned by the normalization 
ondition1N Xq 1Z0 d!� 
h !2T Im�sf (q; !) = hS2i i = 34(1� Æ):Spin 
orrelation fun
tions (29) in single-parti
le ex-
itation spe
trum (24) are 
al
ulated using the samemodel (46):C1 = 1N Xq Cq
(q); C2 = 1N Xq Cq 
0(q);where Cq = !s2 �Q1 + �2[1 + 
(q) :We use t = 0:4 eV as an energy unit, and taket0 = �0:2t and t00 = 0:1t for the hopping parameters.

Below, we present numeri
al results for the hole-doped
ase of the two-hole subband.4.1. Ele
troni
 spe
trum in the normal stateWe �rst 
onsider the results in the GMFA forele
troni
 spe
trum (24). The doping dependen
e ofthe ele
tron dispersion for the two-hole subband "2(k)along the symmetry dire
tions in the 2D Brillouin zone(BZ) is shown in Figs. 1a and 1b for U = 8 and inFigs. 1
 and 1d for U = 16 for V = 0 and for V = 2.The 
orresponding Fermi surfa
es determined by theequation "2(kF) = 0 are plotted in Fig. 2. For smalldoping, Æ = 0:05, the energies at the M(�; �) and�(0; 0) points are nearly equal, as in the AF phase.Only small hole-like Fermi-surfa
e po
kets 
lose to the637
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Fig. 2. Fermi surfa
e for (a and 
) V = 0 and (b and d) V = 2 at (a and b) U = 8 and (
 and d) U = 16 in the quarter ofthe BZ in the GMFA at the hole doping Æ = 0:05 (solid line), Æ = 0:10 (dashed line), and Æ = 0:25 (dash-dotted line)(��=2;��=2) points emerge at this doping, as shownin Fig. 2. With in
reasing doping, the AF 
orrela-tion length de
reases, whi
h results in an in
rease inthe ele
tron energy at the M(�; �) point, and a largeFermi surfa
e appears at some 
riti
al doping Æ � 0:12.At the same time, the renormalized two-hole subbandwidth in
reases with doping, for example, for U = 8and V = 0, from fW � 2t at Æ = 0:05 to fW � 3t atÆ = 0:25, whi
h, however, remains less than the �bare�Hubbard subband width W = 4t (1 + Æ) where short-range AF 
orrelations are disregarded. With in
reas-ing the CI U and V , the subband width shrinks, as
an be seen from the 
omparison of panels a and b for

ele
troni
 spe
tra in Fig. 1 and the Fermi surfa
es inFig. 2.To study self-energy e�e
ts in the ele
troni
 spe
-trum, the strong-
oupling theory should be used as aself-
onsistent solution of the system of equations forthe normal GF (36) and self-energy (37). Be
ausethe detailed investigation of the normal state ele
troni
spe
trum in the strong-
oupling theory was performedfor the 
onventional Hubbard model in Ref. [22℄ andfor the extended Hubbard model in Ref. [18℄, we herepresent results only for the U and V dependen
e of therenormalization parameter Z(q) at the Fermi energy,638
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tuation me
hanism : : :Z(q) = Z(q; ! = 0) = 1 + �(q) == 1� [dRe�(q; !)=d!℄j!=0: (48)We found that Z(q) weakly depends on Æ forÆ . 0:15 (also see Ref. [18℄). Therefore, in Fig. 3, wedemonstrate the U dependen
e of Z(q) at Æ = 0:10 forV = 0 and V = 1. It appears that the renormaliza-tion parameter Z(q) is quite large in the whole BZ,Z(q) � 4�6, whi
h results in a strong suppression ofthe quasiparti
le weight proportional to 1=Z(q).4.2. Super
ondu
ting T
For a 
omparison of various 
ontributions to super-
ondu
ting gap equation (39), we approximate inter-a
tion fun
tion (40) by its value 
lose to the Fermienergy. As a result, the stati
 sus
eptibility �(q) == Re�(q; ! = 0) appears in the gap equation insteadof dynami
al sus
eptibility (41), (42). It brings us to aBCS-type equation for gap fun
tion (39) at the Fermienergy '(k) = '(k; ! = 0):'(k) = 1N Xq [1� b(q)℄2'(q)[Z(q)℄22e"(q) th e"(q)2T
 �J(k� q)�� V (k�q)+�(1=4)jt(q)j2+jV (k�q)j2��
f (k�q)�� jt(q)j2�sf (k� q)�(!s � je"(q)j)	; (49)where e"(q) = "2(q)=Z(q) is the renormalized energy.Although there are no retardation e�e
ts for the ex-
hange intera
tion and CI and the pairing o

urs forall ele
trons in the two-parti
le subband, the spin-�u
tuation 
ontributions are restri
ted to the range ofenergies �!s near the Fermi surfa
e, as determined bythe �-fun
tion.To estimate various 
ontributions to gap equa-tion (49), we 
onsider the model d-wave gap fun
-tion '(k) = (�=2)�(k), where �(k) = 
os kx � 
os ky.Then the gap equation 
an be written in the form (seeRef. [18℄ for the details):1 = 1N Xq [1�b(q)℄2[�(q)℄2[Z(q)℄22e"(q) th e"(q)2T
 �J�V+bV
f ++ (1=4) jt(q)j2b�
f � jt(q)j2 b�sf�(!s � je"(q)j)	: (50)In this equation, only l = 2 
omponents of the stati
sus
eptibility and the CI give 
ontributions,

Table. Charge-�u
tuation 
ontribution bV
f=t for seve-ral values of the on-site CI U and the intersite CI V forthe hole 
on
entration Æ = 0:10U V = 1 V = 2 V = 38 0:10 0:29 0:5316 0:24 0:76 1:9532 0:43 1:47 1:71bV
f = 1N Xk jV (k)j2�
f (k) 
os kx; (51)b�
f = 1N Xk �
f (k) 
os kx; (52)b�sf = 1N Xk �sf (k) 
os kx: (53)The 
ontribution from the 
harge �u
tuations b�
fin (52) weakly depends on U and V and is verysmall: b�
f � 10�3(1=t)�10�2(1=t) for hole 
on
en-trations Æ = 0:05�0.10. For the vertex jt(q)j2 == (1=N)Pq jt(q)j2 � 4t2 averaged over the BZ, the
ontribution indu
ed by the kinemati
 intera
tion isequal to jt(q)j2 b�
f . 0:04t and 
an be negle
ted. The
harge �u
tuation 
ontribution bV
f in (51) from the in-tersite CI, Eq. (43), for the hole 
on
entration Æ = 0:05is also small, bV
f . 5 � 10�2t for V � 2 and in
reasesto 0:17t for V = 4. For larger hole 
on
entrations,bV
f in
reases as shown in Table for Æ = 0:10. How-ever, bV
f � V < 0 for all values of U and V , and hen
ethe d-wave pairing indu
ed only by 
harge �u
tuations
annot o

ur.The spin-�u
tuation 
ontribution b�sf in (53) is 
al-
ulated for the model �sf (q) in Eq. (46). Sin
e thespin sus
eptibility has a maximum at the AF wave ve
-tor Q = (�; �), the integral over k in (53) results ina negative value of b�sf that strongly depends on thehole doping. Our previous 
al
ulations gave the values�b�sf � t � 1:3, 1.0, 0.6 for the respe
tive hole 
on
en-trations Æ = 0:05, 0.10, 0.25 (see Ref. [18℄). Using thevertex jt(q)j2 � 4t2 averaged over the BZ, we 
an es-timate the e�e
tive spin-�u
tuation 
oupling 
onstantas gsf � �4t2b�sf = 5:2, 4.0, 2.4. Thus, the spin-�u
tuation 
ontribution to the pairing in Eq. (50) withthe 
oupling 
onstant gsf = 2�1 eV for Æ = 0:05�0.25appears to be the largest.The results of 
al
ulating T
 with Eq. (50) areshown in Fig. 4 for U = 8, 16 and V = 0, 0.5, 1.0,2.0. A similar doping dependen
e for T
 is observed forU = 32. The maximum T
 at the optimal doping as639
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Fig. 3. The renormalization parameter Z(q) along the symmetry dire
tions �(0; 0) ! M(�; �) ! X(�; 0) ! �(0; 0) atÆ = 0:10 at U = 8 (solid line), U = 16 (dashed line), and U = 32 (dash-dotted line) for (a) V = 0 and (b) V = 1
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Fig. 4. T
(Æ) for (a) U = 8 and (b) U = 16 with V = 0 (solid line), V = 0:5 (dashed line), V = 1:0 (dash-dotted line),and V = 2:0 (dotted line)a fun
tion of U and V is shown in Fig. 5. In
reasingthe intersite Coulomb repulsion V suppresses T
, whi
hbe
omes small only for high values V = 2t�3t 
ompa-rable with the spin-�u
tuation 
oupling gsf and mu
hlarger than the ex
hange intera
tion J = 0:4t. At thesame time, in
reasing U enhan
es T
. This is due tothe narrowing of the ele
troni
 band as seen in Fig. 1and the 
orresponding in
rease in the density of state.To prove an important role of the spin-�u
tuation
intera
tion both in the normal state and in super
on-du
ting pairing, we 
al
ulate the fun
tion Z(q) in (48)and T
 for several values of the parameter !s for thestati
 sus
eptibility in model (46): !s = 0:2, 0.4, 0.6,1.0 for U = 8. Figure 6 shows the T
 dependen
e on theparameter !s that determines the spin-�u
tuation 
on-tribution b�sf in Eq. (50) in two 
ases: for Z(q) givenby Eq. (48) and Z(q) = 1. Be
ause the spin-�u
tuationintera
tion is determined by �Q / 1=!s in (47), it640
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Fig. 5. Maximum T
(Æ) as a fun
tion of U for V = 0(solid line), V = 0:5 (dashed line), and V = 1:0 (dash-dotted line)in
reases as the 
ut-o� frequen
y !s de
reases. Thisresults in an in
rease in the super
ondu
ting pairing
ontribution b�sf , but at the same time enhan
es thenormal state renormalization Z(q) as shown in Fig. 7.Therefore, in 
ase for Z(q) given by Eq. (48), T
, beingroughly proportional to b�sf=Z2(q), de
reases due tosuppression of the quasiparti
le weight 1=Z(q), whilein 
ase for Z(q) = 1, in
reasing the pairing strengthresults in a T
 in
rease. We also note that T
 in Fig. 6b
al
ulated in the mean-�eld approximation (MFA) withZ(q) = 1 is an order of magnitude larger than its valuewith a proper 
onsideration of the ele
troni
 spe
trumrenormalization.In the 
urrent approa
h, we 
an also 
onsider thes-wave pairing. For the extended s-wave gap fun
tion's(k) = (�=2)�s(k), where �s(k) = 
os kx + 
os ky, anequation for T
 similar to (49) 
an be derived. Solv-ing this equation reveals a �nite and quite high T
.However, s-wave pairing symmetry violates the kine-mati
 restri
tion of no double o

upan
y for the Hub-bard model in the two-subband regime. As was pointedout in Refs. [27; 28℄, the single-site 
orrelation fun
tionshould obey the 
onditionhX ��2i X�2i i = 1N Xq hX ��2�qX�2q i = 0; (54)
aused by the multipli
ation rule for the Hubbard op-erators, X��i X
Æi = Æ�
X�Æi . In the quasiparti
le ap-proximation used in Eq. (49), we obtain the relation

hX ��2i X�2i i = 1N Xq '(q)[Z(q)℄22e"(q) th e"(q)2T
 = 0: (55)For the d-wave pairing 'd(q) = (�=2)(
os qx � 
os qy),this 
ondition is ful�lled in the tetragonal phase for anydoping (pairing in the orthorhombi
 pase is 
onsideredin Ref. [29℄). For the s-wave pairing, this 
ondition isviolated, 1N Xqx;qy 
os qx[Z(q)℄22e"(q) th e"(q)2T 6= 0; (56)for an arbitrary doping ex
ept a parti
ular 
hoi
e of the
hemi
al potential su
h that the 
ontribution from theintegral over 0 � qx � � is 
ompensated by the integralover � � qx � 2�. The same 
ondition holds for theone-parti
le subband, hX0��i X0�i i = 0. The obtainedresults 
an be derived for the general representation ofthe 
orrelation fun
tionhX ��2�qX�2q i = � 1�Q2N ��Xq 1Z�1 dzez=T + 1 ImF 22� (q; z);sin
e the symmetry of the anomalous GF F 22� (q; z) isdetermined by the s- or d-wave symmetry of the gapfun
tion. Therefore, we 
on
lude that s-wave pairing isprohibited for the Hubbard model in the limit of strong
orrelations.4.3. Comparison with previous theoreti
alstudiesAs dis
ussed in Se
. 1, the intersite Coulomb re-pulsion V is detrimental to the pairing indu
ed by theon-site CI U in the Hubbard model or higher-order 
on-tributions from V in the weak 
orrelation limit. Here,we 
omment on several studies of this problem in thestrong 
orrelation limit and 
ompare them with ouranalyti
 results for the d-wave pairing.Following the original idea of Anderson [3℄, it is
ommonly believed that the ex
hange intera
tion J == 4t2=U indu
ed by the interband hopping in theHubbard model plays a major role in the d-wave su-per
ondu
ting pairing. Be
ause the ex
itation en-ergy of ele
trons in the interband hopping U is mu
hlarger than their intraband kineti
 energy W , the ex-
hange pairing has no retardation e�e
ts, 
ontrary tothe 
ase of ele
tron�phonon pairing, where a largeBogoliubov�Tolma
hev logarithm [30℄ diminishes theCoulomb repulsion as V ! V=[1+�
 ln(�=!ph)℄, where15 ÆÝÒÔ, âûï. 3 (9) 641
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(Æ) dependen
e on the spin-�u
tuation 
ontribution �̂sf in Eq. (50) for !s = 0:2 (dash-dotted line), !s = 0:4(solid line), !s = 0:6 (dotted line), and !s = 1:0 (dashed line) 
al
ulated for (a) �nite Z(q) and (b) Z(q) = 1
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Fig. 7. Z(q) dependen
e on spin-�u
tuation 
ontribu-tion �̂sf in Eq. (48) for !s = 0:2 (dash-dotted line),!s = 0:4 (solid line), !s = 0:6 (dotted line), and!s = 1:0 (dashed line) at Æ = 0:10�
 = N(0)V and !ph is the phonon energy. Conse-quently, without the retardation e�e
ts, the Coulombrepulsion V should destroy the ex
hange pairing forV > J .To over
ome this problem, it was suggested inRef. [16℄ that in the limit of strong 
orrelations, theintersite Coulomb repulsion V de
reases the interbandex
itation energy, whi
h results in an enhan
ement of

the ex
hange intera
tion, eJ(V ) = 4t2=(U � V ), aswas found from 
luster 
al
ulations. If we 
onsiderthe pairing indu
ed only by the ex
hange intera
tioneJ(V ) and take the Coulomb repulsion V into a

ount,then the 
ondition eJ(V ) � V > 0 should be ful�lledfor the existen
e of pairing. The 
ondition is satis�edfor 0 < V < V1, where V1 = (U=2)[1�p1� (4t=U)2℄for 0 � V < U . For U > 4t, we have V1 � U , e. g.,V1 = 0:067U for U = 8 and V1 = 0:004U for U = 32.Therefore, we see that the pure ex
hange super
ondu
t-ing pairing 
an o

ur in the region of weak Coulombrepulsion. Contrary to this, in Ref. [16℄, using the 
el-lular dynami
al mean-�eld theory (CDMFT) [14℄, thed-wave pairing was found in the strong-
oupling regionup to V . U=2 (e. g., as shown in Fig. 3, V 6 3t(8t)for U = 8t(16t), respe
tively). At the same time, inthe limit of weak 
orrelations U = 4t, the pairing issuppressed at the smaller value V � 1:5t. Thus, webelieve that the �resilien
e of d-wave super
ondu
tivityto nearest-neighbor repulsion� is not due to the renor-malization of the ex
hange intera
tion eJ(V ) but dueto another me
hanism of pairing not expli
itly seen inCDMFT 
al
ulations. As we have shown, in the strong
orrelation limit, the emerging kinemati
 intera
tionin the two-subband regime is responsible for the spin-�u
tuation pairing at large values of V , up to V . 4t.Our 
on
lusion about the importan
e of the kine-mati
 me
hanism of pairing is supported by the studiesin Ref. [15℄. Using the variational Monte Carlo te
h-nique, the super
ondu
ting d-wave gap was 
al
ulated642
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tuation me
hanism : : :for the extended Hubbard model with the weak ex-
hange intera
tion J = 0:2t and a repulsion V � 3tin the wide range 0 � U � 32. It was found thatthe gap de
reases with in
reasing V at all U and 
anbe suppressed for V > J for small U . But for largeU & U
 � 6t, the gap be
omes robust and exists up tolarge values V � 10J = 2t, whi
h was explained by ane�e
tive enhan
ement of J as in Ref. [16℄. At the sametime, the gap does not show notable variation with Ufor large U = 10�30, although it should depend onthe 
onventional ex
hange intera
tion in the Hubbardmodel as J = 4t2=U (or J = 4t2=(U � V )). We 
ansuggest another explanation of these results by point-ing out that at large U & U
, 
on
omitant de
rease ofthe bandwidth (as shown in Fig. 3b in Ref. [15℄) resultsin the splitting of the Hubbard band into the upper andlower subbands and the emerging kinemati
 intera
tionindu
es the d-wave pairing in one Hubbard subband.In that 
ase, the se
ond subband gives a small 
ontri-bution for large U , whi
h results in a U -independentpairing. It 
an be suppressed only by the repulsion Vlarger than the kinemati
 intera
tion, V & 4t.In Ref. [17℄, the extended Hubbard model is 
on-sidered in the weak or intermediate 
orrelation lim-its as in Ref. [6℄ and in the strong 
orrelation limitwithin the slave-boson representation in the MFA. Inthe strong 
orrelation limit, the small value V = Jwas found, whi
h suppresses the d-wave super
ondu
t-ing gap. However, in the MFA, the kineti
 energy termdes
ribed by the proje
ted ele
tron operators,t
̂yi� 
̂j� = t
yi�(1� ni��)
j�(1� nj��) � tX�0i X0�jis approximated by the 
onventional fermion (spinon)operators tÆfyi�fj� , and the most important 
ontribu-tion from the kinemati
 intera
tion is lost in the re-sulting BCS-type gap equation (13) in Ref. [17℄. Asshown in our equation for the gap, Eq. (50), the kine-mati
 intera
tion given by b�sf in (53) provides strongspin-�u
tuation pairing and high T
.To analyze the pairing me
hanisms in the limit ofstrong 
orrelations, analyti
 methods should be used.A 
ompli
ated dynami
s of proje
ted ele
tron opera-tors 
an be rigorously taken into a

ount using theHO te
hnique. The algebra of the HOs rigorously pre-serves the restri
tion of no double o

upan
y of quan-tum states, whi
h is violated in the 
ommonly usedMFA in the slave-parti
le theory. As dis
ussed inSe
. 2.1, the 
ommutation relations for the HOs re-sult in a kinemati
 intera
tion that is responsible forthe strong spin-�u
tuation ele
tron intera
tion. Thesuper
ondu
ting pairing indu
ed by the kinemati
 in-tera
tion for the HOs was �rst proposed by Zaitsev

and Ivanov [31℄, who studied the two-parti
le vertexequation by applying the diagram te
hnique for HOs.The momentum-independent s-wave super
ondu
tinggap was found, whi
h, however, violates the HO kine-mati
s, as was shown in Refs. [27; 28℄. Be
ause theintersite Coulomb repulsion V > J destroys the su-per
ondu
tivity indu
ed by the AF ex
hange intera
-tion, the spin-�u
tuation pairing in the se
ond order ofthe kinemati
 intera
tion beyond the GMFA should betaken into a

ount as dis
ussed in detail in Se
. 4.2 and
onsidered in Refs. [32, 33℄ for the t�J model.5. CONCLUSIONWe have studied e�e
ts of the strong intersiteCoulomb repulsion V on the d-wave super
ondu
tingpairing within the extended Hubbard model (1) in thelimit of strong ele
tron 
orrelations, U � t. Usingthe Mori-type proje
tion te
hnique, we obtained a self-
onsistent system of equations for normal and anoma-lous (pair) GFs and for the self-energy 
al
ulated in theSCBA.It was found that the kinemati
 spin-�u
tuation in-tera
tion gsf indu
ed by ele
tron hopping in one Hub-bard subband is mu
h stronger than the 
onventionalex
hange intera
tion J resulting from the interbandhopping. Consequently, the d-wave pairing 
an be sup-pressed only for large values V > gsf where gsf is ofthe order of the kineti
 energy, gsf � W � 4t. Sin
ein 
uprates, the Coulomb repulsion V is of the sameorder as the ex
hange intera
tion, V & J � 0:4t, andtherefore the kinemati
 spin-�u
tuation pairing me
h-anism plays the major role in a
hieving HTSC. It isalso shown that the kinemati
 spin-�u
tuation intera
-tion results in a strong renormalization of the ele
troni
spe
tra.It is important to note that the super
ondu
tingpairing indu
ed by the AF ex
hange intera
tionand the spin-�u
tuation kinemati
 intera
tion is
hara
teristi
 of systems with strong ele
tron 
orrela-tions. These me
hanisms of super
ondu
ting pairingare absent in the fermioni
 models and are generi
for 
uprates. Therefore, we believe that the spin-�u
tuation kinemati
 me
hanism of super
ondu
tingpairing in the Hubbard model in the limit of strong
orrelations is the relevant me
hanism of HTSC in
opper-oxide materials.The authors thank A. S. Alexandrov, V. V. Ka-banov, A.-M. S. Tremblay, and M. Yu. Kagan for thevaluable dis
ussions. Partial �nan
ial support by theHeisenberg�Landau Program of JINR is a
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