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We study d-wave superconductivity in the extended Hubbard model in the strong correlation limit for a large
intersite Coulomb repulsion V. We argue that in the Mott—Hubbard regime with two Hubbard subbands, there
emerges a new energy scale for the spin-fluctuation coupling of electrons of the order of the electronic kinetic
energy W much larger than the exchange energy .J. This coupling is induced by the kinematic interaction for
the Hubbard operators, which results in the kinematic spin-fluctuation pairing mechanism for V. < W. The
theory is based on the Mori projection technique in the equation of motion method for the Green’s functions in
terms of the Hubbard operators. The doping dependence of the superconductivity temperature T, is calculated

for various values of U and V.
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1. INTRODUCTION

One of crucial issues in the superconductivity the-
ory is to disclose the mechanism of high-temperature
superconductivity (HTSC) in cuprates (see, e.g., [1,
2]). In early studies of the problem, a model of strongly
correlated electrons was proposed by Anderson [3],
where superconductivity occurs at finite doping in the
resonating valence bond state due to the antiferromag-
netic (AF) superexchange interaction .J. However, the
intersite Coulomb interaction (CI) V' that in cuprates
is of the order of J may destroy the resonating valence
bond state and superconducting pairing. Recently, a
competition of the intersite CI V' and pairing induced
by the on-site CI U in the Hubbard model [4] or by
the intersite CI V' was actively discussed. In partic-
ular, it was stressed in [5] that a contribution from
the repulsive well-screened weak CI in the first order
strongly suppresses the pairing induced by contribu-
tions of higher orders, and a possibility of supercon-
ductivity “from repulsion” was questioned. Using the
renormalization group method, the extended Hubbard
model with CI V' was studied in [6], where supercon-
ducting pairing of various symmetries, extended s-, p-,
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and d-wave types was found depending on the elec-
tron concentration and V. Following the original idea
of Kohn-Luttinger [7], it was shown in [8] that the
p-wave superconductivity exists in the electronic gas at
low density with a strong repulsion U and a relatively
strong intersite CI V' (also see [9] and the references
therein). Studies of the phase diagram within the ex-
tended Hubbard model in the weak correlation limit
have shown that superconducting pairing of different
types of symmetry, s, p, dgy, and dy2_,2, can occur
depending on the CI between the nearest V; and the
next V5 neighbor sites and electron hopping parame-
ters between distant sites in a broad region of electron
concentration [10].

However, the Fermi-liquid model was considered in
the weak correlation limit U < W in these investiga-
tions, while cuprates are Mott—Hubbard (more accu-
rately, charge-transfer) doped insulators, where a the-
ory of strongly correlated electronic systems should be
applied for U 2 W. Here, W ~ 4t is the electronic
kinetic energy for the two-dimensional Hubbard model
with the nearest-neighbor hopping parameter ¢. In the
limit of strong correlations, various numerical methods
for finite clusters are commonly used. There are many
investigations of the conventional Hubbard model (see,
e.g., [11-14]), but only a few studies of the extended
Hubbard model in which the intersite CI V' is taken
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into account. In particular, in Refs. [15-17], the ex-
tended Hubbard model was considered in a broad re-
gion of U and V. The results in Refs. [15, 16] show
that a strong on-site repulsion U effectively enhances
the d-wave pairing, which is preserved for large values
of V' >> J. In Ref. [17], using the slave-boson represen-
tation, it was found that superconductivity is destroyed
at a small value of V' = J. We discuss these results in
more detail in Sec. 4.3 by comparing them with our
findings.

In our recent paper [18], we studied the extended
Hubbard model in the limit of strong correlations by
taking the CI V and electron—phonon coupling into
account. It was found that the high-T, d-wave pair-
ing is mediated by the strong kinematic interaction of
electrons with spin fluctuations. Contributions coming
from a weak CI V' and phonons turned out to be small
since only / = 2 harmonics of the interactions make a
contribution to the d-wave pairing.

In this paper, we consider superconductivity in the
two-dimensional extended Hubbard model with a large
intersite Coulomb repulsion V' in the limit of strong
correlations to elucidate the spin-fluctuation mecha-
nism of high-temperature superconductivity. We ar-
gue that in the two-subband regime for the Hubbard
model with U 2 6t, a spin—electron kinematic inter-
action results from complicated commutation relations
for the Hubbard operators (HOs) [19]. This interac-
tion leads to the weak exchange interaction J = 4t /U
due to interband hopping, and at the same time in-
traband hopping results in a much stronger kinematic
interaction gsy ~ W > J of electrons with spin exci-
tations. Therefore, the exchange interaction .J is not
so important for the spin-fluctuation pairing driven by
the strong kinematic interaction gsr. We calculate the
doping dependence of the superconducting 7, for var-
ious values of U and V and show that as long as V
does not exceed the kinematic interaction, V' < W,
the d-wave pairing is preserved. In calculations, we use
the Mori-type projection technique [20] in the equati-
on-of-motion method for thermodynamic Green’s func-
tions (GFs) [21] expressed in terms of the HOs. The
self-energy in the Dyson equation is calculated in the
self-consistent Born approximation (SCBA) as in our
previous publications [18, 22].

In Sec. 2, the two-subband extended Hubbard
model is introduced and equations for the GFs in the
Nambu representation are derived. A self-consistent
system of equations for GFs and the self-energy is for-
mulated in Sec. 3. Results and discussion are presented
in Sec. 4. Concluding remarks are given in Sec. 5.
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2. GENERAL FORMULATION

2.1. Extended Hubbard model

We consider the extended Hubbard model on a
square lattice,

H = Z tija;faaj(, — /JZNZ' +

i#],0 i

+ % S NigNis + % S Vi NN, (1)
i i#]

where ¢; ; are the single-electron hopping parameters,
a;fg and a;, are the Fermi creation and annihilation
operators for electrons with spin o/2 (o +1
= (1,4), @ = —o) on the lattice site 7, U is the on-site
CI, and the Vj; is the intersite CI. Furthermore, N; =
= ZU Niy, Nig = a;faai,, is the number operator and p
is the chemical potential.

In the strong correlation limit, the model de-
scribes the Mott—Hubbard insulating state at half-
filling (n (N;) = 1) when the conduction band
splits into two Hubbard subbands. In this case, the
Fermi operators aifg and a;, in (1) fail to describe sing-
le-particle electron excitations in the system and the
Fermi-liquid picture becomes inapplicable to cuprates.
The projected-type operators, the HOs, referring to the
two subbands, singly occuped a;fg(l — N;5) and doubly
occupied a;'aNi(—,, must be introduced. In terms of the

HOs, model (1) becomes
oo 1

H:é‘lin +52ZX?2+§§WjNiNj+

i,0 i i#]

+ )t {XPOX0T + XPTXT 4
i#j,0

+0(X7X)7 +He)}, (2)

where ¢; = —p is the single-particle energy and ey =
= U — 2p is the two-particle energy. The matrix HO
X8 = |ia)(if| describes transition from the state |i, 3)
to the state |, «) on a lattice site i taking four possible
states for holes into account: an empty state (a, 5 = 0),
a singly occupied hole state («, 8 = o), and a doubly
occupied hole state (o, 3 = 2). The number operator
and the spin operators are defined in terms of the HOs
as

N; =Y X7 +2X7, (3)

SY =X77, Si=(0/2)[X77 - X77).  (4)

The chemical potential u is determined from the equa-
tion for the average occupation number for holes
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n=1+05=(Ny), (5)

where (...) denotes the statistical average with Hamil-
tonian (2).

The HOs obey the completeness relation X2 +
+ >, X779 + X2? = 1, which rigorously preserves the
constraint that only one quantum state a can be occu-
pied on any lattice site i. The commutation relations
for the HOs

[0, 570, = 0 (50 X0 £ 000 X07) - (6)

with the upper sign for Fermi-type operators (such
as XP7) and the lower sign for Bose-type operators
(such as N; in (3) or the spin operators in (4)), re-
sult in the so-called kinematic interaction. To demon-
strate this, we consider the equation of motion for the
HO X{’Q = a;fgawaia in the Heisenberg representation

(h=1):
o)

’ =/
X' ,X,OU) -

iiX;ﬁ =[X?7% H] =

dt
+ Z ti (
l,o!

U—p+ > Va N,
b

21
-0 Bio’o’

B’

=Y ta XP (X7 +0X7), (7)
1

where BZfU, are the Bose-type operators

22
oo’

B :(Xi22+X;70)6010-+Xg&50-r5-:

:(Ni/2+05f)5a'a+5§’5a'67 (8)

(9)

We see that the hopping amplitudes depend on the
number operator in (3) and spin operators (4), which
results in the kinematic interaction describing effective
scattering of electrons on spin and charge fluctuations.
In phenomenological models for cuprates, a dynamical
coupling of electrons with spin and charge fluctuations
is introduced specified by fitting parameters, while the
interaction in Eq. (7) is determined by the hopping en-
ergy t;; fixed by the electronic dispersion.

ler:

ioco (Ni/2+asf)6o"o‘ —S;»T(S(,ra-.

2.2. Green’s functions

To consider the superconducting pairing in model
(2), we introduce the two-time thermodynamic GF [21]
expressed in terms of the four-component Nambu op-
erators X;, and X = (X270 X70X72X00):

Gijo(t —t') = —if(t — t')({Xis (£), X1, (t')})
= (Xie ()X, (1)),

(10)
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where {4, B} = AB + BA, A(t) = et Ae=H and
f(z) = 1 for x > 0 and A(z) = 0 for z < 0. The
Fourier representation in the (k,w)-space is defined by
the relations

Gi]’o’(t_tl):% / dtexp [—i(t —1')] Gijo (w), (11)

— 00

Gijo (@) = = S explik (i~ 6, (kw).  (12)
k

Green’s function (12) can be conveniently written in
the matrix form

_( Gokw)  Brlkw)
Ga(kaw) - ( Fj(kvw) —éa—(_ka —QJ) > ’ (13)

where the normal G,(k,w) and anomalous (pair)
F,(k,w) GFs are 2 x 2 matrices for two Hubbard sub-

(

To calculate GF (10), we use the equation-of-motion
method by differentiating the GF with respect to the
times ¢ and ¢'. As described in detail in Refs. [18,22],
using the Mori-type projection method [20], we derive
an exact representation for GF (13) in the form of the
Dyson equation

T2
Xk

Gollw) = ([
k

) XX e, (14)

Fo(k,w) = ( ) XX N (15)

Gy (k,w) = [wF — Ex (k) — Qo (k,w)] ' Q,  (16)

where 7y is a 4 x 4 unit matrix. The electron excitation
spectrum in the generalized mean-field approximation
(GMFA) is determined by the time-independent matrix
of correlation functions:

£, (1) = = S explik - (i-)({[Xio, H], XL, 1)Q" =
k

(5 58

where £(k) and A, (k) are the normal and anoma-
lous parts of the energy matrix. The parameter Q =
= ({Xi,,,X;rU}) = 7p X @, where 7y is the unit 2 x 2

matrix and ( >

0
Q1

o (@

0
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describes the redistribution of spectral weights with
doping the Hubbard subbands

Q2 = (XP+X77) =n/2, O

The self-energy operator in Eq. (16),
Q% (kw) = (25 g P Q7 (8)

is determined by irreducible operators

[XidaH] - Z EilGXlU
l

Z(u‘) _

o

and describes processes of inelastic scattering of elec-
trons (holes) on spin and charge fluctuations due to
the kinematic interaction and the CI V;; (see Eq. (7)).
Self-energy operator (18) can be written in the same
matrix form as GF (13):

]\;[U(k, w)
<i>:r,(k, w)

‘iﬁ,(k, w)

QY, (k,w) = < B M&(h )

)Ql ., (19)

where the matrices M and @ denote the respective
normal and anomalous (pair) components of the self-
energy operator.

The system of equations for the 4 x 4 matrix GF
(13) and the self-energy (19) can be reduced to a system
of equations for G’,,(k,w) and F), (k,w), the respective
normal and pair 2 X 2 matrix components. Using repre-
sentations for energy matrix (17) and self-energy (19),
we derive the following system of matrix equations for
these components:

Gk, w) = (G*N(k,w)’l n

+ 00 (k,w) On ke, ~0) 25k, w)) Q. (20)

Fy(k,w) = —Gn(k, —w) §, (k,w) G(k,w),  (21)

where we introduced the normal-state GF
N . N1
G (k,w) = (who = 4(k) = M(k,w)/Q) ,  (22)

and the superconducting-gap function

@U(kvw) = Ao'(k) + Ci)(, (kv OJ)/Q (23)

Dyson equation (16) with the zeroth-order quasi-
particle excitation energy (17) and self-energy (19)
gives an exact representation for GF (10). To obtain a
closed system of equations, the multiparticle GF in self-
energy operator (18) should be evaluated as discussed
below.

(X4 X77) = 1-Q,.
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3. APPROXIMATE SYSTEM OF EQUATIONS

In this section, we derive an approximate system of
equations for the GFs and the self-energy components
in Eqs. (20)—(23) for the two Hubbard subbands by
adopting several approximations to make the system
of equations numerically tractable.

3.1. Generalized mean-field approximation

Energy matrix (17) is calculated using commutation
relations (6) for the HOs. The normal part of the en-
ergy matrix £(k) after diagonalization determines the
quasiparticle spectrum in two Hubbard subbands in the
GMFA (see [22] for the details):

on() + (] F gAGK), (20

6172(1() = 5

w, (k) =4t a,y(k) + 43, '+ (k) +43,t"y" (k) +

+wOK) +Udo —p, (1=1,2), (25)

where
A(k) = {[wa (k) —wi (k)] + 40 (k)*}/2,

W (k) = 4taroy(k) + 4t'B127' (k) + 48" f127" (k),

the hopping parameter is defined by

=5 el G-, (20)
k

t(k) = 4ty (k) + 4" 7' (k) + 4" 4" (k), (27)
the nearest-neighbor hopping is ¢, the diagonal hop-
ping is ', and the third-neighbor hopping is t". The
corresponding k-dependent functions are

(k) = (1/2)(cos ky+cosky), 7 (k) = cosk, cosky,

7" (k) = (1/2)(cos 2k, + cos 2k,)

(the lattice constants a, = a, are set equal to unity).
The contribution from the CI V;; in (25) is given by

(c)

W00 =+ SV - QNp@, ()

where Ni(q) (Xo7X3%) /@1 and Na(q)
(X3?X27)/Q> are occupation numbers in the
respective single-particle and two-particle subbands,

and V' (q) is the Fourier transform of Vj;.
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The kinematic interaction for the HOs results in
a renormalization of spectrum (24) determined by the

parameters
) > BL = QL ( ) >

a, :QL(
Co

ar = /Q1Q2 <1 -
512 =V Q1Q2 (1 — —) .
@1Q2
In addition to the conventional Hubbard-I renormaliza-
tion given by the @; and Q> parameters, an essential

renormalization is caused by the AF spin correlation
functions for nearest-neighbors and next neighbors:

Cy
I+

Cs
I+ &

Ch
Q1Q2

Cr = (SiSita1), C2 = (SiSita,)- (29)
These functions strongly depend on doping, resulting
in a considerable variation of the electronic spectrum,
as is shown below and is discussed in detail in Ref. [22].

The anomalous component A, (k) of matrix (17) de-
termines the superconducting gap in the GMFA. The
diagonal matrix components in the coordinate repre-

sentation are given by the equations

AT, Q2 = —ot3 ] (X2 Ny) — Vi (X7 X7?), (30)
Ajj, Qi = ot;F (N;X7?) = Vg (X7 X77),  (31)

where we introduced upper indexes for the hopping pa-
rameter t;? and t7] to stress that the anomalous com-
ponents (X??N;) are induced by the interband hop-
ping. Calculating the correlation function (XP?Nj;)
from the equation of motion for the GF L;;(t — t') =
= ((X22(t)|N;(t'))) yields a superconducting gap in the
two-particle subband (see Ref. [23] for the details):

A?jch = (Jl _Wj)<Xf2XfQ>/Q27 (32)

where Jj; = 4(t;7)*/U is the AF exchange interac-
tion. A similar equation holds for the gap in the single-

particle subband:

A}jla = (JZ - VYZJ) <XZQ6X]QU>/Q1'
Therefore, the pairing in the Hubbard model in the
GMFA is similar to superconductivity in the t—J model

mediated by the AF exchange interaction J;;.

635

3.2. Self-energy operator

The self-energy matrix (19) due to the kine-
matic interaction, as shown in Eq. (7), is de-
termined by the multiparticle GFs such as
(Xio (1) Bigor (1)) X}y Bl ). We calculate the
self-energy matrix in the SCBA using the mode-co-
upling approximation for the multiparticle GFs. In
this approximation, the propagation of excitations
described by Fermi-like operators X, and Bose-like
operators B, for [ # i is assumed to be indepen-
dent. Therefore, the corresponding time-dependent
multiparticle correlation functions can be written
as products of fermionic and bosonic correlation
functions,

<Xl2’0”B;[trtr” |Biffff’ (t)XlU’2(t)> =

= 01 0 (X2 X7 2())(B), 0| Bioo (1)), (33)
(X7 Bjsgn|Bigor () X7 (1)) =

= 851 o {X7 2 X7 (1)) (Bjro Bivor (1)).  (34)

The time-dependent single-particle correlation func-
tions are calculated self-consistently using the corre-
sponding GFs. This approximation results in a self-
consistent system of equations for self-energy (19) and
GFs (20) and (21) similar to the strong-coupling Eliash-
berg theory [24] (see Ref. [18] and Ch. A in Ref. [2] for
the details).

In this approximation, the normal-state GF (22) for
two subbands takes the form [22]

G}\}(QQ) (k,w) = [1 = b(k)]G1(2)(k,w) +
+ b(k)GQ(l)(kaw)a (35)
1
G () = (36)

w —ey(2)(k) — Y(k,w)’

with the hybridization parameter b(k) = [e2(k)—wa(k)]/
/lea(k) — e1(k)]. The self-energy ¥(k,w) can be
approximated by the same function for two sub-
bands. In the imaginary frequency representation,
iwp =itT(2n+ 1), n =0,4£1,£2,... it is given by

T
E(kawn) = _N ZZAPF)(CLI{ - Q|Wn _wm) X
q m

x [Gi(d,wm) + G2(q, wn)] =

=iwn [1 — Z(k,wy)] + X (k,wy). (37)

The normal GF (36) for the two subbands takes the
form
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{Gii (ke wn)} ™ = iwn — 212 () — S(k,wn) =
= iwpZ(k,wp) — [51(2) (k) + X(k,wp)]. (38)

To calculate T,, we can use a linear approximation for
the pair GF in (21). In particular, Eq. (23) for the
two-particle subband gap ¢(k,w) = ops - (k,w) can be
written as

ol wn) = 22 S STk~ ) - V(k — ) +

+ 2 (@, k — gqlwn — wm)} x

[1 - b(@)]* p(q wm)
[me(qa wm)]2 + [52((]) + an wm)]2 .

(39)

The interaction functions in (37) and (39) in the imag-
inary frequency representation are given by

AH) (g, k — qlvn) = —|H(a@)|* xsr(k — q,vn) F
F{V(k—a@)® + [t(@]*/4} xer(k — q,vn). (40)

The spectral densities of bosonic excitations are deter-
mined by the dynamic susceptibility for spin (sf) and
number (charge) (c¢f) fluctuations

Xsf(@w) = =(SqlS-a)w. (41)
Xef(@w) = =(0Ng|0N_q))w (42)

written in terms of the commutator GFs [21] for the
spin Sq and number Ny = Ng — (Ng) operators.

Thus, we have derived a self-consistent system of
equations for the normal GF (38), self-energy (37), and
gap function (39). In the SCBA, vertex corrections to
the kinematic interaction t(q) of electrons with spin-
and charge-fluctuations (41) and (42) induced by the
intraband hopping are neglected. It is assumed that the
system is far away from a charge instability or a stripe
formation and charge fluctuations give a small contri-
bution to the pairing. The largest contribution from
spin fluctuations comes from wave vectors close the AF
wave vector Q = (7, 7), where their energy w4(Q) is
much smaller than the Fermi energy, ws(Q)/pu < 1
(see, e.g., [25]). Therefore, vertex corrections to the
kinematic interaction should be small as in the Eliash-
berg theory [24] for electron interaction with phonons,
where wpn(q)/pu < 1. Consequently, the SCBA for the
self-energy and the GFs calculated self-consistently is
quite reliable and allows considering the strong cou-
pling regime, which is essential in the study of renor-
malization of the quasiparticle spectrum and the su-
perconducting pairing, as shown in Refs. [18, 22] and is
discussed below.

4. RESULTS AND DISCUSSION

In numerical computations, we have used models
for the ClIs and the susceptibility in (41) and (42). For
the intersite CI V;;, we consider a model for repulsion
of two electrons (holes) on neighboring lattice sites,

V(q) = 2V (cos g + cosqy), (43)

with the values V =0, 0.5¢, 1.0¢, 2.0¢. For the on-site
CI, we consider U = 8t,16t, 32t. The AF exchange in-
teraction for neighboring sites is described by the func-
tion J(q) = 2J(cosq, + cosqy,). We note that in the
GMFA, the CIs Vj; give no contribution to the exchange
interaction J;;, and it is therefore assumed to be the
same for all values of V' (cf. Refs. [15, 16]). In most
of the calculations, we take J = 0.4¢, but to study the
role of the spin-fluctuation interaction in the supercon-
ducting pairing, we also consider other values of the
interaction, J = 0.2¢,0.6¢, 1.0¢.

Due to a large energy scale of charge fluctuations,
of the order of several ¢, in comparison with the spin
excitation energy of the order of J, the charge fluctua-
tion contributions can be considered in the static limit
for susceptibility (42):

ver (k) = iy (k) + X7 (1),
1 ¢~ NPa+k) -NW(q)  (44)

() _
A i N N N

where the occupation numbers N(®)(q) are defined as
N (&) = [Q1 + (n — 1)b(k)] N1 (Kk),
N® (k) = [Q2 — (n — 1)b(k)] N2 (k),

) (45)
No(k) = 5+ T ) Galk,wm).
m
For the dynamical spin susceptibility ys;(q,w)
in (41), we used a model suggested in Ref. [26]

Im 57 (q,w +i07) = xof(q)Xi;(w) =
_ XQ w 1
=TT et ()] Tt e 40

This type of the spin-excitation spectrum was found in
the microscopic theory for the ¢—J model in Ref. [25].
The model is determined by two parameters: the AF
correlation length ¢ and the cut-off energy of spin ex-
citations of the order of the exchange energy ws ~ J.
The strength of the spin-fluctuation interaction given
by the static susceptibility xo = xs7(Q) at the AF
wave vector Q = (m, ),

-4 1 1 o
Xe= "5, {qu:1+£2[1+v(q)]} -

636
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62(1()

Fig.1. Electron dispersion ¢2(k) in the GMFA for (a and ¢)

V =0 and (b and d)

V =2at(aand b) U =8 and (c and d)

U = 16 along the symmetry directions I'(0,0) — M (mw, 7) — X (7,0) — I'(0,0) and X (7,0) — Y (0, 7) for 6 = 0.05 (solid
line), 0 = 0.10 (dashed line), and 6 = 0.25 (dash-dotted line). The Fermi energy for hole doping is at w =0

is defined by the normalization condition

o

NZ/_Ch_Imef(‘LW):(S?): (1-146).

Spin correlation functions (29) in single-particle ex-
citation spectrum (24) are calculated using the same
model (46):

1 1
Cr=5D_Carl@, Co=5> Ca¥(@
a a

where
Cq=2___XQ
2 1+&[1+7(aq)
We use ¢t = 04 eV as an energy unit, and take
t' = —0.2¢t and t"” = 0.1t for the hopping parameters.
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Below, we present numerical results for the hole-doped
case of the two-hole subband.

4.1. Electronic spectrum in the normal state

We first consider the results in the GMFA for
electronic spectrum (24). The doping dependence of
the electron dispersion for the two-hole subband &5 (k)
along the symmetry directions in the 2D Brillouin zone
(BZ) is shown in Figs. 1a and 1b for U = 8 and in
Figs. 1c and 1d for U = 16 for V. = 0 and for V = 2.
The corresponding Fermi surfaces determined by the
equation e3(kp) = 0 are plotted in Fig. 2. For small
doping, § = 0.05, the energies at the M(mw,7) and
['(0,0) points are nearly equal, as in the AF phase.
Only small hole-like Fermi-surface pockets close to the
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kg

Fig.2. Fermi surface for (¢ and ¢) V =0 and (band d) V =2 at (e and b) U =8 and (¢ and d) U = 16 in the quarter of
the BZ in the GMFA at the hole doping § = 0.05 (solid line), 6 = 0.10 (dashed line), and § = 0.25 (dash-dotted line)

(£m/2,+m/2) points emerge at this doping, as shown
in Fig. 2. With increasing doping, the AF correla-
tion length decreases, which results in an increase in
the electron energy at the M (m,7) point, and a large
Fermi surface appears at some critical doping 6 ~ 0.12.
At the same time, the renormalized two-hole subband
width increases with doping, for example, for U = 8
and V =0, from W ~ 2t at § = 0.05 to W =~ 3t at
0 = 0.25, which, however, remains less than the “bare”
Hubbard subband width W = 4t (1 + §) where short-
range AF correlations are disregarded. With increas-
ing the CI U and V, the subband width shrinks, as
can be seen from the comparison of panels a and b for
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electronic spectra in Fig. 1 and the Fermi surfaces in
Fig. 2.

To study self-energy effects in the electronic spec-
trum, the strong-coupling theory should be used as a
self-consistent solution of the system of equations for
the normal GF (36) and self-energy (37). Because
the detailed investigation of the normal state electronic
spectrum in the strong-coupling theory was performed
for the conventional Hubbard model in Ref. [22] and
for the extended Hubbard model in Ref. [18], we here
present results only for the U and V' dependence of the
renormalization parameter Z(q) at the Fermi energy,
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Z(q) =Z(qw=0)=1+X\(q) =

=1—[dReX(q,w)/dw]|s=0. (48)

We found that Z(q) weakly depends on § for
d < 0.15 (also see Ref. [18]). Therefore, in Fig. 3, we
demonstrate the U dependence of Z(q) at § = 0.10 for
V =0 and V = 1. It appears that the renormaliza-
tion parameter Z(q) is quite large in the whole BZ,
Z(q) ~ 4-6, which results in a strong suppression of
the quasiparticle weight proportional to 1/Z(q)

4.2. Superconducting T,

For a comparison of various contributions to super-
conducting gap equation (39), we approximate inter-
action function (40) by its value close to the Fermi
energy. As a result, the static susceptibility x(q)
= Rex(q,w = 0) appears in the gap equation instead
of dynamical susceptibility (41), (42). It brings us to a
BCS-type equation for gap function (39) at the Fermi
energy (k) = p(k,w = 0):

90 NZ 1—b]226 ) hz(;c){‘](k_q)_
- V(k—q)+ [(1/4 (@) > +|V (k—a)|*] xer (k—a) —

— (@) Pxsr (k — @)f(ws — [E@D},  (49)

where £(q) = e2(q)/Z(q) is the renormalized energy.
Although there are no retardation effects for the ex-
change interaction and CI and the pairing occurs for
all electrons in the two-particle subband, the spin-
fluctuation contributions are restricted to the range of
energies +w; near the Fermi surface, as determined by
the f-function.

To estimate various contributions to gap equa-
tion (49), we consider the model d-wave gap func-
tion (k) = (A/2)n(k), where n(k) = cosk, — cosk,.
Then the gap equation can be written in the form (see
Ref. [18] for the details):

Z[l oa ]22[757 )] {J VATV +
(1/4)|t(Q)|2Acf—|t( )|2Xsf9( — &)} (50)

In this equation, only [ = 2 components of the static
susceptibility and the CI give contributions,
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Table. Charge-fluctuation contribution ‘/}Cf/t for seve-
ral values of the on-site Cl U and the intersite Cl V for
the hole concentration 6 = 0.10

U V=1 V=2 V=3
8 0.10 0.29 0.53
16 0.24 0.76 1.95
32 0.43 1.47 1.71
-~ 1
Vep = v Z [V (k)% xer (k) cos ky, (51)
Kk
N 1
Xef = N Z Xcef (k) COS kma (52)
Kk
- 1
Xsf = Nszf(k) cos k. (53)
Kk

The contribution from the charge fluctuations Y.;
in (52) weakly depends on U and V and is very

small: Y.r ~ 1073(1/t)-1072(1/t) for hole concen-
trations § = 0.05-0.10. For the vertex |t(q)|> =
= (1/N) > 4 It(a) )| ~ 41> averaged over the BZ, the

contrlbutlon induced by the kinematic interaction is
equal to [t(q)]? Xer < 0.04¢ and can be neglected. The
charge fluctuation contribution V. ¢ in (51) from the in-
tersite CI, Eq. (43), for the hole concentration § = 0.05
is also small, ‘7cf < 51072t for V < 2 and increases
to 0.17¢ for V' = 4. For larger hole concentrations,
ch increases as shown in Table for § = 0.10. How-
ever, ‘7cf —V <0 for all values of U and V', and hence
the d-wave pairing induced only by charge fluctuations
cannot occur.

The spin-fluctuation contribution Y,y in (53) is cal-
culated for the model xsr(q) in Eq. (46). Since the
spin susceptibility has a maximum at the AF wave vec-
tor Q = (m,m), the integral over k in (53) results in
a negative value of X,y that strongly depends on the
hole doping. Our previous calculations gave the values
—Xss -t = 1.3, 1.0, 0.6 for the respective hole concen-
trations § = 0.05, 0.10, 0.25 (see Ref. [18]). Using the
vertex |t(q)|? ~ 4t> averaged over the BZ, we can es-
timate the effective spin-fluctuation coupling constant
as gsy ~ —4t?\sy = 5.2, 4.0, 2.4. Thus, the spin-
fluctuation contribution to the pairing in Eq. (50) with
the coupling constant gsy = 2-1 eV for § = 0.05-0.25
appears to be the largest.

The results of calculating T, with Eq. (50) are
shown in Fig. 4 for U = 8, 16 and V = 0, 0.5, 1.0,
2.0. A similar doping dependence for T, is observed for
U = 32. The maximum 7, at the optimal doping as
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Fig.3. The renormalization parameter Z(q) along the symmetry directions I'(0,0) — M (w,7) — X (7,0) — I'(0,0) at
0 =0.10 at U = 8 (solid line), U = 16 (dashed line), and U = 32 (dash-dotted line) for (a) V =0 and (b) V =1

T.
a
0.01 | i
/ .
/7
4.7 .
0 0.1 0.2

0.01 ¢ 4

Fig.4. T.(d) for (a) U = 8 and (b) U = 16 with V = 0 (solid line), V' = 0.5 (dashed line), V' = 1.0 (dash-dotted line),
and V = 2.0 (dotted line)

a function of U and V is shown in Fig. 5. Increasing
the intersite Coulomb repulsion V' suppresses T,, which
becomes small only for high values V' = 2{-3¢ compa-
rable with the spin-fluctuation coupling gy and much
larger than the exchange interaction J = 0.4t. At the
same time, increasing U enhances T,. This is due to
the narrowing of the electronic band as seen in Fig. 1
and the corresponding increase in the density of state.

To prove an important role of the spin-fluctuation

interaction both in the normal state and in supercon-
ducting pairing, we calculate the function Z(q) in (48)
and T, for several values of the parameter w, for the
static susceptibility in model (46): ws = 0.2, 0.4, 0.6,
1.0 for U = 8. Figure 6 shows the T, dependence on the
parameter w; that determines the spin-fluctuation con-
tribution sy in Eq. (50) in two cases: for Z(q) given
by Eq. (48) and Z(q) = 1. Because the spin-fluctuation
interaction is determined by yxqg x 1/ws in (47), it
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Tgn,az

0.01 | —
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.-
.~

0 8 16 24 32
U

Fig.5. Maximum 7.(§) as a function of U for V' =0
(solid line), V' = 0.5 (dashed line), and V = 1.0 (dash-
dotted line)

increases as the cut-off frequency ws decreases. This
results in an increase in the superconducting pairing
contribution Y7, but at the same time enhances the
normal state renormalization Z(q) as shown in Fig. 7.
Therefore, in case for Z(q) given by Eq. (48), T, being
roughly proportional to Ysr/Z%(q), decreases due to
suppression of the quasiparticle weight 1/Z(q), while
in case for Z(q) = 1, increasing the pairing strength
results in a 7, increase. We also note that 7, in Fig. 6b
calculated in the mean-field approximation (MFA) with
Z(q) = 1 is an order of magnitude larger than its value
with a proper consideration of the electronic spectrum
renormalization.

In the current approach, we can also consider the
s-wave pairing. For the extended s-wave gap function
vs(k) = (A/2)ns(k), where ns(k) = cosk, + cosky, an
equation for T, similar to (49) can be derived. Solv-
ing this equation reveals a finite and quite high 7.
However, s-wave pairing symmetry violates the kine-
matic restriction of no double occupancy for the Hub-
bard model in the two-subband regime. As was pointed
out in Refs. [27, 28], the single-site correlation function
should obey the condition

(X72X7%) = ~ Z X72X3%) =0, (54)
caused by the multiplication rule for the Hubbard op-
erators, X* X7 = 65, X2 In the quasiparticle ap-
proximation used in Eq. (49), we obtain the relation

15 ZK3T®, Bem. 3(9)

(XZ2X92) = NZ ]225 yth 52(;3 —0. (55)

For the d-wave pairing ¢q(q) = (A/2)(cos g, — cosqy),
this condition is fulfilled in the tetragonal phase for any
doping (pairing in the orthorhombic pase is considered
in Ref. [29]). For the s-wave pairing, this condition is
violated,

e(a)
h57 70,

COS (z
Z [Z(q)]?2e(q (56)
q sy

for an arbitrary doping except a particular choice of the
chemical potential such that the contribution from the
integral over 0 < ¢, < 7 is compensated by the integral
over 7 < ¢, < 2m. The same condition holds for the
one-particle subband, (X7 X?7) = 0. The obtained
results can be derived for the general representation of
the correlation function

! X
7TQ2N

o0
dz 29
XZ / mImF‘T (q,Z),
a — 00

<X02 X02> —

—qa q

since the symmetry of the anomalous GF F?%(q, 2) is
determined by the s- or d-wave symmetry of the gap
function. Therefore, we conclude that s-wave pairing is
prohibited for the Hubbard model in the limit of strong
correlations.

4.3. Comparison with previous theoretical
studies

As discussed in Sec. 1, the intersite Coulomb re-
pulsion V is detrimental to the pairing induced by the
on-site CI U in the Hubbard model or higher-order con-
tributions from V in the weak correlation limit. Here,
we comment on several studies of this problem in the
strong correlation limit and compare them with our
analytic results for the d-wave pairing.

Following the original idea of Anderson [3], it is
commonly believed that the exchange interaction J =
= 4t?/U induced by the interband hopping in the
Hubbard model plays a major role in the d-wave su-
perconducting pairing. Because the excitation en-
ergy of electrons in the interband hopping U is much
larger than their intraband kinetic energy W, the ex-
change pairing has no retardation effects, contrary to
the case of electron—phonon pairing, where a large
Bogoliubov-Tolmachev logarithm [30] diminishes the
Coulomb repulsion as V' — V/[1+4 p. In(p1/wpn)], where
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Fig.6. T.(0) dependence on the spin-fluctuation contribution Y.; in Eq. (50) for ws = 0.2 (dash-dotted line), w, = 0.4
(solid line), ws = 0.6 (dotted line), and ws = 1.0 (dashed line) calculated for (a) finite Z(q) and (b) Z(q) =1

Z(q)
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Fig.7. Z(q) dependence on spin-fluctuation contribu-

tion \ss in Eq. (48) for w, = 0.2 (dash-dotted line),

ws = 0.4 (solid line), ws; = 0.6 (dotted line), and
ws = 1.0 (dashed line) at § = 0.10

pe = N(0)V and wpy, is the phonon energy. Conse-
quently, without the retardation effects, the Coulomb
repulsion V' should destroy the exchange pairing for
V> J.

To overcome this problem, it was suggested in
Ref. [16] that in the limit of strong correlations, the
intersite Coulomb repulsion V' decreases the interband
excitation energy, which results in an enhancement of
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the exchange interaction, J(V) 42 /(U = V), as
was found from cluster calculations. If we consider
the pairing induced only by the exchange interaction
J(V) and take the Coulomb repulsion V into account,
then the condition J(V) — V > 0 should be fulfilled
for the existence of pairing. The condition is satisfied
for 0 <V < Vi, where V} = (U/2)[1 — /1 — (4t/U)?]
for 0 <V < U. For U > 4t, we have V; < U, e.g.,
Vi = 0.067U for U = 8 and V; = 0.004U for U = 32.
Therefore, we see that the pure exchange superconduct-
ing pairing can occur in the region of weak Coulomb
repulsion. Contrary to this, in Ref. [16], using the cel-
lular dynamical mean-field theory (CDMFT) [14], the
d-wave pairing was found in the strong-coupling region
up to V< U/2 (e.g., as shown in Fig. 3, V' < 3t(8¢)
for U = 8t(16t), respectively). At the same time, in
the limit of weak correlations U = 4¢, the pairing is
suppressed at the smaller value V ~ 1.5¢. Thus, we
believe that the “resilience of d-wave superconductivity
to nearest-neighbor repulsion” is not due to the renor-
malization of the exchange interaction J(V) but due
to another mechanism of pairing not explicitly seen in
CDMEFT calculations. As we have shown, in the strong
correlation limit, the emerging kinematic interaction
in the two-subband regime is responsible for the spin-
fluctuation pairing at large values of V, up to V' < 4t.

Our conclusion about the importance of the kine-
matic mechanism of pairing is supported by the studies
in Ref. [15]. Using the variational Monte Carlo tech-
nique, the superconducting d-wave gap was calculated
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for the extended Hubbard model with the weak ex-
change interaction J = 0.2t and a repulsion V' < 3t
in the wide range 0 < U < 32. It was found that
the gap decreases with increasing V' at all U and can
be suppressed for V' > J for small U. But for large
U 2 U, ~ 6t, the gap becomes robust and exists up to
large values V' ~ 10J = 2t, which was explained by an
effective enhancement of .J as in Ref. [16]. At the same
time, the gap does not show notable variation with U
for large U = 10-30, although it should depend on
the conventional exchange interaction in the Hubbard
model as J = 4t?/U (or J = 4t2/(U — V)). We can
suggest another explanation of these results by point-
ing out that at large U 2 U,, concomitant decrease of
the bandwidth (as shown in Fig. 3b in Ref. [15]) results
in the splitting of the Hubbard band into the upper and
lower subbands and the emerging kinematic interaction
induces the d-wave pairing in one Hubbard subband.
In that case, the second subband gives a small contri-
bution for large U, which results in a U-independent
pairing. It can be suppressed only by the repulsion V
larger than the kinematic interaction, V' 2> 4.

In Ref. [17], the extended Hubbard model is con-
sidered in the weak or intermediate correlation lim-
its as in Ref. [6] and in the strong correlation limit
within the slave-boson representation in the MFA. In
the strong correlation limit, the small value V' = .J
was found, which suppresses the d-wave superconduct-
ing gap. However, in the MFA | the kinetic energy term
described by the projected electron operators,

tél"o—éja' = tc;fg(l — ni,g)ng(]. — nj,,,) = t)(;’o)(?(7

is approximated by the conventional fermion (spinon)
operators £ fit, fjo, and the most important contribu-
tion from the kinematic interaction is lost in the re-
sulting BCS-type gap equation (13) in Ref. [17]. As
shown in our equation for the gap, Eq. (50), the kine-
matic interaction given by Y,y in (53) provides strong
spin-fluctuation pairing and high T.,.

To analyze the pairing mechanisms in the limit of
strong correlations, analytic methods should be used.
A complicated dynamics of projected electron opera-
tors can be rigorously taken into account using the
HO technique. The algebra of the HOs rigorously pre-
serves the restriction of no double occupancy of quan-
tum states, which is violated in the commonly used
MFA in the slave-particle theory. As discussed in
Sec. 2.1, the commutation relations for the HOs re-
sult in a kinematic interaction that is responsible for
the strong spin-fluctuation electron interaction. The
superconducting pairing induced by the kinematic in-
teraction for the HOs was first proposed by Zaitsev
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and Ivanov [31], who studied the two-particle vertex
equation by applying the diagram technique for HOs.
The momentum-independent s-wave superconducting
gap was found, which, however, violates the HO kine-
matics, as was shown in Refs. [27,28]. Because the
intersite Coulomb repulsion V' > J destroys the su-
perconductivity induced by the AF exchange interac-
tion, the spin-fluctuation pairing in the second order of
the kinematic interaction beyond the GMFA should be
taken into account as discussed in detail in Sec. 4.2 and
considered in Refs. [32, 33] for the ¢—J model.

5. CONCLUSION

We have studied effects of the strong intersite
Coulomb repulsion V' on the d-wave superconducting
pairing within the extended Hubbard model (1) in the
limit of strong electron correlations, U > t. Using
the Mori-type projection technique, we obtained a self-
consistent system of equations for normal and anoma-
lous (pair) GFs and for the self-energy calculated in the
SCBA.

It was found that the kinematic spin-fluctuation in-
teraction gs¢ induced by electron hopping in one Hub-
bard subband is much stronger than the conventional
exchange interaction .J resulting from the interband
hopping. Consequently, the d-wave pairing can be sup-
pressed only for large values V' > g,y where g, is of
the order of the kinetic energy, gsy ~ W = 4t. Since
in cuprates, the Coulomb repulsion V' is of the same
order as the exchange interaction, V' 2 J ~ 0.4¢, and
therefore the kinematic spin-fluctuation pairing mech-
anism plays the major role in achieving HTSC. It is
also shown that the kinematic spin-fluctuation interac-
tion results in a strong renormalization of the electronic
spectra.

It is important to note that the superconducting
pairing induced by the AF exchange interaction
and the spin-fluctuation kinematic interaction is
characteristic of systems with strong electron correla-
tions. These mechanisms of superconducting pairing
are absent in the fermionic models and are generic
for cuprates. Therefore, we believe that the spin-
fluctuation kinematic mechanism of superconducting
pairing in the Hubbard model in the limit of strong
correlations is the relevant mechanism of HTSC in
copper-oxide materials.

The authors thank A. S. Alexandrov, V. V. Ka-
banov, A.-M. S. Tremblay, and M. Yu. Kagan for the
valuable discussions. Partial financial support by the
Heisenberg-Landau Program of JINR is acknowledged.

15%



N. M. Plakida, V. S. Oudovenko

MIT®, Tom 146, Be. 3 (9), 2014

10.

11.

12.

13.

14.

15.

16.

17.

. Handbook

REFERENCES

of High-Temperature Superconductivity,
Theory and Ezxperiment, ed. by J. R. Schrieffer and
J. S. Brooks, Springer-Verlag, New York (2007).

N. M. Plakida, High-Temperature Cuprate Supercon-
ductors, Springer Ser. in Solid-State Sci., Vol. 166,
Springer-Verlag, Berlin (2010), Ch. 7.

P. W. Anderson, Science 235, 1196 (1987); The Theory
of Superconductivity in the High-T. Cuprates, Prince-
ton Univ. Press, Princeton (1997).

J. Hubbard, Proc. Roy. Soc. London A 276, 238
(1963).

A. S. Alexandrov and V. V. Kabanov, Phys. Rev. Lett.
106, 136403 (2011).

. S. Raghu, E. Berg, A. V. Chubukov, and S. A. Kivel-

son, Phys. Rev. B 85, 024516 (2012).

W. Kohn and J. M. Luttinger, Phys. Rev. Lett. 15,
524 (1965).

M. Yu. Kagan, D. V. Efremov, M. S. Marienko, and
V. S. Val’kov, Pis’'ma v Zh. Eksp. Teor. Fiz. 93 725
(2011).

D. V. Efremov, M. S. Marenko, M. A. Baranov, and
M. Yu. Kagan, Zh. Eksp. Teor. Fiz. 117, 990 (2000).

M. Yu. Kagan, V. V. Val’kov, V. A. Mitskan, and
M. M. Korovushkin, Zh. Eksp. Teor. Fiz. 144, 837
(2013).

E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).
N. Bulut, Adv. in Phys. 51, 1587 (2002).
D. J. Scalapino, in Ref. [1], p. 495.

D. Sénéchal, in Theoretical Methods for Strongly Corre-
lated Systems, ed. by A. Avella and F. Mancini, Sprin-
ger Ser. in Solid-State Sciences, Vol. 171, Springer-Ver-
lag, Berlin (2012), Ch. 11.

E. Plekhanov, S. Sorella, and M. Fabrizio, Phys. Rev.
Lett. 90, 187004 (2003).

D. Sénéchal, A. Day, V. Bouliane, and A.-M. S. Trem-
blay, arXiv:1212.4503.

S. Raghu, R. Thomale, and T. H. Geballe, Phys. Rev.
B 86, 094506 (2012).

644

18

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

N. M. Plakida and V. S. Oudovenko, Eur. Phys. J.
B 86, 115 (2013).

J. Hubbard, Proc. Roy. Soc. London A 285, 542
(1965).

H. Mori, Progr. Theor. Phys. 34, 399 (1965).

D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960); Nonequi-
librium Statical Thermodynamics, Consultant Bureau,
New York (1974).

N. M. Plakida and V. S. Oudovenko, Zh. Eksp. Teor.
Fiz. 131, 259 (2007).

N. M. Plakida, L. Anton, S. Adam, and Gh. Adam,
Zh. Eksp. Teor. Fiz. 124, 367 (2003).

G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 38, 966 (1960);
39, 1437 (1960).

A. A. Vladimirov, D. Thle, and N. M. Plakida, Phys.
Rev. B 80, 104425 (2009).

J. Jakli¢ and P. Prelovéek, Phys. Rev. Lett. 74, 3411
(1995); 75, 1340 (1995).

N. M. Plakida, V. Yu. Yushankhai, and I. V. Stasyuk,
Physica C 160, 80 (1989).

V. Yu. Yushankhai, N. M. Plakida, and P. Kalinay,
Physica C 174, 401 (1991).

N. M. Plakida and V. S. Oudovenko, Physica
C 341-348, 289 (2000); in Proc. of the NATO ARW
on Open Problems in Strongly Correlated Systems, ed.
by J. Bonca, P. Prelovsek, A. Ramsak, and S. Sarkar,
Kluewer Acad. Publ., Dordrecht (2001), p. 111.

N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov,
New Method in the Theory of Superconductivity, Publ.
Dept. USSR Acad. of Science, Moscow, (1958); Consul-
tants Bureau, Chapman and Hall, New York-London
(1959), Vol. YII.

P. O. Baiiues, B. A. Usanos, ®TT 29, 2554 (1987);
29, 3111 (1987); Int. J. Mod. Phys. B 5, 153 (1988).

N. M. Plakida and V. S. Oudovenko, Phys. Rev. B 59,
11949 (1999).

P. PrelovSek and A. Ramsak, Phys. Rev. B 72, 012510
(2005).



