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The lower critical field H.1 in layered superconductors is calculated under the assumption that vortex pinning by
point defects is strong in these materials. We consider the case of a purely electromagnetic coupling of vortex
pancakes and the case of both the electromagnetic and Josephson couplings of the pancakes in a vortex line.
In the latter case, singularities in the temperature dependence of H.; are predicted at certain characteristic

temperatures.
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1. INTRODUCTION

Effects of thermal fluctuations of vortices on the
lower critical field H.; and on the magnetization of
type-II superconductors were considered in a number
of papers [1-6]. It was shown that the fluctuations lead
to a renormalization of the temperature dependence of
H.;. In addition, effects of flux-line pinning on the
equilibrium magnetization M of superconductors were
analyzed for the cases of pinning by point [7, 8] and
columnar [9, 10] defects. In this paper, we consider the
effect of pinning by point defects on the lower critical
field in layered superconductors, leaving aside the anal-
ysis of this effect for three-dimensional superconducting
materials.

In layered superconductors like BixSroCaCuyOgy g,
a vortex is the stack of vortex pancakes (VPs) localized
in superconductive layers, and the vortex elasticity &
displays two features that, as we see in what follows,
result in a noticeable effect of vortex pinning by point
defects on H.1. Both these features are caused by large
anisotropy of these superconductors. The first feature
is that the elasticity is relatively small, and this small-
ness leads to the Larkin length L. that does not exceed
the interlayer spacing d. In other words, the charac-
teristic pinning energy of a vortex pancake is larger
than its characteristic elastic energy, and hence pinning
of the VPs is strong in these superconductors at least
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for not too high temperatures T' [11-13]. The second
feature is that in contrast to the practically constant
¢; in three-dimensional superconductors, the elasticity
in layered superconductors essentially depends on the
scale of the vortex distortion, i.e., on the wave vector
k. along the vortex [11-14]. This function &;(k,) results
from an interplay of the electromagnetic and Josephson
couplings of the VPs in a vortex line.

In the experiments in [15, 16], the temperature de-
pendences of the magnetization M were measured at
various magnetic inductions B in BisSroCaCusOg;s
crystals, and a second-order phase transition line By (T')
was observed in the vortex system of these supercon-
ductors at moderate temperatures of the order of 40 K.
Since a second-order phase transition line cannot have
a critical point similar to that of the first-order phase
transition line between a liquid and its vapor [17], the
end of the curve B, (T') in the T—B plane should lie on
the line B = 0 that corresponds to the lower critical
field. Hence, the experimental data in [15, 16] indi-
rectly suggest that the Bi-based superconductors may
exhibit a singular behavior of H.(T') near a tempera-
ture close to 40 K.

This paper is organized as follows. In Sec. 2, a
simple model for the vortex elasticity ¢;(k,) in layered
superconductors is formulated, and in Sec. 3 the main
formulas describing strong pinning of the VPs are pre-
sented. In Sec. 4, the field H.; is studied in the case
where purely electromagnetic coupling of the VPs in a
vortex line occurs. In this situation, H.;(T') is renor-
malized both by thermal fluctuations of the vortex pan-
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cakes and by their pinning. The lower critical field
in the case of both the Josephson and electromagnetic
couplings of the VPs is considered in Sec. 5. In this
case, the renormalization of H.;(T') is accompanied by
singularities in the T-dependence of H.; at certain tem-
peratures. The results of the paper are briefly summa-
rized in Sec. 6.

2. ELASTICITY OF A VORTEX LINE

In a layered superconductor, pinning forces and
thermal fluctuations shift the VPs comprising a vor-
tex line away from its axis, and the line is distorted.
Below, we deal with the distortions with large wave
vectors k of the order of 7/d, where d is the interlayer
spacing. For such k., the elasticity &;(k.) of a vortex
line in a layered superconductor has the form [11-14]

i) e |2 (L) + o (2]

where g9 = (®¢/47\)%, X is the planar London pene-
tration depth, ®¢ is the flux quantum, ¢ < 1 is the
anisotropy parameter of the superconductor, and u is
the amplitude of the vortex—pancake displacements. It
is taken into account in Eq. (1) that in the case of strong
pinning, the displacement u can be large, uk, > 1. The
first term in formula (1) describes the Josephson cou-
pling of the VPs, and the second term is due to their
electromagnetic interaction. The parameter e \k, char-
acterizes the relative roles of the Josephson and elec-
tromagnetic couplings of the VPs in the elasticity of
the vortex line.

The logarithmic factors in formula (1) are of the
same order of magnitude when A ~ d/e. This situa-
tion just occurs in Bi-based superconductors at not too
high temperatures (e.g., at A = 0.2um, d = 1.5 nm,
and ¢ = 1/200, we obtain eA/d =~ 0.7). Hereafter,
we replace the logarithmic factors by the quantity
q = 0.5In(k%€?/(u?)), where k = \/€ is the Ginzburg—
Landau parameter, ¢ is the planar coherence length,
and (u?) gives the averaged value of u? for the VPs in
the case of strong pinning. The explicit value of this
quantity ¢ is given below (see formula (23)). To sim-
plify our analysis further, we use the following model
dependence for &;(k,) that reproduces the main fea-
tures of Eq. (1):

1
A2k2

er(ks) = eoqe?, kI > ky > ky, (2)

coq

k) = N

ky < ky.
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This model is similar to that used in Refs. [18, 19] (in
those papers, ¢ = 1). Here, k*** = 7 /d is the max-
imum value of k., and ky = (¢\)~!. Formula (2) de-
scribes the Josephson coupling of the VPs, and Eq. (3)
corresponds to their electromagnetic coupling.

To characterize the type of the coupling in a vortex,
we define the parameter p as

max

A
When p < 1, the region of the Josephson coupling is
absent for all k.. In this case, the elastic energy of a

vortex
w/d
0

can be represented in the form [12]

U2
E, = Z Eemqé-_;a

where u; is the displacement of the VP in the ith layer
of the superconductor,

L) = dz i exp(—ik,z;)

i

p=

dk,
e (k2 (k)P

Eel

(5)

(6)

is the corresponding Fourier transform, and
Eem = e0d?/)?.  Formula (6) shows that the
VPs in different layers can be regarded as independent
“particles” in an effective mean-field harmonic potential
generated by all other VPs of the vortex line [12].

When p > 1, the elastic energy E.; consists of two
parts, E.; = E;; + E5. The Josephson coupling of
the VPs comprising the vortex line occurs for the vi-
bration modes of the vortex with k. in the interval
k7" > k., > ky, and the elastic energy of these modes
is

pmas

. dkm

E; = coqe’ —kZJu(k:) . (7)
kx

On the other hand, the vibrating modes with &, < ky

lead to an uncorrelated motion of vortex segments of

the length Ly = (k7" /ky) d = e, and the elastic en-

ergy of these longwave modes is given by an expression

similar to Eq. (6),

52
U]

ZEemq d e )

where 1 is the dlsplacement of the jth segment as a
whole.

In Secs. 3 and 4, the case of purely electromagnetic
coupling of the VPs (p < 1) is considered, whereas the
case p > 1 is discussed in Sec. 5.

(8)
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3. STRONG PINNING OF THE VORTEX
PANCAKES

Strong pinning of the VPs was analyzed in Refs.
[11-13]. Here, using somewhat different approach, we
derive the appropriate formulas again and present them
in the form that permits us to use the obtained equa-
tions at realistic values of the vortex elasticity and pin-
ning.

We consider an individual VP in a pinning poten-
tial generated by point defects. The distribution w(E)
of its potential energies is Gaussian') [11]:

\/T:Up o (_ ) ’

where the parameter U, is of the order of U)

E2
Uy

w(E) = (9)

= f(fznp§2d)1/2, the characteristic pinning energy of
the VPs; f, is the mean pinning force caused by a
point pinning center; and n, is the density of these
centers. For low B and T, we have U2, U, > E,, for
Bi-based superconductors [11-13]. As in Refs. [11-13],
we assume that for the unit area of a superconducting
layer containing the vortex pancake, the number of the
pinning-potential extrema lying below an energy E is

given by
dE"w
=

where 1/7&% is the density of these extrema, i.e., of
pinning wells and humps, and erf(z) is the probability
integral [20],

1+erf(E/U

e ()

T

erf(z) = dt exp(—

t?). (11)

\/_

We now consider a VP in the vortex line. Its total
energy is the sum of its energy in the pinning potential
and of its elastic energy. The pinning potential “stim-
ulates” the pancake to seek the deepest minimum of
this potential in the appropriate layer. On the other
hand, the displacement u of the vortex pancake from
the vortex-line axis leads to an increase in its elastic en-
ergy Fe(u) = Eopqu®/E2. At T = 0, in each layer, the
appropriate vortex pancake occupies the energy min-
imum with the lowest total energy, i.e., the absolute

1) A uniform distribution of point defects leads to a renormal-
ization of A and hence of H.q. This renormalization of H.q is
proportional to the mean density of the defects, ny, and is not
considered here. The pinning potential is generated by spatial
fluctuations of the density around n,, and hence the mean energy
for distribution (9) is zero.
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energy minimum in the layer. To proceed with the
analysis of this absolute minimum, we first estimate the
distribution of the local energy minima in the layer in
the case of strong collective pinning of the VPs by point
defects. This strong pinning occurs when the charac-
teristic scale of the pinning potential, U, is essentially
larger than the characteristic elastic energy Fe,q, i.e.,
when

Up

6=
qEem

> 1. (12)
In this case, any of the VPs forming the vortex line can
“explore” many wells of the pinning potential, and its
total energy has many local minima in the layer. The
number g,,(E) dE of these minima in the interval from
some F < 0 to E + dFE is obtained as

i n(E — Ea(u))
/27rudu o =
0
[ dE .
el
= w(E — Eg) = / dew(e) =
/Eemq ( l) emd ( )
0 —0o0
_ 7&2n(E) _ L+erf(E/Up) (13)
N Eemq B 2Eemq '

where 2rudu - dn(E — E¢;(u)) is the number of the min-
ima in the infinitesimal ring bounded by « and u + du,
and we have changed the integration variable from u to
E.;. With the function ¢,,,(E), the condition

Eo

/ gm(E)dE =1

— 00

(14)

determines Fy < 0, the upper boundary of the energies
of the VPs forming the vortex line at T = 0. Condi-
tion (14) means that ¢,,(E) at E < Ej is the probabil-
ity density for a vortex pancake inside the vortex line
to be in the absolute energy minimum FE.

With formula (13), Eq. (14) for Ey can be rewritten
in the form

5 xo[l + erf(xo)] + —=

=1 (15)

~exp(-a
e
N
where 29 = Eo/U, < 0. When the parameter § is so
large that |z9| > 1, Eq. (15) reduces to

Up 2
—_— —x5) ~ 1 16
Ferrm P ~ 1 (16)
and its approximate solution is
U 1/2
Ey =Uyxg ~ —U, |In 7”)] . 17
0 pL0 p |: <4Eemq\/7_r ( )
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In obtaining Eq. (16), the following expression for
erf(2) in the limit z > 1 has been used [20]:

1 2
exp(— 1 .
i (12
The VP energy averaged over the layers is the pin-
ning energy of the pancake in the vortex line,

Eo
Eyin = /Egm(E dE
—00

Using Eq. (13), we arrive at

1

212

erf(z) ~ 1 — (18)

(19)

UZ y
4Femq

X {(x% —0.5)[1 + erf(xg)] +

Epin =

N

where xg = Ey/U,. Taking Eq. (15) into account, the
energy Fp, can also be rewritten in the form

exp(=at)] (20

1
2

Epin
1 U,
=5 5 XD

= F;
° < 8\/_Eequ0

This expression together with formula (16) reveals that
Ein tends to Ey when |z > 1. In Fig. 1, the energies
|Epin| and |Ep| are shown as functions of the param-
eter §. It can be seen that in the interval 100 > § >
> 20, the energy | Epip| is approximately 20-40 % larger
than |Ep|.

We next calculate (u?), the averaged shift of the
VPs forming the vortex line from the axis of this line,

(). e

E Eel( ))
E [ 2 =
(u? / d / mu? s
¢
_ ™ o ! r_
= (Eemq)2_/ (Ey — E'Yn(E")dE
52(E0 - Epin)
= . (22
Eemq 2
In the limit |zo| = |Eo|/U, > 1, Eq. (22) gives
2 —1/2
) ~ s In Up . (23)
& 2¢Eem 4Eemqy/T

Omitting all logarithmic factors under the sign of the
logarithm, we find the following estimate of the quan-
tity ¢ = 0.5In(k%¢?/(u?)) introduced in Sec. 2: ¢ ~
~ 0.5In(k*Eem /U,).
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Fig.1. Energies |Eo| (solid line), Eq. (15), and |Epin |
(circles), Eq. (20), as functions of the parameter
0 =Up/(Eemq). The energy |Epin| in the case of weak

pinning, Eq. (24), is shown by dots. All the energies
are measured in units of U,

Formulas (17) and (23) agree with the appropriate
results obtained in Refs. [11-13], where strong pinning
of the VPs was analyzed in the limit |Ey| > U,. How-
ever, for realistic values § < 100, the limit |Ey| > U,
is not reached (see Fig. 1), and hence expressions (13)—
(15) and (19)—(22) for gm(E), Eo, Epin, and (u?) per-
mit us to find these quantities in realistic situations.

Moreover, expressions (13)—(15) and (19)-(22) also
allow extrapolating the quantities gm(E), Eo, Epin,
and (u?) from the region § > 1 to the boundary (§ ~
~ 1) between the regimes of strong and weak pinning.
Here, we estimate this boundary as the point at which
Ep reaches zero. According to Eq. (15), this occurs at
§ = 2y/m, and at this point, Eyi, = —UJ/(8Ecmq) =
= —Up/T/4 = —0.44U, and (u?)/€? = 7/2. Of course,
these values are only estimates because the derivation
of g, given in Eqs. (13) fails at 6 ~ 1, and at such 4, the
exact g, (E) would generally differ from the expression
used here.

For completeness, we present a formula for E,;, in
the case of weak pinning of the VPs. In this case,
the VP displacement u is found from the balance be-
tween the mean pinning force US /¢ and the elastic force
2Eemqu/& [i.e., u/& = UJ/(2Eemq)|, and the pinning
energy of the pancake is
Up

2
Epin = Eem = - =
’ q(f) ¢

At the boundary of the weak pinning regime, u reaches
&, i.e., we have U) = 2E.q and Epip, = —Eepq. If we

(Up)?
4Femq

u

(24)
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impose the requirement that Eq. (20) gives the same
energy —F,,q at this boundary, we find that this oc-
curs at § = 2.88 and E,;, ~ —0.35U,. We note that
this boundary § = 2.88 is relatively close to the value
2\/m ~ 3.54 estimated above from the side of strong
pinning (see Fig. 1).

4. FREE ENERGY OF A VORTEX LINE WITH
PURELY ELECTROMAGNETIC COUPLING
OF THE VORTEX PANCAKES

4.1. General formulas

At p < 1 (the case of a purely electromagnetic cou-
pling), positions of the VPs comprising the vortex line
in different superconducting layers are not correlated
(Sec. 2). Let E < Ep be the minimum energy of a
VP in one of the layers. Then the free energy of this
pancake can be written in the form

fone =eod+ E—-TInZ(E), (25)

where eg = £¢ In k is the usual expression for the energy
of a vortex per its unit length,

E'-F

Z(E) :b[g(E')eXp (- ) dE'  (26)

is the partition function of the VP, and ¢g(E) is the den-
sity of VP states in the elastic and pinning potentials.
The last (entropy) term in Eq. (25) is caused by ther-
mal fluctuations of the VPs, and this term takes into
account that at 7' > 0, the pancake can occupy not
only its optimal energy state.

The lower critical field Hy.y = 47 f/®g is determined
by the free energy f of a vortex per its unit length. Av-
eraging expression (25) over the layers with the func-
tion g, (E), this free energy f can be represented as

T
—InZ

f=e+ éEpm -z, (27)
where Ep;p < 01is defined by Eq. (19) and
Eo
InZ = /ln[Z(E)]gm(E) dE. (28)

In distinction to g, (E) describing the distribution
of the energy minima of VPs in a vortex line, g(E)
gives the total density of states for such VPs, includ-
ing the states in which the pinning and the elastic
forces acting on the pancakes are not balanced. As
the starting point, we consider the density of states
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g(E) in the case where the pinning of the VPs is ab-
sent, i.e., when the VPs are in the elastic potential
only, E = Eg(u) = Eemqu®/&%. In this case, we have
9(E) = g (E), where

ge(E) =0, E<DO0,
2nrudu  wE 1 (29)
el (B) = = , E>0,
9e(E) sodE so Femq -

2mu du is the area of the infinitesimal ring from wu to
u + du, and the elemental area sy determines the num-
ber 1/sq of states of an individual vortex pancake per
unit area. It was assumed in [4] that this area is of the
order of 7€2, while in [6], so was found from an analysis
of the superconducting order-parameter excitations in
the vortex core. In analyzing the effect of pinning on
H,.q, the exact value of sq is not important, and we do
not fix it here.

Interestingly, ge;(E) can also be obtained from for-
mulas (13) for g,, if we multiply this g,, by the factor
7€?/so and set U, = 0. Indeed, in this case, w(E) in
Eq. (9) becomes the delta function, w(E) = §(E), and
formula (13) transforms into

E
T2 1 / T 1
(B >0)= —— dew(e) = —— .
g l( ) 50 Femq ( ) 50 FEemq
—0o0

Generalizing this property of ge;(E) to the case where
the VP experiences both the elastic and pinning po-
tentials, we assume below that ¢(E) is given by the
relation g(E) = (7€2/s0)gm(E), i.e.,

FE
21
9(E) = % Eemq / dew(e) =

B 71'_52 [1 + erf(x)]

. (30
2Eemq (30)

=
where © = E/U,. Formula (30) shows that pinning
smoothes the sharp step that occurs in g, (EF) in the
absence of the pinning potential, and the scale of this
smoothing is U, as we see in Fig. 2. Thus, our assump-
tion is no more than a simple realization of the quite
natural idea on the effect of pinning on g(E).

4.2. Analysis of the formulas
When pinning of the VPs is absent (Ey = Epi;, =

= 0), the partition function is simple,

o0 EI
Z = /gel exp <_T
0

) dEI = Tgeh (31)
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g
1.5 . . . . . Z(E) = gaT — 1-— | E'dE'———
(E) = gel eXp<T) T2/ pranies
E
1 /°° Ag(E")
i + = [ dE'"——= |, (34
1.0 T o (34)
|E|
where E < 0; exp(—E'/T) is here replaced with
0.5L i 1—(E'/T), and we keep only the largest nonzero terms.
h Inserting this expression in Eq. (28) gives
1
I > 5 Eo B
Il ;
0 . s s s InZ ~ 2% 41n(geT)— =2 / gm(E) Iy (—) dE—
-4 2 0 2 46 8 T o) Up
B/U, .
Uy, E
Fig.2. The density of states g(F) of a vortex pancake, T / gm(E) L1 (fp) dE,  (35)
Eq. (30), as a function of its energy E (solid line with —o0
dots). For comparison, the solid line shows the function L
ge1(E), Eq. (29). Both these functions are measured in where
units of (7£?)/(soEemq), whereas E is in units of U,. .
The dashed lines mark the energies Fyg = —1.21U,, and 7 _ dtl +erf(t)
Epin = —1.47U, calculated at § = 80 1(z) = 2 -

_ z[1 —l—;rf(x)] ; 1 e, (36)
with the constant g.; = ge;(E > 0), Eq. (29). Then the VT
contribution of the thermal fluctuation of the vortex
pancakes to the free energy is given by 0

T Iy(x) = /t[l + erf(t)]dt =
fT = _E ln(Tgel)7 (32) z
_ _x2[1 terf(z)] = — erf(x). (37)
and the lower critical field HJ; renormalized by these 2 2ym 4

thermal fluctuations takes the form

47T

HE = BT - 1

In(Tges), (33)

where HY, (T') = 4meq/®o = (®¢/47)\%) In k is the usual
expression for H.;. It can be seen that the fluctuation
correction to HY (T) is practically linear in T and is
similar to the correction obtained for three-dimensional
superconductors or for layered superconductors with
the Josephson coupling of the VPs [2, 4, 5].

To obtain a correction to formula (33) in the case of
small U, /T (high temperatures), we extract the step-
like function ge;(E) from the density of states g(E)
given by Eq. (30), ¢(E) = ga(E) + Ag(E). The func-
tion Ag(FE) thus obtained coincides with g(E) at E < 0,
is antisymmetric in E, and differs from zero in a region
of the order of U, (see Fig. 2). Then the partition
function Z(E) in Eq. (26) can be written as
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The first term in Eq. (35) cancels the term E,;,/d in
formula (27). The second term in Eq. (35) leads to
the thermal-fluctuation correction to H.1, Eq. (33). In
the third term in Eq. (35), we have I»(x) —1/4
at large d, and this term is approximately equal to
UZ/AT?. As regards the last term in Eq. (35), it is
small and can be neglected compared to the third term
in the region U, < T < Uyd/4. Indeed, we have
I (z) < Ii(x0) = Eemq/Up (see Eq. (15)). Hence, the
correction to In Z associated with this term is of the or-
der of E¢pnq/T. Eventually, we arrive at the following
pinning correction to HJ:

~

2
T Up

H,y—HT ~—
eb el ,Td’

Q

(38)

which is quadratic in U, and decreases with increasing
the temperature (U, oc £7'A72, see the Appendix in
Ref. [21]).
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If the temperature is so low that U,/T > 1, the
second term in Eq. (27) is larger than the third one,
and the lower critical field H.; is mainly renormalized
by pinning,
dnEpin  wU)

dod  Dod

where the dimensionless factor A = 4E,;,/U,,

Hcl _Hgl ~ A, (39)

A=6 (x3—0.5)[1+erf(x0)]+% exp(—x3)|, (40)
weakly depends on ¢ (see Fig. 1). Hence, at low tem-
peratures, the pinning correction to H,.; is practically
proportional to the pinning strength U),.

We emphasize that the obtained effect of pinning
on H. is substantially due to the absence of posi-
tion correlations between the VPs in a vortex line of
the layered superconductors, Eq. (6), and results from
the specific form of e(k,) in the case of the electro-
magnetic coupling of the VPs, Eq. (3). We note that
even weak pinning (6 < 1) would have an effect on
H,.; in such layered superconductors. Indeed, because
Epin ~ U2 /(Eemq) in the case of weak pinning (see
Eq. (24) and Fig. 1), we obtain from Eq. (39) at low
temperatures that H., — HY, is quadratic in U,. Thus,
the difference in the renormalization of H.; in the cases
of weak and strong pinning is only in the magnitude of
the effect.

4.3. Temperature dependence of H.q

We next consider the temperature dependence of
H,.i, Fig. 3. This dependence has been calculated nu-
merically with both pinning and thermal fluctuations
of the VPs taken into account,

47TEpin
Mz,
dod  Bod

In constructing Fig. 3, the following temperature de-
pendences of A and U, were assumed: A(T)/A(0) =
(1 — )12, U, « ¢'\72 [21], and &
MT)/&(T) = 70, where t = T/T, with T, = 90 K.
For comparison, this figure also shows the lower criti-
cal field HY (T) renormalized by thermal fluctuations
only, Eq. (33), and H.(T) calculated within a simpli-
fied approach. In that approach, averaging over the
layers in Eqs. (19) and (28) is replaced by the formulas
Epin = Ep and InZ = InZ(Ej). In other words, it
is assumed that at 7' = 0, the VPs in different layers
are all in the same state with the energy E = Ey. It
can be seen that the simplified approach does not dis-
turb H.; essentially, and hence this simplification can
be successfully used in calculations of H.;(T') at 6 > 1.

47T

Hey(T) = Hpy (T) + (41)
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Hcl/Hcl (0)
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Fig.3. The dependence H.i(T) calculated with
Eq. (41) (solid line) in the case of the purely elec-
tromagnetic coupling of the VPs, i.e., for T < Tj.
The dashed line shows H.(7') within the simplified
approach, the dotted line is HO,(T) = 4meq/®o, and
the circles give HX(T), Eq. (33). Here, ¢ = 1/500,
d =15 nm, Uy(0) = 20 K, & = 70, \(0) = 0.2um,
so = w&2, and the temperature dependences of \ and
U, are presented in the text. These values of the pa-
rameters give H.;(0) 169 G, E.n(0) = 0.14 K,
q(0) = 1.77, §(0) =~ 80, p(0) ~ 0.84, Ty =~ 50 K, and
po ~ 25 K

~
~

We note that if p = med/d < 1 at T = 0, then

a crossover temperature Ty < T, necessarily exists at

which the parameter p(T') reaches unity, p(Ty) = 1.

This is due to the divergence of A(T") as T' — T,.. When
MT) o< [1 = (T/T,)?] /2, we find

Ty;=T.

1—p(0)2. (42)

The results in this section are valid at T' < Ty (Hg
at T > Ty is considered in Sec. 5.1). For the parame-
ters in Fig. 3, we have Ty ~ 50 K, and the data of this
figure show that the effect of pinning on H.; dies out
completely at temperatures lower than 7T';. To identify
the characteristic temperature at which the pinning be-
comes negligible, we define the so-called depinning tem-
perature Ty, [14] by the equation

Tap = |Epin(Tap)|, (43)
where Ep;, is given by Eq. (19). At temperatures
higher than this T}, the VPs easily jump out of their
pinning wells, the VP pinning becomes ineffective, and
we can neglect this pinning in analyzing H,;.
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5. EFFECT OF JOSEPHSON COUPLING OF
THE VORTEX PANCAKES ON H.;

5.1. Ty > po

Assuming that T); > Ty,, we consider the tempera-
ture dependence of H.; at T > T;. In this temperature
range, we have p > 1, and besides, the VP pinning is
negligible, i.e., H.y = HY. When p > 1, the vibrating
modes with k. < ky lead to an uncorrelated motion of
vortex segments of the length Ly = (k7** /k))d = we)
(see Sec. 2), and the contribution of these longwave
modes to the free energy f is

T Tged
=——1 . 44
fo= - (1 (44)
This expression generalizes formula (32). On the

other hand, the Josephson coupling of the VPs com-
prising a vortex line occurs for vibration modes with
k7% > k. > ky. These modes generate an internal
motion of the vortex segments, and they give the fol-
lowing contribution to f:

w/d
1
/dkz " (s,dsok‘g’
kx
T

() 1 (i) @

To display the difference between the total thermal part
of the free energy, fi + fo, and fr given by Eq. (32),
we represent f; + fo in the form f7 + Afr where

T

Tr
f2 —

™

Te*n
el dSO kg\

Te?d
E1Som

T
|

d

AfTEf1+f2_fT:ZR

Lroy,
R(p) =2In(p/e) + }9 In(e?p). (47)

The function R(p) is equal to zero at p = 1 and in-
creases monotonically with increasing p for p > 1.
Eventually, we obtain the following HY in the case of
p>1,

47T

_ i
Bod

47T

HT = H° (T il
cl cl( ) q’od

(Tge) + z—R(p).  (48)

Formulas (48) and (33) respectively describe H;

at the temperatures 7' > Ty and Ty > T > Tgp.

At T = Ty, according to these formulas, a break in

the temperature dependence HZ (T) occurs due to the

term proportional to R(p). The appropriate jump of
dHZ /dT at this point is equal to

o [dHE

dT

_AnT; d(In M(T))
] Y dT

(49)
T=Ty
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and is completely determined by the temperature de-
pendence of X in the vicinity of the point t; = T /T,
d [nm)]

[ [%] = 75 0

where f(t) = A(¢)/\(0) and f'(t) = df/dt. We note
that this jump is relatively small,

dHY
dT

mG
K

86.7 tyf'(ty)

(50)

A{ng]:_ 2T <dH31> P
dT eo(T)d \ dT ) |r_p,
dH?
<<‘ ol (51)
T | —q,

For example, for the parameters in Fig. 3, we find that
2Ty /eo(Ty) d ~ 0.049, and A[dHY /dT] ~ 26 mG /K.
Finally, we emphasize that we have obtained a
sharp break in HJ (T) at the crossover temperature
T; because our model dependence ¢;(k.) described by
Eqs. (2) and (3) also exhibits a break. It is clear that
the break in HX (T) can be somewhat smoothed in the
case of the more realistic dependence (1) for ¢;(k.). In-
deed, using this dependence (1), we can find the ther-
mal part of the free energy and the appropriate R(p):

)

which is now defined at p < 1 as well. In the vicinity
of the point p = p. = 0.3, this R(p) is close to the
function R(p < p:) = 0, R(p > p:) = 0.4(p — pc),
which has a break at a renormalized T); defined by
p(Ty) = p.. Below, we disregard the effects associated
with the smoothing of the break and with the renormal-
ization of Ty, and, for simplicity, use Eqgs. (2) and (3)
only.

14 p?

2 arct
> r g(p)
(&

p

b

R(p) =In <

5.2. Ty < po

We next consider H. for the opposite rela-
tion between the temperatures Ty, and 7;. When
0 < Ty < Typ, the parameter p exceeds unity in the
temperature range where pinning is not negligible
in general. At T" < Ty, the formulas in Sec. 4 are
valid for the calculation of H.,. At T > Tj, the
characteristic elastic energy of a VP is E,,,qp® rather
than FE.,,q. Because pinning of the VPs is implied
to be strong compared with this elastic energy, we
have L. = d for the Larkin length L.. Thus, for
temperatures Ty < T < Tgp, the VPs comprising
the vortex line predominantly sit in the wells of the
pinning potential, their positions are not correlated
due to strong pinning, and H,.;(T) is still given by the
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formulas in Sec. 4 if we replace ¢ with ¢p?. At T = T,
the temperature dependence of H.; has a break similar
to that in the case Ty > Ty, considered above. In
particular, if 0 < Ty <« Typ, the appropriate jump in
dH., /dT can be estimated using formulas (15), (20),
and (39):

o

Similarly to the case T; > Typ, this jump is relatively
small.

We now consider H.; in the vicinity of the de-
pinning temperature Tgy,, assuming that Ty < Tg,.
In the vicinity of Typ, the Larkin length sharply in-
creases [14]. When it reaches Ly, a further increase
in L. does not occur because vortex deformations are
uncorrelated on the scales larger than Ly. This means
that at 7' ~ Ty, a crossover from strong pinning of
individual VPs to the regime of pinning of vortex seg-
ments of the length Ly occurs. At this crossover, the
change Afr = fi + fo — fr(p > 1) in the thermal part
of the free energy can be estimated as

Apr g (-2+ 2R,

where we have taken into account that at Ty < T <
< T4yp, the thermal contribution to the free energy has

the form

due to the replacement of ¢ with gp® in Eq. (29). At
the crossover, this change Afr is accompanied by a
positive change in the pinning energy A fpi,. Indeed,
above Tgy,, most of the VPs in the vortex line eas-
ily leave the pinning wells, and the effect of the pin-
ning energy on H. decreases. An interplay of this
positive change in the pinning energy A fp;, with the
negative Afr given by Eq. (53) produces a “step”
AHg =~ 47n(Afr + Afpin)/®o in the temperature de-
pendence of H.y at T ~ Ty, in addition to the differ-
ence in dH. /dT for points above and below Ty,. Of
course, in reality, this step is smeared, and its temper-
ature width can be roughly estimated as Ey — Epip.
Moreover, for the smeared step, the interplay of the
thermal and pinning contributions to the free energy
can in principle result in an internal structure of this
step.

To illustrate the behavior of H.y near the depinning
temperature, the dependence H.i(T) at T' < Ty, has
been calculated numerically using formulas in Sec. 4

dH?,
dr

87(Ey — Epin) d(In \(T))
Dod dr

(52)
T=Ty

T In(e%p)

p

(53)

Z In Tgel
d p?

frip>1) = - (54)
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Fig.4. Dependence H.i(T) in the case p > 1 (solid
line). The circles depict HY;(T) calculated according
to Eq. (48) at T > Ty, and to HA(T) = HY(T) +
+ 47rfT(p > 1)/@0 at T < po, where fT(p > 1)
is given by Eq. (54). The dotted line is HS(T)
= 4meo/Po. The parameters are the same as in Fig. 3,
but ¢ = 1/150. This leads to p(T = 0) =~ 2.79 (i.e.,
T; = 0) and Ty, = 15 K, Ey — Epin = 6 K. The
smearing of the sharp jump in H.1 is only due to the
temperature grid used in the calculations here

with the replacement ¢ — ¢p® for a temperature at
which p(T) > 1. On the other hand, at T > Ty, we
neglect the pinning completely, and H.(T) has been
estimated with formula (48). The obtained results for
two values of € are presented in Figs. 4 and 5. In the
case of Fig. 4, we have T; = 0, i.e., p(T) > 1 at all
temperatures. The value p(Tgy,) &~ 2.83 noticeably ex-
ceeds unity, and at T = Tj,, the quantity Afr de-
fined by Eq. (53) reaches a relatively large negative
value Afr ~ —Ty,/d that exceeds the positive A fpp.
This leads to the negative step in H,.;(T') that is vis-
ible in Fig. 4 at T ~ 15 K. On the other hand, in
the case of Fig. 5, the temperature Ty lies in the in-
terval from zero to Tgp; we have p(Ty,) &~ 1.026 and
Afr(T =Tap) = —[p(Tap) — 1|Tap/d, i.e., the absolute
value of A fr at the point 7' = Ty, is much less than the
appropriate value in the case of Fig. 4, whereas A fpp,
does not change essentially. This leads to a positive
step in H.1(T'). We note that in both cases, the deriva-
tive dH,1 /dT for points above Ty, is less than for points
below Ty, i.e., A[dH.1/dT] < 0. However, this result
is valid only for the points outside the crossover region.
Inside the crossover region, the derivative dH,.y /dT can
noticeably increase in the vicinity of Ty, (see the single
point at T'= 25 in the inset in Fig. 5).
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Fig.5. The same dependences as in Fig. 4 but with
e 1/425. This ¢ leads to p(T 0) 0.986,
T] 15 K, po ~ 25 K, and Eo — Epin ~ 4 K.
For clarity, the dependences are shown as differences
between the appropriate H.1(T) and the smooth func-
tion HZ(T) given by Eq. (33). The notation for the
dependences is the same as in Fig. 4. In particular, the
circles mark H (T) = HY (T) + 4xfr(p > 1)/ for
Tap > T > Ty and depict dependence (48) at T' > Ty,.
For T < Ty, the circles correspond to Eq. (33). The
inset: the derivative of the function shown by the solid
line in the main panel. The tiny jump at T =15 K is
due to the break of H.i(T) at Ty

~
~

~
~

In principle, at p(0) > 1, one more specific situa-
tion can occur where, at some temperature Tt < Typ,
the pinning energy decreases to the elastic energy
Eemqp? = q®2c%/16dxk? that is practically independent
of T. At this crossover temperature T, the regime of
strong pinning transforms into the regime of weak pin-
ning, and the function H. (T) should have a break.
However, an analysis shows that for this situation to
occur, the temperatures 7., and Ty, have to be be-
low E.nqp>. For d = 1.5nm, x = 70, ¢ ~ 2, and
e < 1/100, the elastic energy Een,qp? does not exceed
5 K. Since the pinning energy is practically independent
of T at such low temperature, this situation is not real-
ized for highly anisotropic superconductors with strong
pinning, and we do not consider it here.

6. CONCLUSIONS

In this paper, we consider the lower critical field
H,; of layered superconductors with the purely electro-
magnetic (p < 1) or the electromagnetic and Josephson
(p > 1) coupling of the vortex pancakes in a vortex line,
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with the parameter p defined in Eq. (4). It is found that
vortex pinning by point defects leads to an additional
renormalization of H.; compared to the renormaliza-
tion caused by thermal fluctuations of vortex pancakes.
This effect of pinning is largely determined by the spe-
cific dependence of the vortex elasticity on the wave
vector k. for layered superconductors, Eqs. (1)—(3).

With the obtained results for H., we analyze
the temperature dependences of H.; for various
relations between the depinning temperature Ty, and
the temperature T; that marks the point at which
the parameter p reaches unity. It is found that at
T = Ty, the temperature dependence of H.; exhibits
a break. Besides, if Ty < Tgp, a break in H(T)
may be accompanied in the vicinity of the depinning
temperature by a smeared “step” in the temperature
dependence of the lower critical field.

I thank E. Zeldov, who drew our attention to the
problem considered in this paper. This work was sup-
ported by the German—Israeli Foundation for Scientific
Research and Development (GIF).
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