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EFFECT OF VORTEX PINNING BY POINT DEFECTS ON THELOWER CRITICAL FIELD IN LAYERED SUPERCONDUCTORSG. P. Mikitik *Verkin Institute for Low Temperature Physi
s and Engineering, Ukrainian A
ademy of S
ien
es61103, Kharkov, UkraineRe
eived Mar
h 2, 2014The lower 
riti
al �eld H
1 in layered super
ondu
tors is 
al
ulated under the assumption that vortex pinning bypoint defe
ts is strong in these materials. We 
onsider the 
ase of a purely ele
tromagneti
 
oupling of vortexpan
akes and the 
ase of both the ele
tromagneti
 and Josephson 
ouplings of the pan
akes in a vortex line.In the latter 
ase, singularities in the temperature dependen
e of H
1 are predi
ted at 
ertain 
hara
teristi
temperatures.DOI: 10.7868/S00444510140901681. INTRODUCTIONE�e
ts of thermal �u
tuations of vorti
es on thelower 
riti
al �eld H
1 and on the magnetization oftype-II super
ondu
tors were 
onsidered in a numberof papers [1�6℄. It was shown that the �u
tuations leadto a renormalization of the temperature dependen
e ofH
1. In addition, e�e
ts of �ux-line pinning on theequilibrium magnetization M of super
ondu
tors wereanalyzed for the 
ases of pinning by point [7, 8℄ and
olumnar [9, 10℄ defe
ts. In this paper, we 
onsider thee�e
t of pinning by point defe
ts on the lower 
riti
al�eld in layered super
ondu
tors, leaving aside the anal-ysis of this e�e
t for three-dimensional super
ondu
tingmaterials.In layered super
ondu
tors like Bi2Sr2CaCu2O8+Æ,a vortex is the sta
k of vortex pan
akes (VPs) lo
alizedin super
ondu
tive layers, and the vortex elasti
ity "ldisplays two features that, as we see in what follows,result in a noti
eable e�e
t of vortex pinning by pointdefe
ts on H
1. Both these features are 
aused by largeanisotropy of these super
ondu
tors. The �rst featureis that the elasti
ity is relatively small, and this small-ness leads to the Larkin length L
 that does not ex
eedthe interlayer spa
ing d. In other words, the 
hara
-teristi
 pinning energy of a vortex pan
ake is largerthan its 
hara
teristi
 elasti
 energy, and hen
e pinningof the VPs is strong in these super
ondu
tors at least*E-mail: mikitik�ilt.kharkov.ua

for not too high temperatures T [11�13℄. The se
ondfeature is that in 
ontrast to the pra
ti
ally 
onstant"l in three-dimensional super
ondu
tors, the elasti
ityin layered super
ondu
tors essentially depends on thes
ale of the vortex distortion, i. e., on the wave ve
torkz along the vortex [11�14℄. This fun
tion "l(kz) resultsfrom an interplay of the ele
tromagneti
 and Josephson
ouplings of the VPs in a vortex line.In the experiments in [15, 16℄, the temperature de-penden
es of the magnetization M were measured atvarious magneti
 indu
tions B in Bi2Sr2CaCu2O8+Æ
rystals, and a se
ond-order phase transition line Bg(T )was observed in the vortex system of these super
on-du
tors at moderate temperatures of the order of 40 K.Sin
e a se
ond-order phase transition line 
annot havea 
riti
al point similar to that of the �rst-order phasetransition line between a liquid and its vapor [17℄, theend of the 
urve Bg(T ) in the T�B plane should lie onthe line B = 0 that 
orresponds to the lower 
riti
al�eld. Hen
e, the experimental data in [15, 16℄ indi-re
tly suggest that the Bi-based super
ondu
tors mayexhibit a singular behavior of H
1(T ) near a tempera-ture 
lose to 40 K.This paper is organized as follows. In Se
. 2, asimple model for the vortex elasti
ity "l(kz) in layeredsuper
ondu
tors is formulated, and in Se
. 3 the mainformulas des
ribing strong pinning of the VPs are pre-sented. In Se
. 4, the �eld H
1 is studied in the 
asewhere purely ele
tromagneti
 
oupling of the VPs in avortex line o

urs. In this situation, H
1(T ) is renor-malized both by thermal �u
tuations of the vortex pan-563 10*
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akes and by their pinning. The lower 
riti
al �eldin the 
ase of both the Josephson and ele
tromagneti

ouplings of the VPs is 
onsidered in Se
. 5. In this
ase, the renormalization of H
1(T ) is a

ompanied bysingularities in the T -dependen
e ofH
1 at 
ertain tem-peratures. The results of the paper are brie�y summa-rized in Se
. 6.2. ELASTICITY OF A VORTEX LINEIn a layered super
ondu
tor, pinning for
es andthermal �u
tuations shift the VPs 
omprising a vor-tex line away from its axis, and the line is distorted.Below, we deal with the distortions with large waveve
tors kz of the order of �=d, where d is the interlayerspa
ing. For su
h kz , the elasti
ity "l(kz) of a vortexline in a layered super
ondu
tor has the form [11�14℄"l(kz) � "0 �"2 ln� d"u�+ 1�2k2z ln��u�� ; (1)where "0 = (�0=4��)2, � is the planar London pene-tration depth, �0 is the �ux quantum, " � 1 is theanisotropy parameter of the super
ondu
tor, and u isthe amplitude of the vortex�pan
ake displa
ements. Itis taken into a

ount in Eq. (1) that in the 
ase of strongpinning, the displa
ement u 
an be large, ukz > 1. The�rst term in formula (1) des
ribes the Josephson 
ou-pling of the VPs, and the se
ond term is due to theirele
tromagneti
 intera
tion. The parameter "�kz 
har-a
terizes the relative roles of the Josephson and ele
-tromagneti
 
ouplings of the VPs in the elasti
ity ofthe vortex line.The logarithmi
 fa
tors in formula (1) are of thesame order of magnitude when � � d=". This situa-tion just o

urs in Bi-based super
ondu
tors at not toohigh temperatures (e. g., at � = 0:2�m, d = 1:5 nm,and " = 1=200, we obtain "�=d � 0:7). Hereafter,we repla
e the logarithmi
 fa
tors by the quantityq � 0:5 ln(�2�2=hu2i), where � = �=� is the Ginzburg�Landau parameter, � is the planar 
oheren
e length,and hu2i gives the averaged value of u2 for the VPs inthe 
ase of strong pinning. The expli
it value of thisquantity q is given below (see formula (23)). To sim-plify our analysis further, we use the following modeldependen
e for "l(kz) that reprodu
es the main fea-tures of Eq. (1):"l(kz) = "0q"2; kmaxz � kz � k�; (2)"l(kz) = "0q�2k2z ; kz � k�: (3)

This model is similar to that used in Refs. [18, 19℄ (inthose papers, q = 1). Here, kmaxz = �=d is the max-imum value of kz , and k� � ("�)�1. Formula (2) de-s
ribes the Josephson 
oupling of the VPs, and Eq. (3)
orresponds to their ele
tromagneti
 
oupling.To 
hara
terize the type of the 
oupling in a vortex,we de�ne the parameter p asp � kmaxzk� = �"�d : (4)When p < 1, the region of the Josephson 
oupling isabsent for all kz. In this 
ase, the elasti
 energy of avortex Eel = �=dZ0 dkz2� "l(kz)k2z ju(kz)j2 (5)
an be represented in the form [12℄Eel =Xi Eemq u2i�2 ; (6)where ui is the displa
ement of the VP in the ith layerof the super
ondu
tor,u(kz) = dXi ui exp(�ikzzi)is the 
orresponding Fourier transform, andEem � "0d�2=�2. Formula (6) shows that theVPs in di�erent layers 
an be regarded as independent�parti
les� in an e�e
tive mean-�eld harmoni
 potentialgenerated by all other VPs of the vortex line [12℄.When p > 1, the elasti
 energy Eel 
onsists of twoparts, Eel = E>el + E<el . The Josephson 
oupling ofthe VPs 
omprising the vortex line o

urs for the vi-bration modes of the vortex with kz in the intervalkmaxz > kz > k�, and the elasti
 energy of these modesis E>el = "0q"2 kmaxzZk� dkz2� k2z ju(kz)j2: (7)On the other hand, the vibrating modes with kz < k�lead to an un
orrelated motion of vortex segments ofthe length L� = (kmaxz =k�) d = �"�, and the elasti
 en-ergy of these longwave modes is given by an expressionsimilar to Eq. (6),E<el =Xj EemqL�d �u2j�2 ; (8)where �uj is the displa
ement of the jth segment as awhole.In Se
s. 3 and 4, the 
ase of purely ele
tromagneti

oupling of the VPs (p < 1) is 
onsidered, whereas the
ase p > 1 is dis
ussed in Se
. 5.564



ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014 E�e
t of vortex pinning by point defe
ts : : :3. STRONG PINNING OF THE VORTEXPANCAKESStrong pinning of the VPs was analyzed in Refs.[11�13℄. Here, using somewhat di�erent approa
h, wederive the appropriate formulas again and present themin the form that permits us to use the obtained equa-tions at realisti
 values of the vortex elasti
ity and pin-ning.We 
onsider an individual VP in a pinning poten-tial generated by point defe
ts. The distribution w(E)of its potential energies is Gaussian1) [11℄:w(E) = 1p�Up exp��E2U2p � ; (9)where the parameter Up is of the order of U0p == �(f2pnp�2d)1=2, the 
hara
teristi
 pinning energy ofthe VPs; fp is the mean pinning for
e 
aused by apoint pinning 
enter; and np is the density of these
enters. For low B and T , we have U0p ; Up � Eem forBi-based super
ondu
tors [11�13℄. As in Refs. [11�13℄,we assume that for the unit area of a super
ondu
tinglayer 
ontaining the vortex pan
ake, the number of thepinning-potential extrema lying below an energy E isgiven byn(E) = 1��2 EZ�1 dE0w(E0) = 1 + erf(E=Up)2��2 ; (10)where 1=��2 is the density of these extrema, i. e., ofpinning wells and humps, and erf(x) is the probabilityintegral [20℄, erf(x) � 2p� xZ0 dt exp(�t2): (11)We now 
onsider a VP in the vortex line. Its totalenergy is the sum of its energy in the pinning potentialand of its elasti
 energy. The pinning potential �stim-ulates� the pan
ake to seek the deepest minimum ofthis potential in the appropriate layer. On the otherhand, the displa
ement u of the vortex pan
ake fromthe vortex-line axis leads to an in
rease in its elasti
 en-ergy Eel(u) = Eemqu2=�2. At T = 0, in ea
h layer, theappropriate vortex pan
ake o

upies the energy min-imum with the lowest total energy, i. e., the absolute1) A uniform distribution of point defe
ts leads to a renormal-ization of � and hen
e of H
1. This renormalization of H
1 isproportional to the mean density of the defe
ts, np, and is not
onsidered here. The pinning potential is generated by spatial�u
tuations of the density around np, and hen
e the mean energyfor distribution (9) is zero.

energy minimum in the layer. To pro
eed with theanalysis of this absolute minimum, we �rst estimate thedistribution of the lo
al energy minima in the layer inthe 
ase of strong 
olle
tive pinning of the VPs by pointdefe
ts. This strong pinning o

urs when the 
hara
-teristi
 s
ale of the pinning potential, Up, is essentiallylarger than the 
hara
teristi
 elasti
 energy Eemq, i. e.,when Æ � UpqEem � 1: (12)In this 
ase, any of the VPs forming the vortex line 
an�explore� many wells of the pinning potential, and itstotal energy has many lo
al minima in the layer. Thenumber gm(E) dE of these minima in the interval fromsome E < 0 to E + dE is obtained asgm(E) = 1Z0 2�u dudn(E �Eel(u))dE == 1Z0 dEelEemqw(E �Eel) = 1Eemq EZ�1 d�w(�) == ��2n(E)Eemq = 1 + erf(E=Up)2Eemq ; (13)where 2�udu �dn(E�Eel(u)) is the number of the min-ima in the in�nitesimal ring bounded by u and u+ du,and we have 
hanged the integration variable from u toEel. With the fun
tion gm(E), the 
onditionE0Z�1 gm(E) dE = 1 (14)determines E0 < 0, the upper boundary of the energiesof the VPs forming the vortex line at T = 0. Condi-tion (14) means that gm(E) at E � E0 is the probabil-ity density for a vortex pan
ake inside the vortex lineto be in the absolute energy minimum E.With formula (13), Eq. (14) for E0 
an be rewrittenin the formÆ2 �x0[1 + erf(x0)℄ + 1p� exp(�x20)� = 1; (15)where x0 � E0=Up < 0. When the parameter Æ is solarge that jx0j � 1, Eq. (15) redu
es toUp4Eemqp� x20 exp(�x20) � 1; (16)and its approximate solution isE0 = Upx0 � �Up �ln� Up4Eemqp���1=2 : (17)565



G. P. Mikitik ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014In obtaining Eq. (16), the following expression forerf(x) in the limit x� 1 has been used [20℄:erf(x) � 1� 1p� x exp(�x2)�1� 12x2� : (18)The VP energy averaged over the layers is the pin-ning energy of the pan
ake in the vortex line,Epin = E0Z�1 Egm(E) dE: (19)Using Eq. (13), we arrive atEpin = U2p4Eemq �� �(x20 � 0:5)[1 + erf(x0)℄ + x0p� exp(�x20)� ; (20)where x0 = E0=Up. Taking Eq. (15) into a

ount, theenergy Epin 
an also be rewritten in the formEpin == E0�12 � 14x20 + Up8p�Eemqx20 exp(�x20)� : (21)This expression together with formula (16) reveals thatEpin tends to E0 when jx0j � 1. In Fig. 1, the energiesjEpinj and jE0j are shown as fun
tions of the param-eter Æ. It 
an be seen that in the interval 100 > Æ >> 20, the energy jEpinj is approximately 20�40% largerthan jE0j.We next 
al
ulate hu2i, the averaged shift of theVPs forming the vortex line from the axis of this line,hu2i = E0Z�1 dE 1Z0 2�u3dudn(E �Eel(u))dE == ��4(Eemq)2 E0Z�1 (E0 �E0)n(E0) dE0 == �2(E0 �Epin)Eemq : (22)In the limit jx0j = jE0j=Up � 1, Eq. (22) giveshu2i�2 � Up2qEem �ln� Up4Eemqp����1=2 : (23)Omitting all logarithmi
 fa
tors under the sign of thelogarithm, we �nd the following estimate of the quan-tity q = 0:5 ln(�2�2=hu2i) introdu
ed in Se
. 2: q �� 0:5 ln(�2Eem=Up).

10 20 30 40 50 60 70 80 90 100
δ

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
|E0|/Up, |Epin|/Up

Fig. 1. Energies jE0j (solid line), Eq. (15), and jEpinj(
ir
les), Eq. (20), as fun
tions of the parameterÆ = Up=(Eemq). The energy jEpinj in the 
ase of weakpinning, Eq. (24), is shown by dots. All the energiesare measured in units of UpFormulas (17) and (23) agree with the appropriateresults obtained in Refs. [11�13℄, where strong pinningof the VPs was analyzed in the limit jE0j � Up. How-ever, for realisti
 values Æ . 100, the limit jE0j � Upis not rea
hed (see Fig. 1), and hen
e expressions (13)�(15) and (19)�(22) for gm(E), E0, Epin, and hu2i per-mit us to �nd these quantities in realisti
 situations.Moreover, expressions (13)�(15) and (19)�(22) alsoallow extrapolating the quantities gm(E), E0, Epin,and hu2i from the region Æ � 1 to the boundary (Æ �� 1) between the regimes of strong and weak pinning.Here, we estimate this boundary as the point at whi
hE0 rea
hes zero. A

ording to Eq. (15), this o

urs atÆ = 2p�, and at this point, Epin = �U2p=(8Eemq) == �Upp�=4 � �0:44Up and hu2i=�2 = �=2. Of 
ourse,these values are only estimates be
ause the derivationof gm given in Eqs. (13) fails at Æ � 1, and at su
h Æ, theexa
t gm(E) would generally di�er from the expressionused here.For 
ompleteness, we present a formula for Epin inthe 
ase of weak pinning of the VPs. In this 
ase,the VP displa
ement u is found from the balan
e be-tween the mean pinning for
e U0p=� and the elasti
 for
e2Eemqu=�2 [i. e., u=� = U0p=(2Eemq)℄, and the pinningenergy of the pan
ake isEpin = Eemq�u��2 � U0p� u = � (U0p )24Eemq : (24)At the boundary of the weak pinning regime, u rea
hes�, i. e., we have U0p = 2Eemq and Epin = �Eemq. If we566
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t of vortex pinning by point defe
ts : : :impose the requirement that Eq. (20) gives the sameenergy �Eemq at this boundary, we �nd that this o
-
urs at Æ � 2:88 and Epin � �0:35Up. We note thatthis boundary Æ � 2:88 is relatively 
lose to the value2p� � 3:54 estimated above from the side of strongpinning (see Fig. 1).4. FREE ENERGY OF A VORTEX LINE WITHPURELY ELECTROMAGNETIC COUPLINGOF THE VORTEX PANCAKES4.1. General formulasAt p < 1 (the 
ase of a purely ele
tromagneti
 
ou-pling), positions of the VPs 
omprising the vortex linein di�erent super
ondu
ting layers are not 
orrelated(Se
. 2). Let E � E0 be the minimum energy of aVP in one of the layers. Then the free energy of thispan
ake 
an be written in the formfpn
 = e0d+E � T lnZ(E); (25)where e0 = "0 ln� is the usual expression for the energyof a vortex per its unit length,Z(E) = 1ZE g(E0) exp��E0 �ET � dE0 (26)is the partition fun
tion of the VP, and g(E) is the den-sity of VP states in the elasti
 and pinning potentials.The last (entropy) term in Eq. (25) is 
aused by ther-mal �u
tuations of the VPs, and this term takes intoa

ount that at T > 0, the pan
ake 
an o

upy notonly its optimal energy state.The lower 
riti
al �eld H
1 = 4�f=�0 is determinedby the free energy f of a vortex per its unit length. Av-eraging expression (25) over the layers with the fun
-tion gm(E), this free energy f 
an be represented asf = e0 + 1dEpin � Td lnZ; (27)where Epin < 0 is de�ned by Eq. (19) andlnZ = E0Z�1 ln[Z(E)℄ gm(E) dE: (28)In distin
tion to gm(E) des
ribing the distributionof the energy minima of VPs in a vortex line, g(E)gives the total density of states for su
h VPs, in
lud-ing the states in whi
h the pinning and the elasti
for
es a
ting on the pan
akes are not balan
ed. Asthe starting point, we 
onsider the density of states

g(E) in the 
ase where the pinning of the VPs is ab-sent, i. e., when the VPs are in the elasti
 potentialonly, E = Eel(u) = Eemqu2=�2. In this 
ase, we haveg(E) = gel(E), wheregel(E) = 0; E < 0;gel(E) = 2�u dus0dE = ��2s0 1Eemq ; E > 0; (29)2�u du is the area of the in�nitesimal ring from u tou+ du, and the elemental area s0 determines the num-ber 1=s0 of states of an individual vortex pan
ake perunit area. It was assumed in [4℄ that this area is of theorder of ��2, while in [6℄, s0 was found from an analysisof the super
ondu
ting order-parameter ex
itations inthe vortex 
ore. In analyzing the e�e
t of pinning onH
1, the exa
t value of s0 is not important, and we donot �x it here.Interestingly, gel(E) 
an also be obtained from for-mulas (13) for gm if we multiply this gm by the fa
tor��2=s0 and set Up = 0. Indeed, in this 
ase, w(E) inEq. (9) be
omes the delta fun
tion, w(E) = Æ(E), andformula (13) transforms intogel(E > 0) = ��2s0 1Eemq EZ�1 d�w(�) = ��2s0 1Eemq :Generalizing this property of gel(E) to the 
ase wherethe VP experien
es both the elasti
 and pinning po-tentials, we assume below that g(E) is given by therelation g(E) = (��2=s0)gm(E), i. e.,g(E) = ��2s0 1Eemq EZ�1 d�w(�) == ��2s0 [1 + erf(x)℄2Eemq ; (30)where x � E=Up. Formula (30) shows that pinningsmoothes the sharp step that o

urs in gel(E) in theabsen
e of the pinning potential, and the s
ale of thissmoothing is Up, as we see in Fig. 2. Thus, our assump-tion is no more than a simple realization of the quitenatural idea on the e�e
t of pinning on g(E).4.2. Analysis of the formulasWhen pinning of the VPs is absent (E0 = Epin == 0), the partition fun
tion is simple,Z = 1Z0 gel exp��E0T � dE0 = Tgel; (31)567
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Fig. 2. The density of states g(E) of a vortex pan
ake,Eq. (30), as a fun
tion of its energy E (solid line withdots). For 
omparison, the solid line shows the fun
tiongel(E), Eq. (29). Both these fun
tions are measured inunits of (��2)=(s0Eemq), whereas E is in units of Up.The dashed lines mark the energies E0 = �1:21Up andEpin = �1:47Up 
al
ulated at Æ = 80with the 
onstant gel = gel(E > 0), Eq. (29). Then the
ontribution of the thermal �u
tuation of the vortexpan
akes to the free energy is given byfT = �Td ln(Tgel); (32)and the lower 
riti
al �eld HT
1 renormalized by thesethermal �u
tuations takes the formHT
1 = H0
1(T )� 4�T�0d ln(Tgel); (33)where H0
1(T ) = 4�e0=�0 = (�0=4��2) ln� is the usualexpression for H
1. It 
an be seen that the �u
tuation
orre
tion to H0
1(T ) is pra
ti
ally linear in T and issimilar to the 
orre
tion obtained for three-dimensionalsuper
ondu
tors or for layered super
ondu
tors withthe Josephson 
oupling of the VPs [2, 4, 5℄.To obtain a 
orre
tion to formula (33) in the 
ase ofsmall Up=T (high temperatures), we extra
t the step-like fun
tion gel(E) from the density of states g(E)given by Eq. (30), g(E) = gel(E) + �g(E). The fun
-tion�g(E) thus obtained 
oin
ides with g(E) atE < 0,is antisymmetri
 in E, and di�ers from zero in a regionof the order of Up (see Fig. 2). Then the partitionfun
tion Z(E) in Eq. (26) 
an be written as

Z(E) � gelT exp�ET �0B�1� 1T 2 jEjZE E0dE0�g(E0)gel ++ 1T 1ZjEj dE0�g(E0)gel 1CA ; (34)where E < 0; exp(�E0=T ) is here repla
ed with1�(E0=T ), and we keep only the largest nonzero terms.Inserting this expression in Eq. (28) giveslnZ � EpinT +ln(gelT )�U2pT 2 E0Z�1 gm(E)I2 � EUp� dE�� UpT E0Z�1 gm(E)I1 � EUp� dE; (35)whereI1(x) = xZ�1 dt1 + erf(t)2 == x[1 + erf(x)℄2 + 12p� e�x2 ; (36)I2(x) = 0Zx t[1 + erf(t)℄dt == �x2[1 + erf(x)℄2 � x2p� e�x2 + erf(x)4 : (37)The �rst term in Eq. (35) 
an
els the term Epin=d informula (27). The se
ond term in Eq. (35) leads tothe thermal-�u
tuation 
orre
tion to H
1, Eq. (33). Inthe third term in Eq. (35), we have I2(x) � �1=4at large Æ, and this term is approximately equal toU2p=4T 2. As regards the last term in Eq. (35), it issmall and 
an be negle
ted 
ompared to the third termin the region Up < T < UpÆ=4. Indeed, we haveI1(x) � I1(x0) = Eemq=Up (see Eq. (15)). Hen
e, the
orre
tion to lnZ asso
iated with this term is of the or-der of Eemq=T . Eventually, we arrive at the followingpinning 
orre
tion to HT
1:H
1 �HT
1 � � �U2p�0Td ; (38)whi
h is quadrati
 in Up and de
reases with in
reasingthe temperature (Up / ��1��2, see the Appendix inRef. [21℄).568



ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014 E�e
t of vortex pinning by point defe
ts : : :If the temperature is so low that Up=T � 1, these
ond term in Eq. (27) is larger than the third one,and the lower 
riti
al �eld H
1 is mainly renormalizedby pinning,H
1 �H0
1 � 4�Epin�0d = �Up�0dA ; (39)where the dimensionless fa
tor A � 4Epin=Up,A = Æ �(x20�0:5)[1+erf(x0)℄+ x0p� exp(�x20)� ; (40)weakly depends on Æ (see Fig. 1). Hen
e, at low tem-peratures, the pinning 
orre
tion to H
1 is pra
ti
allyproportional to the pinning strength Up.We emphasize that the obtained e�e
t of pinningon H
1 is substantially due to the absen
e of posi-tion 
orrelations between the VPs in a vortex line ofthe layered super
ondu
tors, Eq. (6), and results fromthe spe
i�
 form of "(kz) in the 
ase of the ele
tro-magneti
 
oupling of the VPs, Eq. (3). We note thateven weak pinning (Æ . 1) would have an e�e
t onH
1 in su
h layered super
ondu
tors. Indeed, be
auseEpin � U2p=(Eemq) in the 
ase of weak pinning (seeEq. (24) and Fig. 1), we obtain from Eq. (39) at lowtemperatures that H
1�H0
1 is quadrati
 in Up. Thus,the di�eren
e in the renormalization of H
1 in the 
asesof weak and strong pinning is only in the magnitude ofthe e�e
t.4.3. Temperature dependen
e of H
1We next 
onsider the temperature dependen
e ofH
1, Fig. 3. This dependen
e has been 
al
ulated nu-meri
ally with both pinning and thermal �u
tuationsof the VPs taken into a

ount,H
1(T ) = H0
1(T ) + 4�Epin�0d � 4�T�0d lnZ : (41)In 
onstru
ting Fig. 3, the following temperature de-penden
es of � and Up were assumed: �(T )=�(0) == (1 � t2)�1=2, Up / ��1��2 [21℄, and � �� �(T )=�(T ) = 70, where t = T=T
 with T
 = 90 K.For 
omparison, this �gure also shows the lower 
riti-
al �eld HT
1(T ) renormalized by thermal �u
tuationsonly, Eq. (33), and H
1(T ) 
al
ulated within a simpli-�ed approa
h. In that approa
h, averaging over thelayers in Eqs. (19) and (28) is repla
ed by the formulasEpin = E0 and lnZ = lnZ(E0). In other words, itis assumed that at T = 0, the VPs in di�erent layersare all in the same state with the energy E = E0. It
an be seen that the simpli�ed approa
h does not dis-turb H
1 essentially, and hen
e this simpli�
ation 
anbe su

essfully used in 
al
ulations of H
1(T ) at Æ � 1.
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Fig. 3. The dependen
e H
1(T ) 
al
ulated withEq. (41) (solid line) in the 
ase of the purely ele
-tromagneti
 
oupling of the VPs, i. e., for T < TJ .The dashed line shows H
1(T ) within the simpli�edapproa
h, the dotted line is H0
1(T ) = 4�e0=�0, andthe 
ir
les give HT
1(T ), Eq. (33). Here, " = 1=500,d = 1:5 nm, Up(0) = 20 K, � = 70, �(0) = 0:2�m,s0 = ��2, and the temperature dependen
es of � andUp are presented in the text. These values of the pa-rameters give H
1(0) � 169 G, Eem(0) � 0:14 K,q(0) � 1:77, Æ(0) � 80, p(0) � 0:84, TJ � 50 K, andTdp � 25 KWe note that if p � �"�=d < 1 at T = 0, thena 
rossover temperature TJ < T
 ne
essarily exists atwhi
h the parameter p(T ) rea
hes unity, p(TJ) = 1.This is due to the divergen
e of �(T ) as T ! T
. When�(T ) / [1� (T=T
)2℄�1=2, we �ndTJ = T
p1� p(0)2 : (42)The results in this se
tion are valid at T < TJ (H
1at T > TJ is 
onsidered in Se
. 5.1). For the parame-ters in Fig. 3, we have TJ � 50 K, and the data of this�gure show that the e�e
t of pinning on H
1 dies out
ompletely at temperatures lower than TJ . To identifythe 
hara
teristi
 temperature at whi
h the pinning be-
omes negligible, we de�ne the so-
alled depinning tem-perature Tdp [14℄ by the equationTdp = jEpin(Tdp)j; (43)where Epin is given by Eq. (19). At temperatureshigher than this Tdp, the VPs easily jump out of theirpinning wells, the VP pinning be
omes ine�e
tive, andwe 
an negle
t this pinning in analyzing H
1.569



G. P. Mikitik ÆÝÒÔ, òîì 146, âûï. 3 (9), 20145. EFFECT OF JOSEPHSON COUPLING OFTHE VORTEX PANCAKES ON H
15.1. TJ > TdpAssuming that TJ > Tdp, we 
onsider the tempera-ture dependen
e of H
1 at T > TJ . In this temperaturerange, we have p > 1, and besides, the VP pinning isnegligible, i. e., H
1 = HT
1. When p > 1, the vibratingmodes with kz < k� lead to an un
orrelated motion ofvortex segments of the length L� = (kmaxz =k�) d = �"�(see Se
. 2), and the 
ontribution of these longwavemodes to the free energy f isf1 = � TL� ln�TgeldL� � : (44)This expression generalizes formula (32). On theother hand, the Josephson 
oupling of the VPs 
om-prising a vortex line o

urs for vibration modes withkmaxz > kz > k�. These modes generate an internalmotion of the vortex segments, and they give the fol-lowing 
ontribution to f :f2 = �T� �=dZk� dkz ln� T�"lds0k2z� == �Td ln� Te2d"ls0��+ TL� ln� Te2�"lds0k2�� : (45)To display the di�eren
e between the total thermal partof the free energy, f1 + f2, and fT given by Eq. (32),we represent f1 + f2 in the form fT +�fT where�fT � f1 + f2 � fT = Td R(p); (46)R(p) = 2 ln(p=e) + 1p ln(e2p): (47)The fun
tion R(p) is equal to zero at p = 1 and in-
reases monotoni
ally with in
reasing p for p > 1.Eventually, we obtain the following HT
1 in the 
ase ofp > 1,HT
1 = H0
1(T )� 4�T�0d ln(Tgel) + 4�T�0d R(p): (48)Formulas (48) and (33) respe
tively des
ribe H
1at the temperatures T > TJ and TJ > T > Tdp.At T = TJ , a

ording to these formulas, a break inthe temperature dependen
e HT
1(T ) o

urs due to theterm proportional to R(p). The appropriate jump ofdHT
1=dT at this point is equal to� �dHT
1dT � = 4�TJ�0d d(ln�(T ))dT ����T=TJ (49)

and is 
ompletely determined by the temperature de-penden
e of � in the vi
inity of the point tJ = TJ=T
,� �dHT
1dT ��mGK � = 86:7d [nm℄ tJf 0(tJ )f(tJ) ; (50)where f(t) � �(t)=�(0) and f 0(t) � df=dt. We notethat this jump is relatively small,� �dHT
1dT � = � 2TJe0(TJ) d �dH0
1dT �����T=TJ �� ����dH0
1dT ����T=TJ : (51)For example, for the parameters in Fig. 3, we �nd that2TJ=e0(TJ) d � 0:049, and �[dHT
1=dT ℄ � 26 mG/K.Finally, we emphasize that we have obtained asharp break in HT
1(T ) at the 
rossover temperatureTJ be
ause our model dependen
e "l(kz) des
ribed byEqs. (2) and (3) also exhibits a break. It is 
lear thatthe break in HT
1(T ) 
an be somewhat smoothed in the
ase of the more realisti
 dependen
e (1) for "l(kz). In-deed, using this dependen
e (1), we 
an �nd the ther-mal part of the free energy and the appropriate R(p):R(p) = ln�1 + p2e2 �+ 2 ar
tg(p)p ;whi
h is now de�ned at p < 1 as well. In the vi
inityof the point p = p
 = 0:3, this R(p) is 
lose to thefun
tion R(p < p
) = 0, R(p � p
) = 0:4(p � p
),whi
h has a break at a renormalized TJ de�ned byp(TJ) = p
. Below, we disregard the e�e
ts asso
iatedwith the smoothing of the break and with the renormal-ization of TJ , and, for simpli
ity, use Eqs. (2) and (3)only. 5.2. TJ < TdpWe next 
onsider H
1 for the opposite rela-tion between the temperatures Tdp and TJ . When0 < TJ < Tdp, the parameter p ex
eeds unity in thetemperature range where pinning is not negligiblein general. At T < TJ , the formulas in Se
. 4 arevalid for the 
al
ulation of H
1. At T > TJ , the
hara
teristi
 elasti
 energy of a VP is Eemqp2 ratherthan Eemq. Be
ause pinning of the VPs is impliedto be strong 
ompared with this elasti
 energy, wehave L
 = d for the Larkin length L
. Thus, fortemperatures TJ < T < Tdp, the VPs 
omprisingthe vortex line predominantly sit in the wells of thepinning potential, their positions are not 
orrelateddue to strong pinning, and H
1(T ) is still given by the570



ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014 E�e
t of vortex pinning by point defe
ts : : :formulas in Se
. 4 if we repla
e q with qp2. At T = TJ ,the temperature dependen
e of H
1 has a break similarto that in the 
ase TJ > Tdp 
onsidered above. Inparti
ular, if 0 < TJ � Tdp, the appropriate jump indH
1=dT 
an be estimated using formulas (15), (20),and (39):� �dHp
1dT � � 8�(E0 �Epin)�0d d(ln �(T ))dT ����T=TJ : (52)Similarly to the 
ase TJ > Tdp, this jump is relativelysmall.We now 
onsider H
1 in the vi
inity of the de-pinning temperature Tdp, assuming that TJ < Tdp.In the vi
inity of Tdp, the Larkin length sharply in-
reases [14℄. When it rea
hes L�, a further in
reasein L
 does not o

ur be
ause vortex deformations areun
orrelated on the s
ales larger than L�. This meansthat at T � Tdp, a 
rossover from strong pinning ofindividual VPs to the regime of pinning of vortex seg-ments of the length L� o

urs. At this 
rossover, the
hange �fT = f1 + f2 � fT (p > 1) in the thermal partof the free energy 
an be estimated as�fT � Td ��2 + ln(e2p)p � ; (53)where we have taken into a

ount that at TJ < T << Tdp, the thermal 
ontribution to the free energy hasthe form fT (p > 1) = �Td ln�Tgelp2 � (54)due to the repla
ement of q with qp2 in Eq. (29). Atthe 
rossover, this 
hange �fT is a

ompanied by apositive 
hange in the pinning energy �fpin. Indeed,above Tdp, most of the VPs in the vortex line eas-ily leave the pinning wells, and the e�e
t of the pin-ning energy on H
1 de
reases. An interplay of thispositive 
hange in the pinning energy �fpin with thenegative �fT given by Eq. (53) produ
es a �step��H
1 � 4�(�fT + �fpin)=�0 in the temperature de-penden
e of H
1 at T � Tdp in addition to the di�er-en
e in dH
1=dT for points above and below Tdp. Of
ourse, in reality, this step is smeared, and its temper-ature width 
an be roughly estimated as E0 � Epin.Moreover, for the smeared step, the interplay of thethermal and pinning 
ontributions to the free energy
an in prin
iple result in an internal stru
ture of thisstep.To illustrate the behavior of H
1 near the depinningtemperature, the dependen
e H
1(T ) at T < Tdp hasbeen 
al
ulated numeri
ally using formulas in Se
. 4
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Fig. 4. Dependen
e H
1(T ) in the 
ase p > 1 (solidline). The 
ir
les depi
t HT
1(T ) 
al
ulated a

ordingto Eq. (48) at T � Tdp and to HT
1(T ) = H0
1(T ) ++ 4�fT (p > 1)=�0 at T < Tdp, where fT (p > 1)is given by Eq. (54). The dotted line is H0
1(T ) == 4�e0=�0. The parameters are the same as in Fig. 3,but " = 1=150. This leads to p(T = 0) � 2:79 (i. e.,TJ = 0) and Tdp � 15 K, E0 � Epin � 6 K. Thesmearing of the sharp jump in H
1 is only due to thetemperature grid used in the 
al
ulations herewith the repla
ement q ! qp2 for a temperature atwhi
h p(T ) > 1. On the other hand, at T > Tdp, wenegle
t the pinning 
ompletely, and H
1(T ) has beenestimated with formula (48). The obtained results fortwo values of " are presented in Figs. 4 and 5. In the
ase of Fig. 4, we have TJ = 0, i. e., p(T ) > 1 at alltemperatures. The value p(Tdp) � 2:83 noti
eably ex-
eeds unity, and at T = Tdp, the quantity �fT de-�ned by Eq. (53) rea
hes a relatively large negativevalue �fT � �Tdp=d that ex
eeds the positive �fpin.This leads to the negative step in H
1(T ) that is vis-ible in Fig. 4 at T � 15 K. On the other hand, inthe 
ase of Fig. 5, the temperature TJ lies in the in-terval from zero to Tdp; we have p(Tdp) � 1:026 and�fT (T = Tdp) � �[p(Tdp)� 1℄Tdp=d, i. e., the absolutevalue of �fT at the point T = Tdp is mu
h less than theappropriate value in the 
ase of Fig. 4, whereas �fpindoes not 
hange essentially. This leads to a positivestep in H
1(T ). We note that in both 
ases, the deriva-tive dH
1=dT for points above Tdp is less than for pointsbelow Tdp, i. e., �[dH
1=dT ℄ < 0. However, this resultis valid only for the points outside the 
rossover region.Inside the 
rossover region, the derivative dH
1=dT 
annoti
eably in
rease in the vi
inity of Tdp (see the singlepoint at T = 25 in the inset in Fig. 5).571



G. P. Mikitik ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014

10 20 30 40 500

0.05

0.10

0.15

0.20

0.25
d(Hc1 −HT

c1
)/dT [G/K]

0 10 20 30 40 50
T, K

−10

−8

−6

−4

−2

0

2

4
103(Hc1 − HT

c1)/Hc1(0)

T, KFig. 5. The same dependen
es as in Fig. 4 but with" = 1=425. This " leads to p(T = 0) � 0:986,TJ � 15 K, Tdp � 25 K, and E0 � Epin � 4 K.For 
larity, the dependen
es are shown as di�eren
esbetween the appropriate H
1(T ) and the smooth fun
-tion HT
1(T ) given by Eq. (33). The notation for thedependen
es is the same as in Fig. 4. In parti
ular, the
ir
les mark HT
1(T ) = H0
1(T ) + 4�fT (p > 1)=�0 forTdp > T > TJ and depi
t dependen
e (48) at T � Tdp.For T < TJ , the 
ir
les 
orrespond to Eq. (33). Theinset: the derivative of the fun
tion shown by the solidline in the main panel. The tiny jump at T = 15 K isdue to the break of H
1(T ) at TJIn prin
iple, at p(0) > 1, one more spe
i�
 situa-tion 
an o

ur where, at some temperature T
r < Tdp,the pinning energy de
reases to the elasti
 energyEemqp2 = q�20"2=16d�2 that is pra
ti
ally independentof T . At this 
rossover temperature T
r, the regime ofstrong pinning transforms into the regime of weak pin-ning, and the fun
tion H
1(T ) should have a break.However, an analysis shows that for this situation too

ur, the temperatures T
r and Tdp have to be be-low Eemqp2. For d = 1:5 nm, � = 70, q � 2, and" � 1=100, the elasti
 energy Eemqp2 does not ex
eed5K. Sin
e the pinning energy is pra
ti
ally independentof T at su
h low temperature, this situation is not real-ized for highly anisotropi
 super
ondu
tors with strongpinning, and we do not 
onsider it here.6. CONCLUSIONSIn this paper, we 
onsider the lower 
riti
al �eldH
1 of layered super
ondu
tors with the purely ele
tro-magneti
 (p < 1) or the ele
tromagneti
 and Josephson(p > 1) 
oupling of the vortex pan
akes in a vortex line,

with the parameter p de�ned in Eq. (4). It is found thatvortex pinning by point defe
ts leads to an additionalrenormalization of H
1 
ompared to the renormaliza-tion 
aused by thermal �u
tuations of vortex pan
akes.This e�e
t of pinning is largely determined by the spe-
i�
 dependen
e of the vortex elasti
ity on the waveve
tor kz for layered super
ondu
tors, Eqs. (1)�(3).With the obtained results for H
1, we analyzethe temperature dependen
es of H
1 for variousrelations between the depinning temperature Tdp andthe temperature TJ that marks the point at whi
hthe parameter p rea
hes unity. It is found that atT = TJ , the temperature dependen
e of H
1 exhibitsa break. Besides, if TJ < Tdp, a break in H
1(T )may be a

ompanied in the vi
inity of the depinningtemperature by a smeared �step� in the temperaturedependen
e of the lower 
riti
al �eld.I thank E. Zeldov, who drew our attention to theproblem 
onsidered in this paper. This work was sup-ported by the German�Israeli Foundation for S
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