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ON THE THEORY OF POINT DEFECT RECOMBINATIONIN CRYSTALSI. B. Azarov, M. S. Veshhunov *Nulear Safety Institute (IBRAE), Russian Aademy of Sienes115191, Mosow, Russian FederationReeived Marh 17, 2014A new approah to the di�usion-limited reation kinetis for partiles migrating by random walks on disretelattie sites and reating when two partiles oupy the same site is extended to a more general ase of a largereation radius and applied to the problem of the reombination rate of point defets in ubi latties. Numerialalulations orretly reprodue the analyti expressions in the limit ases onsidered in previous work and inthe general ase represent a step-wise dependene of the reation rate on the reombination radius.DOI: 10.7868/S00444510140901321. INTRODUCTIONThe kinetis of an irreversible di�usion-ontrolledbimoleular reation A + B ! C (where C does nota�et the reation) is desribed by the rate equation_nA(r; t) = _nB(r; t) = �KABnA(r; t)nB(r; t); (1)where nA and nB are the respetive onentrations(numbers of partiles per unit volume) of reating Aand B partiles, whih di�use freely, and KAB is thereation onstant [1℄. This equation is also appliableto the reation of point defets, vaanies, and intersti-tials (V + I ! 0) and annihilation in rystals produedby means of high-energy partiles or eletrons [2℄.In the ontinuum approah, the reatant partilesare represented as points or spheres undergoing spa-tially ontinuous Brownian motion, with hemial re-ations A + B ! C ourring instantly when the par-tiles pass within a spei�ed reation radius RAB be-tween their enters. A method for alulating the re-ation rate of reation partners migrating by three-dimensional di�usion was developed in Refs. [3; 4℄ bygeneralizing the Smoluhowski theory for oagulationof olloids [5; 6℄. In this method, whih stipulates thatthe loal reation rate is equal to the di�usive ur-rent of partiles, the radius of the ativated omplex(or the �reation radius�) orresponds to the �in�uene-sphere radius� in the Smoluhowski theory (equal to*E-mail: vms�ibrae.a.ru

the sum of the radii of two olliding Brownian parti-les, ~R = RA +RB).This traditional (�di�usion�) approah was ritiallyanalyzed in our paper [7℄. In partiular, it was shownthat the approah is appliable only to the speial aseof small A-partile trapping in large B-entres with alarge trapping radius, r � RAB � rB (where rA �� n�1=3A and rB � n�1=3B are the mean inter-partiledistanes), and beomes invalid for alulating the re-ation rate in the ase RAB � rA; rB , whih is mostimportant for the reation kinetis and, in partiular,orresponds to omparable-size (or point-wise, owingto RAB � rA; rB) partiles A and B migrating by ran-dom walks. In order to resolve this inadequay of thetraditional approah, a new approah to the di�usion-limited reation rate theory, based on a similar onsid-eration of Brownian oagulation proposed in our pa-pers [8�10℄, was developed in Ref. [7℄. In the new (�ki-neti�) approah, point-wise partiles tend to a homo-geneous (in random) spatial distribution owing to theirmigration and mixing on the sale of the mean inter-partile distane l � r, with the harateristi di�usionmixing time �d that is generally small in omparisonwith the harateristi reation time �, i. e., �d � �.Indeed, for instane in the simplest ase DA �� DB = D and nA � nB = n, reations between A andB partiles indue loal heterogeneities in the spatialdistribution of their probability densities on the lengthsale of the mean inter-partile distane r � n�1=3 � a.However, suh kind of heterogeneities quikly disappearowing to rapid di�usion relaxation on the length sale540



ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014 On the theory of point defet reombination in rystalsof the mean inter-partile distane r with the harater-isti time �d � r2=6D, whih is generally muh shorterthan the harateristi time � � (KABn)�1 of the par-tile onentration variation, �d � � (or equally, interms of the mean free path � of a partile between itstwo subsequent ollisions, � � (6D�)1=2 � r, whihhas a lear physial sense and is valid under the basi�dilution� ondition of the theory, n1=3R � R=r � 1).In the opposite ases, DA � DB or nA � nB ,the mixing of slow partiles (e. g., B) might be inom-plete (if � (B)d � r2=6DB � �). However, owing to thestohasti harater of movement and ollisions of par-tiles A, the �surviving� partiles B are still randomlydistributed in spae, whereas rapidly moving partilesA heal up loal heterogeneities in the A-partile dis-tribution indued by reations (�rare�ed zones� in theviinity of two-partile reations) and thus uphold e�-ient mixing of the reation system. This ensures theappliability of the kineti approah to this ase witha somewhat redued, but reasonable auray.This implies that a random distribution of partilesis attained during a time step �d � Æt � �, hosenfor alulation of the reation rate, whih an thereforebe searhed in the kineti approah as the ollision fre-queny of two partiles (A and B) randomly loatedin unit volume. That value an be equally alulatedas the rate of volume sweeping ÆhVABi=Æt by the e�e-tive partile of the radius RA+RB migrating with thedi�usivity DA +DB .The new approah (based on the �di�usion mixing�ondition) was also generalized in Ref. [7℄ to the re-ation kinetis of partiles migrating by random walkson disrete lattie sites (with the lattie spaing a),and reating when two partiles oupy the same site,i. e., RAB < a. Similarly to the ontinuum limit, itwas shown that the original multi-partile problem anbe readily redued, owing to rapid di�usion mixing ofpartiles between their mutual ollisions, to the alu-lation of the ollision probability between two partilesrandomly loated in unit volume, whih in turn an berelated to the mean number of distint sites visited by ak-step random walk of the e�etive partile (a disreteanalogue of the swept volume).The volume swept by a Brownian partile is knownas the Wiener sausage [11℄. In partiular, this quan-tity equals the probability that a di�using Brownianpoint-like partile is absorbed by a single trap of ra-dius RAB in time t (see, e. g., [12℄). For this reason,the rate of volume sweeping oinides with the on-densation rate onstant for small partiles sinking in alarge trap, rA � RAB � rB ; for omparable-size par-tiles (or RAB � rA; rB), it eventually determines the

Smoluhowski onstant in Eq. (1), as is justi�ed in thenew kineti approah [7; 8℄.The disrete analogue of the Wiener sausage wasrelated to the survival probability for a Brownian par-tile in the presense of random immobile traps in theRosenstok approximation [13℄ or other related prob-lems, e. g., the so-alled �target annihilation by sav-engers� [14℄. In the latter problem, a single partileA (target) and NA = nBN partiles B (savengers)of a �nite onentration nB are randomly loated onN ! 1 sites of a 3-dimensional regular lattie. Par-tile A is immobile, whereas partiles B perform inde-pendent, homogeneous disrete-time random walks onthe lattie sites (inluding sites oupied by other par-tiles); partile A annihilates as soon as a partile Breahes it.In fat, the kineti approah (based on the di�u-sion mixing ondition) allows extending the solutionof the target annihilation problem to onsideration ofmany-body e�ets in the di�usion-limited reation ki-netis. Indeed, sine partiles B moves independentlyfrom eah other, the probability of the target annihila-tion between time t and t+Æt redues to the probabilityof a two-partile (A�B) ollision, wAB(t)Æt, times NB .In the ase of mobile partiles A with a �nite onentra-tion nA(0), the problem also redues to the analyzis oftwo-partile ollisions, if rapid di�usion mixing of par-tiles ours between their mutual ollisions. Atually,after eah annihilation event (at a moment t) when aertain lattie position (where the ollision ourred)beomes de�nitely unoupied, the random (equiprob-able) spatial distribution of partiles over lattie sitesis rapidly restored during the mixing time �d � Æt,and a on�guration similar to the initial on�guration(i. e., random loation of partiles A and B on lattiesites), but with the new (diminished) partile onen-trations nA;B(t + Æt) = nA;B(t) � nAnBwAB(t)Æt, anbe onsidered in the subsequent time step, if Æt � �.In the ase Æt � ~� � 16R2AB=�DAB , whih is gener-ally valid beause � � ~� [7℄, a steady-state value ofwAB(t) � wAB(1) � wAB is attained in the time stepÆt, and thus the reation rate equation takes the formof Eq. (1) with the rate onstant KAB = wAB , whihdoes not depend on time expliitly (as opposed to on-densation of small partiles in a large trap, onsideredin the di�usion approah).It is important to note that in ontrast to the tar-get annihilation problem where sites an be oupiedby several partiles, two (or more) point-like defets (ofthe same type) annot oupy the same site. However,under the basi assumption of the reation rate the-ory, nA; nB � 1, the A�A and B�B �ollisions� (i. e.,541



I. B. Azarov, M. S. Veshhunov ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014oupation of one site by two idential partiles) anbe generally negleted in alulating the A�B reationrate. Indeed, the inorporation of these events duringthe time step Æt � �, whih is used in the deriva-tion of the rate equation and alulation of the reationonstant KAB in the kineti approah, requires onsid-ering two simultaneous or suessive ollisions (A�Aand A�B, or B�B and B�A) in unit volume duringÆt, with the respetive probabilities wAABÆt / n2AnBÆtand wABBÆt / n2BnAÆt, whih an be negleted, ow-ing to nA; nB � 1, in omparison with the probabilitywABÆt / nAnBÆt of a single pair-wise A�B ollisionduring Æt in unit volume. Therefore, the in�uene ofthe forbiddane for idential defets to oupy the samesites an be negleted in alulating the reombinationrate.2. REACTIONS ON DISCRETE LATTICESAs explained above, in both ontinuum and dis-rete limits, the original multi-partile problem anbe redued to the alulation of the ollision proba-bility between two partiles, randomly loated in unitvolume, owing to the rapid di�usion mixing of parti-les between their mutual ollisions. In the ontin-uum limit, the probability of a ollision between twopartiles randomly loated in spae, in the time inter-val between t and t + Æt, was alulated as the meanvolume swept in Æt by an e�etive partile of the ra-dius RAB and di�usivity DAB . In the disrete lat-tie limit (with RAB < a), the ollision probabilityshould be alulated as the mean number of distintsites visited by a k-step random walk of the e�etivepartile (the so-alled random walk range Sk), wherek = Æt=�AB = Æt � 6DAB=a2 � 1.For simple 3D and 2D latties, this value Sk wasanalytially evaluated in the literature. For instane,in the ase of a 3D simple ubi (s) lattie, themean of Sk was alulated in Refs. [15; 16℄ as Sk == 0:659 � [k +O(k1=2)℄, whih for the hosen time stepa2=6DAB � r2=6DAB � �d � Ætk � � orrespondingto k � 1, an be redued toSk � 0:659k (2)and yields KAB � 3:96DABa: (3)For f and b latties, somewhat di�erent valuesof Sk were alulated in Refs. [15; 16℄, approximately0:744k and 0:718k, respetively. These solutions anbe applied, as assumed in Ref. [15℄, to the alulationof the rate at whih point defets suh as interstitials

or vaanies di�using by random walks on a lattieare annihilated at (immobile) point sinks of invariableonentration during the annealing (desribed by theRosenstok trapping model [12℄).In the opposite ase of the large reation radiusRAB � a, the solution should onverge to the on-tinuum limit Sk = 2�3 k; (4)whih orresponds to the lassial Smoluhowski ex-pression for the reation rate onstantKAB = 4�DABRAB : (5)This solution is widely used in the literature in thewhole range of the ratio RAB=a, inluding the on-sideration of point defets and impurities in rystals.Correspondingly, the reation (or reombination) rateonstant might be notieably overestimated in the limitof pointwise ollisions RAB < a as well in the transitionrange RAB=a � 1.Indeed, we should expet the reation rate onstantto vary in the transition range between two limits,Eq. (3), if RAB=a < 1, and Eq. (5), if RAB=a � 1.The reation rate in this transition range an be alu-lated numerially, by modifying numerial algorithmsdeveloped by the authors in the ontinuum limit [9; 10℄.The solution of this problem an be important in manypratial ases.For instane, the Frenkel pair reombination radiusRiv in f opper evaluated from the analysis of theresistivity damage rates smoothly varies from 4a to 3a(where a � 0:36 nm) in the temperature range from50 to 110 K [17℄. Extrapolating the orrelation ob-tained in Ref. [17℄ for the temperature dependene ofthe reombination radius to room temperatures yieldsRiv � 2a. Similar results were also obtained for otherf metals [18℄. These values of the reombination ra-dius orrespond to the transition range, and hene thenew approah to alulation of the reombination rate(rather than the traditional expression, Eq. (5)) mightbe important.In f latties, the additional problem of the pointdefet site positions arises; in partiular, interstitialatoms often reside in tetragonal positions with thehighest symmetry, whih form a simple ubi (s) lat-tie for interstitial migrations. For simpliity, only suhs latties are urrently onsidered. This onsiderationan be readily generalized if the defet sites are spei-�ed more de�nitely (e. g., by atomisti alulations).542



ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014 On the theory of point defet reombination in rystals

200160 240 280 320

Sk/k

0

5.0 · 10−3

1.0 · 10−2

1.5 · 10−2

2.0 · 10−2

2.5 · 10−2

Probability density

RAB/a = 100

Fig. 1. Calulation of the probability density f(x) forx = Sk=k at RAB=a = 100; for eah number of hopsk, 150�200 trajetories are generated resulting in al-ulation points, whih are grouped in intervals of equalwidth L (about 10% of the whole distribution width)and form normal distributions around the mean values(at a given k). The invariable mean value Sk=k � 226is attained at k � 107. Calulation points with thenumber of elementary hops: + � 3 � 106, Æ � 4 � 106,4 � 5 � 106, � � 107, � � 2 � 1073. NUMERICAL CALCULATIONSFor the numerial evaluation of the mean numberof distint sites visited by a k-step random walk of thee�etive partile, Sk, a random migration of a par-tile of the radius RAB with the �xed hopping dis-tane a on the s lattie and the hopping frequenyvAB = ��1AB = 6DAB=a2 are numerially generated.The randomly generated data desribe the subsequentpositions of the partile enter trajetory, whih an befurther used for alulating Sk. Eah lattie site visitedby the partile is ounted only one.The number of visited distint sites for eah tra-jetory was alulated using an aelerated numerialalgorithm, developed by the generalization and fur-ther improvement (with respet to the run time, whihsteeply inreases with the trajetory length) of theoriginal algorithm elaborated by the authors for theontinuum-limit alulations [9; 10℄.For eah number of hops k, up to 100�150 randomtrajetories were generated, whih allowed alulatinga smooth distribution of the probability density f(x)
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Fig. 2. Dependene of the mean number of visiteddistint sites per one hop, Sk=k, on the number ofhops k in the disrete limit, RAB=a = 1=10 (+),RAB=a = 1=20 (F)for x = Sk=k, Fig. 1. The number of hops k = Æt=�ABwas inreased until Sk (averaged over the trajetories)attained a steady-state value, whih in aordane withthe above onsideration has to onverge to the analyt-ially alulated values in the two limits RAB=a < 1(Eqs. (2)) and RAB=a� 1 (Eq. (4)).Similarly to the ontinuum limit, numerial alula-tions on�rmed that the steady-state value of the meannumber of visited distint sites per unit time dependsonly on the ratio RAB=a (rather than on RAB anda separately). Besides, the general onlusion for 3Dsystems that the alulated value Sk=k smoothly de-reases and reahes the steady-state limit, invariableunder a further inrease in the number of hops k, isjusti�ed. This onlusion is also illustrated in Figs. 2and 3, where the results of alulations are presentedfor the two ases RAB=a < 1 and RAB=a = 10.In partiular, we see from Fig. 2 that the steady-state value Sk=k � 0:66, numerially alulated forpointwise ollisions (RAB=a < 1), is in exellent agree-ment with the analyti predition in Refs. [15; 16℄,Sk=k = 0:659 (f. Eq. (2)), whih should thereforebe used for alulation of the reation rate onstantKAB � 3:96DABa in this limit.The steady-state values Sk=k alulated in a widerange of the parameter values, 1 � RAB=a � 100,are shown in Fig. 4, with more detailed representa-543
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Fig. 3. Dependene of the mean number of visited dis-tint sites per one hop, Sk=k, on the number of hopsk in the ase of RAB=a = 10
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ÆÝÒÔ, òîì 146, âûï. 3 (9), 2014 On the theory of point defet reombination in rystalsfairly agrees with the value kmin � (96=�)(RAB=a)2derived from the assessment of the analyti solu-tion, Æt � 16R2AB=�DAB. For instane, in the aseRAB=a = 10, the number of hops in the ontinuummodel [9; 10℄, kmin � 8 � 104, was approximately twoorders of magnitude smaller than the minimum num-ber of hops � 5 � 106 in the disrete model. In the aseRAB=a = 100, the last value further inreases and at-tains � 107, see Fig. 1. This value is generally muhlarger than that used in the moleular dynamis (MD)alulations and thus an therefore lead to a serious re-strition on the appliability of atomisti alulationsto large moleular lusters.In these ases, the urrent approah might be rathere�etive, as will be shown elsewhere, for extrapolationof the reation radii alulated by MD at relativelyshort times to the orret values orresponding to thesteady-state values of the reation onstants KAB inthe reation rate equation, Eq. (1).4. CONCLUSIONSOur new approah, based on the �di�usion mixing�ondition, to the analysis of the reation kinetis forpartiles A and B migrating by random walks ondisrete lattie sites (with the lattie spaing a), andreating when two partiles oupy the same site,i. e., RAB < a, was extended to the transition regimeorresponding to RAB=a � 1 and applied to thereombination rate of point defets in ubi latties. Inthis approah, the reation rate is redued to the al-ulation of the mean number of distint sites visited bythe e�etive partile of the radius RAB , whih was al-ulated using a numerial algorithm generalizing andfurther improving the original algorithm elaboratedby the authors for the ontinuum-limit alulations.As ould be foreseen, the numerial alulationsorretly reprodued the analyti expressions in thetwo limits RAB < a and RAB � a and represented a
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