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ON THE THEORY OF POINT DEFECT RECOMBINATIONIN CRYSTALSI. B. Azarov, M. S. Vesh
hunov *Nu
lear Safety Institute (IBRAE), Russian A
ademy of S
ien
es115191, Mos
ow, Russian FederationRe
eived Mar
h 17, 2014A new approa
h to the di�usion-limited rea
tion kineti
s for parti
les migrating by random walks on dis
retelatti
e sites and rea
ting when two parti
les o

upy the same site is extended to a more general 
ase of a largerea
tion radius and applied to the problem of the re
ombination rate of point defe
ts in 
ubi
 latti
es. Numeri
al
al
ulations 
orre
tly reprodu
e the analyti
 expressions in the limit 
ases 
onsidered in previous work and inthe general 
ase represent a step-wise dependen
e of the rea
tion rate on the re
ombination radius.DOI: 10.7868/S00444510140901321. INTRODUCTIONThe kineti
s of an irreversible di�usion-
ontrolledbimole
ular rea
tion A + B ! C (where C does nota�e
t the rea
tion) is des
ribed by the rate equation_nA(r; t) = _nB(r; t) = �KABnA(r; t)nB(r; t); (1)where nA and nB are the respe
tive 
on
entrations(numbers of parti
les per unit volume) of rea
ting Aand B parti
les, whi
h di�use freely, and KAB is therea
tion 
onstant [1℄. This equation is also appli
ableto the rea
tion of point defe
ts, va
an
ies, and intersti-tials (V + I ! 0) and annihilation in 
rystals produ
edby means of high-energy parti
les or ele
trons [2℄.In the 
ontinuum approa
h, the rea
tant parti
lesare represented as points or spheres undergoing spa-tially 
ontinuous Brownian motion, with 
hemi
al re-a
tions A + B ! C o

urring instantly when the par-ti
les pass within a spe
i�ed rea
tion radius RAB be-tween their 
enters. A method for 
al
ulating the re-a
tion rate of rea
tion partners migrating by three-dimensional di�usion was developed in Refs. [3; 4℄ bygeneralizing the Smolu
howski theory for 
oagulationof 
olloids [5; 6℄. In this method, whi
h stipulates thatthe lo
al rea
tion rate is equal to the di�usive 
ur-rent of parti
les, the radius of the a
tivated 
omplex(or the �rea
tion radius�) 
orresponds to the �in�uen
e-sphere radius� in the Smolu
howski theory (equal to*E-mail: vms�ibrae.a
.ru

the sum of the radii of two 
olliding Brownian parti-
les, ~R = RA +RB).This traditional (�di�usion�) approa
h was 
riti
allyanalyzed in our paper [7℄. In parti
ular, it was shownthat the approa
h is appli
able only to the spe
ial 
aseof small A-parti
le trapping in large B-
entres with alarge trapping radius, r � RAB � rB (where rA �� n�1=3A and rB � n�1=3B are the mean inter-parti
ledistan
es), and be
omes invalid for 
al
ulating the re-a
tion rate in the 
ase RAB � rA; rB , whi
h is mostimportant for the rea
tion kineti
s and, in parti
ular,
orresponds to 
omparable-size (or point-wise, owingto RAB � rA; rB) parti
les A and B migrating by ran-dom walks. In order to resolve this inadequa
y of thetraditional approa
h, a new approa
h to the di�usion-limited rea
tion rate theory, based on a similar 
onsid-eration of Brownian 
oagulation proposed in our pa-pers [8�10℄, was developed in Ref. [7℄. In the new (�ki-neti
�) approa
h, point-wise parti
les tend to a homo-geneous (in random) spatial distribution owing to theirmigration and mixing on the s
ale of the mean inter-parti
le distan
e l � r, with the 
hara
teristi
 di�usionmixing time �d that is generally small in 
omparisonwith the 
hara
teristi
 rea
tion time �
, i. e., �d � �
.Indeed, for instan
e in the simplest 
ase DA �� DB = D and nA � nB = n, rea
tions between A andB parti
les indu
e lo
al heterogeneities in the spatialdistribution of their probability densities on the lengths
ale of the mean inter-parti
le distan
e r � n�1=3 � a.However, su
h kind of heterogeneities qui
kly disappearowing to rapid di�usion relaxation on the length s
ale540
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t re
ombination in 
rystalsof the mean inter-parti
le distan
e r with the 
hara
ter-isti
 time �d � r2=6D, whi
h is generally mu
h shorterthan the 
hara
teristi
 time �
 � (KABn)�1 of the par-ti
le 
on
entration variation, �d � �
 (or equally, interms of the mean free path � of a parti
le between itstwo subsequent 
ollisions, � � (6D�
)1=2 � r, whi
hhas a 
lear physi
al sense and is valid under the basi
�dilution� 
ondition of the theory, n1=3R � R=r � 1).In the opposite 
ases, DA � DB or nA � nB ,the mixing of slow parti
les (e. g., B) might be in
om-plete (if � (B)d � r2=6DB � �
). However, owing to thesto
hasti
 
hara
ter of movement and 
ollisions of par-ti
les A, the �surviving� parti
les B are still randomlydistributed in spa
e, whereas rapidly moving parti
lesA heal up lo
al heterogeneities in the A-parti
le dis-tribution indu
ed by rea
tions (�rare�ed zones� in thevi
inity of two-parti
le rea
tions) and thus uphold e�-
ient mixing of the rea
tion system. This ensures theappli
ability of the kineti
 approa
h to this 
ase witha somewhat redu
ed, but reasonable a

ura
y.This implies that a random distribution of parti
lesis attained during a time step �d � Æt � �
, 
hosenfor 
al
ulation of the rea
tion rate, whi
h 
an thereforebe sear
hed in the kineti
 approa
h as the 
ollision fre-quen
y of two parti
les (A and B) randomly lo
atedin unit volume. That value 
an be equally 
al
ulatedas the rate of volume sweeping ÆhVABi=Æt by the e�e
-tive parti
le of the radius RA+RB migrating with thedi�usivity DA +DB .The new approa
h (based on the �di�usion mixing�
ondition) was also generalized in Ref. [7℄ to the re-a
tion kineti
s of parti
les migrating by random walkson dis
rete latti
e sites (with the latti
e spa
ing a),and rea
ting when two parti
les o

upy the same site,i. e., RAB < a. Similarly to the 
ontinuum limit, itwas shown that the original multi-parti
le problem 
anbe readily redu
ed, owing to rapid di�usion mixing ofparti
les between their mutual 
ollisions, to the 
al
u-lation of the 
ollision probability between two parti
lesrandomly lo
ated in unit volume, whi
h in turn 
an berelated to the mean number of distin
t sites visited by ak-step random walk of the e�e
tive parti
le (a dis
reteanalogue of the swept volume).The volume swept by a Brownian parti
le is knownas the Wiener sausage [11℄. In parti
ular, this quan-tity equals the probability that a di�using Brownianpoint-like parti
le is absorbed by a single trap of ra-dius RAB in time t (see, e. g., [12℄). For this reason,the rate of volume sweeping 
oin
ides with the 
on-densation rate 
onstant for small parti
les sinking in alarge trap, rA � RAB � rB ; for 
omparable-size par-ti
les (or RAB � rA; rB), it eventually determines the

Smolu
howski 
onstant in Eq. (1), as is justi�ed in thenew kineti
 approa
h [7; 8℄.The dis
rete analogue of the Wiener sausage wasrelated to the survival probability for a Brownian par-ti
le in the presense of random immobile traps in theRosensto
k approximation [13℄ or other related prob-lems, e. g., the so-
alled �target annihilation by s
av-engers� [14℄. In the latter problem, a single parti
leA (target) and NA = nBN parti
les B (s
avengers)of a �nite 
on
entration nB are randomly lo
ated onN ! 1 sites of a 3-dimensional regular latti
e. Par-ti
le A is immobile, whereas parti
les B perform inde-pendent, homogeneous dis
rete-time random walks onthe latti
e sites (in
luding sites o

upied by other par-ti
les); parti
le A annihilates as soon as a parti
le Brea
hes it.In fa
t, the kineti
 approa
h (based on the di�u-sion mixing 
ondition) allows extending the solutionof the target annihilation problem to 
onsideration ofmany-body e�e
ts in the di�usion-limited rea
tion ki-neti
s. Indeed, sin
e parti
les B moves independentlyfrom ea
h other, the probability of the target annihila-tion between time t and t+Æt redu
es to the probabilityof a two-parti
le (A�B) 
ollision, wAB(t)Æt, times NB .In the 
ase of mobile parti
les A with a �nite 
on
entra-tion nA(0), the problem also redu
es to the analyzis oftwo-parti
le 
ollisions, if rapid di�usion mixing of par-ti
les o

urs between their mutual 
ollisions. A
tually,after ea
h annihilation event (at a moment t) when a
ertain latti
e position (where the 
ollision o

urred)be
omes de�nitely uno

upied, the random (equiprob-able) spatial distribution of parti
les over latti
e sitesis rapidly restored during the mixing time �d � Æt,and a 
on�guration similar to the initial 
on�guration(i. e., random lo
ation of parti
les A and B on latti
esites), but with the new (diminished) parti
le 
on
en-trations nA;B(t + Æt) = nA;B(t) � nAnBwAB(t)Æt, 
anbe 
onsidered in the subsequent time step, if Æt � �
.In the 
ase Æt � ~� � 16R2AB=�DAB , whi
h is gener-ally valid be
ause �
 � ~� [7℄, a steady-state value ofwAB(t) � wAB(1) � wAB is attained in the time stepÆt, and thus the rea
tion rate equation takes the formof Eq. (1) with the rate 
onstant KAB = wAB , whi
hdoes not depend on time expli
itly (as opposed to 
on-densation of small parti
les in a large trap, 
onsideredin the di�usion approa
h).It is important to note that in 
ontrast to the tar-get annihilation problem where sites 
an be o

upiedby several parti
les, two (or more) point-like defe
ts (ofthe same type) 
annot o

upy the same site. However,under the basi
 assumption of the rea
tion rate the-ory, nA; nB � 1, the A�A and B�B �
ollisions� (i. e.,541
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upation of one site by two identi
al parti
les) 
anbe generally negle
ted in 
al
ulating the A�B rea
tionrate. Indeed, the in
orporation of these events duringthe time step Æt � �
, whi
h is used in the deriva-tion of the rate equation and 
al
ulation of the rea
tion
onstant KAB in the kineti
 approa
h, requires 
onsid-ering two simultaneous or su

essive 
ollisions (A�Aand A�B, or B�B and B�A) in unit volume duringÆt, with the respe
tive probabilities wAABÆt / n2AnBÆtand wABBÆt / n2BnAÆt, whi
h 
an be negle
ted, ow-ing to nA; nB � 1, in 
omparison with the probabilitywABÆt / nAnBÆt of a single pair-wise A�B 
ollisionduring Æt in unit volume. Therefore, the in�uen
e ofthe forbiddan
e for identi
al defe
ts to o

upy the samesites 
an be negle
ted in 
al
ulating the re
ombinationrate.2. REACTIONS ON DISCRETE LATTICESAs explained above, in both 
ontinuum and dis-
rete limits, the original multi-parti
le problem 
anbe redu
ed to the 
al
ulation of the 
ollision proba-bility between two parti
les, randomly lo
ated in unitvolume, owing to the rapid di�usion mixing of parti-
les between their mutual 
ollisions. In the 
ontin-uum limit, the probability of a 
ollision between twoparti
les randomly lo
ated in spa
e, in the time inter-val between t and t + Æt, was 
al
ulated as the meanvolume swept in Æt by an e�e
tive parti
le of the ra-dius RAB and di�usivity DAB . In the dis
rete lat-ti
e limit (with RAB < a), the 
ollision probabilityshould be 
al
ulated as the mean number of distin
tsites visited by a k-step random walk of the e�e
tiveparti
le (the so-
alled random walk range Sk), wherek = Æt=�AB = Æt � 6DAB=a2 � 1.For simple 3D and 2D latti
es, this value Sk wasanalyti
ally evaluated in the literature. For instan
e,in the 
ase of a 3D simple 
ubi
 (s
) latti
e, themean of Sk was 
al
ulated in Refs. [15; 16℄ as Sk == 0:659 � [k +O(k1=2)℄, whi
h for the 
hosen time stepa2=6DAB � r2=6DAB � �d � Ætk � �
 
orrespondingto k � 1, 
an be redu
ed toSk � 0:659k (2)and yields KAB � 3:96DABa: (3)For f

 and b

 latti
es, somewhat di�erent valuesof Sk were 
al
ulated in Refs. [15; 16℄, approximately0:744k and 0:718k, respe
tively. These solutions 
anbe applied, as assumed in Ref. [15℄, to the 
al
ulationof the rate at whi
h point defe
ts su
h as interstitials

or va
an
ies di�using by random walks on a latti
eare annihilated at (immobile) point sinks of invariable
on
entration during the annealing (des
ribed by theRosensto
k trapping model [12℄).In the opposite 
ase of the large rea
tion radiusRAB � a, the solution should 
onverge to the 
on-tinuum limit Sk = 2�3 k; (4)whi
h 
orresponds to the 
lassi
al Smolu
howski ex-pression for the rea
tion rate 
onstantKAB = 4�DABRAB : (5)This solution is widely used in the literature in thewhole range of the ratio RAB=a, in
luding the 
on-sideration of point defe
ts and impurities in 
rystals.Correspondingly, the rea
tion (or re
ombination) rate
onstant might be noti
eably overestimated in the limitof pointwise 
ollisions RAB < a as well in the transitionrange RAB=a � 1.Indeed, we should expe
t the rea
tion rate 
onstantto vary in the transition range between two limits,Eq. (3), if RAB=a < 1, and Eq. (5), if RAB=a � 1.The rea
tion rate in this transition range 
an be 
al
u-lated numeri
ally, by modifying numeri
al algorithmsdeveloped by the authors in the 
ontinuum limit [9; 10℄.The solution of this problem 
an be important in manypra
ti
al 
ases.For instan
e, the Frenkel pair re
ombination radiusRiv in f

 
opper evaluated from the analysis of theresistivity damage rates smoothly varies from 4a to 3a(where a � 0:36 nm) in the temperature range from50 to 110 K [17℄. Extrapolating the 
orrelation ob-tained in Ref. [17℄ for the temperature dependen
e ofthe re
ombination radius to room temperatures yieldsRiv � 2a. Similar results were also obtained for otherf

 metals [18℄. These values of the re
ombination ra-dius 
orrespond to the transition range, and hen
e thenew approa
h to 
al
ulation of the re
ombination rate(rather than the traditional expression, Eq. (5)) mightbe important.In f

 latti
es, the additional problem of the pointdefe
t site positions arises; in parti
ular, interstitialatoms often reside in tetragonal positions with thehighest symmetry, whi
h form a simple 
ubi
 (s
) lat-ti
e for interstitial migrations. For simpli
ity, only su
hs
 latti
es are 
urrently 
onsidered. This 
onsideration
an be readily generalized if the defe
t sites are spe
i-�ed more de�nitely (e. g., by atomisti
 
al
ulations).542
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Fig. 1. Cal
ulation of the probability density f(x) forx = Sk=k at RAB=a = 100; for ea
h number of hopsk, 150�200 traje
tories are generated resulting in 
al-
ulation points, whi
h are grouped in intervals of equalwidth L (about 10% of the whole distribution width)and form normal distributions around the mean values(at a given k). The invariable mean value Sk=k � 226is attained at k � 107. Cal
ulation points with thenumber of elementary hops: + � 3 � 106, Æ � 4 � 106,4 � 5 � 106, � � 107, � � 2 � 1073. NUMERICAL CALCULATIONSFor the numeri
al evaluation of the mean numberof distin
t sites visited by a k-step random walk of thee�e
tive parti
le, Sk, a random migration of a par-ti
le of the radius RAB with the �xed hopping dis-tan
e a on the s
 latti
e and the hopping frequen
yvAB = ��1AB = 6DAB=a2 are numeri
ally generated.The randomly generated data des
ribe the subsequentpositions of the parti
le 
enter traje
tory, whi
h 
an befurther used for 
al
ulating Sk. Ea
h latti
e site visitedby the parti
le is 
ounted only on
e.The number of visited distin
t sites for ea
h tra-je
tory was 
al
ulated using an a

elerated numeri
alalgorithm, developed by the generalization and fur-ther improvement (with respe
t to the run time, whi
hsteeply in
reases with the traje
tory length) of theoriginal algorithm elaborated by the authors for the
ontinuum-limit 
al
ulations [9; 10℄.For ea
h number of hops k, up to 100�150 randomtraje
tories were generated, whi
h allowed 
al
ulatinga smooth distribution of the probability density f(x)

1:0 1:0 � 103 1:0 � 105 1:0 � 107 k0:640:680:720:760:80hSki=k

Fig. 2. Dependen
e of the mean number of visiteddistin
t sites per one hop, Sk=k, on the number ofhops k in the dis
rete limit, RAB=a = 1=10 (+),RAB=a = 1=20 (F)for x = Sk=k, Fig. 1. The number of hops k = Æt=�ABwas in
reased until Sk (averaged over the traje
tories)attained a steady-state value, whi
h in a

ordan
e withthe above 
onsideration has to 
onverge to the analyt-i
ally 
al
ulated values in the two limits RAB=a < 1(Eqs. (2)) and RAB=a� 1 (Eq. (4)).Similarly to the 
ontinuum limit, numeri
al 
al
ula-tions 
on�rmed that the steady-state value of the meannumber of visited distin
t sites per unit time dependsonly on the ratio RAB=a (rather than on RAB anda separately). Besides, the general 
on
lusion for 3Dsystems that the 
al
ulated value Sk=k smoothly de-
reases and rea
hes the steady-state limit, invariableunder a further in
rease in the number of hops k, isjusti�ed. This 
on
lusion is also illustrated in Figs. 2and 3, where the results of 
al
ulations are presentedfor the two 
ases RAB=a < 1 and RAB=a = 10.In parti
ular, we see from Fig. 2 that the steady-state value Sk=k � 0:66, numeri
ally 
al
ulated forpointwise 
ollisions (RAB=a < 1), is in ex
ellent agree-ment with the analyti
 predi
tion in Refs. [15; 16℄,Sk=k = 0:659 (
f. Eq. (2)), whi
h should thereforebe used for 
al
ulation of the rea
tion rate 
onstantKAB � 3:96DABa in this limit.The steady-state values Sk=k 
al
ulated in a widerange of the parameter values, 1 � RAB=a � 100,are shown in Fig. 4, with more detailed representa-543
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1:0 � 103 1:0 � 105 1:0 � 1071:0 � 1061:0 � 104 k20

3028262422

hSki=k

Fig. 3. Dependen
e of the mean number of visited dis-tin
t sites per one hop, Sk=k, on the number of hopsk in the 
ase of RAB=a = 10
Calculation points
Continuum limit, Eq. (4)

100806040200
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200

250

〈Sk〉/k

RAB/aFig. 4. Dependen
e of the mean number of visited dis-tin
t sites per one hop, Sk=k, on the re
ombinationradius RAB=a in 
omparison with the theoreti
al 
urve
al
ulated in the 
ontinuum limit, Eq. (4)tion of the 
al
ulation results in the transition range1 � RAB=a � 4 in Fig. 5.We see from Fig. 4 that at very large RAB=a �� 1, the numeri
al results reasonably 
onverge to the

0 1 2 3 4

Calculation points

Continuum limit

〈Sk〉/k

RAB/a

2

4

6

8

10

Fig. 5. The same as in Fig. 4 but for the redu
ed in-terval of RAB=aanalyti
 value Sk = 2�k=3, or Sk=Ætk = 2�RAB=3a �� 2:094RAB=a, 
al
ulated in the 
ontinuum limit(
f. Eq. (5)) and 
orresponding to the Smolu
howskiexpression for the rea
tion rate 
onstant, KAB == 4�DABRAB . In fa
t the 
al
ulated 
urve is a steppedrather than a straight line, as 
an be seen in Fig. 5; how-ever, the ratio of the step height to the a
tual value ofSk=k smoothly de
reases with the in
rease in the rea
-tion radius RAB , and therefore the 
al
ulated 
urvein Fig. 4 looks like a straight line at RAB=a � 1.Nevertheless, the �ne stru
ture of the 
al
ulated 
urvewith a step at ea
h value RAB=a = ph2 + i2 + j2(where h; i; j = 0; 1; 2; : : : , run through the entirerow of integers) be
omes important for relatively smallrea
tion radii, 
orresponding to the transition range1 � RAB=a < 10, Fig. 5. The maximum deviation fa
-tor (i. e., the ratio of the real value to that 
al
ulatedin the 
ontinuum limit), approximately equal to 3, isattained at RAB=a � 1. The deviation fa
tor graduallyde
reases and tends to 1 at larger RAB=a.Comparison of the new 
al
ulation results for thedis
rete latti
e at large RAB=a � 1 with the previ-ous ones for the 
ontinuum model [9; 10℄ shows that al-though the steady-state values of the 
ollision rate pra
-ti
ally 
oin
ide in both 
ases, the number of hops ne
-essary for the attainment of the steady state in
reasesby several orders of magnitude. Indeed, in the 
on-tinuum limit, the minimum number of ne
essary hops544
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ombination in 
rystalsfairly agrees with the value kmin � (96=�)(RAB=a)2derived from the assessment of the analyti
 solu-tion, Æt � 16R2AB=�DAB. For instan
e, in the 
aseRAB=a = 10, the number of hops in the 
ontinuummodel [9; 10℄, kmin � 8 � 104, was approximately twoorders of magnitude smaller than the minimum num-ber of hops � 5 � 106 in the dis
rete model. In the 
aseRAB=a = 100, the last value further in
reases and at-tains � 107, see Fig. 1. This value is generally mu
hlarger than that used in the mole
ular dynami
s (MD)
al
ulations and thus 
an therefore lead to a serious re-stri
tion on the appli
ability of atomisti
 
al
ulationsto large mole
ular 
lusters.In these 
ases, the 
urrent approa
h might be rathere�e
tive, as will be shown elsewhere, for extrapolationof the rea
tion radii 
al
ulated by MD at relativelyshort times to the 
orre
t values 
orresponding to thesteady-state values of the rea
tion 
onstants KAB inthe rea
tion rate equation, Eq. (1).4. CONCLUSIONSOur new approa
h, based on the �di�usion mixing�
ondition, to the analysis of the rea
tion kineti
s forparti
les A and B migrating by random walks ondis
rete latti
e sites (with the latti
e spa
ing a), andrea
ting when two parti
les o

upy the same site,i. e., RAB < a, was extended to the transition regime
orresponding to RAB=a � 1 and applied to there
ombination rate of point defe
ts in 
ubi
 latti
es. Inthis approa
h, the rea
tion rate is redu
ed to the 
al-
ulation of the mean number of distin
t sites visited bythe e�e
tive parti
le of the radius RAB , whi
h was 
al-
ulated using a numeri
al algorithm generalizing andfurther improving the original algorithm elaboratedby the authors for the 
ontinuum-limit 
al
ulations.As 
ould be foreseen, the numeri
al 
al
ulations
orre
tly reprodu
ed the analyti
 expressions in thetwo limits RAB < a and RAB � a and represented a

step-wise 
urve in the intermediate range of the pa-rameter RAB=a, whi
h generally 
orresponds to theFrenkel pair re
ombination radius in many pra
ti
al
ases, e. g., for f
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