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A new approach to the diffusion-limited reaction kinetics for particles migrating by random walks on discrete
lattice sites and reacting when two particles occupy the same site is extended to a more general case of a large
reaction radius and applied to the problem of the recombination rate of point defects in cubic lattices. Numerical
calculations correctly reproduce the analytic expressions in the limit cases considered in previous work and in
the general case represent a step-wise dependence of the reaction rate on the recombination radius.
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1. INTRODUCTION

The kinetics of an irreversible diffusion-controlled
bimolecular reaction A + B — C (where C' does not
affect the reaction) is described by the rate equation

(1)

where n4 and np are the respective concentrations
(numbers of particles per unit volume) of reacting A
and B particles, which diffuse freely, and K 4p is the
reaction constant [1]. This equation is also applicable
to the reaction of point defects, vacancies, and intersti-
tials (V + I — 0) and annihilation in crystals produced
by means of high-energy particles or electrons [2].

In the continuum approach, the reactant particles
are represented as points or spheres undergoing spa-
tially continuous Brownian motion, with chemical re-
actions A + B — C occurring instantly when the par-
ticles pass within a specified reaction radius Rap be-
tween their centers. A method for calculating the re-
action rate of reaction partners migrating by three-
dimensional diffusion was developed in Refs. [3,4] by
generalizing the Smoluchowski theory for coagulation
of colloids [5,6]. In this method, which stipulates that
the local reaction rate is equal to the diffusive cur-
rent of particles, the radius of the activated complex
(or the “reaction radius”) corresponds to the “influence-
sphere radius” in the Smoluchowski theory (equal to

na(r,t) =ng(r,t) Kagna(r,t)ng(r,t),
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the sum of the radii of two colliding Brownian parti-
cles, R=RA+ Rp).

This traditional (“diffusion”) approach was critically
analyzed in our paper [7]. In particular, it was shown
that the approach is applicable only to the special case
of small A-particle trapping in large B-centres with a
large trapping radius, T <« Rap < Tp (where T4
n, * and Tp ngl/ ? are the mean inter-particle
distances), and becomes invalid for calculating the re-
action rate in the case Rap < Ta,Tp, which is most
important for the reaction kinetics and, in particular,
corresponds to comparable-size (or point-wise, owing
to Rap < T4,Tp) particles A and B migrating by ran-
dom walks. In order to resolve this inadequacy of the
traditional approach, a new approach to the diffusion-
limited reaction rate theory, based on a similar consid-
eration of Brownian coagulation proposed in our pa-
pers [8-10], was developed in Ref. [7]. In the new (“ki-
netic”) approach, point-wise particles tend to a homo-
geneous (in random) spatial distribution owing to their
migration and mixing on the scale of the mean inter-
particle distance | ~ 7, with the characteristic diffusion
mixing time 74 that is generally small in comparison
with the characteristic reaction time 7., i.e., 7q¢ < Te.

~

~
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Indeed, for instance in the simplest case D4 =~
~ Dp = D and ns ~ ng = n, reactions between A and
B particles induce local heterogeneities in the spatial
distribution of their probability densities on the length
scale of the mean inter-particle distance 7 &~ n=1/3 > a.
However, such kind of heterogeneities quickly disappear
owing to rapid diffusion relaxation on the length scale
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of the mean inter-particle distance ¥ with the character-
istic time 74 ~ 72 /6D, which is generally much shorter
than the characteristic time 7, ~ (K 4pn)~! of the par-
ticle concentration variation, 74 < 7. (or equally, in
terms of the mean free path \ of a particle between its
two subsequent collisions, A\ ~ (6D7,)'/2 > F, which
has a clear physical sense and is valid under the basic
“dilution” condition of the theory, n'/*R ~ R/F < 1).

In the opposite cases, Dy > Dp or ng > npg,
the mixing of slow particles (e.g., B) might be incom-
plete (if TCSB) ~72/6Dp > 1.). However, owing to the
stochastic character of movement and collisions of par-
ticles A, the “surviving” particles B are still randomly
distributed in space, whereas rapidly moving particles
A heal up local heterogeneities in the A-particle dis-
tribution induced by reactions (“rarefied zones” in the
vicinity of two-particle reactions) and thus uphold effi-
cient mixing of the reaction system. This ensures the
applicability of the kinetic approach to this case with
a somewhat reduced, but reasonable accuracy.

This implies that a random distribution of particles
is attained during a time step 7y < dt < 7., chosen
for calculation of the reaction rate, which can therefore
be searched in the kinetic approach as the collision fre-
quency of two particles (A and B) randomly located
in unit volume. That value can be equally calculated
as the rate of volume sweeping §(Vap)/dt by the effec-
tive particle of the radius R4 + Rp migrating with the
diffusivity D4 + Dp.

The new approach (based on the “diffusion mixing”
condition) was also generalized in Ref. [7] to the re-
action kinetics of particles migrating by random walks
on discrete lattice sites (with the lattice spacing a),
and reacting when two particles occupy the same site,
i.e., R4p < a. Similarly to the continuum limit, it
was shown that the original multi-particle problem can
be readily reduced, owing to rapid diffusion mixing of
particles between their mutual collisions, to the calcu-
lation of the collision probability between two particles
randomly located in unit volume, which in turn can be
related to the mean number of distinct sites visited by a
k-step random walk of the effective particle (a discrete
analogue of the swept volume).

The volume swept by a Brownian particle is known
as the Wiener sausage [11]. In particular, this quan-
tity equals the probability that a diffusing Brownian
point-like particle is absorbed by a single trap of ra-
dius Rap in time ¢ (see, e.g., [12]). For this reason,
the rate of volume sweeping coincides with the con-
densation rate constant for small particles sinking in a
large trap, T4 < Rap < Tp; for comparable-size par-
ticles (or Rap <« F4,Tg), it eventually determines the
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Smoluchowski constant in Eq. (1), as is justified in the
new kinetic approach [7, 8].

The discrete analogue of the Wiener sausage was
related to the survival probability for a Brownian par-
ticle in the presense of random immobile traps in the
Rosenstock approximation [13] or other related prob-
lems, e.g., the so-called “target annihilation by scav-
engers” [14]. In the latter problem, a single particle
A (target) and Ny = npN particles B (scavengers)
of a finite concentration np are randomly located on
N — oo sites of a 3-dimensional regular lattice. Par-
ticle A is immobile, whereas particles B perform inde-
pendent, homogeneous discrete-time random walks on
the lattice sites (including sites occupied by other par-
ticles); particle A annihilates as soon as a particle B
reaches it.

In fact, the kinetic approach (based on the diffu-
sion mixing condition) allows extending the solution
of the target annihilation problem to consideration of
many-body effects in the diffusion-limited reaction ki-
netics. Indeed, since particles B moves independently
from each other, the probability of the target annihila-
tion between time ¢ and t+ 4t reduces to the probability
of a two-particle (A-B) collision, w4p5(t)dt, times Np.
In the case of mobile particles A with a finite concentra-
tion n.4(0), the problem also reduces to the analyzis of
two-particle collisions, if rapid diffusion mixing of par-
ticles occurs between their mutual collisions. Actually,
after each annihilation event (at a moment ¢) when a
certain lattice position (where the collision occurred)
becomes definitely unoccupied, the random (equiprob-
able) spatial distribution of particles over lattice sites
is rapidly restored during the mixing time 73 < dt,
and a configuration similar to the initial configuration
(i.e., random location of particles A and B on lattice
sites), but with the new (diminished) particle concen-
trations na p(t + 0t) = na p(t) —nanpwap(t)ot, can
be considered in the subsequent time step, if §t < 7.
In the case 0t > 7 ~ 16R% /7D ap, which is gener-
ally valid because 7. > 7 [7], a steady-state value of
wap(t) ¥ wap(00) = wap is attained in the time step
ot, and thus the reaction rate equation takes the form
of Eq. (1) with the rate constant Kap = wap, which
does not depend on time explicitly (as opposed to con-
densation of small particles in a large trap, considered
in the diffusion approach).

It is important to note that in contrast to the tar-
get annihilation problem where sites can be occupied
by several particles, two (or more) point-like defects (of
the same type) cannot occupy the same site. However,
under the basic assumption of the reaction rate the-
ory, na,npg < 1, the A—A and B-B “collisions” (i.e.,
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occupation of one site by two identical particles) can
be generally neglected in calculating the A-B reaction
rate. Indeed, the incorporation of these events during
the time step 6t < 7., which is used in the deriva-
tion of the rate equation and calculation of the reaction
constant K 4p in the kinetic approach, requires consid-
ering two simultaneous or successive collisions (A-A
and A-B, or B-B and B—A) in unit volume during
§t, with the respective probabilities wa4pdt < n%npdt
and wappoOt o nQBnAét, which can be neglected, ow-
ing to n4,np < 1, in comparison with the probability
wapdt x nanpdt of a single pair-wise A-B collision
during ¢ in unit volume. Therefore, the influence of
the forbiddance for identical defects to occupy the same
sites can be neglected in calculating the recombination
rate.

2. REACTIONS ON DISCRETE LATTICES

As explained above, in both continuum and dis-
crete limits, the original multi-particle problem can
be reduced to the calculation of the collision proba-
bility between two particles, randomly located in unit
volume, owing to the rapid diffusion mixing of parti-
cles between their mutual collisions. In the contin-
uum limit, the probability of a collision between two
particles randomly located in space, in the time inter-
val between t and t + dt, was calculated as the mean
volume swept in 6t by an effective particle of the ra-
dius Rap and diffusivity Dap. In the discrete lat-
tice limit (with Rap < a), the collision probability
should be calculated as the mean number of distinct
sites visited by a k-step random walk of the effective
particle (the so-called random walk range Sy), where
k= (St/TAB =it - 6DAB/a2 > 1.

For simple 3D and 2D lattices, this value S was
analytically evaluated in the literature. For instance,
in the case of a 3D simple cubic (sc) lattice, the
mean of Sj, was calculated in Refs. [15,16] as Sy
= 0.659 - [k + O(k'/?)], which for the chosen time step
a’/6Dap K T7°/6Dap ~ 174 <K 0ty < T, corresponding
to k> 1, can be reduced to

Si ~ 0.659k (2)

and yields
I\/VAB I~ 3.96DABa.

(3)

For fcc and bece lattices, somewhat different values
of Sy were calculated in Refs. [15,16], approximately
0.744k and 0.718k, respectively. These solutions can
be applied, as assumed in Ref. [15], to the calculation
of the rate at which point defects such as interstitials

542

or vacancies diffusing by random walks on a lattice
are annihilated at (immobile) point sinks of invariable
concentration during the annealing (described by the
Rosenstock trapping model [12]).

In the opposite case of the large reaction radius
Rap > a, the solution should converge to the con-
tinuum limit

(4)

which corresponds to the classical Smoluchowski ex-
pression for the reaction rate constant

I(AB =47TDABRAB. (5)
This solution is widely used in the literature in the
whole range of the ratio Rap/a, including the con-
sideration of point defects and impurities in crystals.
Correspondingly, the reaction (or recombination) rate
constant might be noticeably overestimated in the limit
of pointwise collisions R4 < a as well in the transition
range Rap/a ~ 1.

Indeed, we should expect the reaction rate constant
to vary in the transition range between two limits,
Eq. (3), if Rap/a < 1, and Eq. (5), if Rap/a > 1.
The reaction rate in this transition range can be calcu-
lated numerically, by modifying numerical algorithms
developed by the authors in the continuum limit [9, 10].
The solution of this problem can be important in many
practical cases.

For instance, the Frenkel pair recombination radius
R;, in fce copper evaluated from the analysis of the
resistivity damage rates smoothly varies from 4a to 3a
(where a &~ 0.36 nm) in the temperature range from
50 to 110 K [17]. Extrapolating the correlation ob-
tained in Ref. [17] for the temperature dependence of
the recombination radius to room temperatures yields
R;» ~ 2a. Similar results were also obtained for other
fce metals [18]. These values of the recombination ra-
dius correspond to the transition range, and hence the
new approach to calculation of the recombination rate
(rather than the traditional expression, Eq. (5)) might
be important.

In fcc lattices, the additional problem of the point
defect site positions arises; in particular, interstitial
atoms often reside in tetragonal positions with the
highest symmetry, which form a simple cubic (sc) lat-
tice for interstitial migrations. For simplicity, only such
sc lattices are currently considered. This consideration
can be readily generalized if the defect sites are speci-
fied more definitely (e.g., by atomistic calculations).
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Fig.1. Calculation of the probability density f(z) for
z = Si/k at Rap/a = 100; for each number of hops
k, 150-200 trajectories are generated resulting in cal-
culation points, which are grouped in intervals of equal
width L (about 10 % of the whole distribution width)
and form normal distributions around the mean values
(at a given k). The invariable mean value S}, /k ~ 226
is attained at £ > 107. Calculation points with the
number of elementary hops: + — 3-10°, o — 4-105,
A—5-10% 6 — 107, ¢ — 2-107

3. NUMERICAL CALCULATIONS

For the numerical evaluation of the mean number
of distinct sites visited by a k-step random walk of the
effective particle, Sj, a random migration of a par-
ticle of the radius Rap with the fixed hopping dis-
tance a on the sc lattice and the hopping frequency
vaR = Tip = 6Dap/a® are numerically generated.
The randomly generated data describe the subsequent
positions of the particle center trajectory, which can be
further used for calculating Sy. Each lattice site visited
by the particle is counted only once.

The number of visited distinct sites for each tra-
jectory was calculated using an accelerated numerical
algorithm, developed by the generalization and fur-
ther improvement (with respect to the run time, which
steeply increases with the trajectory length) of the
original algorithm elaborated by the authors for the
continuum-limit calculations [9, 10].

For each number of hops k, up to 100-150 random
trajectories were generated, which allowed calculating
a smooth distribution of the probability density f(x)

(Sk)/k
080 T T T T T T
0.76 - + i
*
0.72 L i
*
+
+
0.68 | *+ ]
* gk
et 4
0.64 d il il il il 1
1.0 1.0 - 10° 1.0-10° 1.0 - 107
Fig.2. Dependence of the mean number of visited

distinct sites per one hop, Si/k, on the number of
hops k in the discrete limit, Rag/a = 1/10 (+4),
Rap/a=1/20 (%)

for x = Sk /k, Fig. 1. The number of hops k = t/TaB
was increased until S (averaged over the trajectories)
attained a steady-state value, which in accordance with
the above consideration has to converge to the analyt-
ically calculated values in the two limits Rap/a < 1
(Egs. (2)) and Rap/a > 1 (Eq. (4)).

Similarly to the continuum limit, numerical calcula-
tions confirmed that the steady-state value of the mean
number of visited distinct sites per unit time depends
only on the ratio Rap/a (rather than on Rsp and
a separately). Besides, the general conclusion for 3D
systems that the calculated value Sj/k smoothly de-
creases and reaches the steady-state limit, invariable
under a further increase in the number of hops k&, is
justified. This conclusion is also illustrated in Figs. 2
and 3, where the results of calculations are presented
for the two cases Rap/a < 1 and Rap/a = 10.

In particular, we see from Fig. 2 that the steady-
state value Sj/k ~ 0.66, numerically calculated for
pointwise collisions (Rap/a < 1), is in excellent agree-
ment with the analytic prediction in Refs. [15,16],
Si/k = 0.659 (cf. Eq. (2)), which should therefore
be used for calculation of the reaction rate constant
Kap ~ 3.96D 4pa in this limit.

The steady-state values Sy /k calculated in a wide

range of the parameter values, 1 < Rup/a < 100,
are shown in Fig. 4, with more detailed representa-
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Fig.3. Dependence of the mean number of visited dis-
tinct sites per one hop, Si/k, on the number of hops
k in the case of Rap/a =10
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Fig.4. Dependence of the mean number of visited dis-

tinct sites per one hop, Si/k, on the recombination

radius Rap/a in comparison with the theoretical curve
calculated in the continuum limit, Eq. (4)

tion of the calculation results in the transition range
1 < Rsp/a < 4 in Fig. 5.

We see from Fig. 4 that at very large Rap/a >
> 1, the numerical results reasonably converge to the

(Sk)/k
10

—=f=— Calculation points
— Continuum limit

0 1 2 3 4
Rag/a

Fig.5. The same as in Fig. 4 but for the reduced in-
terval of Rag/a

analytic value Sy, = 27k/3, or S}, /6t), = 2rRap/3a ~
~ 2.094R4p/a, calculated in the continuum limit
(cf. Eq. (5)) and corresponding to the Smoluchowski
expression for the reaction rate constant, K p =
= 47D spRap. Infact the calculated curve is a stepped
rather than a straight line, as can be seen in Fig. 5; how-
ever, the ratio of the step height to the actual value of
S}, /k smoothly decreases with the increase in the reac-
tion radius Rap, and therefore the calculated curve
in Fig. 4 looks like a straight line at Rag/a > 1.
Nevertheless, the fine structure of the calculated curve
with a step at each value Rap/a = /h?+i%+ j2
(where h,i,7 = 0,1,2,..., run through the entire
row of integers) becomes important for relatively small
reaction radii, corresponding to the transition range
1< Rap/a < 10, Fig. 5. The maximum deviation fac-
tor (i.e., the ratio of the real value to that calculated
in the continuum limit), approximately equal to 3, is
attained at Ryp/a < 1. The deviation factor gradually
decreases and tends to 1 at larger Rap/a.

Comparison of the new calculation results for the
discrete lattice at large Rap/a > 1 with the previ-
ous ones for the continuum model [9, 10] shows that al-
though the steady-state values of the collision rate prac-
tically coincide in both cases, the number of hops nec-
essary for the attainment of the steady state increases
by several orders of magnitude. Indeed, in the con-
tinuum limit, the minimum number of necessary hops
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fairly agrees with the value kyin > (96/7)(Rap/a)?
derived from the assessment of the analytic solu-
tion, 8t > 16R%z/mDap. For instance, in the case
Ryp/a = 10, the number of hops in the continuum
model [9,10], kmin ~ 8- 10%, was approximately two
orders of magnitude smaller than the minimum num-
ber of hops ~ 5 - 10° in the discrete model. In the case
R4p/a = 100, the last value further increases and at-
tains ~ 107, see Fig. 1. This value is generally much
larger than that used in the molecular dynamics (MD)
calculations and thus can therefore lead to a serious re-
striction on the applicability of atomistic calculations
to large molecular clusters.

In these cases, the current approach might be rather
effective, as will be shown elsewhere, for extrapolation
of the reaction radii calculated by MD at relatively
short times to the correct values corresponding to the
steady-state values of the reaction constants K p in
the reaction rate equation, Eq. (1).

~

4. CONCLUSIONS

Our new approach, based on the “diffusion mixing”
condition, to the analysis of the reaction kinetics for
particles A and B migrating by random walks on
discrete lattice sites (with the lattice spacing a), and
reacting when two particles occupy the same site,
i.e., Rap < a, was extended to the transition regime
corresponding to Rap/a > 1 and applied to the
recombination rate of point defects in cubic lattices. In
this approach, the reaction rate is reduced to the cal-
culation of the mean number of distinct sites visited by
the effective particle of the radius R 4p, which was cal-
culated using a numerical algorithm generalizing and
further improving the original algorithm elaborated
by the authors for the continuum-limit calculations.
As could be foreseen, the numerical calculations
correctly reproduced the analytic expressions in the
two limits Ryp < a and Rap > a and represented a

9 ZKST®, Beim. 3 (9)

545

step-wise curve in the intermediate range of the pa-
rameter R4p/a, which generally corresponds to the
Frenkel pair recombination radius in many practical
cases, e.g., for fcc metals.
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