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INFLUENCE OF RELATIVISTIC EFFECTS ON ELECTRON-LOSSCROSS SECTIONS OF HEAVY AND SUPERHEAVY IONSCOLLIDING WITH NEUTRAL ATOMSI. Yu. Tolstikhina a;b, I. I. Tupitsyn , S. N. Andreev a, V. P. Shevelko a*aLebedev Physial Institute, Russian Aademy of Sienes119991, Mosow, RussiabMosow Institute of Physis and Tehnology141700, Dolgoprudny, Mosow Region, RussiaDepartment of Physis, St. Petersburg State University198504, Saint-Petersburg, RussiaReeived January 10, 2014The in�uene of relativisti e�ets, suh as relativisti interation and relativisti wave funtions, on the eletron-loss ross setions of heavy and superheavy atoms and ions (atomi number Z & 92) olliding with neutral atomsis investigated using a newly reated RICODE-M omputer program. It is found that the use of relativisti wavefuntions hanges the eletron-loss ross setion values by about 20�30% around the ross-setion maximumompared to those alulated with nonrelativisti wave funtions. At relativisti energies E � 200 MeV/u, therelativisti interation between olliding partiles leads to a quasionstant behavior of the loss ross setions�relEL � onst, to be ompared with the Born asymptoti law �BEL � lnE=E.DOI: 10.7868/S00444510140700131. INTRODUCTIONThe relativisti e�ets, i. e., relativisti wave fun-tions and relativisti interation, already beome im-portant in atoms and ions with the nulear hargesZ & 30 (see, e. g., [1�4℄) and are taken into aountin alulation of the radiative atomi harateristissuh as binding energies, osillator strengths, transi-tion probabilities, et.As onerns the ollision properties, the in�uene ofrelativisti e�ets on exitation, radiative reombina-tion, and eletron-apture and eletron-loss ross se-tions for heavy ions olliding with neutral atoms aredisussed in various review artiles and books [5�11℄.Here, we investigate the in�uene of relativisti ef-fets on the eletron-loss ross setions of heavy andsuperheavy (Z �92) many-eletron ions olliding withneutral atoms, i. e., for the reationsXq+ +A! X(q+1)+ +�A+ e�; (1)*E-mail: shev�si.lebedev.ru

where Xq+ denotes the inident projetile ion with theharge q and A is the target atom; �A indiates thatthe outgoing target atom A an be exited or ionized.Together with another harge-hanging proess �eletron apture � eletron loss plays a key rolein many �elds of atomi, aelerator, and plasmaphysis: in prodution of long-lived ion beams in ael-erators and requirements for vauum onditions [12℄,ion thermonulear fusion program [13℄, partile tumortherapy [14℄, heavy-ion probe beam (HIPB) diagnos-tis [15℄, et.Another problem showing the importane of harge-hanging proesses is losely related to nulear physis.Reently, a detetion of superheavy elements withatomi numbers up to Z = 118 in nulear fusion evap-oration reations beame possible using the gas-�lledseparators based on harge-state equilibrium phenom-ena (see, e. g., [16; 17℄). Properly setting the magnetirigidity of the separators requires an aurate knowl-edge of ion veloity-to-harge ratio v=�q, where �q is theaverage (equilibrium) ion harge after the separator. Inthe atomi approah, the average harge and equilib-rium harge-state frations an be expressed in terms5



I. Yu. Tolstikhina, I. I. Tupitsyn, S. N. Andreev, V. P. Shevelko ÆÝÒÔ, òîì 146, âûï. 1 (7), 2014of the eletron-loss and apture ross setions [18℄ al-ulations of whih in the ase of superheavy elementsrequire aounting for the relativisti e�ets.In our previous papers devoted to the alulation ofeletron-loss ross setions (see, e. g., [19; 20℄), we usedthe RICODE omputer program, whih employs therelativisti interation between olliding partiles butnonrelativisti radial wave funtions for the bound andontinuum states of the projetile ative eletron. Thisode provides a reasonable agreement with experimen-tal eletron-loss ross setions for heavy many-eletronpositive ions (up to uranium ions) olliding with neutralatoms at ion energies 1 MeV/u < E < 100 GeV/u. Inthe ase of few-eletron heavy projetiles (H- and He-li-ke ions), it was found that the in�uene of relativistie�ets on the wave funtions is strong and leads to aseveralfold redution of the eletron-loss ross setions(see, e. g., [21; 22℄).The aim of this paper is to investigate the in�ueneof the relativisti e�ets on the eletron-loss ross se-tions for heavy and superheavy many-eletron ions ol-liding with neutrals using a newly reated RICODE-Mprogram. It is found that in the viinity of the ross-setion maximum, the in�uene of the relativisti ef-fets on the wave funtions is large for neutral andlow-harged atoms and ions, and at relativisti energiesE > 200 MeV/u, the in�uene of the relativisti ion�atom interation plays a major role and signi�antlyhanges the ross setion dependene on the ollisionenergy ompared with the Born asymptoti behavior.A desription of the RICODE-M program is also given.2. THE RICODE-M COMPUTER PROGRAMThe RICODE-M program (Relativisti IonizationCODE Modi�ed) is reated to alulate single-eletronloss ross setions for reation (1) and is based on therelativisti Born approximation [23℄. The general stru-ture of RICODE-M is similar to that of the previous RI-CODE program [19℄ but with one important di�erene:RICODE-M generates relativisti radial wave funtionsfor both bound and ontinuous states of the projetileative eletron, while RICODE applies nonrelativistiwave funtions. In both odes, the relativisti (mag-neti) interation between olliding partiles is used.2.1. Core potentials, wave funtions, andbinding energiesIn RICODE-M, the radial wave funtions P (r) ofthe ative eletron in the bound and ontinuum states

are alulated by numerially solving the Shrödinger-type equation with relativisti entral-symmetri po-tential U(r) of the atomi ore and a given energy ":�� 12 d2dr2 + l(l+ 1)2r2 + 1! U � r!��P (r) = " P (r); (2)where the saling fator ! is an eigenvalue of Eq. (2).The radial wave funtions P (r) of the projetile ativeeletron in the bound and ontinuous states are nor-malized as 1Z0 P 2nl(r) dr = 1;1Z0 P"�(r)P"0�(r) dr = �Æ("� "0); (3)where n and l denote the prinipal and orbital quan-tum numbers of the bound eletron, and " and � arethe energy and orbital quantum numbers of the ionizedeletron.The ore potential U(r) in (2) is a relativisti lo-al potential onstruted based on the density fun-tional theory (DFT) in the loal density approximation(LDA). The potential U(r) is reated by the proje-tile nuleus and the rest eletrons and onsists of threeparts: U(r) = Unul(r) + Uoul(r) + Uex(r): (4)The nulear potential Unul(r) is given byUnul(r) = Z �nul(r)jr� r0j ; (5)where expression for the nulear density �nul(r) de-pends on the nulear model to be used in RICODE-M(a point, volume, or Fermi models); Uoul(r) andUex(r) denote the Coulomb and exhange interationpotentials between ore eletrons.For bound states, the binding energies " < 0 arefound from the subroutine HFDD of the RICODE-Mprogram by solving the relativisti Dira�Fok radialequations (see [24℄):�� ddr + �r�Qn�(r) + �Unul(r) + Yn�(r)r ��� Pn�(r) = "n�Pn�(r)� XQn�(r)r ;� ddr+�r�Pn�(r)+ �Unul(r)+Yn�(r)r �22���Qn�(r) = "n�Qn�(r) � XPn�(r)r : (6)
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765432Fig. 1. Calulated eletron density P 27s(r) of the 7s or-bital in a neutral Rg atom, Z = 111. Solid urve � thefully relativisti alulation [25℄; dashed urve � thenonrelativisti wave funtion but the relativisti bind-ing energy, a RICODE result; solid urve with openirles � the relativisti wave funtion and relativistibinding energy, a RICODE-M result; dotted urve �the fully nonrelativisti alulationHere,  is a speed of light, � = (�1)l+j+1=2(j + 1=2) isthe relativisti quantum number, nlj are the prinipal,orbital, and total angular quantum numbers, Pn�(r)and Qn�(r) are the respetive large and small ompo-nents of the Dira radial wave funtion, Yn�(r)=r isthe Hartree�Coulomb potential, and XP (r);Q(r)n� =r arethe inhomogeneous parts of the di�erential Dira�Fokequations due to the nonloal exhange interation andnondiagonal Lagrange multipliers.For ontinuous states, the energies " > 0 and theradial wave funtions are found from Eq. (2) with thesame relativisti ore potential as for the initial boundstate, i. e., the relativisti ore potential U(r) is rep-resented in the loal form for both bound and ontin-uum states. Although the binding energies found inRICODE-M do not ompletely orrespond to the loalpotential U(r), the saling fator ! orrets this smallinonsistene; the alulated ! values are usually loseto unity: ! � 1.As an example of the alulated radial wave fun-tion, eletron densities of the 7s orbital in superheavyRg atoms (Z = 111, on�guration 6d97s2) are pre-sented in Fig. 1. The dotted line represents a fullynonrelativisti alulation, i. e., the one with the non-relativisti binding energy and the nonrelativisti ore

Table 1. Calulated relativisti ("rel) and non-relativisti ("nonrel) binding energies of a neutral Rgatom (Z = 111) having the eletroni on�guration1s22s2 : : : 5d106s26p65f146d97s2. "rel, "nonrel � theresult by the RICODE-M program, " � relativistiHartree�Fok alulations [2℄Shell " [2℄, a. u. "rel, a. u. "nonrel, a. u.7s1=2 0.4276 0.4278 0.24416d5=2 0.4119 0.4118 0.64776d3=2 0.5172 0.5171 0.64776p3=2 2.2765 2.2764 2.32276p1=2 3.8476 3.8477 2.32276s1=2 5.3549 5.3564 3.80945f7=2 3.0226 3.0224 2.79845f5=2 2.7986 2.7984 2.79845d5=2 10.1982 10.1979 11.05195d3=2 11.2795 11.2791 11.05195p3=2 17.2870 17.2865 16.64135p1=2 24.6863 24.6874 16.64135s1=2 28.7578 28.7645 19.7148: : : : : : : : : : : :1s1=2 6898.68 6900.22 5481.18potential U(r). The dashed line is a result of theRICODE program with the relativisti binding energybut with a nonrelativisti potential U(r), and the linewith open irles orresponds to RICODE-M alula-tions with the relativisti ore potential and relativistibinding energy. All three urves are ompared with therelativisti oupled-luster alulations based on theDira�Coulomb�Breit Hamiltonian [25℄. As an be seenfrom the �gure, the RICODE-M result is very lose tothe alulations in [25℄, espeially as onerns the mainmaximum. The relativisti e�ets inrease the max-imum value of the 7s-eletron density by a fator of1.5 and shift it toward the nuleus. As we see in whatfollows, this in�uene on the wave funtions hangesthe eletron-loss ross setions by about 30�40% at themaximum.The in�uene of the relativisti e�ets on the bind-ing energies in a neutral Rg atom (Z = 111) is illus-trated in Table 1, where the nonrelativisti and rela-tivisti results obtained by RICODE-M are omparedwith relativisti Hartree�Fok alulations [2℄. As ex-peted, the e�ets are very signi�ant (a fator of1.5) for ns orbitals beause only the wave funtions7



I. Yu. Tolstikhina, I. I. Tupitsyn, S. N. Andreev, V. P. Shevelko ÆÝÒÔ, òîì 146, âûï. 1 (7), 2014Rns(r) = Pns(r)=r for ns states are nonzero at the ori-gin and are therefore strongly in�uened by interationwith the nuleus.Table 2 shows a omparison of the binding ener-gies " and mean radii hri for eletron states in the ura-nium atom, alulated by RICODE-M, with relativistiHartree�Fok alulations [2℄ and the Hartree�Dira�Fok approah [4℄. A quite good agreement is seenbetween all the data presented.2.2. Eletron-loss ross setionsIn addition to alulating the relativisti ore poten-tial, binding energies, and radial wave funtions, theRICODE-M program is able to alulate the single-eletron loss ross setion �EL for arbitrary many-eletron atoms and ions olliding with neutral atoms;this is the main purpose of the program. The omputerode is based on the relativisti Born approximation inthe momentum-transfer q-representation in whih theprojetile-ionization matrix element has the form [5℄Mif = hf j(1� ��z)eiq�rjii; (7)where � = v= is the relativisti fator, �z is the z-om-ponent of the Dira matrix ~�, and jii and jfi are theomplete wave funtions of the olliding system in theinitial and �nal states. Using matrix element (7) andseparating radial and angular parts in the formula forthe eletron-loss ross setion �(v), we have the follow-ing resulting struture of �EL(v) [23℄:�EL(v) = 8�a20Nnlv2 1Zq0 Z2T (q)dqq3 ���jF (q)j2 + �2(1� q20=q2)(1� �2q20=q2)2 jG(q)j2� ; (8)v = �; q0 = (Inl + �)=v; (9)where a0 � 0:5292 � 10�8 m is the Bohr radius, v isthe ion veloity, n and l are the prinipal and orbitalquantum numbers of the projetile eletron shell withthe ionization potential Inl and the number of equiva-lent eletrons Nnl, � is the energy of the ejeted ele-tron, and ZT is the e�etive harge of the target, whihin general depends on q and the minimal momentumtransfer q0.The term proportional to jF j2 is used for nonrel-ativisti ollisions, and the term proportional to jGj2takes the relativisti (magneti) interation betweenolliding partiles into aount.
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Fig. 2. Eletron-loss ross setions of a neutral Rgatom (Z = 111) olliding with a He atom followedby the ejetion of 7s (a) and 6d (b) eletrons as fun-tions of the ollision energy. Dashed urves � al-ulations with nonrelativisti wave funtions for thebound and ontinuum states, the RICODE program;solid urves � same with relativisti wave funtions,the RICODE-M program. Vrel and Vnonrel indiatethe use of relativisti and nonrelativisti interations inalulation of the eletron-loss ross setions3. NUMERICAL CALCULATIONS OF THEELECTRON-LOSS CROSS SECTIONSThe results of the numerial alulations of eletron-loss ross setions of heavy and superheavy many-eletron atoms and ions are presented in Figs. 2�5. Thein�uene of the relativisti e�ets in the ase of olli-sions between Rg (Z = 111) and He atoms is demon-strated in Fig. 2 for the projetile ionization of 7s and6d eletrons. The di�erene in ross-setion values dueto the use of relativisti and nonrelativisti wave fun-tions for the ative eletron is shown. In both ases,this e�et is rather small (. 10%), although it is some-what larger for the eletron-loss ross setion with theejetion of a 6d eletron. But the in�uene of the rela-8



ÆÝÒÔ, òîì 146, âûï. 1 (7), 2014 In�uene of relativisti e�ets : : :Table 2. Calulated relativisti binding energies " and mean radii hri for eletroni shells in a neutral U atom (Z = 92)having the eletroni on�guration 1s22s2 : : : 5d106s26p65f36d17s2. The data marked �present� represent the result bythe RICODE-M programShell " [2℄, eV " [4℄, eV " present, eV hri [2℄, a. u. hri [4℄, a. u. hri present, a. u.5f7=2 8.69 8.71 8.84 1.46 1.46 1.465f5=2 9.43 9.52 9.56 1.42 1.42 1.426s1=2 58.16 57.96 58.05 1.50 1.46 1.506p3=2 26.79 26.67 26.72 1.90 1.90 1.906p1=2 36.54 36.46 36.37 1.66 1.66 1.676d5=2 4.99 4.98 5.00 3.29 3.29 3.296d3=2 5.24 5.25 5.25 3.15 3.15 3.157s1=2 5.50 5.50 5.50 4.34 4.34 4.35tivisti interation between olliding Rg and He atomsis very signi�ant (� 40�50%) for both 7s and 6d ele-trons, whih is shown in the �gure by the di�erenein the ross setions labeled by Vrel and Vnonrel. Inthe ase of the ejetion of a 7s eletron, the relativis-ti interation leads to a derease in the ross setion,while the eletron-loss ross setion for a 6d eletron isinreased due to relativisti interation.In some ases, a mutual in�uene of the relativistie�ets on the eletron-loss ross setions leads to a an-elation e�et when the total ross setions alulatedwith and without the relativisti e�ets beome loseto eah other, as is seen in Fig. 3, where the eletron-loss ross setions for Rg atoms (Z = 111) and singlyharged Uut atoms (Z = 113) olliding with He atomsare shown. We note that in the ollision energy rangeE < 1 MeV/u, ejetion of 7s and 6d eletrons of Rgatoms (Fig. 3a) makes the leading ontribution to thetotal ross setions (the one summed over all projetileeletroni shells).A similar anelation e�et in the total eletron-loss ross setions alulated with the relativisti ef-fets taken into aount ours in ollisions of Uut+ions with He atoms (Fig. 3b). The rough equality ofthe total ross setions alulated with and withoutrelativisti e�ets is also found in theoretial studiesof nonradiative eletron apture [9℄, radiative eletronapture [26℄, and radiative reombination [27℄ proessesinvolving highly harged ions.Figure 4 shows the in�uene of relativisti e�etson the eletron-loss ross setions in ollisions of U28+ions with Ar atoms as a funtion of the ion energy. Aontribution of eletron ionization from di�erent shells(indiated) and the total ross setion of U28+ ions by

Ar atoms is shown in Fig. 4a. Solid urves orrespondto alulations with relativisti wave funtions of theative eletron, and dashed urves to those with non-relativisti wave funtions; in both ases, the relativis-ti interation is used (the seond term in Eq. (8)). Wean see that in the ase of highly harged projetiles,the use of relativisti wave funtions leads to a rathersmall hange (. 10%) of the eletron-loss ross setionsover the energy range onsidered. But the in�uene ofthe relativisti interation between olliding partiles isextremely large at relativisti energies, whih is demon-strated in Fig. 4b by a di�erene between the solid urve(fully relativisti alulations) and the dashed urve(nonrelativisti alulations).One of the basi appliations of eletron-loss rosssetions is the determination of beam lifetimes of heavyions injeted into an aelerator. The ion-beam life-time � depends on the ion energy, interation rosssetions of the ion beam with the residual atoms andmoleules in the aelerator, and the so-alled vauumonditions, i. e., pressure and onentrations of the rest-gas omponents, whih are usually given by a mixtureof H2, He, O2, N2, H2O, CO, CO2, CH4, and Ar gases.Typial onentrations Y of the basi rest-gas atomsand moleules in aelerators are Y (H2) � 70�90%,Y (N2) � 20�30%, and Y (Ar) � 1�3%.The ion-beam lifetime in an aelerator an be es-timated using the formula� = "��XT YT �� ��ECT (q; v; ZT ) + �ELT (q; v; ZT )� #�1 ; (10)9
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Fig. 3. a) Eletron-loss ross setions of a neutral Rgatoms (Z = 111) olliding with a He atoms, followedby the ejetion of 6d and 7s eletrons, and the to-tal ross setions as a funtion of the ollision en-ergy. Dashed urves � the fully nonrelativisti al-ulations (with nonrelativisti wave funtions and in-teration); solid urves � the fully relativisti alula-tions, RICODE-M results. The urves with open irlesare the total eletron-loss ross setions. b) The totaleletron-loss ross setions of singly harged Uut atoms(Z = 113) olliding with He atoms. Dashed urves �the fully nonrelativisti alulations, solid urves � thefully relativisti alulations, RICODE-M resultswhere � denotes the rest-gas density, � = v= is therelativisti fator, q and v are the harge and veloityof the projetile ions, ZT is the nulear harge of therest-gas atoms, and �EC and �EL are the total eletron-apture and eletron-loss ross setions (summed overmulti-eletron apture and loss proesses). The sum-mation over T in (10) is made over all rest-gas ompo-nents. For moleules, the Bragg additive rule is used:the ross setion for a moleule is represented as asum of those of atoms omposing the moleule, e. g.,�(H2O) = 2�(H) + �(O).In real onditions, the determination the ion-beamlifetime is a muh more ompliated problem and is notdesribed by Eq. (10) beause the rest-gas density and
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E, MeV/uFig. 4. Eletron-loss ross setions of U28+ ions(Z = 92) in ollisions with Ar atoms as funtions of theion energy. a) In�uene of relativisti wave funtions oneletron-loss ross setions for the ejetion of eletronsfrom di�erent shells of U28+ ions. Dashed urves �semirelativisti alulations (with relativisti intera-tion and nonrelativisti wave funtions), solid urves �the fully relativisti alulations, RICODE-M results.b) The total eletron-loss ross setions alulated inthe fully nonrelativisti (dashed urves) and fully rela-tivisti (solid urves) approximations, the RICODE-Mresultsonentrations YT are di�erent in di�erent points of theaelerator volume and are in general time-dependent,and beause the rest-gas atoms and moleules an beionized by the projetile ion beam, leading to a hangeof the interation with the projetiles, and so on (see,e. g., [12℄). However, the use of Eq. (10) leads to quitereasonable results.As an example, the experimental lifetime of theU73+-ion beam as a funtion of the ion energy at spe-i�ed vauum onditions is shown in Fig. 5a in om-parison with the present alulations; the vauum on-ditions used in alulations are indiated in the �g-ure. The apture ross setions are alulated using theCAPTURE ode desribed in [28℄. As an be seen from10
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Fig. 5. a) Lifetimes of a U73+-ion beam as fun-tions of the ion energy at the rest-gas omponentsshown in the �gure. Experiment: dashed lines [29℄and [30℄; theory: solid lines with the rest-gas density� = 3:4� 10�10 mbar, the RICODE-M result. b) Con-tributions of �vAT (�ECT + �ELT ) values of basi rest-gas atomi omponents (H, C, O, and Ar) to the sumin (10) as funtions of the ion energy, the RICODE-Mresult. AT are oe�ients aounting for the rest-gasonentrations YT , shown in the �gure, and the use ofBragg's additive rule: AT (H) = 2:11, AT (C) = 0:15,AT (O) = 0:0302, and AT (Ar) = 0:0325the �gure, at the given vauum onditions and energiesE & 100 MeV/u, the lifetime value beomes a onstantvalue, � � 300 s, due to the in�uene of relativistie�ets in the partile interation: they lead to quasi-onstant values of the eletron-loss ross setions (seeFig. 4), and, as a onsequene, to quasionstant life-time values. We note that at energies E & 100 MeV/u,eletron-apture proesses do not ontribute to the life-time of the U73+ ion beam, but at low energies, on theontrary, eletron apture is the main harge-hangingmehanism that leads to a derease in the beam lifetimeas the energy dereases.The alulated ontribution of di�erent rest-gasatomi omponents to the lifetime of U73+-ion beam

is shown in Fig. 5b, with eah term in the denom-inator in (10) shown in Fig. 5a. The oe�ientsAT are the produt of the onentrations given inFig. 5b and oe�ients following from the Bragg ad-ditive rule. As an be seen from the �gure, at low en-ergies E � 1�2 MeV/u, the main in�uene on the beamlifetime is due to ollisions with light target atoms, Hand C, whereas at high energies E > 100MeV/u, the Cand Ar atoms are mainly responsible for the ion-beamlifetime in the aelerator.4. CONCLUSIONWe desribed a newly reated RICODE-M om-puter ode, whose purpose is to alulate the eletron-loss ross setions of many-eletron heavy ions ollid-ing with neutral atoms using relativisti wave funtionsand relativisti interation between olliding partiles.In the ase of heavy and superheavy projetiles (withthe atomi number Z � 80), the use of relativisti wavefuntions is the most important for low-harged ions;it hanges the eletron-loss ross setion values at en-ergies E = 20�50 keV/u by about 20�30% around theross-setion maximum ompared to the values alu-lated with nonrelativisti wave funtions.At relativisti energies E � 200 MeV/u, therelativisti (magneti) interation between ollidingpartiles plays a main role and leads to a quasionstantross setion behavior that limits the lifetimes of highlyharged projetile ions in aelerators.Two of us (IIT and VPS) thank Th. Stöhlker for hishospitality during our stay at GSI/Darmstadt in June2013. REFERENCES1. I. P. Grant, Adv. Phys. 19, 747 (1970).2. J. P. Deslaux, Atom. Data Nul. Data Tabl. 12, 311(1973).3. R. D. Cowan and D. C. Gri�n, J. Opt. So. Amer. 66,1010 (1976).4. K. G. Dyall and K. Foegri, Introdution to Relativis-ti Quantum Chemistry, Oxford Univ. Press, Oxford(2007).5. J. Eihler and W. E. Meyerhof, Relativisti AtomiCollisions, Aad. Press, New York (1995).6. J. Eihler and Th. Stöhlker, Phys. Rep. 439, 1 (2007).11
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