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ENERGY SPECTRUM OF THE ENSEMBLE OF WEAKLYNONLINEAR GRAVITY�CAPILLARY WAVES ON A FLUID SURFACEE. Tobis
h *Institute for Analysis, Johannes Kepler University4040, Linz, AustriaRe
eived Mar
h 27, 2014We 
onsider nonlinear gravity�
apillary waves with the nonlinearity parameter " � 0:1�0:25. For this nonli-nearity, time s
ale separation does not o

ur and the kineti
 wave equation does not hold. An energy 
as
adein this 
ase is built at the dynami
 time s
ale (D-
as
ade) and is 
omputed by the in
rement 
hain equationmethod �rst introdu
ed in [15℄. We for the �rst time 
ompute an analyti
 expression for the energy spe
trumof nonlinear gravity�
apillary waves as an expli
it fun
tion of the ratio of surfa
e tension to the gravity a

el-eration. We show that its two limits � pure 
apillary and pure gravity waves on a �uid surfa
e � 
oin
idewith the previously obtained results. We also dis
uss relations of the D-
as
ade model with a few knownmodels used in the theory of nonlinear waves su
h as Zakharov's equation, resonan
e of modes with nonlinearStokes-
orre
ted frequen
ies, and the Benjamin�Feir index. These 
onne
tions are 
ru
ial in understanding andfore
asting spe
i�
s of the energy transport in a variety of multi
omponent wave dynami
s, from o
eanographyto opti
s, from plasma physi
s to a
ousti
s.DOI: 10.7868/S00444510140801731. INTRODUCTIONUntil re
ently, the notion of an �energy 
as
ade� ina weakly nonlinear wave system was traditionally as-so
iated with kineti
 wave turbulen
e theory (WTT),where the energy spe
trum is a stationary solution ofthe wave kineti
 equation. The wave kineti
 equationwas �rst introdu
ed in 1962 by Hasselmann [1℄, and its�rst stationary solution (for 
apillary waves) was foundin 1967 by Zakharov and Filonenko [2℄. Subsequently,their method of �nding stationary solutions was gener-alized to various weakly nonlinear wave systems withdispersion [3℄.The kineti
 equation 
an be solved numeri
ally forany nontrivial dispersion fun
tion ! with a given dis-persion relation ! = !(k), where k is the wave ve
tor.In the parti
ular 
ase of the dispersion fun
tion of theform ! � k�; k = jkj; � > 1;kineti
 WTT gives an analyti
 predi
tion for the energyspe
trum in the power-law form � k�� , � > 0; where� is di�erent for wave systems with di�erent disper-*E-mail: Elena.Tobis
h�jku.at

sion fun
tions but does not depend on the ex
itationparameters.The predi
tion holds in the so-
alled inertial inter-val, where for
ing and dissipation are balan
ed su
hthat energy is 
onserved within this interval (it is as-sumed that pumping and dissipation are spa
ed farapart in Fourier spa
e). The basi
 physi
al me
hanismleading to the formation of a kineti
 energy 
as
ade(K-
as
ade) is the s-wave resonan
e intera
tions of li-near Fourier modesA(t="s�2) exp i[kx� !t℄ (1)with slowly 
hanging amplitudes. The s-wave res-onan
es o

ur independently at di�erent time s
alest="s�2, s � 3, where 0 < " � 1 is a small parameter,e. g., " � 10�2 for water waves.Rapid te
hnologi
al progress in the �eld of mea-surement methods and measuring te
hniques allowed asystemati
 study of the spe
trum in various �uid sys-tems in the past two de
ades. The experimental dataturned out to be rather 
ontradi
tory, in
luding 
hainssu
h as: the energy spe
trum is not formed, and energyex
hange within a small set of Fourier modes o

ursinstead; the energy spe
trum and a power law are ob-served, but the exponent di�ers from the one predi
tedby kineti
 WTT; the exponent depends on the param-405
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h ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014eters of the initial ex
itation; the inertial interval doesnot exist, and so on. Without 
laiming to be exhaus-tive, we give a few referen
es to the most thorough and
redible re
ent experiments [4�8℄. A very respe
tablelist of referen
es 
an be found in a re
ent review byNewell and Rumpf [9℄.Some of these e�e
ts have found their explanationin the framework of the dis
rete WTT [10, 11℄; for in-stan
e, the absen
e of the inertial interval is due to thenonlo
ality of resonan
e intera
tion, for some types ofdispersion fun
tions. The lo
ality of intera
tion in ki-neti
 WTT is understood as follows: only the inter-a
tion of waves with wavelengths of the same order isallowed. However, it has been known for more than20 years [12, 13℄ that, say, 
apillary waves with wave-lengths of the orders k and k3 
an intera
t dire
tly,i. e., build a joint resonan
e triad; more examples 
anbe found in [14℄.The model of the energy spe
tra formation in wavesystems with weak and moderate nonlinearity allow-ing the observed experimental shape of the energyspe
trum to be re
on
iled with the predi
tions madefor the K-
as
ade was �rst proposed in 2012 by Kar-tashova [15℄. In this model, the triggering physi
alme
hanism for an energy 
as
ade formation is the mod-ulation instability (MI), and the 
orresponding energy
as
ade is 
alled a dynami
al 
as
ade (D-
as
ade); aD-
as
ade is a sequen
e of distin
t modes in Fourierspa
e. The use of the spe
ially developed in
rement
hain equation method (ICEM) allows 
omputing theenergy spe
trum of a D-
as
ade.The energy spe
trum in the D-model is a solutionof the so-
alled 
hain equation. It 
onne
ts frequen
iesand amplitudes of two adja
ent modes in D-
as
ade.Energy spe
tra for 
apillary and surfa
e water waves(with the respe
tive dispersion fun
tions !2 = �k3 and!2 = gk) are 
omputed in [15℄ for di�erent values of asmall parameter " � 0:1�0:4 
hosen as the ratio of thewave amplitude to the wave length.Here, we sket
h the ICEM and 
ompute the energyspe
trum of an ensemble of weakly nonlinear gravity�
apillary waves with the dispersion fun
tion!2 = gk + �k3:We also demonstrate intrinsi
 mathemati
al 
onne
-tions between the D-model and other models des
rib-ing nonlinear wave intera
tion at the same temporaland spatial s
ales: Zakharov's equation, resonan
es ofnonlinear Stokes waves, and the Benjamin�Feir index.

2. INCREMENT CHAIN EQUATION METHOD(ICEM)The physi
al me
hanism underlying the formationof a D-
as
ade is modulation instability, whi
h 
an bedes
ribed as the de
ay of a 
arrier wave !0 into twoside bands !1 and !2:!1 + !2 = 2!0; ~k1 + ~k2 = 2~k0 +�; (2)!1 = !0 +�!; !2 = !0 ��!; 0 < �! � 1: (3)A wave train with the initial real amplitude A, wa-venumber k = j~kj, and frequen
y ! is modulationallyunstable if 0 � �!=Ak! � p2: (4)Equation (4) des
ribes an instability interval for thewave systems with a small nonlinearity of the order of" � 0:1 to 0.2, �rst obtained in [16℄. It is also estab-lished for gravity surfa
e waves that the most unstablemodes in this interval satisfy the 
ondition�!=Ak! = 1: (5)The essen
e of the ICEM is the use of (5) for 
om-puting the frequen
ies of the 
as
ading modes. At the�rst step of the D-
as
ade, a 
arrier mode has a fre-quen
y !0 and the distan
e to the next 
as
ading mode(�!)1 = j!0 � !1jwith the frequen
y !0 
hosen su
h that 
ondition (5) issatis�ed, i. e., j!0 � !1j = A0k0!0:At the se
ond step of the D-
as
ade, a 
arrier modehas the frequen
y !1, the distan
e to the next 
as
ad-ing mode (�!)2 = j!1 � !2jis 
hosen su
h thatj!1 � !2j = A1k1!1;and so on.In this way, a re
ursive relation for the 
as
adingmodes 
an easily be obtained:ppnAn = A(!n � !nAnkn): (6)Here, we let pn denote the fra
tion of energy trans-ported from the 
as
ading modeAn = A(!n)406
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trum of the ensemble : : :to the 
as
ading modeAn+1 = A(!n+1);i. e., An+1 = ppnAn. This fra
tion p is 
alled the 
as-
ade intensity [15℄.Equation (6) des
ribes two 
hain equations: one
hain equation with the plus sign for a dire
t D-
as
adewith !n < !n+1 and another 
hain equation for the in-verse D-
as
ade with !n > !n+1.Speaking generally, the 
as
ade intensitypn = pn(A0; !0; n)might be a fun
tion of the ex
itation parameters A0; !0and the step n. But be
ause numerous experimentshave established that pn depends only on the ex
ita-tion parameters and does not depend on the step n,all the formulas below are given for a 
onstant 
as
adeintensity. A

ordingly, the notation p is used insteadof pn. This means in parti
ular thatAn+1 = ppAn = pn=2A0;and be
ause the energy behaves asEn � A2n;it follows that En � pnA20;i. e., the energy spe
trum of the D-
as
ade amplitudeshas an exponential form.Taking a Taylor expansion of the right-hand sideof the 
hain equation and retaining only the �rst twoterms of the resulting series, we 
an derive an ordinarydi�erential equation des
ribing stationary amplitudesof the 
as
ading modes. The 
onsequent steps of theICEM are given below.1) Relation between neighboring amplitudes:An+1 = ppAn: (7)2) Condition for the maximal in
rement:j!n+1 � !njf(!nAnkn) = 1; (8)where f(!nAnkn) is a known fun
tion of the produ
t!nAnkn. For instan
e,f(!nAnkn) = !nAnknfor gravity surfa
e waves with the small parameter ofthe order of 0.1�0.2. Examples for bigger nonlinearitiesand also for other wave types 
an be found in [17, 18℄.

3) Chain equations:An+1 � A(!n+1) == A(!n � f(!nAnkn)) = ppA(!n); (9)where the plus sign should be taken for the dire
t 
as-
ade and the minus for the inverse 
as
ade.4) Approximate ODE(s) for the amplitude An:ppAn � An �A0nf(!nAnkn): (10)5) Dis
rete energy spe
trum En � A2n.6) Spe
tral densityS(!) = ���� limn!1 dEnd!n ���� : (11)In parti
ular, the formula below gives an expli
itexpression for wave amplitudes (for the dire
t 
as
ade)in the 
ase of a small initial nonlinearity " � 0:1�0.25:A(!n) = (pp� 1) Z d!n!nk(!n) : (12)Let us remark, that it is known that if the auto
or-relation fun
tion involves temporal measurements at asingle point, then the power spe
trum has the unitsm2/Hz. It is easy to verify that the spe
tral densityS(!) has the 
orre
t units. Indeed, as we 
ompute theamplitudes at single points, the amplitudes A(!n) havethe units m, then their squares A(!n)2 have the unitsm2, and the spe
tral density S(!) has the units m2/Hz.We illustrate the method des
ribed above with anexample of gravity surfa
e waves, with the weak non-linearity " � 0:1�0.25, �rst 
omputed in [15℄.Example: Gravity surfa
e waves. In this 
ase,!2 = gk;and f(!nAnkn) = !nAnkn(see [16℄), whi
h yieldsj(�!)nj!nAnkn = 1: (13)Then pp� 1 � �A0n!3n; (14)and we obtainA(Dir)n = g �1�pp �2 !�2n + C(Dir); (15)A(Inv)n = �g �1�pp �2 !�2n + C(Inv); (16)407
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h ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014E(!n)(Dir) � hg �1�pp �2 !�2n + C(Dir)i2; (17)E(!n)(Inv) � h� g �1�pp �2 !�2n + C(Inv)i2; (18)with C(Dir) = A0 � g �1�pp �2 !�20 ; (19)C(Inv) = A0 + g �1�pp �2 !�20 : (20)Be
ause we assume that p = 
onst, the spe
i�
 
hoi
eof the ex
itation parameters allows 
omputing the 
as-
ade intensity p expli
itly as a fun
tion of the ex
itationparameters A0, !0: Indeed, for example, we 
onsiderthe 
ase of a dire
t 
as
ade and the 
hoose the ex
ita-tion parameter C(Dir) = 0:We obtain A0 � g �1�pp �2 !�20 = 0;then p = �1� 2A0!20g �2 : (21)A

ordingly,E(!n)(Dir) = (A0!0!�2n )2 / !�4nand the spe
tral density is given byS(!)grav / !�5:This 
orresponds to the 
elebrated Phillips spe
-trum [19℄, and also to the real o
eani
 measure-ments 
oined the JONSWAP wave spe
trum for wind-generated waves. The JONSWAP spe
trum is the stan-dard wave spe
trum input used in pra
ti
al engineer-ing, e. g., for pra
ti
al fatigue 
al
ulation for o�-shorestru
tures.A similar 
omputation for 
apillary waves with asmall nonlinearity yieldsE(!n)(Dir) / !�4=3n ; S(!)
ap / !�7=3:

3. D-SPECTRA OF GRAVITY�CAPILLARYWAVES3.1. Computation of the spe
trumIn this 
ase, 
omputation of An = A(!n) is verytedious and is omitted here. Instead, we 
omputeAn = A(kn) by 
hanging the integration variablein (12); some preliminary 
omputations are ne
essary:!(k) = pg k + �k3; (22)!0k = g + 3�k22pg k + �k3 ; (23)!0k!(k)k = g + 3�k2�2pg k + �k3 ��pg k + �k3 � k = (24)= g + 3�k22k(g k + �k3) ; (25)Agr�
ap(k) = (pp� 1) Z !0k dk!(k)k = (26)= pp� 12 Z (g + 3�k2) dkk(g k + �k3) : (27)This inde�nite integral 
an be 
omputed expli
itly,Z (g + 3�k2) dkk(gk + �k3) == 2r�g ar
tan�r�g k�� k�1 + 
onst; (28)whi
h yields (for the dire
t 
as
ade)Agr�
ap(kn) == 1�pp2 �k�1n � 2r�g ar
tan�r�g kn����1�pp2 �k�10 �2r�g ar
tan�r�g k0��+A0: (29)Keeping in mind that the 
as
ade intensity p is 
on-stant, we obtainAgr�
ap(kn) � �k�1n � 2pa ar
tan �pakn�� ; (30)Egr�
ap(kn) � �k�1n � 2pa ar
tan �pakn��2 ; (31)S(k)gr�
ap �� ����� 1k2 + 2a21 + a2k2��1k � 2a ar
tan(a k)����� ; (32)408
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trum of the ensemble : : :where the notation a = �=g is used.The D-
as
ade among gravity�
apillary waterwaves with " � 0:1 is formed on the time s
ale of theorder of dozens of se
onds [20℄; for instan
e, for a wavewith the wavelength 10 
m, the 
orresponding times
ale is 25 se
onds, and the D-
as
ade would be easyto observe in a laboratory experiment.3.2. Consisten
y 
he
kEnergy spe
tra for pure gravity and pure 
apillarywaves were obtained in [15℄ in the form A = A(!). To
he
k the 
onsisten
y of (30) with the results obtainedabove for gravity�
apillary waves, we have to rewritethem in the form A = A(k) as follows:A(k) = (pp� 1) Z !0kdk!(k)k : (33)For surfa
e gravity waves, this yieldsAgrav(k) = (pp� 1)Z !0kdk!(k)k == (pp� 1)Z � pg2k1=2 1pg k1=2k� dk == pp� 12 Z dkk2 ;Agrav(k) = 1�pp2 (k�1 � k�10 ) +A0; (34)and for 
apillary waves, we haveA
ap(k) = (pp� 1) Z !0kdk!(k)k == (pp� 1) Z �3p� k1=22 1p�k3=2 k� dk == 3 �pp� 1�2 Z dkk2 ;A
ap(k) = 3 �1�pp �2 (k�1 � k�10 ) +A0: (35)To avoid tedious 
al
ulations, we 
onsider a spe
ial
hoi
e of the ex
itation parameters, su
h that A(k) // k�1; thenEgrav(k) / k�2; Sgrav(k) / k�3; (36)E
ap(k) / k�2; S
ap(k) / k�3: (37)We now dis
uss the expression in the integrandin (27) in two limit 
ases: (a) � ! 0 and (b) g ! 0.

In the �rst 
ase, integral (27) transforms into R k�2dk,and 
onsequentlyAgr�
ap(k) = 1�pp2 �k�1 � k�10 �+ A0 == Agrav(k): (38)In the se
ond 
ase, integral (27) transforms intoR 3k�2dk, and 
onsequentlyAgr�
ap(k) = 3 �1�pp �2 �k�1 � k�10 �+A0 == A
ap(k): (39)This means that the expression for the energy spe
-trum of gravity�
apillary waves is 
onsistent with thepreviously obtained results for pure gravity and pure
apillary waves, i. e., the D-model itself is 
onsistent.Another important 
he
k follows from the standardrelation Z S(!) d! = Z S(k) dk(in one spatial dimension). Rewriting it asS(k) = S(!)d!dk ;we 
an 
ompute S(k)grav and S(k)
ap:S(k)grav / k�1=2k�5=2 = k�3; (40)and S(k)
ap / k�7=2k1=2 = k�3; (41)whi
h is in a

ordan
e with formulas (36) and (37).4. CONNECTION OF THE D-MODEL WITHOTHER MODELSOn di�erent s
ales in time and spa
e, there aremany models des
ribing various phenomena and pro-
esses in nonlinear wave intera
tion. Some of thesemodels have the same time and spa
e s
ale as theD-
as
ade. In this se
tion we show that a dire
t math-emati
al relation between the D-model and a few otherknown models exists.(I) The 
omputation of the D-
as
ade spe
trademonstrated above and in [21℄ has been performed inthe framework of the nonlinear S
hrödinger equationor its modi�
ations. As modulation instability existsin other evolutionary dispersive nonlinear partial dif-ferential equations, e. g., in generalized versions of theKorteweg�de Vries equation [22; 23℄, Hasegawa�Mima409
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h ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014equation [24℄, and others; the ICEM 
an also be di-re
tly applied for these equations. All the di�eren
ebetween di�erent equation would be �hidden� in theform of the 
hain equation.(II) The 
omputation kindly provided to us byMiguel Onorato in the general dis
ussion at the Work-shop �Wave Turbulen
e� (E
ole de Physique, LesHou
hes, Fran
e, 2012) shows a 
onne
tion between theD-
as
ade and Zakharov's equation.We �rst rewrite (8) as~!R = !0 + !0A0k0; (42)~!L = !0 � !0A0k0 (43)and 
onsider a system of three dis
rete waves using thede
ompositionak = b0Æ0k + bLÆLk + bRÆRk : (44)Here, b0 is the 
arrier wave and bL and bR are the leftand right sidebands;L = k0 +�k; R = k0 ��k:Assuming that bL and bR are small 
ompared withb0 and negle
ting nonlinear terms in the sidebands am-plitude, after substituting (44) into Zakharov's equa-tion�a1�t + i!1a1 = �i Z dk2;3;4T1;2;3;4a�2a3a4Æ3412 ; (45)we obtaindb0dt + i!0b0 = �iT0;0;0;0jb0j2b0;dbLdt + i!LbL == �i2TL;0;L;0jb0j2bL � iTL;R;0;0b20b�R;dbRdt + i!RbR == �i2TR;0;R;0jb0j2bR � iTR;L;0;0b20b�L: (46)
If we are interested only in the intera
tion of ea
hsideband with the 
arrier wave, independently of theother, then we 
an easily �nd the dispersion relationfor bL and bR. The solution of the �rst equation isstraightforward:b0 = ~b0 exp h�i(!0 + T0;0;0;0j~b0j2)ti ; (47)when
e ~!0 = !0 + T0;0;0;0j~b0j2; (48)

with T0;0;0;0 = k3;but we must re
all that the Zakharov equation is writ-ten for the wave a
tion variable that is related to thesurfa
e elevation �0 as�0 =p2k0=!0b0;and therefore the dispersion relation is~!0 = !0�1 + 12k20�20� : (49)Negle
ting the intera
tion between the two sidebands,we obtaindbLdt + i!LbL = �i2TL;0;0;Ljb0j2bL;dbRdt + i!RbR = �i2TR;0;0;Rjb0j2bR: (50)The nonlinear dispersion relation for the sidebands is~!L = !L + 2TL;0;0;Lj~b0j2;~!R = !R + 2TR;0;0;Rj~b0j2: (51)The diagonal part of the 
oupling 
oe�
ient has theform T1;2;1;2 = k1k2min(k1; k2);and thereforeTL;0;0;L = k0k2L = k0(k0 ��k)2;TR;0;0;R = k20kR = k20(k0 +�k): (52)Hen
e,~!L = pg(k0 ��k) + !0(k0 ��k)2�20 ;~!R = pg(k0 +�k) + !0k0(k0 +�k)�20 : (53)Taylor expanding in �k and negle
ting nonlinear dis-persive terms of the 
ubi
 order, we write the resonant
ondition as2~!0 � ~!L � ~!R = ��20k20!0 + !0�k24k20 = 0; (54)then �kk0 = 2k0�0 = 2"; (55)where " is the steepness of the 
arrier wave. Be
ause2�k=k0 = �!=!0;Eq. (55) 
an be rewritten as�!!0 = ": (56)410
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trum of the ensemble : : :Equation (56) 
oin
ides with (5) and therefore 
or-responds to the instability maximum in the Benja-min�Feir instability 
urve.Thus, we have shown that ea
h step of the D-
as
a-de, Eq. (9), des
ribes an exa
t 4-wave resonan
e in theZakharov's equation between the modes with nonlinearStokes-
orre
ted frequen
ies.(III) The D-
as
ade as a whole 
an be regarded as aresonan
e 
luster formed by a few 
onne
ted exa
t res-onan
es of nonlinear Stokes modes. This means that inorder to dedu
e the 
hain equation, we do not need themodulation instability; in fa
t, the MI is just a suitablemathemati
al language for des
ribing an energy 
as-
ade in the fo
using evolutionary NPDEs. The generalmathemati
al obje
t des
ribing energy 
as
ades bothfor fo
using and nonfo
using NPDEs is a resonan
e
luster formed by a few 
onne
ted exa
t resonan
es ofnonlinear Stokes modes.Obje
ts of this type are studied by the homo-topy analysis method [25℄. Re
ent appli
ation of thismethod allowed des
ribing a steady-state resonan
e ofmultiple wave intera
tions in deep water [26℄; numeri-
al simulation with Zakharov's equations demonstratesqualitative agreement with the results obtained by thehomotopy analysis method.In 
ontrast to perturbative methods usually ap-plied for studying nonlinear problems, this method doesnot introdu
e a small parameter and works in realisti
physi
al setups.(IV) Freak or rogue waves are a quite popular sub-je
t in the last few de
ades, with di�erent models de-s
ribing their appearan
e having been proposed. Threemain types of models are used for des
ribing rogue waveformation: linear (spatial fo
using or fo
using due todispersion), weakly nonlinear (fo
using due to modula-tion instability), and essentially nonlinear wave intera
-tion [27℄. In the real numeri
al models for weather ando
ean wave �eld predi
tion, the so-
alled Benjamin�Feir index (BFI) is su

essfully used for 
hara
terizingthe probability of the freak wave appearan
e.The BFI is de�ned as the ratio of the wave steepnessk0A to the spe
trum width �!=!0 and the probabil-ity of high waves o

urren
e is nonzero if BFI = 1 orbigger, i. e., beginning withBFI = k0A�!=!0 = 1: (57)However, it was shown quite re
ently that freak waves
an also o

ur in systems where the MI is absent andBFI = 0 [28℄.This apparent 
ontradi
tion is easy to explain ifwe note that (57) is equivalent to the 
ondition for

the maximal in
rement (8) and 
onsequently to 
hainequation (9), whi
h in turn 
an be des
ribed withoutinvoking modulation instability, as was demonstratedin (III). 5. DISCUSSIONIn this paper, we have demonstrated how to applythe in
rement 
hain equation method for 
omputingthe energy spe
trum of an ensemble of weakly nonlin-ear gravity�
apillarywaves with the dispersion fun
tion!2 = gk+�k3 and a small parameter " � 0:1�0.25. Theenergy spe
trum is 
omputed analyti
ally as a fun
tionof g=�, see (32); the D-spe
tra in the two limit 
ases �pure gravity, !2 = gk, and pure 
apillary, !2 = �k3; �
oin
ide with the known results �rst presented in [15℄.The D-
as
ade among gravity�
apillary waterwaves is formed at the time s
ale of the order of dozensof se
onds and 
an easily be observed in laboratory ex-periment. Various 
hara
teristi
s of the D-
as
ade inthis 
ase (its dire
tion, possible s
enarios of 
as
ade ter-mination, et
.) 
an be studied analyti
ally, similarly tothe 
ase of pure gravity waves presented in [21℄. Thiswork is in progress.We have also demonstrated that the D-
as
ade,though being a novel model, is dire
tly 
onne
ted withother important topi
s widely studied in �uid me
han-i
s, e. g., resonan
e 
lustering of modes with nonlinearStokes 
orre
ted frequen
ies or the 
riterion for thefreak wave appearan
e. This allows transferring theideas, 
on
epts, and approa
hes from one s
ienti�
area to another and studying them in a new setting.Knowledge of the 
onne
tions between di�erent modelsis 
ru
ial in the understanding and fore
asting spe
i�
sof the energy transport in a variety of multi
omponentnonlinear wave systems o

urring virtually everywherefrom o
eanography to opti
s, from plasma physi
s toa
ousti
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