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ENERGY SPECTRUM OF THE ENSEMBLE OF WEAKLY
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We consider nonlinear gravity—capillary waves with the nonlinearity parameter ¢ ~ 0.1-0.25. For this nonli-
nearity, time scale separation does not occur and the kinetic wave equation does not hold. An energy cascade
in this case is built at the dynamic time scale (D-cascade) and is computed by the increment chain equation
method first introduced in [15]. We for the first time compute an analytic expression for the energy spectrum
of nonlinear gravity—capillary waves as an explicit function of the ratio of surface tension to the gravity accel-
eration. We show that its two limits — pure capillary and pure gravity waves on a fluid surface — coincide
with the previously obtained results. We also discuss relations of the D-cascade model with a few known
models used in the theory of nonlinear waves such as Zakharov's equation, resonance of modes with nonlinear
Stokes-corrected frequencies, and the Benjamin—Feir index. These connections are crucial in understanding and
forecasting specifics of the energy transport in a variety of multicomponent wave dynamics, from oceanography
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to optics, from plasma physics to acoustics.
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1. INTRODUCTION

Until recently, the notion of an “energy cascade” in
a weakly nonlinear wave system was traditionally as-
sociated with kinetic wave turbulence theory (WTT),
where the energy spectrum is a stationary solution of
the wave kinetic equation. The wave kinetic equation
was first introduced in 1962 by Hasselmann [1], and its
first stationary solution (for capillary waves) was found
in 1967 by Zakharov and Filonenko [2]. Subsequently,
their method of finding stationary solutions was gener-
alized to various weakly nonlinear wave systems with
dispersion [3].

The kinetic equation can be solved numerically for
any nontrivial dispersion function w with a given dis-
persion relation w = w(k), where k is the wave vector.
In the particular case of the dispersion function of the
form

w~ k*,

E=1k|, a>1,

kinetic WTT gives an analytic prediction for the energy
spectrum in the power-law form ~ k=%, 3 > 0, where
[ is different for wave systems with different disper-
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sion functions but does not depend on the excitation
parameters.

The prediction holds in the so-called inertial inter-
val, where forcing and dissipation are balanced such
that energy is conserved within this interval (it is as-
sumed that pumping and dissipation are spaced far
apart in Fourier space). The basic physical mechanism
leading to the formation of a kinetic energy cascade
(K-cascade) is the s-wave resonance interactions of li-
near Fourier modes

A(t)e5?) expilka — wt] (1)

with slowly changing amplitudes. The s-wave res-
onances occur independently at different time scales
t/e572 s > 3, where 0 < ¢ < 1 is a small parameter,
e.g., € ~ 1072 for water waves.

Rapid technological progress in the field of mea-
surement methods and measuring techniques allowed a
systematic study of the spectrum in various fluid sys-
tems in the past two decades. The experimental data
turned out to be rather contradictory, including chains
such as: the energy spectrum is not formed, and energy
exchange within a small set of Fourier modes occurs
instead; the energy spectrum and a power law are ob-
served, but the exponent differs from the one predicted
by kinetic WTT; the exponent depends on the param-
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eters of the initial excitation; the inertial interval does
not exist, and so on. Without claiming to be exhaus-
tive, we give a few references to the most thorough and
credible recent experiments [4-8]. A very respectable
list of references can be found in a recent review by
Newell and Rumpf [9].

Some of these effects have found their explanation
in the framework of the discrete WTT [10, 11]; for in-
stance, the absence of the inertial interval is due to the
nonlocality of resonance interaction, for some types of
dispersion functions. The locality of interaction in ki-
netic WTT is understood as follows: only the inter-
action of waves with wavelengths of the same order is
allowed. However, it has been known for more than
20 years [12, 13] that, say, capillary waves with wave-
lengths of the orders k and k> can interact directly,
i.e., build a joint resonance triad; more examples can
be found in [14].

The model of the energy spectra formation in wave
systems with weak and moderate nonlinearity allow-
ing the observed experimental shape of the energy
spectrum to be reconciled with the predictions made
for the K-cascade was first proposed in 2012 by Kar-
tashova [15]. In this model, the triggering physical
mechanism for an energy cascade formation is the mod-
ulation instability (MI), and the corresponding energy
cascade is called a dynamical cascade (D-cascade); a
D-cascade is a sequence of distinct modes in Fourier
space. The use of the specially developed increment
chain equation method (ICEM) allows computing the
energy spectrum of a D-cascade.

The energy spectrum in the D-model is a solution
of the so-called chain equation. It connects frequencies
and amplitudes of two adjacent modes in D-cascade.
Energy spectra for capillary and surface water waves
(with the respective dispersion functions w? = ok?® and
w? = gk) are computed in [15] for different values of a
small parameter ¢ ~ 0.1-0.4 chosen as the ratio of the
wave amplitude to the wave length.

Here, we sketch the ICEM and compute the energy
spectrum of an ensemble of weakly nonlinear gravity—
capillary waves with the dispersion function

w? = gk + ok3.

We also demonstrate intrinsic mathematical connec-
tions between the D-model and other models describ-
ing nonlinear wave interaction at the same temporal
and spatial scales: Zakharov’s equation, resonances of
nonlinear Stokes waves, and the Benjamin—Feir index.
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2. INCREMENT CHAIN EQUATION METHOD
(ICEM)

The physical mechanism underlying the formation
of a D-cascade is modulation instability, which can be
described as the decay of a carrier wave wg into two
side bands w; and ws:

w1 + we = 2w, E1+E2=2E0+®,

(2)

Wi =wo+Aw, wr=wy—Aw, 0<AwK 1. (3)

A wave train with the initial real amplitude A, wa-
venumber k = |k|, and frequency w is modulationally
unstable if

0 < Aw/Akw < V2. (4)

Equation (4) describes an instability interval for the
wave systems with a small nonlinearity of the order of
e ~ 0.1 to 0.2, first obtained in [16]. It is also estab-
lished for gravity surface waves that the most unstable
modes in this interval satisfy the condition

Aw/Akw = 1. (5)

The essence of the ICEM is the use of (5) for com-
puting the frequencies of the cascading modes. At the
first step of the D-cascade, a carrier mode has a fre-
quency wy and the distance to the next cascading mode

(Aw)1 = |wo — wi]

with the frequency wg chosen such that condition (5) is
satisfied, i.e.,

|CLJ0 — w1| = Aokowo.

At the second step of the D-cascade, a carrier mode
has the frequency ws, the distance to the next cascad-
ing mode

(Aw)2 = |UJ1 - UJ2|

is chosen such that
|w1 - w2| = Aikiwi,

and so on.
In this way, a recursive relation for the cascading
modes can easily be obtained:

VP, An = Alwn £ wnAnky). (6)

Here, we let p, denote the fraction of energy trans-
ported from the cascading mode

A, = Alwy)
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to the cascading mode

Apy1 = A(wn+1)a

i.e., Apt1 = /PnAn. This fraction p is called the cas-
cade intensity [15].

Equation (6) describes two chain equations: one
chain equation with the plus sign for a direct D-cascade
with w,, < wpy1 and another chain equation for the in-
verse D-cascade with w, > wp41.

Speaking generally, the cascade intensity

pn = pn(A07W07n)

might be a function of the excitation parameters Ag, wo
and the step n. But because numerous experiments
have established that p, depends only on the excita-
tion parameters and does not depend on the step n,
all the formulas below are given for a constant cascade
intensity. Accordingly, the notation p is used instead
of p,. This means in particular that

AnJrl = \/I_jAn = pn/ZA()a
and because the energy behaves as
E, ~ A2,

it follows that
En ~ pnA(Q)a

i.e., the energy spectrum of the D-cascade amplitudes
has an exponential form.

Taking a Taylor expansion of the right-hand side
of the chain equation and retaining only the first two
terms of the resulting series, we can derive an ordinary
differential equation describing stationary amplitudes
of the cascading modes. The consequent steps of the
ICEM are given below.

1) Relation between neighboring amplitudes:

An+1 == \/]_?An (7)
2) Condition for the maximal increment:

|Wn+1 - wn| o

where f(w,Anky) is a known function of the product
wnAnk,. For instance,

f(wnAnkn) = wpAnkn

for gravity surface waves with the small parameter of
the order of 0.1-0.2. Examples for bigger nonlinearities
and also for other wave types can be found in [17, 18].

3) Chain equations:
Apt1 = Alwng1) =
= A(Wn + f(wnAnkn)) = \/EA(Wn)v (9)

where the plus sign should be taken for the direct cas-
cade and the minus for the inverse cascade.
4) Approximate ODE(s) for the amplitude A,

VPAn & Ay £ A f(wnAnky). (10)

5) Discrete energy spectrum E,, ~ A2.
6) Spectral density

lim —2|. (11)

In particular, the formula below gives an explicit
expression for wave amplitudes (for the direct cascade)
in the case of a small initial nonlinearity ¢ ~ 0.1-0.25:

Alwn) = (v5-1) [

dwp,

7wnk(wn). (12)

Let us remark, that it is known that if the autocor-
relation function involves temporal measurements at a
single point, then the power spectrum has the units
m?/Hz. Tt is easy to verify that the spectral density
S(w) has the correct units. Indeed, as we compute the
amplitudes at single points, the amplitudes A(w,,) have
the units m, then their squares A(wy)? have the units
m?2, and the spectral density S(w) has the units m?/Hz.
We illustrate the method described above with an
example of gravity surface waves, with the weak non-
linearity ¢ ~ 0.1-0.25, first computed in [15].
Example: Gravity surface waves. In this case,

w? = gk,

and
f(wnAnkn) = wpAnkn

(see [16]), which yields

[(Aw), |
— =1. 1
Then
VD -1 +ALWE, (14)
and we obtain
B 1- B
A%D"‘) =g ( 2\/]3)(;);2 + C(Dzr)’ (15)

407



E. Tobisch

MKIT®, Tom 146, Boin. 2 (8), 2014

E(wn)(Dir) -~ |:g (1 — \/ﬁ) w2+ C(D”)]2, (17)

2 n

2
with
1-—
C(Dzr) = Ay — g ( Qﬁ)wa2, (19)
1-—
CUm) = Ay +g (1= vp) 2\/5) wg? (20)

Because we assume that p = const, the specific choice
of the excitation parameters allows computing the cas-
cade intensity p explicitly as a function of the excitation
parameters Ag, wp. Indeed, for example, we consider
the case of a direct cascade and the choose the excita-
tion parameter

P = .
We obtain
1—
AO_g( 2\/1_))0‘)072:07
then
2\ 2
p= <1 _ Mﬂ) ) (21)
g
Accordingly,

E(wn)(D") = (Aowow;2)2 o< w;4

and the spectral density is given by

S(W)grav X wo.

This corresponds to the celebrated Phillips spec-
trum [19], and also to the real oceanic measure-
ments coined the JONSWAP wave spectrum for wind-
generated waves. The JONSWAP spectrum is the stan-
dard wave spectrum input used in practical engineer-
ing, e.g., for practical fatigue calculation for off-shore
structures.

A similar computation for capillary waves with a
small nonlinearity yields
77/3_

E(wn)(m’") x w;4/3, S(w)eap X w

3. D-SPECTRA OF GRAVITY-CAPILLARY
WAVES

3.1. Computation of the spectrum

In this case, computation of A, = A(w,) is very
tedious and is omitted here. Instead, we compute
A, = A(kn) by changing the integration variable
in (12); some preliminary computations are necessary:

w(k) =gk + ok?, (22)

W' = M (23)
2/ gk + ok®’
W'y _ g+ 30k? - ()
w(k)k (2\/9 Tt ok ) <\/gk T ok? ) k
g+ 3ok?
-~ 2k(gk +ok3)’ (25)
w;, dk
Aprecanl) = (V5= 1) [ 2 = (26)
CB—1 [ (g+30k?)dk
2 / k(gk + ok3) " (27)

This indefinite integral can be computed explicitly,

/(g+3ak2)dk _
k(gk + ok3)

= 2\/§arctan <\/Ek> — k™" + const, (28)
g g
which yields (for the direct cascade)

Agr—caplh) =

! _2‘/1_7 [k;l - 2\/§arctan (Eknﬂ -
—1_2‘/]3 [kol—Z\/garctan (\/gk(’)] +40. (29)

Keeping in mind that the cascade intensity p is con-
stant, we obtain

Agr_cap(kn) ~ [k — 2y/aarctan (Vak,)],  (30)

Eyr—cap(kin) ~ [ky" — 2V/aarctan (Vak,)]”, (31)

S(k)gr—cap ~

1 2a® 1
~ ‘ (ﬁ + m) <% — 2aarctan(a k))
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where the notation a = /g is used.

The D-cascade among gravity—capillary water
waves with € ~ 0.1 is formed on the time scale of the
order of dozens of seconds [20]; for instance, for a wave
with the wavelength 10 cm, the corresponding time
scale is 25 seconds, and the D-cascade would be easy
to observe in a laboratory experiment.

3.2. Consistency check

Energy spectra for pure gravity and pure capillary
waves were obtained in [15] in the form A = A(w). To
check the consistency of (30) with the results obtained
above for gravity—capillary waves, we have to rewrite
them in the form A = A(k) as follows:

_ w’kdk
A = (vi-1) [ Sh (53)
For surface gravity waves, this yields
w’kdk _
Ag(h) = (VB 1) [ 285 =
_ V9 1 _
=WpP- 1)/ (2k1/2 \/§k1/2k dk =
_ V-1 [k
2 k2’
1—
Agrav(k) = 2\/]_9(16*1 — koY) + Ao, (34)
and for capillary waves, we have
o w’kdk o
Acanll) = (V5 —1) [ HE =
3o k'/? 1
—(\/1_7_1)/( 2 \/Ek3/2k> dk =
_p=) fa
- 2 k2’
3(1 -
Acap(k) = w(k*1 — koY) + Ao, (35)

To avoid tedious calculations, we consider a special
choice of the excitation parameters, such that A(k)
o k~%; then

Eyrav(k) o k2,

Syrav(k) oc k™3, (36)

Erap(k) o< k72, Seap(k) o< k3. (37)
We now discuss the expression in the integrand

in (27) in two limit cases: (a) 0 — 0 and (b) g — 0.
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In the first case, integral (27) transforms into [ k—2dk,

and consequently

1—
2

Agr—cap(k) = \/1_7

(B0 = ko ']+ Ao =

= Agran(k). (38)

In the second case, integral (27) transforms into
[ 3k~2dk, and consequently

3(1-vp)

g eap(h) = 25

(77 = ko '] + Ao =

= Acop(k). (39)

This means that the expression for the energy spec-
trum of gravity—capillary waves is consistent with the
previously obtained results for pure gravity and pure
capillary waves, i.e., the D-model itself is consistent.
Another important check follows from the standard

relation
/S(w) o = /S(k) dk

(in one spatial dimension). Rewriting it as

dw
dk’

S(k) = S(w)

we can compute S(k)grey and S(k)cap:

S(k)grav o k™1/2E75/2 = |73, (40)

and

S(k)eap o< k™22 = |73, (41)

which is in accordance with formulas (36) and (37).

4. CONNECTION OF THE D-MODEL WITH
OTHER MODELS

On different scales in time and space, there are
many models describing various phenomena and pro-
cesses in nonlinear wave interaction. Some of these
models have the same time and space scale as the
D-cascade. In this section we show that a direct math-
ematical relation between the D-model and a few other
known models exists.

(I) The computation of the D-cascade spectra
demonstrated above and in [21] has been performed in
the framework of the nonlinear Schrédinger equation
or its modifications. As modulation instability exists
in other evolutionary dispersive nonlinear partial dif-
ferential equations, e.g., in generalized versions of the
Korteweg—de Vries equation [22, 23], Hasegawa—Mima
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equation [24], and others; the ICEM can also be di-
rectly applied for these equations. All the difference
between different equation would be “hidden” in the
form of the chain equation.

(IT) The computation kindly provided to us by
Miguel Onorato in the general discussion at the Work-
shop “Wave Turbulence” (Ecole de Physique, Les
Houches, France, 2012) shows a connection between the
D-cascade and Zakharov’s equation.

We first rewrite (8) as

Wr = wo + woAoko, (42)
(:)L = Wy — woAgko (43)

and consider a system of three discrete waves using the
decomposition

ap = 6062 + bL(Slg + bR(Sllj (44)

Here, bg is the carrier wave and b7, and bgr are the left
and right sidebands;

L=ky+ Ak, R=ky—Ak.

Assuming that by and bg are small compared with
bo and neglecting nonlinear terms in the sidebands am-
plitude, after substituting (44) into Zakharov’s equa-
tion

80,1

E + iw1a1 = —i/dk2’3,4T1,2’3,4a§a3a45f§, (45)

we obtain

iy

dt

. _ . 2
+ iwobo = —iT0,0,0,0/b0|" Do,

L . .
— +iwrbp =
dt+ Lor

= —i2T7 0,1.0lb0|b1 — iT1,R,0,005b7:, (46)

R .
—— +iwgrbr =
dt+ ROR

. 2 . 2
= —i2TR0,r0lbo|"br — iTR,L.0,005b7 -

If we are interested only in the interaction of each
sideband with the carrier wave, independently of the
other, then we can easily find the dispersion relation
for by, and br. The solution of the first equation is
straightforward:

bo = 50 exp —i(wo + T0’0,0’0|50|2)tj| s (47)
whence

&0 = wo + To.0,0,0/b0/%, (48)

with
To,0,0,0 = k°,

but we must recall that the Zakharov equation is writ-
ten for the wave action variable that is related to the
surface elevation 1y as

no =/ 2ko /wobo,

and therefore the dispersion relation is
1
(:)0 = Wo (1 + 5]@37]8) . (49)

Neglecting the interaction between the two sidebands,
we obtain

db . .

_dtL +iwrbr, = —Z2TL70,07L|bO|QbL7

“ (50)
d—f + iwrbr = —i2TR0,0,r|bo|*bR-

The nonlinear dispersion relation for the sidebands is

wr, = wr, + 2TL,070,L|I~70|27
B (51)
Or = wr + 2Tr0.0.r|bo|?

The diagonal part of the coupling coefficient has the
form
T1 212 = kle min(kl,kg),

12y by

and therefore

Tr 00,1 = kok? = ko(ko — AK)?,

(52)
Tro0.r = kokr = ki (ko + Ak).
Hence,
o =\/g(ko — Ak) + wo(ko — Ak)%ng, -
53

WR = \/g(ko + Ak) + o.)oko(ko + Ak)ng

Taylor expanding in Ak and neglecting nonlinear dis-
persive terms of the cubic order, we write the resonant
condition as

wOAk2 _

20 — &r, — @R = —Nokgwo + ——— =0,  (54)
4k2
then
Ak
-_— = 2k20170 = 26, (55)
ko

where ¢ is the steepness of the carrier wave. Because
QAk/kO = Aw/wo,
Eq. (55) can be rewritten as

Aw

= (56)
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Equation (56) coincides with (5) and therefore cor-
responds to the instability maximum in the Benja-
min—Feir instability curve.

Thus, we have shown that each step of the D-casca-
de, Eq. (9), describes an exact 4-wave resonance in the
Zakharov’s equation between the modes with nonlinear
Stokes-corrected frequencies.

(III) The D-cascade as a whole can be regarded as a
resonance cluster formed by a few connected exact res-
onances of nonlinear Stokes modes. This means that in
order to deduce the chain equation, we do not need the
modulation instability; in fact, the MI is just a suitable
mathematical language for describing an energy cas-
cade in the focusing evolutionary NPDEs. The general
mathematical object describing energy cascades both
for focusing and nonfocusing NPDEs is a resonance
cluster formed by a few connected exact resonances of
nonlinear Stokes modes.

Objects of this type are studied by the homo-
topy analysis method [25]. Recent application of this
method allowed describing a steady-state resonance of
multiple wave interactions in deep water [26]; numeri-
cal simulation with Zakharov’s equations demonstrates
qualitative agreement with the results obtained by the
homotopy analysis method.

In contrast to perturbative methods usually ap-
plied for studying nonlinear problems, this method does
not introduce a small parameter and works in realistic
physical setups.

(IV) Freak or rogue waves are a quite popular sub-
ject in the last few decades, with different models de-
scribing their appearance having been proposed. Three
main types of models are used for describing rogue wave
formation: linear (spatial focusing or focusing due to
dispersion), weakly nonlinear (focusing due to modula-
tion instability), and essentially nonlinear wave interac-
tion [27]. In the real numerical models for weather and
ocean wave field prediction, the so-called Benjamin—
Feir index (BFI) is successfully used for characterizing
the probability of the freak wave appearance.

The BFT s defined as the ratio of the wave steepness
koA to the spectrum width Aw/wp and the probabil-
ity of high waves occurrence is nonzero if BFI = 1 or
bigger, i.e., beginning with

koA

BFI = =
Aw /wo

(57)

However, it was shown quite recently that freak waves
can also occur in systems where the MI is absent and
BFI =0 [28].

This apparent contradiction is easy to explain if
we note that (57) is equivalent to the condition for
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the maximal increment (8) and consequently to chain
equation (9), which in turn can be described without
invoking modulation instability, as was demonstrated
in (IIT).

5. DISCUSSION

In this paper, we have demonstrated how to apply
the increment chain equation method for computing
the energy spectrum of an ensemble of weakly nonlin-
ear gravity—capillary waves with the dispersion function
w? = gk+0ok? and a small parameter ¢ ~ 0.1-0.25. The
energy spectrum is computed analytically as a function
of g/o, see (32); the D-spectra in the two limit cases —
pure gravity, w? = gk, and pure capillary, w? = ok?, —
coincide with the known results first presented in [15].

The D-cascade among gravity—capillary water
waves is formed at the time scale of the order of dozens
of seconds and can easily be observed in laboratory ex-
periment. Various characteristics of the D-cascade in
this case (its direction, possible scenarios of cascade ter-
mination, etc.) can be studied analytically, similarly to
the case of pure gravity waves presented in [21]. This
work is in progress.

We have also demonstrated that the D-cascade,
though being a novel model, is directly connected with
other important topics widely studied in fluid mechan-
ics, e. g., resonance clustering of modes with nonlinear
Stokes corrected frequencies or the criterion for the
freak wave appearance. This allows transferring the
ideas, concepts, and approaches from one scientific
area to another and studying them in a new setting.
Knowledge of the connections between different models
is crucial in the understanding and forecasting specifics
of the energy transport in a variety of multicomponent
nonlinear wave systems occurring virtually everywhere
from oceanography to optics, from plasma physics to
acoustics.

The author is very much obliged to W. E. Farrell,
W. Munk, and M. Onorato for the useful comments
and suggestions. This research was supported by the
Austrian Science Foundation (FWF) under the project
NeP22943.
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