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NONLINEAR DYNAMICS OF MAGNETOHYDRODYNAMIC FLOWSOF HEAVY FLUID ON SLOPE IN SHALLOW WATERAPPROXIMATIONK. V. Karelsky a, A. S. Petrosyan a;b*, S. V. Tarasevi
h aaSpa
e Resear
h Institute, Russian A
ademy of S
ien
es117997, Mos
ow, RussiabMos
ow Institute for Physi
s and Te
hnology141700, Dolgoprudny, Mos
ow Region, RussiaRe
eived O
tober 8, 2013Magnetohydrodynami
 equations for a heavy �uid over an arbitrary surfa
e are studied in the shallow waterapproximation. While solutions to the shallow water equations for a neutral �uid are well known, shallow wa-ter magnetohydrodynami
 (SMHD) equations over a non�at boundary have an additional dependen
e on themagneti
 �eld, and the number of equations in the magneti
 
ase ex
eeds that in the neutral 
ase. As a 
onse-quen
e, the number of Riemann invariants de�ning SMHD equations is also greater. The 
lassi
al simple wavesolutions do not exist for hyperboli
 SMHD equations over an arbitrary surfa
e due to the appearan
e of a sour
eterm. In this paper, we suggest a more general de�nition of simple wave solutions that redu
e to the 
lassi
alones in the 
ase of zero sour
e term. We show that simple wave solutions exist only for underlying surfa
esthat are slopes of 
onstant in
lination. All self-similar dis
ontinuous and 
ontinuous solutions are found. Exa
texpli
it solutions of the initial dis
ontinuity de
ay problem over a slope are found. It is shown that the initialdis
ontinuity de
ay solution is represented by one of four possible wave 
on�gurations. For ea
h 
on�guration,the ne
essary and su�
ient 
onditions for its realization are found. The 
hange of dependent and independentvariables transforming the initial equations over a slope to those over a �at plane is found.DOI: 10.7868/S00444510140801241. INTRODUCTIONExa
t, expli
it nonlinear solutions of magnetohy-drodynami
 (MHD) equations are rare. The shallowwater magnetohydrodynami
 (SMHD) equations arethe alternative to solving the full set of magnetohydro-dynami
 equations for a heavy �uid with a free surfa
e.These equations are derived from the MHD equationsfor an in
ompressible nonvis
ous �uid layer in the grav-ity �eld assuming that the pressure is hydrostati
, usingthe depth averaging, and taking the �uid layer depth tobe mu
h smaller than the 
hara
teristi
 size of the phys-i
al system. The derived system of equations [1; 2℄ isimportant in many appli
ations of MHD to astrophys-i
al and engineering problems. The SMHD approxi-mation is widely used for the solar ta
ho
line study[1; 3�5℄, for the des
ription of spread of matter over a*E-mail: apetrosy�iki.rssi.ru

neutron-star surfa
e during dis
 a

retion [6; 7℄, for thestudy of the neutron-star atmosphere dynami
s [8; 9℄,and for the study of exoplanets [10℄. A similar ap-proximation of the MHD equations for small Reynoldsnumbers is used to model the aluminum produ
tionpro
esses [11; 12℄ and those in fusion te
hnologies [13℄.The nonlinear dynami
s of the above �ows is des
ribedby the full set of MHD equations for all s
ales. Thissystem 
annot be examined analyti
ally and is still dif-�
ult to model numeri
ally. Pra
ti
ally, the shallowwater approximation has the same fundamental rolein the plasma magnetohydrodynami
s as a similar ap-proximation has in the neutral �uid dynami
s [14; 15℄.The latter 
ase is used widely to study the large-s
alepro
esses in Earth's atmosphere and o
eans [16℄.This paper is devoted to the study of nonlinear �owsof a heavy �uid des
ribed by the SMHD equations overa non�at surfa
e and is an extension of the theory de-veloped in [17℄ for magnetohydrodynami
 shallow wa-ter equations over a �at plane. Indeed, results obtained352
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s of magnetohydrodynami
 �ows : : :in this paper are of parti
ular interest for understand-ing astrophysi
al �ows due to the la
k of informationon topographi
 futures of their lower boundaries. Thetheory developed in this paper 
an be a basis for justi-�
ation of models of astrophysi
al obje
ts. This newset of equations is also of general interests in solar�uid dynami
s be
ause the dynami
al importan
e ofa 
ompositional strati�ed layer has been suggested inthe ta
ho
line [18℄. In parti
ular, the existen
e of theSun's settling helium layer may lead to new nonlineardynami
s. Moreover, the Coriolis for
e and other ex-ternal for
es in the large-s
ale magnetohydrodynami
models 
an be naturally represented by using an e�e
-tive non�at surfa
e, as is done in the study of large-s
ale atmospheri
 and o
eani
 �ows (see, e. g., [19℄).These equations serve as a basis for the developmentof multilayer strati�ed shallow water magnetohydrody-nami
 models, and for the development of �nite-volumenumeri
al methods for magnetohydrodynami
 shallowwater �ows subje
ted to an external for
e (e. g., theCoriolis for
e or a hydrauli
 fri
tion). In the appendix,we give a brief derivation of the SMHD equations on anonhomogeneous boundary, des
ribing the approxima-tions made.The SMHD equations are of hyperboli
 type. How-ever, while solutions of the shallow water equationsfor a neutral �uid are well known, magnetohydrody-nami
 shallow water equations over a non�at boundaryhave an additional dependen
e on the magneti
 �eld,and the number of equations in the magneti
 
ase ex-
eeds that in the neutral 
ase. As a 
onsequen
e, thenumber of Riemann invariants de�ning the magneto-hydrodynami
 shallow water equations in
reases. Thehyperboli
ity of magnetohydrodynami
 shallow waterequations (see [2℄ and J. A. Rossmanith's PhD disser-tation, University of Washington (2002), Ch. 4) leadsto the existen
e of dis
ontinuous solutions, even if theinitial 
onditions are di�erentiable, as well as to theexisten
e of 
ontinuous ones. In the above papers, theproperties of the SMHD equations as a hyperboli
 sys-tem over a �at plane are studied, in
luding linear wavemodes, Riemann invariants, Rankine�Hugoniot 
ondi-tions, and sho
k waves, and the numeri
al Roe-typeRiemann solver is developed. In this paper, simplewave solutions of the SMHD equations over a non�atsurfa
e are studied. The 
lassi
al simple wave solutionsdo not exist for hyperboli
 SMHD equations over an ar-bitrary surfa
e due to the appearan
e of a sour
e term.In this paper, we suggest a more general de�nition ofsimple wave solutions that redu
e to the 
lassi
al onein the 
ase of zero sour
e term. It is shown that thesesolutions exist only for the underlying surfa
es that are

slopes of 
onstant in
lination. Therefore, the main fo-
us in this paper is on the study of magnetohydrody-nami
 shallow water �ows on a sloping surfa
e. Newwave types appear in this 
ase in 
ontrast to solutionsobtained in [4℄.Magnetogravity rarefa
tion wave solutions, magne-togravity sho
k wave solutions and Alfveni
 wave solu-tions for slopes are found. The 
hara
teristi
s of thesewaves are parabolas transforming to straight lines inthe 
ase of a �at plane. These parti
ular waves are fun-damental for studying nonlinear wave phenomena overa non�at surfa
e. The 
hange of dependent and inde-pendent variables transforming the SMHD equationsover a slope to those over a �at plane is found. The ob-tained 
hange of variables is valid only for 
ontinuoussolutions and fails for dis
ontinuous ones. Hen
e, thefull set of simple wave-type solutions on slopes 
annotbe found from those on a �at plane using this 
hange ofvariables. For uni�ed des
riptions of �uid physi
s, wederive simple wave solutions, 
ontinuous and dis
on-tinuous ones, from the initial governing equations, al-though 
ontinuous ones 
an be obtained by transform-ing the solutions from [2℄. The obtained 
ontinuous so-lutions allow �nding traje
tories of propagation of dis-
ontinuous solutions, and thus determine the domainsof lo
ation of the solutions of the initial dis
ontinuityde
ay problem as a 
ombination of domains of 
ontinu-ous magnetohydrodynami
 �ows; for ea
h of these, thesuggested transformation of variables is appli
able. Itis used to �nd the exa
t solution of the initial dis
on-tinuity de
ay problem for the SMHD equation systemover a slope. We �nd that the stru
ture of the solutionover a slope is the same as over a �at plane. The 
on-ditions for ea
h wave 
on�guration realization exa
tlymat
h. It has been shown that the parti
ular solutionsin our 
ase di�er from those for in
ompressible shallow-water �ows. Hen
e, the 
onditions of the realization ofea
h 
on�guration are di�erent.The initial dis
ontinuity de
ay solution is rep-resented by one of the following wave 
on�gura-tions: �two magnetogravity sho
k waves, two Alfveni
waves�, �magnetogravity rarefa
tion wave, magne-togravity sho
k wave, two Alfveni
 waves�, �two magne-togravity rarefa
tion waves, two Alfveni
 waves�, �twohydrodynami
 rarefa
tion waves and a va
uum regionbetween them�. Expli
it expressions for 
ontinuous anddis
ontinuous solutions obtained in Se
. 4 allow impos-ing a solution of the Riemann problem in expli
it form.In Se
. 2, the initial equations of shallow water mag-netohydrodynami
s over an arbitrary surfa
e are pre-sented. In Se
. 3, this set of equations is written inthe Riemann invariant form and it is shown that sim-10 ÆÝÒÔ, âûï. 2 (8) 353
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Fig. 1. Coordinate system and topographyple wave solutions exist only for the underlying surfa
esthat are slopes of 
onstant in
lination. In Se
. 4, par-ti
ular 
ontinuous and dis
ontinuous simple wave so-lutions are found. In Se
. 5, the initial dis
ontinuityde
ay problem solution for a slope is found. The mainresults are outlined in the 
on
lusion.2. SHALLOW WATERMAGNETOHYDRODYNAMIC EQUATIONSOVER AN ARBITRARY SURFACEIn this se
tion, we 
onsider a one-dimensionalSMHD model to study the magneti
 �uid �ows with afree surfa
e in the gravity �eld over an arbitrary bound-ary. The SMHD equations over an arbitrary boundaryare obtained from the 
lassi
al MHD equations [20℄written for the �uid layer with a free surfa
e in thegravity �eld over an arbitrary boundary fs(x) (Fig. 1).There, the z axis is parallel to the gravity for
e ve
-tor and is opposite in dire
tion. Assuming that themagneti
 �uid layer depth is small 
ompared to the
hara
teristi
 s
ale of the studied phenomena and thefull pressure (the sum of magneti
 and hydrodynami
pressures) is hydrostati
, the relevant system is ave-raged over the �uid layer depth and then admits amean �eld des
ription. We set ~Bi = Bi=p� (� is a�uid density) to simplify the equations (the tilde signis omitted in what follows) and write this system in theone-dimensional 
ase:�h�t + �hu1�x = 0; (2.1)�hu1�t + �(hu21 � hB21 + gh2=2)�x = �gh�fs�x ; (2.2)�hu2�t + �(hu1u2 � hB1B2)�x = 0; (2.3)

�hB1�t = 0; (2:4)�hB2�t + �(hB2u1 � hB1u2)�x = 0; (2:5)�hB1�x = 0: (2:6)Here, x and t are the spatial and temporal 
oordinates,h(x; t) is the �uid depth, u1(x; t) and u2(x; t) are therespe
tive depth-averaged �uid velo
ities along x andy axes, B1(x; t) and B2(x; t) are the respe
tive depth-averagedmagneti
 �eld 
omponents along x and y axes,and g is the gravitational 
onstant.System (2.1)�(2.5) is known as the SMHD systemover an arbitrary surfa
e (see J. A. Rossmanith's PhDdissertation, University of Washington (2002), Ch. 4).These equations are derived from initial nonvis
ous andnonresistive in
ompressible MHD equations by averag-ing over the �uid layer between a pair of material sur-fa
es and using hydrostati
 
onditions for the sum ofthe magneti
 and �uid pressure. Equations are derivedin the mean-�eld approximation, negle
ting the squaresof velo
ity and magneti
 �eld deviations from meanquantities. It is assumed that magneti
 surfa
es are,at the same time, material surfa
es. For the details ofthe derivation of SMHD equations, see the Appendix.Equation (2.6) is a 
onsequen
e of the magneti
 �elddivergen
e-free equation in the initial MHD equationsand is used to set the 
orre
t initial data. Equa-tions (2.1)�(2.5) di�er from those 
onsidered in [14℄ �rstand foremost by the number of independent quantitiesand 
onsequently by the number of equations. As isshown below, this leads to an in
rease in the numberof equations for Riemann invariants. The appearan
eof a magneti
 �eld suggests nontrivial dependen
es ofone-dimensional equations on both 
omponents of hor-izontal �ows. Moreover, the magneti
 �eld is in
ludedin the relations for the propagation speed of weak per-turbations. In the next se
tion, we �nd the simple wavesolutions of this system.3. RIEMANN WAVES FOR SMHD EQUATIONSOVER AN ARBITRARY SURFACEIn this se
tion, we rewrite the initial equations(2.1)�(2.5) in the form of the Riemann invariants,whi
h is more appropriate for further 
onsideration. Itimmediately follows from Eqs. (2.4) and (2.6) thathB1 = 
onst: (3:1)We rewrite Eq. (2.1) in the form�h�t = �u1 �h�x � h�u1�x :354
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s of magnetohydrodynami
 �ows : : :Thus the time derivatives in the initial equations aretransformed to the form�h��t = h���t + ���h�u1�x � u1 �h�x� ; (3:2)where � = u1; u2; B1; B2.Using expressions (3.2) for the time derivatives inEqs. (2.1)�(2.6), we obtain�t0BBBB� hu1u2B2 1CCCCA+0BBBB� u1 h 0 0
2g=h u1 0 00 0 u1 �B10 0 �B1 u1 1CCCCA�� �x0BBBB� hu1u2B2 1CCCCA = 0BBBB� 0�g�fs=�x00 1CCCCA ; (3.3)hB1 = 
onst; (3:4)where the propagation speed of weak perturbations is
g = pB21 + gh. Equations (3.3) redu
e to those 
on-sidered in [14℄ when B1 = B2 � 0, and the expressionfor the propagation speed of weak perturbations then
oin
ides with the 
lassi
al one.We derive the expressions for the Riemann invari-ants for Eqs. (3.3). For this, we �nd the eigenve
-tors of system (3.3). The left eigenve
tors of (3.3) are(
g=h 1 0 0), (�
g=h 1 0 0), (0 0 1 1), and (0 0 1�1). Mul-tiplying Eqs. (3.3) with the �rst eigenve
tor yields�u1�t + 
gh �h�t + (u1 + 
g)��u1�x + 
gh �h�x� == �g �fs�x : (3.5)Introdu
ing the fun
tion '(h) = R (
g=h)dh, we rewriteEq. (3.5) in the form�r�t + (u1 + 
g) �r�x = �g �fs�x ; (3:6)where r = u1 + '(h). We note that the fun
tion '(h)
annot be expressed in elementary fun
tions and is ex-pressed in terms of ellipti
 integrals. However, it is astri
tly in
reasing fun
tion. As a 
onsequen
e, the in-verse fun
tion '�1 exists. Multiplying (3.3) with othereigenve
tors yields�s�t + (u1 � 
g) �s�x = �g �fs�x ; s = u1 � '(h); (3:7)�p�t + (u1 �B1)�p�x = 0; p = u2 +B2; (3:8)

�q�t + (u1 +B1) �q�x = 0; q = u2 �B2: (3:9)The fun
tions r, s, p, and q are 
alled the Riemanninvariants and system (3.4), (3.6)�(3.9) is 
alled theshallow water magnetohydrodynami
 equation systemin the Riemann-invariant form.The expressions for the velo
ities u1 and u2, the�uid depth h, and the magneti
 �eld B2 in terms ofthe Riemann invariants are as follows:u1 = r + s2 ; '(h) = r � s2 ;u2 = p+ q; B2 = p� q: (3.10)A

ording to the theory of hyperboli
 equations, a Rie-mann wave is de�ned as a solution of Eqs. (3.4), (3.6)�(3.9) in whi
h all but one Riemann invariants remain
onstant.However, the 
lassi
al Riemann wave solutions donot satisfy Eqs. (3.4), (3.6)�(3.9) due to the presen
eof the fun
tion �g�fs=�x in the right-hand side of theequations. We suggest a more general de�nition of sim-ple wave solutions redu
ing to the 
lassi
al one in the
ase of zero sour
e term. We de�ne the magnetograv-ity Riemann wave turned ba
k as the solution satis-fying Eqs. (3.6), (3.8), (3.9) identi
ally, and the mag-netogravity Riemann wave turned forward as the so-lution satisfying Eqs. (3.7)�(3.9) identi
ally. Similarly,Alfveni
 Riemann waves are de�ned as the solutionssatisfying Eqs. (3.6), (3.7), (3.9) or (3.6)�(3.8) identi-
ally. The reasons for these de�nitions be
omes 
learbelow.We assume that p = p0 = 
onst and q = q0 = 
onstin some area of the xt plane; then Eqs. (3.8) and (3.9)are identi
ally satis�ed in this area. We �nd the 
ondi-tions for the expression for r(x; t) satisfying Eq. (3.6)identi
ally to exist in the above mentioned area. Forthis, we show that the expression u1 + 
g is dependenton s (and possibly on s and r) and u1 � 
g is depen-dent on r (and possibly on r and s). De�nitely, 
g is afun
tion of h, and hen
e a fun
tion of '(h). Therefore,if u1 � 
g = f(u1 � '), then 
g = �'+ 
onst and it isnot the 
ase. Consequently, u1 + 
g is dependent on sand u1 � 
g is dependent on r.The fun
tions r(x; t) and s(x; t) are linearly inde-pendent, and hen
e the fa
tor at u1+ 
g has to be zerofor Eq. (3.6) to be satis�ed identi
ally, when
e �r=�x �� 0. However, if �r=�t � 0, then Eq. (3.6) 
annotbe satis�ed. Hen
e, r(x; t) is a fun
tion of time only,r = r(t), and therefore��x �r�t � 0; ��x ��g �fs�x � � 0:355 10*
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on
lude that the solution satisfying Eq. (3.6) 
anexist only for the underlying surfa
e fs(x) determinedby �2fs=�x2 � 0, i. e., fs = kx + b0. The magne-togravity wave turned ba
k does not exist for otherunderlying surfa
es. It 
an be similarly shown thatthe magnetogravity Riemann wave turned forward ex-ists only for �fs=�x = k � 
onst. Hen
e, the simplewave solutions only exist for underlying surfa
es thatare slopes of 
onstant in
lination, and we furthermoresuppose that �fs=�x = k � 
onst.We 
onsider system of equations (3.6)�(3.9). Tak-ing into a

ount that �fs=�x = k = 
onst, we rearrangeit in the form�t0BBBB� hu1u2B2 1CCCCA+0BBBB� u1 h 0 0
2g=h u1 0 00 0 u1 �B10 0 �B1 u1 1CCCCA�� �x0BBBB� hu1u2B2 1CCCCA = 0BBBB� 0�gk00 1CCCCA : (3.11)We make the 
hange of variables~x! x+ gkt2=2;~t! t: (3.12)Then ��t = ��~t + gk~t ��~x;��x = ��~x: (3.13)This 
hange of variables is nondegenerate, and after the
hange of u1 given by~u1 = u1 + gkt (3:14)system (3.11) transforms into�~t0BBBB� h~u1u2B2 1CCCCA+0BBBB� ~u1 h 0 0
2g=h ~u1 0 00 0 ~u1 �B10 0 �B1 ~u1 1CCCCA�� �~x0BBBB� h~u1u2B2 1CCCCA = 0BBBB� 0000 1CCCCA : (3.15)

After using transformation (3.12), (3.13), system(3.11) be
omes the SMHD equation system on a �atsurfa
e, Eq. (3.15) (k = 0). This transformation isused below to solve the initial dis
ontinuity de
ay prob-lem over a slope, redu
ing it to the dis
ontinuity de
ayproblem over a �at plane solved in [18℄. We note thatthe above 
hange of variables is valid only for 
ontinu-ous solutions and fails for dis
ontinuous ones. That iswhy we 
annot exploit this 
hange of variables to obtainthe full set of simple wave-type solutions over slopesfrom those over a �at plane. For a uni�ed des
riptionof �uid physi
s in this paper, we derived the above solu-tions, 
ontinuous and dis
ontinuous ones, from the ini-tial govering equations, although 
ontinuous ones 
anbe obtained by transforming solutions from [2℄. Indeed,the obtained transformation (3.15) is fruitful for under-standing the Riemann problem solutions as soon as weknow the dis
ontinuity propagation traje
tories, sin
ethis allows solving the initial dis
ontinuity de
ay prob-lem over a slope immediately using the solutions of thedis
ontinuity de
ay problem over a �at plane.In the next se
tion, we �nd parti
ular wave so-lutions for the shallow water magnetohydrodynami
equations over a slope. The obtained solutions are usedin the following se
tion to �nd exa
t expli
it solutionsof the initial dis
ontinuity de
ay problem over a slope.4. SIMPLE WAVE SOLUTIONS FOR SMHDEQUATIONS OVER A SLOPE4.1. Continuous solutions, selfsimilarity, anddegeneration of 
ontinuous Alfven wavesIn this se
tion, we study simple wave solutions forshallow water magnetohydrodynami
 equations over aslope, whi
h are a parti
ular 
ase of the initial equa-tions (2.1)�(2.6) with �fs=�x = k � 
onst. We 
on-sider a magnetogravity Riemann wave turned ba
k. Inthis 
ase, we have to satisfy Eqs. (3.6), (3.8), and (3.9)identi
ally. It was shown in the pre
eding se
tion thatp = p0 = 
onst, q = q0 = 
onst satisfy Eqs. (3.8) and(3.9), and it is easy to see that for �fs=�x = k � 
onst,the expression r = �gkt+ r0 (4:1)satis�es Eq. (3.6) identi
ally. We now 
onsiderEq. (3.7): �s�t + (u1 � 
g) �s�x = �gk: (4:2)Equation (4.2) transforms along the 
hara
teristi
sdxdt = u1 � 
g (4:3)356



ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Nonlinear dynami
s of magnetohydrodynami
 �ows : : :into the form�s�t + dxdt �s�x = �gk , dsdt = �gk: (4:4)Integrating Eq. (4.4), we obtains (X(t); t) = tZ0 dsdt dt = �gkt+ s (X(0); 0) : (4:5)Substituting expression (4.5) in Eq. (4.3) yieldsdxdt == �gkt+ s (X(0); 0)+r02 �
g���� r=�gkt+r0s=�gkt+s(X(0);0) : (4.6)The variable 
g remains 
onstant along 
hara
teris-ti
s (4.3). Indeed, '(h) = (r � s)=2, when
e '(h) == [r0 � s(X(0); 0)℄=2 = 
onst along 
hara
teristi
s(4.3). Be
ause ' is a bije
tive fun
tion, it follows thath = 
onst and 
g = 
g(h) = 
onst along 
hara
teris-ti
s (4.6).Integrating (4.6), we obtain the expli
it expressionfor X(t):X(t) = tZ0 dxdt dt = �12 gkt2 ++ s (X(0); 0) + r02 t+ 
g (h (X(0); 0)) t+X(0): (4.7)Chara
teristi
s (4.7) are parabolas in the xt plane. Wenote that in the 
ase of a �at surfa
e, the 
hara
teristi
sare straight lines,X(t) = (u1 + 
g)t+X(0); (4:8)and the 
hange of variables~x = x+ gkt=2;~t = t (4.9)transforms parabolas (4.7) into straight lines (4.8).This 
hange of variables is used in what follows to re-du
e the dis
ontinuity de
ay problem over a slope tothe same problem over a �at surfa
e. For the magne-togravity Riemann wave turned forward, the followingrelations hold:p = p0; q = q0; s = �gkt+ s0; (4:10)r (X(t); t) = �gkt+ r (X(0); 0) ; (4:11)

X(t) = �12 gkt2 + r (X(0); 0) + s02 t++ 
g (h (X(0); 0)) t+X(0): (4.12)If �s=�x > 0 in some domain of the xt plane for theRiemann magnetogravity wave turned ba
k, then in-tegral 
urves (4.3) are divergent. Taking expressions(4.1) and (4.5) into a

ount, we obtain u1 = (r0+s)=2,when
e �u�x = 12 �s�x; �u�x > 0:Di�erentiating r = u1 + ' with respe
t to x yields�u�x + �'�h �h�x = 0;when
e �h=�x < 0 for �'=�h > 0. Hen
e, we havea magnetogravity rarefa
tion wave. If �s=�x < 0 insome domain of the xt plane, then the integral 
urvesare 
onvergent, and we have a 
ompression wave. In thedomain of the xt plane in whi
h �s=�x = 0, the 
har-a
teristi
s are parallel lines, and we have a domain ofa uniformly a

elerated �ow. It is well known from thetheory of hyperboli
 equations that 
onverged 
hara
-teristi
s in a dilatation wave interse
t in a �nite time,resulting in the magnetogravitational Riemann wavedegeneration and thus the appearan
e of strong dis-
ontinuity.The same results (ex
ept the sign) 
an be obtainedfor the Riemann magnetogravity wave turned forward(s(x; t) = s0 = 
onst). We have a rarefa
tion wave for�r=�x < 0, a 
ompression wave for �r=�x > 0, and adomain of uniformly a

elerated �ow for �r=�x = 0.Using Eqs. (4.1), (4.5), (4.6), (4.10)�(4.12) andp = 
onst, q = 
onst, we obtain the relations for magne-togravity waves. For a magnetogravity Riemann waveturned ba
k, the relationsB1(x; t)h(x; t) = B1(x0; 0)h(x0; 0);B2(x; t) = B2(x0; 0);u2(x; t) = u2(x0; 0);u1(x; t) + '(x; t) + gkt = u1(x0; 0) + '(x0; 0) (4.13)are satis�ed in the domain of the wave. Moreover, alongthe linesdxdt = u1(x0; 0)� 
g(x0; 0)� gkt; (4:14)the equationu1(x; t)� '(x; t) + gkt = u1(x0; 0)� '(x0; 0) (4:15)is also satis�ed. There, '(x0; 0) = '(h(x0; 0)).For a magnetogravity Riemann wave turned for-ward, the relations357
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g(x0; 0)� gkt; (4:17)the equationu1(x; t) + '(x; t) + gkt = u1(x0; 0) + '(x0; 0) (4:18)is also satis�ed.We 
onsider an Alfveni
 Riemann wave satisfyingEqs. (3.6)�(3.8). For this wave, we obtain that the re-lationsu1(x; t) + gkt = u1(x0; 0);h(x; t) = h(x0; 0);B1(x; t) = B1(x0; 0);u2(x; t) +B2(x; t) = u2(x0; 0) +B2(x0; 0) (4.19)are satis�ed in the domain of the wave. Hen
e, alongthe 
hara
teristi
s dxdt = u1 +B1; (4:20)the equationu2(x; t)�B2(x; t) = u2(x0; 0)�B2(x0; 0) (4:21)is also satis�ed.For the Alfveni
 Riemann wave satisfyingEqs. (3.6), (3.7), and (3.9), the relationsu1(x; t) + gkt = u1(x0; 0);h(x; t) = h(x0; 0);B1(x; t) = B1(x0; 0);u2(x; t)�B2(x; t) = u2(x0; 0)�B2(x0; 0) (4.22)are satis�ed in the domain of the wave. Hen
e, alongthe 
hara
teristi
s dxdt = u1 �B1; (4:23)the equationu2(x; t) +B2(x; t) = u2(x0; 0) +B2(x0; 0) (4:24)is also satis�ed.We note that in the Alfveni
 Riemann waves, all
hara
teristi
s 
an be obtained from ea
h other usingparallel translation. They are also paraboli
 
urves, thesame as for 
hara
teristi
s of magnetogravity waves.

We next 
onsider the pra
ti
ally important spe
ial
ase of the Riemann waves. A ba
kward Riemann waveis 
alled a 
entered wave if 
hara
teristi
s (4.3) form agroup of 
urves that 
ome out of one point (x0; t0). Welet u0 denote the parameter taking all values from thesegment� limx!x0�0 (u1(x; t0)� 
g(x; t0)) ;limx!x0+0 (u1(x; t0)� 
g(x; t0))� :Then the solution is determined by the equationsB1(x; t)h(x; t) = B1(x0; 0)h(x0; 0);B2(x; t) = B2(x0; 0);u2(x; t) = u2(x0; 0);u1(x; t)� '(x; t) + gkt = u1(x0; 0)� '(x0; 0) (4.25)satis�ed in the domain of the wave and the equationu1(x; t) + '(x; t) + gkt = u1(x0; 0) + '(x0; 0) (4:26)satis�ed along the linesdxdt = u0 � gkt: (4:27)Be
ause '� 
g is a monotoni
 fun
tion of h, it followsthat u1(x0; 0) and h(x0; 0) are uniquely determinedon ea
h 
hara
teristi
s by the relations u1(x0; 0) ��'(x0; 0) = 
onst and u0 = u1(x0; 0)�
g(x0; 0). Equa-tions (4.25)�(4.27) determine all the parameters in a
entered magnetogravity wave turned ba
k.For a 
entered magnetogravity wave turned for-ward, we let u0 denote the parameter taking all valuesfrom the segment� limx!x0�0 (u1(x; t0) + 
g(x; t0)) ;limx!x0+0 (u1(x; t0) + 
g(x; t0))� :Then the solution is determined by the equationsB1(x; t)h(x; t) = B1(x0; 0)h(x0; 0);B2(x; t) = B2(x0; 0);u2(x; t) = u2(x0; 0);u1(x; t) + '(x; t) + gkt = u1(x0; 0) + '(x0; 0) (4.28)satis�ed in the domain of the wave and the equationsu1(x; t)� '(x; t) + gkt = u1(x0; 0)� '(x0; 0) (4:29)satis�ed along the linesdxdt = u0 + gkt: (4:30)358
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 �ows : : :Here, u1(x0; 0) and h(x0; 0) 
an be found on ea
h 
har-a
teristi
 from u1(x0; 0)+'(x0; 0) = 
onst and u0. Sys-tem (4.28)�(4.30) determines all the parameters in a
entered magnetogravity wave turned forward.We note that the obtained relations (4.19) and(4.22) for the Alfven wave are satis�ed in a band that
onsists of parallel 
hara
teristi
s. Therefore, in theselfsimilar 
ase, these relations 
an be ful�lled only ona single bundle line x = �t, and hen
e the 
ontinuousAlfven wave degenerates.4.2. Dis
ontinuous solutions over a slope. Thejump 
onditionsAs shown above, any magnetogravitational dilata-tion wave leads to the appearan
e of high dis
ontinu-ity in a �nite time. In this se
tion, the 
onditionsthat must be satis�ed on the dis
ontinuity lines areobtained. For this, we rewrite Eqs. (2.1)�(2.5) in thedivergent form:�h�t + �hu1�x = 0;�h u1�t + �(hu21 � hB21 + gh2=2)�x = �g �b�x;�h u2�t + �(hu1u2 � hB1B2)�x = 0;�hB1�t = 0;�hB2�t + �(hu1B2 � hB1u2)�x = 0: (4.31)
Integrating (4.31) on an arbitrary domain G homeo-morphi
 to a square in the xt plane yieldsZZG ��h�t + �hu1�x � dG = 0;ZZG ��hu1�t +�(hu21�hB21+gh2=2)�x � dG == ZZG ��g �b�x� dG;ZZG ��hu2�t +�(hu1u2�hB1B2)�x � dG = 0;ZZG ��hB1�t � dG = 0;ZZG ��hB2�t +�(hu1B2�hB1u2)�x � dG = 0:

(4.32)

Transforming volume integrals in (4.32) using theGreen's formula we obtainI�G h dx� (hu1) dt = 0;I�G (hu1) dx ��hu21 � hB21 + gh22 � dt == I�G (gb) dt;I�G (hu2) dx � (hu1u2 � hB1B2) dt = 0;I�G (hB1) dx = 0;I�G (hB2) dx� (hu1B2 � hB1u2) dt = 0:
(4.33)

Equations (4.33) represent the most general relationsthat are integral 
onservation laws and are valid for anarbitrary 
ontour �G and, in parti
ular, for the 
on-tour in
luding the dis
ontinuity lines of an appropriatesolution.Let x = x(t) be the equation of a jump line; we sup-pose that it has a 
ontinuous tangent on the segment[t1; t2℄. Assuming that the fun
tions u1, u2, B1, B2,and h have a jump on the line x = x(t) only and b(x)has no jump, we setu1 I(t) = limx!x(t)�0u1(x; t);u1 II(t) = limx!x(t)+0u1(x; t);u2 I(t) = limx!x(t)�0u2(x; t);u2 II(t) = limx!x(t)+0u2(x; t);B1 I(t) = limx!x(t)�0B1(x; t);B1 II(t) = limx!x(t)+0B1(x; t);B2 I(t) = limx!x(t)�0B2(x; t);B2 II(t) = limx!x(t)+0B2(x; t);hI(t) = limx!x(t)�0h(x; t);hII(t) = limx!x(t)+0h(x; t):
(4.34)

Let �G be the 
ontour ABCE with lines AB and CElo
ated in�nitely 
lose to the line of the jump x(t) onthe left- and right-hand sides respe
tively (Fig. 2). Let-ting D = D(t) = x0(t) denote the speed of the dis
on-tinuity, su
h that dx = D(t) dt, we obtain359
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A

B

E

C

x(t)

t

xFig. 2. Contour ABCE with lines AB and CE lo
atedin�nitely 
lose to the line of the jump x(t)ZAB (Dh� hu1) dt ZCE (Dh� hu1) dt = 0;ZAB �Dhu1 � hu21 + hB21 � gh22 � dt�� ZCE �Dhu1 � hu21 + hB21 � gh22 � dt = 0;ZAB (Dhu2 � hu1u2 + hB1B2) dt�� ZCE (Dhu2 � hu1u2 + hB1B2) dt = 0;ZAB (DhB1) dt� ZCE (DhB1) dt = 0;ZAB (DhB2 � hu1B2 + hB1u2) dt�� ZCE (DhB2 � hu1B2 + hB1u2) dt = 0:
(4.35)

The 
ontour ABCE is arbitrary, and hen
e Eqs. (4.35)are equivalent to the following 
onditions for the inte-grands:DhI � hIu1 I = DhII � hIIu1 II;DhIu1 I � hIu21 I + hIB21 I � gh2I =2 == DhIIu1 II � hIIu21 II + hIIB21 II � gh2II=2;DhIB1 I = DhIIB1 II;DhIu2 I � hIu1 Iu2 I + hIB1 IB2 I == DhIIu2 II � hIIu1 IIu2 II + hIIu1 IIB2 II;DhIB2 I � hIu1 IB2 I + hIu2 IB1 I == DhIIB2 II � hIIu1 IIB2 II + hIIu2 IIB1 II: (4.36)

We 
onsider the 
ase hI 6= h2. Then the �rst threeequations in (4.36) givehIBI = hIIBII;D = hIu1 I � hIIu1 IIhI � hII ;u1 I � u1 II = �(hI � hII)��sg(hI + hII)=2 + (B1 IhI)2=hIhIIhIhII : (4.37)Substituting D from the se
ond relation in (4.37) in thelast two equations in (4.36) and rearranging the terms,we obtainhIhII(u1 I � u1 II)(u2 I � u2 II) == �(hI � hII)(hIB1 IB2 I � hIIB1 IIB2 II); (4.38)hIhII(u1 II � u1 I)(B2 II �B2 I) == (hI � hII)(hIIu2 IIB1 II � hIu2 IB1 I): (4.39)If B2 I = B2 II and u2 I = u2 II, then Eqs. (4.38)and (4.39) are satis�ed identi
ally. Otherwise, wedivide (4.38) by (4.39) and obtain (u2 I � u2 II)2 == (B1 I �B1 II)2, when
e it follows thatu2 I � u2 II = �(B1 I �B1 II): (4:40)Substituting (4.40) in (4.38) and taking the third equa-tion in (4.32) into a

ount, we obtainhIhII(u1 I � u1 II) = �(hI � hII)hIB1 Iand thusu1 I � u1 II = �(hI � hII)hIB1 IhIhII : (4:41)For the third equation in (4.37) and Eq. (4.41) tobe satis�ed simultaneously, the sum of the depths onboth sides adja
ent to the dis
ontinuity must be zero,hI + hII = 0. This 
an be only in the 
ase where ea
hdepth is equal to zero, i. e., the 
ase of the �uid absen
e.Therefore, the assumption that B2 and u2 have a dis-
ontinuity is in
orre
t if Eqs. (4.37) have a nontrivialsolution.We 
onsider the other 
ase, where the free surfa
ehas no jump on the dis
ontinuity, hI = hII. It fol-lows from (4.37) that velo
ity and magneti
 �eld 
om-ponents normal to the dis
ontinuity have no jump aswell, B1 I = B1 II and u1 I = u1 II. Therefore, the �rstthree equations in system (4.36) are satis�ed identi-
ally. There are only two nontrivial relations at thedis
ontinuity: D = u1 �B1B2 I �B2 IIu2 I � u2 II ;(B2 I �B2 II)2 = (u2 I � u2 II)2: (4.42)360
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 �ows : : :Rearranging (4.42), we obtainD = u1 �B1;B2 I �B2 II = �(u2 I � u2 II): (4.43)Relations (4.43) are identi
ally those obtained forthe Alfveni
 Riemann waves without dis
ontinuity,Eqs. (4.16)�(4.18), (4.19)�(4.21).Thus, there are only two types of stable dis
onti-nuities with a nonzero mass �ow through the dis
on-tinuity: dis
ontinuity (4.37) with a free surfa
e jumpand transverse velo
ity and transverse magneti
 �eldjumps, termed a magnetogravity sho
k wave, and dis-
ontinuity (4.43) with the tangential velo
ity jump andthe tangential magneti
 �eld jump, termed an Alfveni
wave. We note that the magnetogravity wave is an ana-log of a hydrodynami
 jump for the 
lassi
al shallowwater equations, and the relations for this wave trans-form into those for the hydrodynami
 jump as B1 ! 0.The magnetogravity sho
k wave is supersoni
 in themedium before the wave and subsoni
 in the mediumafter the wave, as it is for the 
lassi
al hydrodynami
jump [21℄ in the shallow water theory [22℄.In general, system (4.36) admits the third type ofstable dis
ontinuities with the 
ontinuous tangential ve-lo
ity 
omponent equal to the dis
ontinuity velo
ity. Itis termed the 
onta
t dis
ontinuity. These dis
ontinu-ities must be 
onsidered if the problem has di�erentproperties in the right and left half-spa
es and theseproperties do no a�e
t the dis
ontinuity de
ay solu-tion. An example of su
h a 
ase is the �uid with dif-ferent densities in the half-spa
es separated by the dis-
ontinuity. Another example 
onsidered in this paper
orresponds to the degeneration of an Alfveni
 wave asB1 ! 0. In this 
ase, the mass �ow through the dis-
ontinuity is equal to zero and the tangential magneti
�eld and velo
ity �eld 
omponents have the propertiesdes
ribed above.It is shown in [23℄ that the 
hara
teristi
 interse
-tion envelope in quasilinear hyperboli
 partial di�eren-tial equations is itself a 
hara
teristi
 of the same sys-tem. Hen
e, the high dis
ontinuity propagation traje
-tory x = x(t) is also a parabola. In our 
ase of SMHD�ows over a slope, the magnetogravitational sho
k waveis due to the fall of a magnetogravitational dilatationwave. Hen
e, a strong dis
ontinuity borders the mag-netogravitational Riemann wave throughout the area ofuniformly a

elerated �ow, and hen
e has a paraboli
traje
tory.

5. INITIAL DISCONTINUITY DECAYPROBLEM FOR SMHD EQUATIONS OVERA SLOPEHere, we formulate the initial dis
ontinuity de
ayproblem for SMHD equations and list all possible wave
on�gurations des
ribing the nonlinear dynami
s of theinitial dis
ontinuity de
ay. We �nd the realization 
on-ditions for ea
h wave 
on�guration. As it has beenshown, the parti
ular solutions in our 
ase di�er fromthose for in
ompressible shallow-water �ows. Hen
e,the 
onditions for the realization of ea
h 
on�gurationare di�erent5.1. Initial dis
ontinuity de
ay problemstatementWe 
onsider Eqs. (2.1)�(2.5) with an arbitrarypie
ewise 
onstant initial 
onditions for the left (x < 0)and right (x > 0) half-spa
es:t = 0;h = hI; u1 = u1 I; u2 = u2 I;B1 = B1 I; B2 = B2 I for x < 0;h = hII; u1 = u1 II; u2 = u2 II;B1 = B1 II; B2 = B2 II for x > 0;B1 IhI = B1 IIhII: (5.1)
The dis
ontinuity for two semi-in�nite magneti
 �uidsadja
ent to the x = 0 plane at the initial instant andsatisfying (5.1) is 
alled the initial dis
ontinuity [23℄.The determination of the �ow at t > 0 for these ini-tial 
onditions is 
alled the initial dis
ontinuity de
ayproblem solution for SMHD equations.Without the loss of generality, it is assumed here-after that the �uid depth in the right half-spa
e is lessthan or equal to the �uid depth in the left half-spa
e.It is shown below that in the absen
e of the �uid inthe right half-spa
e, the magneti
 �eld 
omponent B1must be equal to zero in the left half-spa
e, B1 I = 0,and this leads to the absen
e of B1 in the spa
e-timedomain of the solution. In this 
ase, the solution is re-du
ed to the 
lassi
al dam break problem solution [21℄with an additional 
onve
tive transfer of the tangentialvelo
ity and magneti
 �eld 
omponents. It is assumedthat the right half-spa
e magneti
 �uid is at rest. Theabove two assumptions are easily satis�ed when 
hang-ing the 
oordinate system to the one with a proper axisdire
tion and moving with a pres
ribed velo
ity.We note that in nontrivial 
ase B1 6= 0, the �uiddepth is stri
tly positive in the spa
e-time region of thesolution be
ause of the magneti
 �eld divergen
e-free361
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Fig. 3. Two magnetogravity rarefa
tion waves and twoAlfveni
 waves over a slope. I, II, IV, V, VI are regionsof uniformly a

elerated �ow; III and VII are magne-togravity rarefa
tion waves; OC and OD are Alfveni
waves
ondition. Hen
e, if there is no �uid in one half-spa
e,then the normal magneti
 �eld 
omponent in the otherhalf-spa
e degenerates. The 
ase of the �uid absen
e inthe left and right half-spa
es leads to the entire solutiondegeneration (all physi
al values are 
onstant and equalto zero) and is not 
onsidered here. If B1 I = B1 II = 0,then the problem redu
es to the hydrodynami
 initialdis
ontinuity de
ay [21℄. Indeed, in the 
ase of a zerotangent magneti
 �eld (the absen
e of the magneti
�eld), Eqs. (2.1)�(2.5) redu
e to the 
lassi
al shallowwater system. In the 
ase of a nonzero tangent mag-neti
 �eld, the solution degenerates. It is shown belowthat Alfveni
 waves merge and be
ome a 
onta
t dis-
ontinuity, and the tangent velo
ity and magneti
 �eld
omponents are transferred 
onve
tively. This 
orre-sponds to the 
lassi
al dam break problem [21℄. This
ase is not spe
ially 
onsidered below.In what follows, we use the 
hange of variablesin (3.12), (3.13) to �nd the initial dis
ontinuity de
ayproblem solution over a slope. For this, we use theinitial dis
ontinuity de
ay problem solution on a �atplane [18℄ and perform the 
hange of variables inverseto (3.12), (3.13): x = ~x� 12 gkt2;t = ~t;u = ~u� gkt: (5.2)It follows from (5.2) that the 
hara
teristi
s in the 
aseof a slope are parabolas, whereas the 
hara
teristi
sin the 
ase of a �at plane are straight lines. These
hara
teristi
s are tangent at the initial point. Indeed,
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VIV
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O x

t

III

Fig. 4. Magnetogravity wave turned ba
k, magne-togravity sho
k wave, and two Alfveni
 waves over aslope. I, II, IV, V, VI are regions of uniformly a

eler-ated �ow; III is a magnetogravity rarefa
tion wave; OCand OD are Alfveni
 waves; OE is a magnetogravitysho
k wave
t

xO
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Fig. 5. Two magnetogravity sho
k waves and twoAlfveni
 waves over a slope. I, II, III, IV, and V areregions of uniformly a

elerated �ow; OA are OD aremagnetogravity sho
k waves; OB and OC are Alfveni
waveswe note that the wave 
on�gurations of the Riemannproblem solution over a slope are the same as over a�at plane [18℄: �Two magnetogravity rarefa
tion waves,and two Alfveni
 waves� (Fig. 3), �Magnetogravity rar-efa
tion wave, magnetogravity sho
k wave, and twoAlfveni
 waves� (Fig. 4), �Two magnetogravity sho
kwaves and two Alfveni
 waves� (Fig. 5), and �Two hy-drodynami
 rarefa
tion waves and a va
uum region be-tween them� (Fig. 6). The 
on�gurations realization
onditions also mat
h: whenu1 I � (hI � hII)sg(hI + hII)=2 + (B1 IhI)2=hIhIIhIhII ;362
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Fig. 6. Two hydrodynami
 rarefa
tion waves and a va-
uum region between them over a slope. I and II areregions of uniformly a

elerated �ow; III and V aremagnetogravity rarefa
tion waves; IV is the va
uumregionthe 
on�guration �two magnetogravity sho
k waves,and two Alfveni
 waves� is realized; whenu1 I > '(hII)� '(hI);u1 I < (hI � hII)sg(hI + hII)=2 + (B1 IhI)2=hIhIIhIhII ;the 
on�guration �magnetogravity rarefa
tion waveturned ba
k, magnetogravity sho
k wave, and twoAlfveni
 waves� is realized; whenu1 I � '(hII)� '(hI);the 
on�guration �two magnetogravity rarefa
tionwaves and two Alfveni
 waves� is realized; and whenB1 I = B1 II = 0;u1 I < �2
g I � 2
g II;the 
on�guration �two hydrodynami
 rarefa
tion wavesand a va
uum region between them� is realized.It should be noted that the expli
it form of theobtained solution of the initial dis
ontinuity de
ayproblem over a slope di�ers substantially from thatover a �at plane, despite similar wave 
on�gura-tions and realization 
onditions. This is be
ause the
hara
teristi
s in the 
ase of a slope are parabolas,whereas the 
hara
teristi
s in the 
ase of a �at planeare straight lines. The Riemann problem solutionfound above forms a basis for the development of�nite-volume numeri
al methods to 
ompute 
ontinu-ous and dis
ontinuous solutions without 
apturing thedis
ontinuities [19; 24; 25℄.

6. CONCLUSIONIn this paper, the nonlinear dynami
s of the SMHD�ows of heavy �uid is studied. It is shown that sim-ple Riemann waves are not solutions of the SMHDequations in the 
ase of an arbitrary nonhomogeneousboundary due to the sour
e term �g db=dx in the right-hand side of Eqs. (2.1)�(2.6). This is be
ause the Rie-mann variables are not 
onserved along the 
hara
ter-isti
s, in 
ontrast to the �at plane 
ase, and 
lassi
alsimple wave solutions do not exist. Generalized sim-ple waves [14℄ exist only for slopes b = kx + 
, wherek; 
 = 
onst. Generalized 
entered simple waves areobtained in this parti
ular 
ase. The obtained solu-tions 
an be interesting in and of themselves be
ausethey des
ribe the nonlinear dynami
s of a rotating mag-neti
 �uid in the beta plane approximation. All 
on-tinuous simple wave solutions over slopes are found:Alfveni
 waves and magnetogravity waves. Dis
ontinu-ous solutions are obtained, whi
h are magnetogravita-tional and Alfven dis
ontinuities. The 
hange of vari-ables transforming the SMHD equations over a slopeto the equations over a �at plane is found. The ex-a
t expli
it solution of the initial dis
ontinuity de
ayproblem over a slope is found. It is shown that thesesolutions are represented by one of the following 
on�g-urations: �Two magnetogravity rarefa
tion waves andtwo Alfveni
 waves�, �Two magnetogravity sho
k wavesand two Alfveni
 waves�, �Rarefa
tion magnetogravitywave, magnetogravity sho
k wave, and two Alfveni
waves�, �Two hydrodynami
 rarefa
tion waves and ava
uum region between them�. Despite the same wave
on�gurations in the 
ase of a slope and a �at plane,these solutions are drasti
ally di�erent from ea
h other.In the 
ase of a �at plane, the 
hara
teristi
s of wavesare straight lines and in the 
ase of a slope, they areparabolas. The 
onstant-�ow regions in the �at planesolutions are transformed into the regions of 
onstantlya

elerated �ow in the 
ase of a slope. It follows fromthe obtained results that the solution of the initial dis-
ontinuity de
ay is a superposition of two solutions: theinitial dis
ontinuity de
ay solution for shallow waterwithout a magneti
 �eld (with the modi�ed sound ve-lo
ity 
g =pB21 + gh ) and two Alfveni
 waves. WhenB1 � 0, the two Alfveni
 waves merge and be
ome the
onta
t dis
ontinuity. The �two hydrodynami
 rarefa
-tion waves and a va
uum region between them� 
on-�guration di�ers from the other 
on�gurations and 
anbe realized only when the normal 
omponent of themagneti
 �eld is equal to zero.363
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es �Fundamental Problems inSolar System Studies and Exploration�.APPENDIXDerivation of shallow watermagnetohydrodynami
 equationsIn this se
tion, we derive shallow water equationsfor heavy magnetohydrodynami
 �ows in the �eld ofgravity. We 
onsider nonvis
ous and nonresistive mag-netohydrodynami
 equations for in
ompressible homo-geneous (� = 
onst) �ows with the gravity for
e di-re
ted opposite the z axis:�t0BBBBBBBBB�
�u1�u2�u3~B1~B2~B3

1CCCCCCCCCA+ �x0BBBBBBBBB�
�u21 � ~B21 + ~p�u1u2 � ~B1 ~B2�u1u3 � ~B1 ~B30u1 ~B2 � u2 ~B1u1 ~B3 � u3 ~B1

1CCCCCCCCCA+
+�y0BBBBBBBBB�

�u1u2 � ~B1 ~B2�u22 � ~B22 + ~p�u2u3 � ~B2 ~B3u2 ~B1 � u1 ~B20u2 ~B3 � u3 ~B2
1CCCCCCCCCA+�z0BBBBBBBBB�

�u1u3 � ~B1 ~B3�u2u3 � ~B2 ~B3�u23 � ~B23 + ~pu3 ~B1 � u1 ~B3u3 ~B2 � u2 ~B30
1CCCCCCCCCA =

= 0BBBBBBBBB�
00��g000

1CCCCCCCCCA ; (A.1)�u1�x + �u2�y + �u3�z = 0; (A.2)�B1�x + �B2�y + �B3�z = 0; (A.3)with the boundary 
onditionsu3jz=fs = u1jz=fs �fs�x + u2jz=fs �fs�y ;u3jz=h = DhDt = �h�t ++ u1jz=h �h�x + u2jz=h �h�y ;B3jz=fs = B1jz=fs�xfs +B2jz=fs�yfs;B3jz=h = B1jz=h�xh+B2jz=h�yh: (A.4)

Here, h(x; y; t) is the �uid surfa
e, u is the velo
ityve
tor, B is the magneti
 �eld ve
tor, � is the density,~p = p+ �jBj2=2 is the magnetohydrostati
 pressure, gis the a

eleration of gravity, and fs = fs(x; y) is thestream bed pro�le. Boundary 
onditions for the velo
-ity are the nonslip 
ondition on the bottom boundary,and the verti
al velo
ity must be equal to the free sur-fa
e velo
ity in magnitude. Boundary 
onditions forthe magneti
 �eld suggest that the magneti
 �elds onthe bottom and on the free surfa
e are parallel to thoseboundaries. We suppose that material surfa
es are atthe same time magneti
 surfa
es.After substituting B = ~B��1=2, the third equationin system (2.1) 
an be written as�tu3 + (u � r)u3 � (B � r)B3 ++ ��1�z �p+ �2 jBj2� = �g: (A.5)We 
onsider the magnetohydrodynami
 �ows whosedepth is smaller than the 
hara
teristi
 s
ale of �uidmotions. Then the pressure 
an be 
onsidered magne-tohydrostati
 for su
h �ows:�z �p+ �2 jBj2� = ��g: (A.6)Equations (A.1)�(A.3) are integrated over the verti-
al 
oordinate to obtain the magnetohydrodynami
equations in the shallow water approximation. Equa-tions (A.1)�(A.3) with (A.6) taken into a

ount arewritten ashZfs �t0BBBBBBBBB�
�u1�u20B1B2B3

1CCCCCCCCCA dz+ hZfs �x0BBBBBBBBB�
�u21��B21+~p�u1u2��B1B200u1B2�u2B1u1B3�u3B1

1CCCCCCCCCA dz+
+ hZfs �y0BBBBBBBBB�

�u1u2 � �B1B2�u22 � �B22 + ~p0u2B1 � u1B20u2B3 � u3B2
1CCCCCCCCCA dz +

364



ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Nonlinear dynami
s of magnetohydrodynami
 �ows : : :
+ hZfs �z0BBBBBBBBB�

�u1u3 � �B1B3�u2u3 � �B2B3~pu3B1 � u1B3u3B2 � u2B30
1CCCCCCCCCA dz =
= 0BBBBBBBBB�

00��gh000
1CCCCCCCCCA ; (A.7)hZfs ��u1�x + �u2�y + �u3�z � dz = 0; (A.8)hZfs ��B1�x + �B2�y + �B3�z � dz = 0: (A.9)Using the Leibniz di�erentiation rules��x a(x)Zb(x) f(x; z) dz = a(x)Zb(x) ��xf(x; z) + f ja �a�x � f jb �b�x;we transform Eq. (2.8) to the form��x hZfs u1dz � u1jz=h �h�x + u1jz=fs �fs�x ++ ��y hZfs u2dz � u2jz=h �h�y ++ u2jz=fs �fs�y + u3jz=h � u3jz=fs = 0: (A.10)After inserting boundary 
ondition (2.4), Eq. (2.10) be-
omes��x hZfs u1dz � u1jz=h �h�x + u1jz=fs �fs�x ++ ��y hZfs u2dz � u2jz=h �h�y ++ u2jz=fs �fs�y + �h�t + u1jz=h �h�x + u2jz=h �h�y �� u1jz=fs �fs�x � u2jz=fs �fs�y = 0:

Summing similar terms, we obtain��x hZfs u1dz + ��y hZfs u2dz + �h�t = 0: (A.11)The remaining equations are transformed similarly.Assuming the pressure to be 
onstant on the free sur-fa
e (pjz=h = p0), we obtain from the third equation insystem (2.7) that ~p = p0 � �g(h� z): (A.12)The �rst equation in (2.7), taking (2.12) into 
onsider-ation, is transformed as follows:� ��t hZfs u1dz � �u1jz=h �h�t + �u1jz=fs �fs�t ++ � ��x hZfs u21dz � �u21jz=h �h�x + �u21jz=fs �fs�x �� � ��x hZfs B21dz + �B21 jz=h �h�x � �B21 jz=fs �fs�x ++ �g(h� fs)�h�x + � ��y hZfs u1u2dz �� �u1jz=hu2jz=h �h�y + �u1jz=fsu2jz=fs �fs�y �� � ��y hZfs B1B2dz + �B1jz=hB2jz=h �h�y �� �B1jz=fsB2jz=fs �fs�y + �u1jz=hu3jz=h �� �B1jz=hB3jz=h = 0;and, after inserting boundary 
ondition (2.4) and sum-ming similar terms:� ��t hZfs u1dz + � ��x hZfs u21dz �� � ��x hZfs B21dz + �g(h� fs)�h�x ++ � ��y hZfs u1u2dz � � ��y hZfs B1B2dz = 0: (A.13)365
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ond equation in (2.7) is similarly transformedas� ��t hZfs u2dz + � ��x hZfs u1u2dz �� � ��x hZfs B1B2dz + �g(h� fs)�h�y + � ��y hZfs u22dz �� � ��y hZfs B22dz = 0: (A.14)Analogously, the fourth and �fth equations in (2.7) takethe form��t hZfs B1dz + ��y hZfs B1u2dz �� ��y hZfs B2u1dz = 0; (A.15)��t hZfs B2dz + ��x hZfs B2u1dz �� ��x hZfs B1u2dz = 0: (A.16)The sixth equation in (2.7) be
omes identi
al, andEq. (2.8) is transformed as��x hZfs B1dz + ��y hZfs B2dz = 0: (A.17)We introdu
e the mean velo
ities and magneti
 �eldsover the depth:ux = 1h� fs hZfs u1(x; y; z; t) dz;uy = 1h� fs hZfs u2(x; y; z; t) dz;Bx = 1h� fs hZfs B1(x; y; z; t) dz;By = 1h� fs hZfs B2(x; y; z; t) dz;

and writeu1 = 1h� fs hZfs u1(x; y; z; t) dz + u01(x; y; t);where hZfs u01(x; y; z; t) = 0;u2 = 1h� fs hZfs u2(x; y; z; t) dz + u02(x; y; t);where hZfs u02(x; y; z; t) = 0;B1 = 1h� fs hZfs B1(x; y; z; t) dz +B01(x; y; t);where hZfs B01(x; y; z; t) = 0;B2 = 1h� fs hZfs B2(x; y; z; t) dz +B02(x; y; t);where hZfs B02(x; y; z; t) = 0:It hen
e follows thathZfs u21dz = hZfs u2xdz + hZfs 2u01uxdz + hZfs u021dz:Negle
ting terms that are produ
ts of �u
tuatingterms, we obtain the following system from (A.11),(A.13)�(A.17):�H�t + �Hux�x + �Huy�y = 0; (A.18)�Hux�t +�(Hu2x �HB2x)�x +�(Huxuy �HBxBy)�y ++ gH �h�x = 0; (A.19)366
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 equations in the shallow water approximation.In one-dimensional version (2.1)�(2.6), the indi
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