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Magnetohydrodynamic equations for a heavy fluid over an arbitrary surface are studied in the shallow water
approximation. While solutions to the shallow water equations for a neutral fluid are well known, shallow wa-
ter magnetohydrodynamic (SMHD) equations over a nonflat boundary have an additional dependence on the
magnetic field, and the number of equations in the magnetic case exceeds that in the neutral case. As a conse-
quence, the number of Riemann invariants defining SMHD equations is also greater. The classical simple wave
solutions do not exist for hyperbolic SMHD equations over an arbitrary surface due to the appearance of a source
term. In this paper, we suggest a more general definition of simple wave solutions that reduce to the classical
ones in the case of zero source term. We show that simple wave solutions exist only for underlying surfaces
that are slopes of constant inclination. All self-similar discontinuous and continuous solutions are found. Exact
explicit solutions of the initial discontinuity decay problem over a slope are found. It is shown that the initial
discontinuity decay solution is represented by one of four possible wave configurations. For each configuration,
the necessary and sufficient conditions for its realization are found. The change of dependent and independent

© 2014

NONLINEAR DYNAMICS OF MAGNETOHYDRODYNAMIC FLOWS

variables transforming the initial equations over a slope to those over a flat plane is found.
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1. INTRODUCTION

Exact, explicit nonlinear solutions of magnetohy-
drodynamic (MHD) equations are rare. The shallow
water magnetohydrodynamic (SMHD) equations are
the alternative to solving the full set of magnetohydro-
dynamic equations for a heavy fluid with a free surface.
These equations are derived from the MHD equations
for an incompressible nonviscous fluid layer in the grav-
ity field assuming that the pressure is hydrostatic, using
the depth averaging, and taking the fluid layer depth to
be much smaller than the characteristic size of the phys-
ical system. The derived system of equations [1,2] is
important in many applications of MHD to astrophys-
ical and engineering problems. The SMHD approxi-
mation is widely used for the solar tachocline study
[1,3-5], for the description of spread of matter over a
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neutron-star surface during disc accretion [6, 7], for the
study of the neutron-star atmosphere dynamics [8,9],
and for the study of exoplanets [10]. A similar ap-
proximation of the MHD equations for small Reynolds
numbers is used to model the aluminum production
processes [11,12] and those in fusion technologies [13].
The nonlinear dynamics of the above flows is described
by the full set of MHD equations for all scales. This
system cannot be examined analytically and is still dif-
ficult to model numerically. Practically, the shallow
water approximation has the same fundamental role
in the plasma magnetohydrodynamics as a similar ap-
proximation has in the neutral fluid dynamics [14, 15].
The latter case is used widely to study the large-scale
processes in Earth’s atmosphere and oceans [16].

This paper is devoted to the study of nonlinear flows
of a heavy fluid described by the SMHD equations over
a nonflat surface and is an extension of the theory de-
veloped in [17] for magnetohydrodynamic shallow wa-
ter equations over a flat plane. Indeed, results obtained
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in this paper are of particular interest for understand-
ing astrophysical flows due to the lack of information
on topographic futures of their lower boundaries. The
theory developed in this paper can be a basis for justi-
fication of models of astrophysical objects. This new
set of equations is also of general interests in solar
fluid dynamics because the dynamical importance of
a compositional stratified layer has been suggested in
the tachocline [18]. In particular, the existence of the
Sun’s settling helium layer may lead to new nonlinear
dynamics. Moreover, the Coriolis force and other ex-
ternal forces in the large-scale magnetohydrodynamic
models can be naturally represented by using an effec-
tive nonflat surface, as is done in the study of large-
scale atmospheric and oceanic flows (see, e.g., [19]).
These equations serve as a basis for the development
of multilayer stratified shallow water magnetohydrody-
namic models, and for the development of finite-volume
numerical methods for magnetohydrodynamic shallow
water flows subjected to an external force (e.g., the
Coriolis force or a hydraulic friction). In the appendix,
we give a brief derivation of the SMHD equations on a
nonhomogeneous boundary, describing the approxima-
tions made.

The SMHD equations are of hyperbolic type. How-
ever, while solutions of the shallow water equations
for a neutral fluid are well known, magnetohydrody-
namic shallow water equations over a nonflat boundary
have an additional dependence on the magnetic field,
and the number of equations in the magnetic case ex-
ceeds that in the neutral case. As a consequence, the
number of Riemann invariants defining the magneto-
hydrodynamic shallow water equations increases. The
hyperbolicity of magnetohydrodynamic shallow water
equations (see [2] and J. A. Rossmanith’s PhD disser-
tation, University of Washington (2002), Ch. 4) leads
to the existence of discontinuous solutions, even if the
initial conditions are differentiable, as well as to the
existence of continuous ones. In the above papers, the
properties of the SMHD equations as a hyperbolic sys-
tem over a flat plane are studied, including linear wave
modes, Riemann invariants, Rankine-Hugoniot condi-
tions, and shock waves, and the numerical Roe-type
Riemann solver is developed. In this paper, simple
wave solutions of the SMHD equations over a nonflat
surface are studied. The classical simple wave solutions
do not exist for hyperbolic SMHD equations over an ar-
bitrary surface due to the appearance of a source term.
In this paper, we suggest a more general definition of
simple wave solutions that reduce to the classical one
in the case of zero source term. It is shown that these
solutions exist only for the underlying surfaces that are
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slopes of constant inclination. Therefore, the main fo-
cus in this paper is on the study of magnetohydrody-
namic shallow water flows on a sloping surface. New
wave types appear in this case in contrast to solutions
obtained in [4].

Magnetogravity rarefaction wave solutions, magne-
togravity shock wave solutions and Alfvenic wave solu-
tions for slopes are found. The characteristics of these
waves are parabolas transforming to straight lines in
the case of a flat plane. These particular waves are fun-
damental for studying nonlinear wave phenomena over
a nonflat surface. The change of dependent and inde-
pendent, variables transforming the SMHD equations
over a slope to those over a flat plane is found. The ob-
tained change of variables is valid only for continuous
solutions and fails for discontinuous ones. Hence, the
full set of simple wave-type solutions on slopes cannot
be found from those on a flat plane using this change of
variables. For unified descriptions of fluid physics, we
derive simple wave solutions, continuous and discon-
tinuous ones, from the initial governing equations, al-
though continuous ones can be obtained by transform-
ing the solutions from [2]. The obtained continuous so-
lutions allow finding trajectories of propagation of dis-
continuous solutions, and thus determine the domains
of location of the solutions of the initial discontinuity
decay problem as a combination of domains of continu-
ous magnetohydrodynamic flows; for each of these, the
suggested transformation of variables is applicable. It
is used to find the exact solution of the initial discon-
tinuity decay problem for the SMHD equation system
over a slope. We find that the structure of the solution
over a slope is the same as over a flat plane. The con-
ditions for each wave configuration realization exactly
match. It has been shown that the particular solutions
in our case differ from those for incompressible shallow-
water flows. Hence, the conditions of the realization of
each configuration are different.

The initial discontinuity decay solution is rep-
resented by one of the following wave configura-
tions: “two magnetogravity shock waves, two Alfvenic
waves”, “magnetogravity rarefaction wave, magne-
togravity shock wave, two Alfvenic waves”, “two magne-
togravity rarefaction waves, two Alfvenic waves”, “two
hydrodynamic rarefaction waves and a vacuum region
between them”. Explicit expressions for continuous and
discontinuous solutions obtained in Sec. 4 allow impos-
ing a solution of the Riemann problem in explicit form.

In Sec. 2, the initial equations of shallow water mag-
netohydrodynamics over an arbitrary surface are pre-
sented. In Sec. 3, this set of equations is written in
the Riemann invariant form and it is shown that sim-
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Fig.1. Coordinate system and topography

ple wave solutions exist only for the underlying surfaces
that are slopes of constant inclination. In Sec. 4, par-
ticular continuous and discontinuous simple wave so-
lutions are found. In Sec. 5, the initial discontinuity
decay problem solution for a slope is found. The main
results are outlined in the conclusion.

2. SHALLOW WATER
MAGNETOHYDRODYNAMIC EQUATIONS
OVER AN ARBITRARY SURFACE

In this section, we consider a one-dimensional
SMHD model to study the magnetic fluid flows with a
free surface in the gravity field over an arbitrary bound-
ary. The SMHD equations over an arbitrary boundary
are obtained from the classical MHD equations [20]
written for the fluid layer with a free surface in the
gravity field over an arbitrary boundary fs(z) (Fig. 1).
There, the z axis is parallel to the gravity force vec-
tor and is opposite in direction. Assuming that the
magnetic fluid layer depth is small compared to the
characteristic scale of the studied phenomena and the
full pressure (the sum of magnetic and hydrodynamic
pressures) is hydrostatic, the relevant system is ave-
raged over the fluid layer depth and then admits a
mean field description. We set B; = B;/ VP (pis a
fluid density) to simplify the equations (the tilde sign
is omitted in what follows) and write this system in the
one-dimensional case:

8h 8h (5%
at =0 @1
Ohuy  O(hui —hB} + gh®/2) Ofs
ot + Ox = ~gh oz’ 22)
Ohus  O(huius — hByBs) _
o + e =0, (2.3)

Here, & and t are the spatial and temporal coordinates,
h(z,t) is the fluid depth, w;(z,t) and us(x,t) are the
respective depth-averaged fluid velocities along x and
y axes, Bi(x,t) and Bs(x,t) are the respective depth-
averaged magnetic field components along = and y axes,
and ¢ is the gravitational constant.

System (2.1)—(2.5) is known as the SMHD system
over an arbitrary surface (see J. A. Rossmanith’s PhD
dissertation, University of Washington (2002), Ch. 4).
These equations are derived from initial nonviscous and
nonresistive incompressible MHD equations by averag-
ing over the fluid layer between a pair of material sur-
faces and using hydrostatic conditions for the sum of
the magnetic and fluid pressure. Equations are derived
in the mean-field approximation, neglecting the squares
of velocity and magnetic field deviations from mean
quantities. It is assumed that magnetic surfaces are,
at the same time, material surfaces. For the details of
the derivation of SMHD equations, see the Appendix.
Equation (2.6) is a consequence of the magnetic field
divergence-free equation in the initial MHD equations
and is used to set the correct initial data. Equa-
tions (2.1)—(2.5) differ from those considered in [14] first
and foremost by the number of independent quantities
and consequently by the number of equations. As is
shown below, this leads to an increase in the number
of equations for Riemann invariants. The appearance
of a magnetic field suggests nontrivial dependences of
one-dimensional equations on both components of hor-
izontal flows. Moreover, the magnetic field is included
in the relations for the propagation speed of weak per-
turbations. In the next section, we find the simple wave
solutions of this system.

3. RIEMANN WAVES FOR SMHD EQUATIONS
OVER AN ARBITRARY SURFACE

In this section, we rewrite the initial equations
(2.1)—(2.5) in the form of the Riemann invariants,
which is more appropriate for further consideration. It
immediately follows from Eqs. (2.4) and (2.6) that

hB; = const. (3.1

We rewrite Eq. (2.1) in the form
oh oh

o Wgp h

ou
ox
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Thus the time derivatives in the initial equations are
transformed to the form
Oha Oa ( Ouq 8h>
)

e ta

ot ot (3.2)

where oo = U, U2, Bl,BQ.
Using expressions (3.2) for the time derivatives in
Eqs. (2.1)-(2.6), we obtain

h U1 h 0 0
9, Uy N c2/h up 0 0 y
U2 0 0 U1 —Bl
B2 0 0 _Bl uy
h 0
—qgdfs/0
co | M= | TN (3
U 0
Bs 0
hB; = const, (3.4)

where the propagation speed of weak perturbations is
cg =/ B} + gh. Equations (3.3) reduce to those con-
sidered in [14] when B; = B2 = 0, and the expression
for the propagation speed of weak perturbations then
coincides with the classical one.

We derive the expressions for the Riemann invari-
ants for Eqgs. (3.3). For this, we find the eigenvec-
tors of system (3.3). The left eigenvectors of (3.3) are
(¢g/h100), (—=¢c4/h100),(0011),and (001 —1). Mul-
tiplying Eqs. (3.3) with the first eigenvector yields

Guy | cg Oh Our g 00\ _
ot at+(“1+cg)(ax o 850) =
Ofs

Introducing the function ¢(h) = [(¢g/h)dh, we rewrite
Eq. (3.5) in the form

or or Ofs

— + (U +cg) 7 = g2,
ot (1 Cg)@ac are
where r = uy + p(h). We note that the function ¢(h)
cannot be expressed in elementary functions and is ex-
pressed in terms of elliptic integrals. However, it is a
strictly increasing function. As a consequence, the in-
verse function ¢! exists. Multiplying (3.3) with other
eigenvectors yields

Os Os Ofs

(3.6)

a+(u1—cg)%=—g6x, s=u1 —p(h), (3.7)
) d
8—]Z+(u1—31)8—5=0, p=us+Bs,  (3.8)

dq dq
T (u1 +B1)% =0,

The functions r, s, p, and ¢ are called the Riemann
invariants and system (3.4), (3.6)—(3.9) is called the
shallow water magnetohydrodynamic equation system
in the Riemann-invariant form.

The expressions for the velocities u; and us, the
fluid depth h, and the magnetic field B, in terms of
the Riemann invariants are as follows:

q = us — B2. (39)

r+s r—s
Uy = 5 h = )
1 5 ¢(h) 5 (3.10)
us=p+q, Ba=p-—gq.

According to the theory of hyperbolic equations, a Rie-
mann wave is defined as a solution of Egs. (3.4), (3.6)—
(3.9) in which all but one Riemann invariants remain
constant.

However, the classical Riemann wave solutions do
not satisfy Eqs. (3.4), (3.6)—(3.9) due to the presence
of the function —gdfs/0z in the right-hand side of the
equations. We suggest a more general definition of sim-
ple wave solutions reducing to the classical one in the
case of zero source term. We define the magnetograv-
ity Riemann wave turned back as the solution satis-
fying Eqgs. (3.6), (3.8), (3.9) identically, and the mag-
netogravity Riemann wave turned forward as the so-
lution satisfying Eqs. (3.7)—(3.9) identically. Similarly,
Alfvenic Riemann waves are defined as the solutions
satisfying Eqgs. (3.6), (3.7), (3.9) or (3.6)—(3.8) identi-
cally. The reasons for these definitions becomes clear
below.

We assume that p = pg = const and ¢ = gy = const
in some area of the xt plane; then Eqs. (3.8) and (3.9)
are identically satisfied in this area. We find the condi-
tions for the expression for r(x,t) satisfying Eq. (3.6)
identically to exist in the above mentioned area. For
this, we show that the expression u; + ¢4 is dependent
on s (and possibly on s and r) and u; — ¢4 is depen-
dent on r (and possibly on r and s). Definitely, ¢, is a
function of h, and hence a function of ¢(h). Therefore,
if ug £ ¢4 = f(ur F ), then ¢, = —p + const and it is
not the case. Consequently, u; + ¢, is dependent on s
and u; — ¢4 is dependent on r.

The functions r(z,t) and s(x,t) are linearly inde-
pendent, and hence the factor at u; + ¢4 has to be zero
for Eq. (3.6) to be satisfied identically, whence Or/dx =
= 0. However, if 9r/0t = 0, then Eq. (3.6) cannot
be satisfied. Hence, r(z,t) is a function of time only,
r = r(t), and therefore

oo _, 9 (_0f
or ot~ oz \ Yoz

0.
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We conclude that the solution satisfying Eq. (3.6) can
exist only for the underlying surface fs(x) determined
by 9%fs/0x®> = 0, i.e., fs = kx + bp. The magne-
togravity wave turned back does not exist for other
underlying surfaces. It can be similarly shown that
the magnetogravity Riemann wave turned forward ex-
ists only for dfs/0x = k = const. Hence, the simple
wave solutions only exist for underlying surfaces that
are slopes of constant inclination, and we furthermore
suppose that dfs/0xr = k = const.

We consider system of equations (3.6)—(3.9). Tak-
ing into account that 0 f;/0x = k = const, we rearrange
it in the form

h uy  h 0 0
2
5, Uy N cg/h uy 0 0 y
Us 0 0 U1 —Bl
B2 0 0 _Bl U1
h 0
—gk
wo, | " =] 7Y (3.11)
U2 0
B, 0
We make the change of variables
i — x4+ gkt?/2,
- 3.12
t—t. ( )
Then
9_9 + kt"i
o~ oi I or (3.13)
9_90 '
dr 0%

This change of variables is nondegenerate, and after the
change of u; given by

iy = up + gkt (3.14)
system (3.11) transforms into
h .  h 0 0
85 ﬂl n Cg/h 711 P 0 %
U2 0 0 U1 —Bl
B 0 0 —-B;y w
h 0
U 0
o | | = (3.15)
U 0
B, 0

After using transformation (3.12), (3.13), system
(3.11) becomes the SMHD equation system on a flat
surface, Eq. (3.15) (k = 0). This transformation is
used below to solve the initial discontinuity decay prob-
lem over a slope, reducing it to the discontinuity decay
problem over a flat plane solved in [18]. We note that
the above change of variables is valid only for continu-
ous solutions and fails for discontinuous ones. That is
why we cannot exploit this change of variables to obtain
the full set of simple wave-type solutions over slopes
from those over a flat plane. For a unified description
of fluid physics in this paper, we derived the above solu-
tions, continuous and discontinuous ones, from the ini-
tial govering equations, although continuous ones can
be obtained by transforming solutions from [2]. Indeed,
the obtained transformation (3.15) is fruitful for under-
standing the Riemann problem solutions as soon as we
know the discontinuity propagation trajectories, since
this allows solving the initial discontinuity decay prob-
lem over a slope immediately using the solutions of the
discontinuity decay problem over a flat plane.

In the next section, we find particular wave so-
lutions for the shallow water magnetohydrodynamic
equations over a slope. The obtained solutions are used
in the following section to find exact explicit solutions
of the initial discontinuity decay problem over a slope.

4. SIMPLE WAVE SOLUTIONS FOR SMHD
EQUATIONS OVER A SLOPE

4.1. Continuous solutions, selfsimilarity, and
degeneration of continuous Alfven waves

In this section, we study simple wave solutions for
shallow water magnetohydrodynamic equations over a
slope, which are a particular case of the initial equa-
tions (2.1)—(2.6) with 0fs/0x = k = const. We con-
sider a magnetogravity Riemann wave turned back. In
this case, we have to satisfy Eqs. (3.6), (3.8), and (3.9)
identically. It was shown in the preceding section that
p = po = const, ¢ = go = const satisfy Eqs. (3.8) and
(3.9), and it is easy to see that for 0fs/0x = k = const,
the expression

r=—gkt+rg (4.1)

satisfles Eq. (3.6) identically. =~ We now consider

Eq. (3.7):

s 0s

5% + (ug — cg)£ = —gk. (4.2)

Equation (4.2) transforms along the characteristics

dx

- (4.3)

=Ur —Cg
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into the form

Os dx Os ds
E‘F%%——gk@%——gk. (44)
Integrating Eq. (4.4), we obtain
¢
ds
s (X(8),8) =/%dt= gkt +5(X(0),0).  (45)
0
Substituting expression (4.5) in Eq. (4.3) yields
dr _
dt
X(0),0
kit W‘Cg (4.6)

r=—gkt+r
s=—gkt+s(X(0),0)
The variable ¢, remains constant along characteris-
tics (4.3). Indeed, ¢(h) = (r — s)/2, whence p(h) =
= [ro — s(X(0),0)]/2 = const along characteristics
(4.3). Because ¢ is a bijective function, it follows that
h = const and ¢, = ¢4(h) = const along characteris-
tics (4.6).

Integrating (4.6), we obtain the explicit expression
for X (¢):

t+c, (R (X(0),0))t+ X(0). (4.7)
Characteristics (4.7) are parabolas in the zt plane. We
note that in the case of a flat surface, the characteristics
are straight lines,

X (t) = (u1 + ¢g)t + X(0), (4.8)
and the change of variables
T =ux+ gkt/2,
. gt/ (4.9)

transforms parabolas (4.7) into straight lines (4.8).
This change of variables is used in what follows to re-
duce the discontinuity decay problem over a slope to
the same problem over a flat surface. For the magne-
togravity Riemann wave turned forward, the following
relations hold:

s = —gkt + so,

P="ro, 4= o, (4.10)

r(X(t),t) = —gkt +r (X(0),0), (4.11)

1
X(t) = —= gkt> +

T(X(0)70) + so
5 5 t+

+ ey (h(X(0),0)) ¢+ X(0). (4.12)

If 9s/0x > 0 in some domain of the 2t plane for the
Riemann magnetogravity wave turned back, then in-
tegral curves (4.3) are divergent. Taking expressions
(4.1) and (4.5) into account, we obtain u; = (1o +s)/2,
whence

ou 10s Ou
— ==, = >0.
or 20x O
Differentiating r = u; + ¢ with respect to x yields
Ju  Op Oh
9z " 9h oz
whence Oh/dxz < 0 for dp/Oh > 0. Hence, we have
a magnetogravity rarefaction wave. If 9s/d0z < 0 in
some domain of the xt plane, then the integral curves
are convergent, and we have a compression wave. In the
domain of the xt plane in which ds/dx = 0, the char-
acteristics are parallel lines, and we have a domain of
a uniformly accelerated flow. It is well known from the
theory of hyperbolic equations that converged charac-
teristics in a dilatation wave intersect in a finite time,

0,

resulting in the magnetogravitational Riemann wave
degeneration and thus the appearance of strong dis-
continuity.

The same results (except the sign) can be obtained
for the Riemann magnetogravity wave turned forward
(s(z,t) = so = const). We have a rarefaction wave for
Or/0x < 0, a compression wave for dr/dx > 0, and a
domain of uniformly accelerated flow for or/dx = 0.

Using Eqs. (4.1), (4.5), (4.6), (4.10)—(4.12) and
p = const, ¢ = const, we obtain the relations for magne-
togravity waves. For a magnetogravity Riemann wave
turned back, the relations

By (z,t)h(z,t) = By(x0,0)h(z0,0),

By (x,t) = Ba(x0,0),

uz(x, t) = u2(xo,0),

ur(z,t) + o(z, t) + gkt = uy(x0,0) + @(x0,0)

(4.13)

are satisfied in the domain of the wave. Moreover, along
the lines

dr

7 u1(20,0) — cg(20,0) — gkt, (4.14)
the equation
U’l(xat) _99(x7t) +gkt:u1(x0a0) _99(1‘070) (415)

is also satisfied. There, p(20,0) = p(h(xo,0)).
For a magnetogravity Riemann wave turned for-
ward, the relations
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By (z,t)h(z,t) = By(x0,0)h(z0,0),

By (z,t) = Ba(x0,0),

uz(x, t) = u2(xo,0),

uy(x,t) — p(x,t) + gkt = uy (z0,0) — p(20,0)

(4.16)

are satisfied in the domain of the wave. Moreover, along

the lines
dx

i u1 (o, 0) + ¢4 (20,0) — gkt, (4.17)
the equation
ur(x,t) + o(x, t) + gkt = u1(x0,0) + @(20,0) (4.18)

is also satisfied.

We consider an Alfvenic Riemann wave satisfying
Eqs. (3.6)—(3.8). For this wave, we obtain that the re-
lations

ui(z,t) + gkt = ui (20, 0),

h(z,t) = h(xg,0),

Bi(x,t) = Bi(x0,0),

us(z,t) + Bay(x,t) = us(zg,0) + Ba2(x,0)

(4.19)

are satisfied in the domain of the wave. Hence, along
the characteristics

dx
— = B 4.20
dt Uy + 1, ( )
the equation
uz(z,t) — Ba(x,t) = ua(wo,0) — Ba(20,0)  (4.21)
is also satisfied.
For the Alfvenic Riemann wave satisfying
Eqgs. (3.6), (3.7), and (3.9), the relations
Ul(xv t) + gkt = Ul(x07 0)7
h(z,t) = h(xg,0),
(@) = h(zo.0) o)

Bl(x,t) = Bl(xo,O),
uz(x,t) — Ba(x,t) = uz(x0,0) — B2(20,0)

are satisfied in the domain of the wave. Hence, along
the characteristics

dx
E = Uy — Bl, (423)
the equation
UQ(Q?, t) + BQ(Q?, t) = Us (SU(), 0) + BQ(xo, 0) (424)

is also satisfied.

We note that in the Alfvenic Riemann waves, all
characteristics can be obtained from each other using
parallel translation. They are also parabolic curves, the
same as for characteristics of magnetogravity waves.
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We next consider the practically important special
case of the Riemann waves. A backward Riemann wave
is called a centered wave if characteristics (4.3) form a
group of curves that come out of one point (zq, ty). We
let u" denote the parameter taking all values from the
segment

lim  (ui(z,to) — cqg(,t0)) »
r—xo—0
m_l)igglw (ui(z,to) — cq(x, to))

Then the solution is determined by the equations
Bi(x,t)h(x,t) = By (xo,0)h(x0,0),
By (x,t) = Ba(x0,0),
us(z, t) = u2(xo, 0),

U’l(xv t) - 99(1‘7 t) + gkt = uy ($0,0) - 99(1‘07 0)

(4.25)

satisfied in the domain of the wave and the equation

ur(x,t) + o(x, t) + gkt = u1(x0,0) + @(20,0) (4.26)
satisfied along the lines
dx ,
— =u — gkt. 4.2
i (4.27)

Because ¢ — ¢4 is a monotonic function of h, it follows
that u(z9,0) and h(xg,0) are uniquely determined
on each characteristics by the relations wq(xg,0) —
—¢(9,0) = const and v’ = ui(xg,0) —cq4(20,0). Equa-
tions (4.25)—(4.27) determine all the parameters in a
centered magnetogravity wave turned back.

For a centered magnetogravity wave turned for-
ward, we let u' denote the parameter taking all values
from the segment

Ll (n (o, t0) + €, 1)
mii;?+0 (ur(z, to) + cq(x, to))

Then the solution is determined by the equations
Bi(x,t)h(x,t) = By (x0,0)h(x0,0),
By (z,t) = Ba(x0,0),
us(z, t) = u2(xo, 0),
ur(z,t) + p(x,t) + gkt = u1(z9,0) + (20, 0)

(4.28)

satisfied in the domain of the wave and the equations

Uy (1‘, t) - 99(1‘7 t) + gkt = uy (an 0) - 99(1‘07 0) (429)
satisfied along the lines
dx ,
— = kt. 4.30
i (4.30)
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Here, 4y (29, 0) and h(zg,0) can be found on each char-
acteristic from wy (2g, 0) +p(z0,0) = const and u'. Sys-
tem (4.28)—(4.30) determines all the parameters in a
centered magnetogravity wave turned forward.

We note that the obtained relations (4.19) and
(4.22) for the Alfven wave are satisfied in a band that
consists of parallel characteristics. Therefore, in the
selfsimilar case, these relations can be fulfilled only on
a single bundle line z = At¢, and hence the continuous
Alfven wave degenerates.

2. Discontinuous solutions over a slope. The
jump conditions

As shown above, any magnetogravitational dilata-
tion wave leads to the appearance of high discontinu-
ity in a finite time. In this section, the conditions
that must be satisfied on the discontinuity lines are
obtained. For this, we rewrite Eqs. (2.1)—(2.5) in the
divergent form:

8]7, 8]7, U1
ot + or 0,
Ohw  O(hut —hB} +gh?*/2) _  0b
ot ox - gar’
Ohus  O(hujus — hB; Bs) 4
_ 31
o + e 0, ( )
Oh B;
ot 0,
Oh B, N O(huyBs — hBius) 0
ot da o

Integrating (4.31) on an arbitrary domain G homeo-
morphic to a square in the xt plane yields

I (322 -0

// (aml hu%—h§j+gh2/2)> G
()

// (ag?2+a(hu1u2a;h3132)> G0

Jf () o

Oh By  O(hui Bo—hBjus) _
//( Py 2= )dG_O.
G

(4.32)

Transforming volume integrals in (4.32) using the
Green’s formula we obtain

%hdm — (huy) dt =0,
aG

f(hul)dx— (huf—hB% g; ) dt =

oG
= fiavyat,
oG (4.33)

f(huz) dx — (huyus — hBy1Bs) dt =0,

oG

?{ (hBy) dz =0,

oG

?{(hB2) dx — (huy By — hByus) dt = 0.

oG

Equations (4.33) represent the most general relations
that are integral conservation laws and are valid for an
arbitrary contour G and, in particular, for the con-
tour including the discontinuity lines of an appropriate
solution.

Let 2z = x(t) be the equation of a jump line; we sup-
pose that it has a continuous tangent on the segment
[t1,t2]. Assuming that the functions uy, us, By, B,
and h have a jump on the line x = x(t) only and b(x)
has no jump, we set

urr(t) = lim  wq(x,t),

U111 (t) = lim

u(x,t
z—a(t)+0 1( ’ )7

u2(x7t)7

U2 (SU, t)7
lim  By(z,t),

z—xz(t)—0

lim  By(z,t),
z—xz(t)+0

lim  Bs(z,t),
z—a(t)—0

lim  Bs(z,t),
z—xz(t)+0

lim  h(z,t),

z—x(t)—0

lim  h(z,t).
z—a(t)+0
Let OG be the contour ABCE with lines AB and CE
located infinitely close to the line of the jump z(¢) on
the left- and right-hand sides respectively (Fig. 2). Let-
ting D = D(t) = 2'(t) denote the speed of the discon-
tinuity, such that dz = D(t) dt, we obtain

U2I(t) - m—}lmigl)f[)

)=, i
By (t) =
Bin(t) =
Boi(t) =
By (t) =

hi(t) =

hi(t) =

(4.34)
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t

>
T

Fig.2. Contour ABCE with lines AB and C'E located
infinitely close to the line of the jump z(t)

/(Dh—hul)dt/(Dh—hul)dtzo,

AB CFE
h2
/ <Dhu1 — hu? + hB? — %) dt —
AB
gh?
- / <Dhu1 — hui + hB} — 7) dt =0,
CE
/ (DhU2 — hU1U2 + hBlBg) dt —
AB (4.35)
— / (DhU2 — hU1U2 + hBlB2) dt = 0,
CE
/(DhBl)dt— /(DhBl)dt =0,
AB CFE
/ (DhB2 — hu132 + hBl’UQ) dt —
AB
— / (DhBQ — hu132 + hBl’UQ) dt = 0.
CE

The contour ABCE is arbitrary, and hence Eqs. (4.35)
are equivalent to the following conditions for the inte-
grands:

Dhy — hyuir = Dhyy — hrus i,

Dhiui1 — hiuiy + By — ght /2 =

= Dhiruin — hirufyg + hiBYy — ght /2,

DhiBi1 = DhnBi, (4.36)
Dhyuar — hruitusy + hiBi1Bar =

= Dhrruznn — hirur muz i + hirua nBa i,

DhBar — hur1Bar + htua1Bi1 =

= DhnBam — hitui nBa1r + hrtus 11 By 11-
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We consider the case hy # hs. Then the first three
equations in (4.36) give
h1Br = hii B,
hruit — hitur
hy — hrr

urr — urnr = £(ht — hir) x

" g(ht + hir)/2 + (Bi1hi)?/hihn
hihn )

Substituting D from the second relation in (4.37) in the
last two equations in (4.36) and rearranging the terms,
we obtain

D =
(4.37)

hihrr(uit — wimr) (w2t — usr) =

= —(ht — hit)(mMB11B21 — hitBiuBamr),  (4.38)
hihir(uir — uit) (B2 — Ba1) =
= (ht — har)(hiiuetiBimr — hiuetBin).  (4.39)

If Boy = Boyp and uay = uaqr, then Egs. (4.38)
and (4.39) are satisfied identically. Otherwise, we
divide (4.38) by (4.39) and obtain (us1 — uarr)?
= (Bi1 — Bim)?, whence it follows that

ust — uztr = £(Bi1 — Bim). (4.40)

Substituting (4.40) in (4.38) and taking the third equa-
tion in (4.32) into account, we obtain

hihir(uit — w1 ) = +£(ht — har)hiBi1
and thus

wrt —urnn = £(hy — hir) (4.41)

For the third equation in (4.37) and Eq. (4.41) to
be satisfied simultaneously, the sum of the depths on
both sides adjacent to the discontinuity must be zero,
ht + hir = 0. This can be only in the case where each
depth is equal to zero, i. e., the case of the fluid absence.
Therefore, the assumption that Bs and us have a dis-
continuity is incorrect if Eqs. (4.37) have a nontrivial
solution.

We consider the other case, where the free surface
has no jump on the discontinuity, ht = hr. It fol-
lows from (4.37) that velocity and magnetic field com-
ponents normal to the discontinuity have no jump as
well, By1 = By and uy1 = uqrr. Therefore, the first
three equations in system (4.36) are satisfied identi-

cally. There are only two nontrivial relations at the
discontinuity:
By1 — B
D=uy — B 221 2117
U2l — U211 (4.42)

(Ba1 — Ban1)? = (ua1 — uamr)?.
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Rearranging (4.42), we obtain

D= U1 + Bl,
(4.43)
Byt — Botr = F(u21 — u211).

Relations (4.43) are identically those obtained for
the Alfvenic Riemann waves without discontinuity,
Eqs. (4.16)—(4.18), (4.19)—(4.21).

Thus, there are only two types of stable disconti-
nuities with a nonzero mass flow through the discon-
tinuity: discontinuity (4.37) with a free surface jump
and transverse velocity and transverse magnetic field
jumps, termed a magnetogravity shock wave, and dis-
continuity (4.43) with the tangential velocity jump and
the tangential magnetic field jump, termed an Alfvenic
wave. We note that the magnetogravity wave is an ana-
log of a hydrodynamic jump for the classical shallow
water equations, and the relations for this wave trans-
form into those for the hydrodynamic jump as B; — 0.
The magnetogravity shock wave is supersonic in the
medium before the wave and subsonic in the medium
after the wave, as it is for the classical hydrodynamic
jump [21] in the shallow water theory [22].

In general, system (4.36) admits the third type of
stable discontinuities with the continuous tangential ve-
locity component equal to the discontinuity velocity. It
is termed the contact discontinuity. These discontinu-
ities must be considered if the problem has different
properties in the right and left half-spaces and these
properties do no affect the discontinuity decay solu-
tion. An example of such a case is the fluid with dif-
ferent densities in the half-spaces separated by the dis-
continuity. Another example considered in this paper
corresponds to the degeneration of an Alfvenic wave as
By — 0. In this case, the mass flow through the dis-
continuity is equal to zero and the tangential magnetic
field and velocity field components have the properties
described above.

It is shown in [23] that the characteristic intersec-
tion envelope in quasilinear hyperbolic partial differen-
tial equations is itself a characteristic of the same sys-
tem. Hence, the high discontinuity propagation trajec-
tory = 2(t) is also a parabola. In our case of SMHD
flows over a slope, the magnetogravitational shock wave
is due to the fall of a magnetogravitational dilatation
wave. Hence, a strong discontinuity borders the mag-
netogravitational Riemann wave throughout the area of
uniformly accelerated flow, and hence has a parabolic
trajectory.
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5. INITIAL DISCONTINUITY DECAY
PROBLEM FOR SMHD EQUATIONS OVER
A SLOPE

Here, we formulate the initial discontinuity decay
problem for SMHD equations and list all possible wave
configurations describing the nonlinear dynamics of the
initial discontinuity decay. We find the realization con-
ditions for each wave configuration. As it has been
shown, the particular solutions in our case differ from
those for incompressible shallow-water flows. Hence,
the conditions for the realization of each configuration
are different

5.1. Initial discontinuity decay problem
statement

We consider Eqs. (2.1)-(2.5) with an arbitrary
piecewise constant initial conditions for the left (z < 0)
and right (2 > 0) half-spaces:

t=0,
h=hi, u =uir, us=usg,

By = By, Bs = Bsg for z < 0, (51)
h=hm, w =uim, Uz = Ul

By =Biu, B2=Ban foraz >0,

Bi1ht = By1ihm.

The discontinuity for two semi-infinite magnetic fluids
adjacent to the x = 0 plane at the initial instant and
satisfying (5.1) is called the initial discontinuity [23].
The determination of the flow at ¢ > 0 for these ini-
tial conditions is called the initial discontinuity decay
problem solution for SMHD equations.

Without the loss of generality, it is assumed here-
after that the fluid depth in the right half-space is less
than or equal to the fluid depth in the left half-space.
It is shown below that in the absence of the fluid in
the right half-space, the magnetic field component By
must be equal to zero in the left half-space, By = 0,
and this leads to the absence of B; in the space-time
domain of the solution. In this case, the solution is re-
duced to the classical dam break problem solution [21]
with an additional convective transfer of the tangential
velocity and magnetic field components. It is assumed
that the right half-space magnetic fluid is at rest. The
above two assumptions are easily satisfied when chang-
ing the coordinate system to the one with a proper axis
direction and moving with a prescribed velocity.

We note that in nontrivial case By # 0, the fluid
depth is strictly positive in the space-time region of the
solution because of the magnetic field divergence-free
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Fig.3. Two magnetogravity rarefaction waves and two

Alfvenic waves over a slope. I, IT, IV, V, VT are regions

of uniformly accelerated flow; IIT and VII are magne-

togravity rarefaction waves; OC and OD are Alfvenic
waves

condition. Hence, if there is no fluid in one half-space,
then the normal magnetic field component in the other
half-space degenerates. The case of the fluid absence in
the left and right half-spaces leads to the entire solution
degeneration (all physical values are constant and equal
to zero) and is not considered here. If By = By =0,
then the problem reduces to the hydrodynamic initial
discontinuity decay [21]. Indeed, in the case of a zero
tangent magnetic field (the absence of the magnetic
field), Eqs. (2.1)—(2.5) reduce to the classical shallow
water system. In the case of a nonzero tangent mag-
netic field, the solution degenerates. It is shown below
that Alfvenic waves merge and become a contact dis-
continuity, and the tangent velocity and magnetic field
components are transferred convectively. This corre-
sponds to the classical dam break problem [21]. This
case is not specially considered below.

In what follows, we use the change of variables
in (3.12), (3.13) to find the initial discontinuity decay
problem solution over a slope. For this, we use the
initial discontinuity decay problem solution on a flat
plane [18] and perform the change of variables inverse
to (3.12), (3.13):

1 .
=7 — = gkt®
v =T — 5 gkt’,
=1, (5.2)
u =1 — gkt.

It follows from (5.2) that the characteristics in the case
of a slope are parabolas, whereas the characteristics
in the case of a flat plane are straight lines. These
characteristics are tangent at the initial point. Indeed,
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Fig.4. Magnetogravity wave turned back, magne-
togravity shock wave, and two Alfvenic waves over a
slope. I, II, IV, V, VT are regions of uniformly acceler-
ated flow; III is a magnetogravity rarefaction wave; OC'
and OD are Alfvenic waves; OF is a magnetogravity

shock wave
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Fig.5. Two magnetogravity shock waves and two

Alfvenic waves over a slope. I, II, III, IV, and V are

regions of uniformly accelerated flow; OA are OD are

magnetogravity shock waves; OB and OC' are Alfvenic
waves

we note that the wave configurations of the Riemann
problem solution over a slope are the same as over a
flat plane [18]: “Two magnetogravity rarefaction waves,
and two Alfvenic waves” (Fig. 3), “Magnetogravity rar-
efaction wave, magnetogravity shock wave, and two
Alfvenic waves” (Fig. 4), “Two magnetogravity shock
waves and two Alfvenic waves” (Fig. 5), and “Two hy-
drodynamic rarefaction waves and a vacuum region be-
tween them” (Fig. 6). The configurations realization
conditions also match: when

hi + h
urr > (hr — hn)\/g( 1+ )

/2 + (Bl Ihl)z/h[hn
hihi '
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Fig.6. Two hydrodynamic rarefaction waves and a va-

cuum region between them over a slope. I and II are

regions of uniformly accelerated flow; III and V are

magnetogravity rarefaction waves; IV is the vacuum
region

the configuration “two magnetogravity shock waves,
and two Alfvenic waves” is realized; when

urr > p(hi) — ¢(h),
urr < (ht — hir) g(h1 + hi)/2 + (Biihi)?/hihn 7
hihir
the configuration “magnetogravity rarefaction wave

turned back, magnetogravity shock wave, and two
Alfvenic waves” is realized; when

urr < @(hi) — @(hr),

the configuration “two magnetogravity rarefaction
waves and two Alfvenic waves” is realized; and when

Bi1=Bin =0,

urr < —2¢q1 — 2¢q11,

the configuration “two hydrodynamic rarefaction waves
and a vacuum region between them” is realized.

It should be noted that the explicit form of the
obtained solution of the initial discontinuity decay
problem over a slope differs substantially from that
over a flat plane, despite similar wave configura-
tions and realization conditions. This is because the
characteristics in the case of a slope are parabolas,
whereas the characteristics in the case of a flat plane
are straight lines. The Riemann problem solution
found above forms a basis for the development of
finite-volume numerical methods to compute continu-
ous and discontinuous solutions without capturing the
discontinuities [19, 24, 25].
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6. CONCLUSION

In this paper, the nonlinear dynamics of the SMHD
flows of heavy fluid is studied. It is shown that sim-
ple Riemann waves are not solutions of the SMHD
equations in the case of an arbitrary nonhomogeneous
boundary due to the source term —g db/dzx in the right-
hand side of Eqgs. (2.1)—(2.6). This is because the Rie-
mann variables are not conserved along the character-
istics, in contrast to the flat plane case, and classical
simple wave solutions do not exist. Generalized sim-
ple waves [14] exist only for slopes b = kz + ¢, where
k,c = const. Generalized centered simple waves are
obtained in this particular case. The obtained solu-
tions can be interesting in and of themselves because
they describe the nonlinear dynamics of a rotating mag-
netic fluid in the beta plane approximation. All con-
tinuous simple wave solutions over slopes are found:
Alfvenic waves and magnetogravity waves. Discontinu-
ous solutions are obtained, which are magnetogravita-
tional and Alfven discontinuities. The change of vari-
ables transforming the SMHD equations over a slope
to the equations over a flat plane is found. The ex-
act explicit solution of the initial discontinuity decay
problem over a slope is found. It is shown that these
solutions are represented by one of the following config-
urations: “Two magnetogravity rarefaction waves and
two Alfvenic waves”, “Two magnetogravity shock waves
and two Alfvenic waves”, “Rarefaction magnetogravity
wave, magnetogravity shock wave, and two Alfvenic
waves”, “Two hydrodynamic rarefaction waves and a
vacuum region between them”. Despite the same wave
configurations in the case of a slope and a flat plane,
these solutions are drastically different from each other.
In the case of a flat plane, the characteristics of waves
are straight lines and in the case of a slope, they are
parabolas. The constant-flow regions in the flat plane
solutions are transformed into the regions of constantly
accelerated flow in the case of a slope. It follows from
the obtained results that the solution of the initial dis-
continuity decay is a superposition of two solutions: the
initial discontinuity decay solution for shallow water
without a magnetic field (with the modified sound ve-
locity ¢, = v/Bj 4+ gh) and two Alfvenic waves. When
By =0, the two Alfvenic waves merge and become the
contact discontinuity. The “two hydrodynamic rarefac-
tion waves and a vacuum region between them” con-
figuration differs from the other configurations and can
be realized only when the normal component of the
magnetic field is equal to zero.
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APPENDIX

Derivation of shallow water
magnetohydrodynamic equations

In this section, we derive shallow water equations
for heavy magnetohydrodynamic flows in the field of
gravity. We consider nonviscous and nonresistive mag-
netohydrodynamic equations for incompressible homo-
geneous (p = const) flows with the gravity force di-
rected opposite the z axis:

pu1 pui — B} +
PU puruz — B1 B>
U wyus — BB
o, p~ 3 +0, puLU3 153 +
B, 0
B2 U1B2 - U2B1
Bg U133 - U3él
puULU2 — Bléz puLUz — B1B3
pu3 — B3 +p pusts — By By
usuz — Bo B u2 — B2+
+0, pu2tts 255 | Lo, puz — b3 +p _
UzBl — UlB2 U3B1 — U1B3
0 u3§2 - U2B3
U2B3 - U332 0
0
0
—Pyg
= , (A1
0 (A.1)
0
811,1 8’11,2 811,3
i Eid: Ay | A2
Ox Oy 0z ’ (4.2)
0By 0By 0B;s
—t+—+ —=0 A3
Ox Oy 0z ’ (A.3)
with the boundary conditions
Uz 2= :u|_%+u|_afs
3lz=fs 1lz=fs B 2|z=fs 8y )
waly = 20 _0n
=T D T ot
] ] oh (A.4)
Ul |z=h O U2 |z=h aya

B3|z:fS = Bl|z:fsaxfs + B2|Z:fsayfsv
B3|z:h = Bl|z:haxh + B2|z:hayh~
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Here, h(z,y,t) is the fluid surface, u is the velocity
vector, B is the magnetic field vector, p is the density,
p = p+ p|B|?/2 is the magnetohydrostatic pressure, g
is the acceleration of gravity, and fs = fs(z,y) is the
stream bed profile. Boundary conditions for the veloc-
ity are the nonslip condition on the bottom boundary,
and the vertical velocity must be equal to the free sur-
face velocity in magnitude. Boundary conditions for
the magnetic field suggest that the magnetic fields on
the bottom and on the free surface are parallel to those
boundaries. We suppose that material surfaces are at
the same time magnetic surfaces.

After substituting B = Bp~/2, the third equation
in system (2.1) can be written as

s + (u-V)uz — (B - V)Bs +
-1 Pin2) _
+97'0. (p+51BI?) = 9. (A5)

We consider the magnetohydrodynamic flows whose
depth is smaller than the characteristic scale of fluid
motions. Then the pressure can be considered magne-
tohydrostatic for such flows:

0. (p+51B) = —pg. (A.6)

Equations (A.1)-(A.3) are integrated over the verti-
cal coordinate to obtain the magnetohydrodynamic
equations in the shallow water approximation. Equa-
tions (A.1)—(A.3) with (A.6) taken into account are
written as

pu pui—pBi+p
. pU . puius—pB1 By
0 0
/8,5 d2+/6z dz+
; B ; 0
’ B, ’ uy By—us By
By u1 B3—u3 By
puius — pB1Bs
X pus — pB3 +p
0
+ / Oy dz +
U231 — U1B2
fs 0

U2Bg — U3B2



MIT®, Tom 146, Boin. 2 (8), 2014

Nonlinear dynamics of magnetohydrodynamic flows . ..

puiug — pB1Bs
puU3 — p3233

h ~
-I-/@Z p dz =
7 UgBl — U1B3
: U3B2 — UQBg
0
0
0
—pgh
= , (AT
0 (A7)
0
0
f 0 0 0
(750 U Uus
—+—+——dz=0 A8
/(6x+6y+6z>z ' (A.8)
f 0B 0B 0B
1 2 3
— + dz = A
/<8x+8y+8z) =0 (4.9)
Using the Leibniz differentiation rules
o [ b 0 o
a
s [ fendi= [ Srwa) + flage - g
b(x) b(x)
we transform Eq. (2.8) to the form
0 oh Ofs
% /uldz — U1|z:h% +U1|z:f5% +
fa
h
+ 9 /u dz — us| oh +
8y 2 2|z=h 8y
fs
Ofs
+ Uz o=y, 8_]; +uz|.=n — uzl.=y, = 0. (A.10)

After inserting boundary condition (2.4), Eq. (2.10) be-
comes

h
19} oh Ofs
%/uldz U1 |2= ha + u o=y, 8f +
fs

h
+£/ dz — us| %+
gy | 24 T ule=ngy
fs
Ofs  Oh oh Oh

+U2|z:f56—y + e +u1|z:h% +uQ|Z:h6—y —
Ofs

Ofs
f _’U’2|szs 8y =0.

- u1|z:fs%

Summing similar terms, we obtain

9 /u1d2+6 /U2d2+——0.

The remaining equations are transformed similarly.
Assuming the pressure to be constant on the free sur-
face (p|s=n = po), we obtain from the third equation in
system (2.7) that

(A.11)

p=po—pglh—=z). (A.12)

The first equation in (2.7), taking (2.12) into consider-
ation, is transformed as follows:

h

2/ d | oh + pu | %+
pat U1z — PUl|z=h 57, ot PUL | z=f, ot
fs

0 oh dfs
+ o [atds = gt 5+ s, 5
fs

h
0 oh af
— p=— [ Bid Bi|.—h— — pBi|.—f. =
pax/ 1 Z+p 1|~—hax P 1|~—fs 856 +
fs

h
oh 0
+pg(h = fo)5o +p6—y/uwzdz—
fs
— put|s=pus| %+ Ut | g=1, U2 s _
PUL|z=h 2z:h6y PUL|z=f,U2|2=, dy

h

9 oh
—p=— / B B2dz + pBi|:=nBa|:=h=— —
Oy dy

fs

Ofs
- pB1|z: 3B2|z: s A + ﬂU1|z:hU3|z:h -
f f dy

- pB1|z:hBS|z:h = 07

and, after inserting boundary condition (2.4) and sum-
ming similar terms:

0 / 0 ;
_ _ 2 —
pat/uldz—}—pax/uldz
fs fs

h
8 ) oh
—p£/31d2+pg(h—fs)£+
fs

h
+ p% /uluzdz — p% / Bi1Bsdz = 0.
fs fs

(A.13)
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The second equation in (2.7) is similarly transformed

as
0 / 0 h
pa/quz—l—p%/ulquz—
fs fs
19} . oh 19} r
— —_— — [ [ 2 —
pz [ BiBads+ pah= 105 + o5 [ i
fs fs
h
_ 2 Bidz=0. (A.14)
pay 2 - .
fs

Analogously, the fourth and fifth equations in (2.7) take
the form

h
/
fs

h
g Ble + 2 /B1U2d2 —
fs

Jy

h
0
— a—y /Bguldz = 07 (A15)

Bsydz + Bouidz —

h
o |
or

fs

h
ai |
ot
fa

h
—3/3 dz=0. (A.16)
o 1u2az = U. .
fs

The sixth equation in (2.7) becomes identical, and
Eq. (2.8) is transformed as

0 ; 0 ;
% /Bldz + a—y /BQdZ =0.
fs fs

We introduce the mean velocities and magnetic fields
over the depth:

(A.17)

h
1
Uy = =7 /ul(x,y,z,t)dz,
fs
h
1
uy_h_ u2(x7y727t)d27
fa
h
B, = L /B (z,y,z,t)d
z_h—fs 7y7
fs
h
I — /B( 1 d
Yy h_fs €, Y,z

and write
h
wy = 1 /ul(x,y,z,t) dz +ul(x,y,t),
e
where
h
/u x,y,z,t) =0,
fs
h
/u2 (z,y,2,t)dz + ub(z,y,t),
fs
where
h
/u (z,y,z,t) =0,
fs
h
b= i [ Bt B,
fs
where
h
/B x VY, 2, t =0,
fs
h
By = h_#fs/BQ(x,y,z,t) dz + By(z,y,t),
fs
where

h
/Bé(x,y,z,t) =0.
7.

It hence follows that
h h h h
/ufdz :/uidz+/2u'1umdz+/u'fdz.
fs fs fs fs

Neglecting terms that are products of fluctuating
terms, we obtain the following system from (A.11),
(A.13)—-(A.17):

OH OHu, OHu, _
ot e Ty 0 A1
OHu, O(Hu®— HB2) 0(Hugu, — HB,B,)
+ + +
ot ox oy
oh
+gH5- =0, (A19)
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8Huy+8(Huxuy - HB,B,) O(Hu;,— HB;)

ot ox * Ay +
Oh
H— = A2
+g % 0, (A.20)
OHB, O(HByu, — HByu,)
= A21
5 9 0, (A.21)
OHB, = O(HByu, — HByu,)
vy = —0,  (A22)
0HB, OHB,
— = A2
ox + Oy 0, (4.23)

where H = h — f;.

Equations (A.18)—(A.23) are magnetohydrody-
namic equations in the shallow water approximation.
In one-dimensional version (2.1)—(2.6), the indices x
and y are respectively denoted as 1 and 2.
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