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STATISTICAL THEORY OF DIFFUSIONIN CONCENTRATED ALLOYSV. G. Vaks a*, A. Yu. Stroev a;b, I. R. Pankratov a, A. D. Zabolotskiy a;baNational Resear
h Center �Kur
hatov Institute�123182, Mos
ow, RussiabMos
ow Institute of Physi
s and Te
hnology (State University)117303, Mos
ow, RussiaRe
eived January 20, 2014The earlier-suggested master equation approa
h is used to develop the statisti
al theory of steady-state di�usionin 
on
entrated substitution alloys 
onsidering FCC alloys with the nearest-neighbor pairwise intera
tions as anexample. General expressions for the Onsager 
oe�
ients in terms of mi
ros
opi
 interatomi
 intera
tions andsome statisti
al averages are presented. We dis
uss methods of 
al
ulations of these averages using variousstatisti
al approximations and various approximations for des
ription of va
an
y 
orrelations, with the full tak-ing into a

ount the va
an
y-solute intera
tions. Our simplest statisti
al approximation, 
alled the �kineti
mean-�eld approximation� (KMFA), 
orresponds to using the mean-�eld approximation for statisti
al averagesand the pair-
luster approximation (PCA) for 
al
ulations of thermodynami
 parameters; for dilute alloys, theKMFA is exa
t. To des
ribe va
an
y 
orrelation e�e
ts at any 
on
entrations, we develop both the nearest-neighbor-jump approximation and the se
ond-shell-jump approximation. We also des
ribe methods to take intoa

ount �u
tuations in statisti
al averages using the PCA, and to des
ribe non-pairwise va
an
y-solute 
orrela-tions using the triple va
an
y-solute 
orrelation model. For ea
h of approximations and methods developed, wederive expressions for the Onsager 
oe�
ients at any 
omposition of an alloy. For binary alloys, we also presentexpressions for the di�usion 
oe�
ients. The results obtained 
an provide a basis for mi
ros
opi
 
al
ulationsof di�usion 
oe�
ients at any 
omposition of an alloy.DOI: 10.7868/S00444510140801001. INTRODUCTIONThe existing mi
ros
opi
 theories of di�usion in al-loys based on the random walk theory and the �va
an-
y-solute asso
iation-disso
iation� models (to be 
alled�traditional� theories) have been developed only for di-lute alloys [1�9℄. For the 
on
entrated alloys, di�usionis usually des
ribed using various phenomenologi
al ap-proa
hes [10�12℄, and some authors believe that �thenature of 
on
entration dependen
e� of di�usion 
oef-�
ients �has never been fully explained and there doesstill not exist any adequate theories for des
ribing su
ha dependen
e� [11℄. Even for a dilute binary alloy ABwith a low solute fra
tion 
B � 1, 
al
ulations of lin-ear in 
B terms in di�usion 
oe�
ients (�enhan
ementfa
tors�) for both 
hemi
al and tra
er solute di�usionseem to be not performed, while existing 
al
ulations*E-mail: vaks�mbslab.kiae.ru

of tra
er solvent enhan
ement fa
tors (whi
h are used,in parti
ular, to estimate the mi
ros
opi
 parametersimportant for di�usion in real alloys [8, 9℄) 
ontain sig-ni�
ant errors dis
ussed in Ref. [13℄.The re
ently-suggested master equation approa
h[14�21℄ provides opportunities for fully mi
ros
opi
treatments of di�usion at any 
omposition of an alloy.This approa
h enables to expli
itly express the Onsagerand di�usion 
oe�
ients via mi
ros
opi
 interatomi
intera
tions and some statisti
al averages. These in-tera
tions 
an be 
al
ulated using ab initio methods,while statisti
al averages 
an be evaluated using well-elaborated methods of statisti
al physi
s. As the levelof a

ura
y and reliability of both ab initio 
al
ula-tions [22, 23℄ and statisti
al methods [24�28℄ is steadilyin
reasing, the master equation approa
h seems to beprospe
tive for developments of non-empiri
al and pre-di
tive theories of di�usion in 
on
entrated alloys.At the same time, previous appli
ations of the mas-ter equation approa
h to di�usion theory made by Nas-313
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alled by these authors �theself-
onsistent mean-�eld theory�) in
lude a number ofshort
omings. As dis
ussed below in Se
. 7.3, manyequations used in [16�19℄ are 
umbersome, impli
it,employ unreliable approximations, and in
lude errors,in parti
ular, those mentioned in [21℄. It hinders thefurther development of the theory.In this work we present the formulation of the mas-ter equation approa
h to di�usion theory free fromshort
omings mentioned. We aim to develop the sta-tisti
al theory whi
h 
an des
ribe the steady-state dif-fusion in substitution alloys of any 
omposition as fullyand 
onsistently as the 
anoni
al Gibbs theory de-s
ribes properties of equilibrium systems. Our basi
equations are simple and expli
it, they 
an be solvedusing the standard methods of statisti
al physi
s, andtheir possible generalizations (for example, to the 
aseof not-nearest or non-pairwise intera
tions) are evident.To be de�nite, we illustrate our approa
h by 
onsid-eration of FCC alloys with the nearest-neighbor pair-wise intera
tions. For a binary alloy, su
h a modelis equivalent to the well-known ��ve-frequen
y model�[1�9℄, but we also 
onsider the multi-
omponent alloysand take into a

ount the solute-solute intera
tions not
onsidered in the standard �ve-frequen
y model.The important general feature of our approa
h isthe proper des
ription of e�e
ts of va
an
y-solute in-tera
tion (or �va
an
y-solute binding energy� [1�9℄) re-lated to the thermodynami
 a
tivity of va
an
ies. Asdis
ussed in Refs. [13; 21℄ and in Se
. 7.3, this 
ontribu-tion was usually missed in the previous 
al
ulations ofdi�usion 
oe�
ients, in parti
ular, in all 
al
ulations ofthe tra
er self-di�usion enhan
ement fa
tor bA� . Thisled to spreading of a pessimisti
 opinion that the �dif-fusion experiments by themselves are not su�
ient todetermine this binding energy� [9℄. We show that thisopinion is wrong, and in Ref. [13℄ we estimate this bind-ing energy for several alloys for whi
h ne
essary exper-imental data are available.The paper is organized as follows. In Se
. 2, wepresent main equations of the master equation ap-proa
h needed for what follows. In Se
. 3, these equa-tions are used to derive general expressions for Onsager
oe�
ients des
ribing steady-state di�usion in a substi-tution alloy. In Se
. 4, we dis
uss both the exa
t rela-tions and the methods of approximate 
al
ulations ofOnsager 
oe�
ients in alloys of any 
omposition. Herewe also des
ribe the kineti
 mean-�eld approximation(KMFA) in 
al
ulations of statisti
al averages, as wellas the nearest-neighbor-jump approximation (NNJA)and the se
ond-shell jump approximation (SSJA) in de-s
ription of va
an
y 
orrelation e�e
ts. In Se
. 5, we

dis
uss taking into a

ount the �u
tuative terms in sta-tisti
al averages using the pair-
luster approximation(PCA) des
ribed in Refs. [24�26℄. In Se
. 6, we dis-
uss the general mi
ros
opi
 expressions for di�usion
oe�
ients in a binary alloy and de�ne the �
orrela-tive Onsager 
oe�
ients� and 
orrelation fa
tors for a
on
entrated alloy. In Se
. 7, we present expli
it ex-pressions for the Onsager and di�usion 
oe�
ients ina binary alloy using the NNJA-KMFA and the SSJA-KMFA. We also show that for the 
ase of a dilute al-loy, these expressions turn into those obtained in tra-ditional theories [8℄. In Se
. 8, we dis
uss the non-pair-wise va
an
y-solute 
orrelation 
onsidering model whensu
h 
orrelations a
t only between three nearest neigh-bors in the FCC latti
e. Our main results are summa-rized in Se
. 9.2. GENERAL EQUATIONS OF DIFFUSIONALKINETICS IN A SUBSTITUTION ALLOYGeneral equations of the master equation approa
hfor the di�usional kineti
s of alloys and their appli
a-tions to studies of di�usion in interstitial alloys havebeen dis
ussed earlier [15, 20℄. In this se
tion, wepresent the basi
 relations from Ref. [20℄ needed forwhat follows. We 
onsider a substitution alloy with(m + 1) 
omponents p0 whi
h in
lude host atoms de-noted by index h, solute atoms denoted by Greek letters�, �, �, �, �, and va
an
ies denoted by v. Latin let-ters p, q, r will denote all kinds of atoms, both h and�, while Greek letters �, �, � will denote both soluteatoms � and va
an
ies v, thus the whole set p0 
an bewritten either as fp; vg or as fh; �g . Distributions ofatoms over latti
e sites i are des
ribed by the di�erento

upation number sets fnp0i g where the operator np0i is1 when the site i is o

upied by a p0-spe
ies 
omponent,and 0 otherwise. At ea
h i, these operators obey theidentity Pp0 np0i = 1. Hen
e, only m of them are inde-pendent, and one of these operators 
an be expressedvia other ones. We eliminate operator nhi 
orrespond-ing to a host atom writing it asnhi =  1�X� n�i! : (1)This is 
onvenient to des
ribe real alloys where the va-
an
y site fra
tions are very low: hnvi i � hn�i i, whileNastar et al. [16�19℄ eliminate operators nvi for va
an-
ies.We use the pairwise intera
tion model for whi
h thetotal 
on�gurational Hamiltonian Ht 
an be expressedvia np0i and 
ouplings V p0q0ij as follows:314



ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Statisti
al theory of di�usion : : :Ht =Xij  12Xpq V pqij npi nqj ++ Xp V pvij npi nvj + 12V vvij nvi nvj! : (2)After elimination of operators nhi a

ording to Eq. (1),the Hamiltonian Ht takes the form:Ht = E0 +X�i '�n�i +Hint: (3)Here 
onstantsE0 and '� yield some insigni�
ant shiftsin the total energy and 
hemi
al potentials, while theintera
tion Hamiltonian Hint 
an be written asHint = X��;i>j v��ij n�i n�j +X�;ij v�vij n�i nvj ; (4)where terms vvvij nvi nvj with va
an
y-va
an
y intera
-tions are negle
ted, and the 
on�gurational intera
tionv��ij is expressed via 
ouplings V p0q0ij in (2) as follows:v��ij = (V �� � V �h � V h� + V hh)ij : (5)The fundamental master equation for the probabil-ity P of �nding an o

upation number set fn�i g = �
an be written as [15℄:dP (�)dt =X� [W (�; �)P (�) �W (�; �)P (�)℄ � ŜP; (6)where W (�; �) is the � ! � transition probability perunit time. Adopting for probabilities W the 
onven-tional �transition state� model [15, 22℄, we express thetransfer matrix Ŝ in (6) in terms of the probability of anelementary inter-site atomi
 ex
hange (�jump�) pi
 vjbetween neighboring sites i and j per unit time:W pvij = npinvj!effpv exp[��(ÊSPpi;vj � Êinpi;vj)℄: (7)Here � = 1=T is the re
ipro
al temperature, ÊSPpi;vj isthe saddle point energy, Êinpi;vj is the initial (before thejump) 
on�gurational energy of a jumping atom and ava
an
y, and the fa
tor !effpv 
an be written as!effpv = !pv exp ��SSPpi;vj� ; (8)where !pv is the attempt frequen
y (whi
h has the or-der of magnitude of a mean frequen
y of vibrations ofa jumping atom in an alloy), and �SSPpi;vj is the en-tropy di�eren
e between the saddle-point and initialalloy states.The saddle point energy ÊSPpi;vj in (7) depends ingeneral on the atomi
 
on�guration near the ij bond.

We des
ribe this dependen
e by the pairwise intera
-tion model and write this energy as [22℄:ÊSPpi;vj = Eph+X�l ��lp;ijn�l ; ��lp;ij = ("�lp;ij�"hlp;ij): (9)Here Eph is the saddle point energy for a p-spe
ies atomin the pure host metal, the parameter ��lp;ij (to be
alled the �saddle-point intera
tion�) des
ribes 
hangesin this energy due to a possible substitution of a hostatom in site l by a �-spe
ies solute atom, while "�lp;ijand "hlp;ij are mi
ros
opi
 parameters whi
h 
an be 
al-
ulated using either ab initio [22℄ or model [20℄ 
al
u-lations.The most general expression for the probability Pin (6) 
an be written as [15, 16℄Pfn�i g == exp24�0�
 +X�i ��i n�i �Hint � ĥeff1A35 ; (10)ĥeff = 12 X��;ij h��ij n�i n�j ++ 16 X���;ijk h���ijk n�in�j n�k + : : : (11)Here parameters ��i (whi
h are both time- andspa
e-dependent, in general) 
an be 
alled �site 
hemi-
al potentials� for an �-spe
ies atom or a va
an
y withrespe
t to a host atom. These parameters are relatedto the lo
al 
hemi
al potentials ��i and �hi as [26℄:��i = (��i � �hi ): (12)Quantities h�:::�i:::j in (11) (to be 
alled �e�e
tive inter-a
tions� [16�18℄) des
ribe renormalizations of 
on�gu-rational intera
tions (5) in the 
ourse of kineti
 pro-
esses, and they 
an depend on both time and spa
e,too. Constant 
 is determined by normalization.Multiplying Eq. (6) by operators n�i and summingover all 
on�gurations fn�j g, we obtain equations forthe mean o

upations of site (�lo
al site fra
tions�)
�i = hn�i i: d
�i =dt � _
�i = hn�i Ŝi; (13)where h(: : : )i means averaging over distribution (10),e. g.: 
�i = hn�i i = Xfn�j gn�i Pfn�j g: (14)315
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ity, in Se
s. 2�7 we 
onsider the 
ase ofpresen
e in (11) of only pairwise e�e
tive intera
tionsh��ij whi
h is su�
ient for dilute alloys; the non-pairwisee�e
tive intera
tions will be 
onsidered in Se
. 8.. Thenafter some algebrai
 manipulations des
ribed in [20℄,Eqs. (13) 
an be written similarly to Eqs. (28)�(34)in [20℄:_
�i =Xj(i) D
�v b̂�ij (exp"� ��j + �vi � h�vji �� X�l (h��jl + hv�il )n�l !#� fi! jg)E;_
hi =Xj(i) D
hv b̂hij (exp"� �vi�X�l hv�il n�l !# �� fi! jg)E; (15)
where we also 
orre
t some misprints made in [20℄ anduse the identity (
vi +P� 
�i ) = (1� 
hi ). In Eqs. (15),symbol j(i)means summation over sites j being nearestneighbors of site i, while the fa
tor 
pv 
an be 
alled�the a
tivation frequen
y� for a p ! v ex
hange ina pure host metal whi
h 
an be written similarly toEq. (7): 
pv = !effpv exp(��Epva
 ): (16)Here !effpv is the same as in (8), while Epva
 is the e�e
-tive a
tivation energy whi
h is linearly expressed viathe saddle point energy Eph in (9) and 
ouplings V pp0ijin (2) [20℄. The operator b̂pij in (15) (to be 
alled �
orre-lation operator� [29℄) des
ribes in�uen
e of neighboringsolute atoms on the probability of a pi 
 vj jump. It
an be written as:b̂pij = nhi nhj �� exp"X�l �(u�il + u�jl)n�l �X�l ���lp;ijn�l # ; (17)where ��lp;ij is the same as in Eq. (9), while param-eters u�il (to be 
alled �kineti
 intera
tions� [29℄) areexpressed via V pqij in (2) as follows:u�il = (V h�il � V hhil ): (18)We note that the kineti
 intera
tion u�il in (17) and (18)does not depend on the kind p of a jumping atom, un-like the saddle-point intera
tion ��lp;ij in (9).Using operator identitiesn�l n�l = n�l Æ�� ; exp(xn�l ) = 1 + n�l f(x); (19)

where Æ�� is the Kroneker symbol and f(x) is (ex� 1),we 
an expli
itly write the operator b̂pij (17) as follows:b̂pij = nhi nhj Yl (1 + f�lp�;ijn�l ); (20)f�lp�;ij = [exp(�u�il + �u�jl � ���lp;ij)� 1℄: (21)3. GENERAL EQUATIONS FOR ONSAGERCOEFFICIENTS3.1. Method of 
al
ulations of Onsager
oe�
ients in the master equation approa
hThe steady-state di�usion is 
ommonly des
ribedin terms of Onsager 
oe�
ients Lpq whi
h relate theatomi
 �ux density Jp to the 
hemi
al potential gradi-ents r�q supposed to be small and 
onstant. These
hemi
al potentials 
an be 
ounted o� the va
an
y
hemi
al potential �v (whi
h is zero for the usual 
on-dition of di�usion when va
an
ies are in equilibrium[8℄), and in 
ubi
 
rystals where di�usion is isotropi
,Onsager relations 
an be written as:Jp = �Xq Lpqr�q : (22)In a nonuniform alloy, lo
al values �qvi = (�qi � �vi ) arerelated to ��i de�ned by Eqs. (12) as follows:��vi = (��i � �vi ); �hvi = ��vi : (23)Below we use the methods of 
al
ulations of On-sager 
oe�
ients suggested by Nastar et al. [16�18℄.The steady-state di�usion 
orresponds to a weakly non-uniform alloy for whi
h the lo
al 
hemi
al potential dif-feren
e Æ��ji = (��j � ��i ) in Eqs. (15) is small, whilethe e�e
tive intera
tions h��ij (
alled also ��elds� forshort) are proportional to these di�eren
es. Lineariz-ing Eqs. (15) in Æ��ji and h��ij and expressing Æ��ji viaÆ�pji = (�pj � �pi ) a

ording to (23), we obtain:_
pi == �Xj(i) D
pv exp(���+��v)b̂pij "Æ�pji+(hpvij �hpvji ) ��X�l (hv�il � hv�jl )n�l +X�l (hp�il � hp�jl )n�l #E: (24)Here and below, �� or �v without a site index i orj means the equilibrium value of this 
hemi
al poten-tial, while averaging is made over the equilibrium dis-tribution P des
ribed by Eq. (10) with ��i = �� and316



ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Statisti
al theory of di�usion : : :ĥeff = 0. In a

ordan
e with the de�nition (11), �eldshp�ij are nonzero only when index p 
orresponds to a so-lute atom �, while hh�ij = 0 (whi
h is also illustrated byEqs. (15)). For the given j, ea
h term in the right-handside of (24) has evidently the meaning of an atomi
 �uxJpj!i through bond ij. It enables to write the linear re-lation between these �uxes and quantities Æ�pji and hp�ijin (24). It was also noted in [16, 17℄ that for the steady-state di�usion, �elds h��ij are antisymmetri
 in indi
esi and j: h�vji = �h�vij ; h��ji = �h��ij : (25)Denoting also site i by index �0� and site j by index�1�, we 
an write the above-mentioned �uxes Jp0!1 asfollows:Jp0!1 = �� "wp(Æ�p + 2hpv1 ) ��X�l ��lp (hv�0l � hv�1l � hp�0l + hp�1l )# ; (26)where Æ�p is (�p1 � �p0), hpv1 is the nearest-neighbor ef-fe
tive intera
tion (being nonzero only at p 6= h), andwp and ��lp are statisti
al averages:wp = hŵp01i; ��lp = hŵp01n�l i: (27)Here operator ŵp01 is the produ
t of the operator b̂p01given by Eq. (17) or (20) and the 
onstant fa
tor �pwhi
h enters into Eqs. (24):ŵp01 = �p b̂p01;�� = 
�v exp(��� + ��v); �h = 
hv exp(��v): (28)Taking into a

ount the presen
e of fa
tor nhi nhj in theoperator b̂pij (20) and the relations (65) below for ��and �v in (28), we see that the average wp in (27) isproportional to the site fra
tion 
p of p-spe
ies atoms.Thus this average 
an be written aswp = 
p !p; (29)where !p has evidently the meaning of the mean fre-quen
y of p� v jumps for a p-spe
ies atom. Therefore,Eq. (29) provides the statisti
al de�nition of this fre-quen
y, and below we mainly dis
uss frequen
ies !prather than averages wp.Fields h��ij in Eqs. (26) 
an be found from the sta-tionarity 
ondition for two-site averages [16, 17℄:(d=dt)hn�0 npj i = 0; (30)
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Fig. 1. Bond (0,1) in the FCC latti
e and its nearestneighbors, sites k and �k dis
ussed in the textwhi
h yields the following equations for h��ij [15�17℄:Xk 6=0 6=j "mpj�;0k (Æ��k0+2h�v0k )�X�l tpj;�l�;0k �hv�0l �hv�kl �� h��0l + h��kl �+m�0p;jk(Æ�pkj + 2hpvjk)��X�l t�0;�lh;jk �hv�jl � hv�kl � hp�jl + hp�kl �# = 0; (31)where mqjp;ik = hŵpiknqji; tqj;�lp;ik = hŵpiknqjn�l i: (32)Following Nastar et al. [16℄, we 
onsider di�usionalong z-axis of an FCC alloy when 
hemi
al potentials�pi = �p(Ri) depend only on zi. Let us denote po-sitions of sites 0 and 1 in Eqs. (26) as R0 = (0; 0; 0)and R1 = (0; a0=2; a0=2) where a0 is the FCC latti
e
onstant, while sites near the bond (0; 1) are numberedas shown in Fig. 1. Quantity Æ�p in Eqs. (26) is thedi�eren
e of 
hemi
al potentials between neighboringatomi
 planes along z axis: Æ�p = �p(a0=2) � �p(0).The �eld h��0l = h��(R0l) does not 
hange under rota-tions of ve
tor R0l = (x0l; y0l; z0l) around z-axis, andit 
hanges sign under re�e
tion with respe
t to (x; y)-plane: h��(x0l; y0l;�z0l) = �h��(x0l; y0l; z0l). Forbrevity, we denote the set of 
rystallographi
ally equiv-alent sites with the same positive value z0ln > 0 as l+n ,the similar set with the negative value z0ln = �zln ,317
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orrespondingto the set of sites l+n or l�n , as h��n or (�h��n ). Indexn whi
h numbers di�erent sets of equivalent sites, l+nand l�n , is supposed to in
rease with the distan
e jR0lj,and for a given jR0lj, it in
reases with the z0l value.Thus n = 1 
orresponds to the nearest-neighbor �eldh1 = h(R01), and Eqs. (26) 
an be 
on
isely writtenas:Jp0!1 = �� "wp(Æ�p + 2hpv1 ) ++ X� nmaxXn=1 l�p;n(h�vn � h�pn )# : (33)Here nmax is the maximum number of �elds h��n takeninto a

ount, and in
rease of nmax 
orresponds to amore a

urate des
ription of va
an
y 
orrelation e�e
ts[16℄. Coe�
ients l�p;n in (33) are de�ned as follows:l�p;n = Xl+n ; l�n hŵp01(nl+n � nl�n � n1;l+n + n1;l�n )�i: (34)Here index � at bra
kets means that it should be putat ea
h term within bra
kets, e. g., (nl+n + : : : )� == (n�l+n + : : : ), and we use the following notation:nl�n = n(Rl�n ); n1;l�n = n(Rl�n +R1): (35)Using the same notation as in (33)�(35), we 
an
on
isely write Eqs. (31) similarly to (33):mp�;n(Æ�� + 2h�v1 )�m�p;n(Æ�p + 2hpv1 ) ++X� nmaxXm=1 �(tp��;nm � t��p;nm)h�vm � tp��;nmh��m ++ t��p;nmh�pm � = 0; (36)where 
oe�
ients tq�p;nm andmqp;n are de�ned as follows:tq�p;nm == 12Xk=1 Xl+m;l�mhŵp0knqn;1(nl+m�nl�m�nk;l+m+nk;l�m)�;mqp;n = 4Xk=1h(ŵp0k � ŵp0;k+4)nqn;1i: (37)Here nl+m and nl�m are the same as in (34); operatornqn;1 = nq(Rn;1) 
orresponds to the ve
tor Rn;1 
ho-sen as �the �rst one� in the set of ve
tors Rl+n ; nk;l�nde�ned similarly to n1;l�n in Eq. (35) is n(Rl�n +Rk);and we took unto a

ount symmetry or antisymme-try of ea
h average in (36) with respe
t to re�e
tionsRn;1 ! (�Rn;1).

Equation (36) enables to express all �elds h��n aslinear 
ombinations of Æ�q . Then substitution of theseexpressions into Eq. (33) yields the linear relation be-tween the �ux Jp0!1 and di�eren
es Æ�p:Jp0!1 =Xq ApqÆ�q ; (38)where parameters Apq are some fun
tions of 
oe�
ientsl�p;n, mqp;n and tq�p;n in Eq. (36). To relate parametersApq in (38) to the Onsager 
oe�
ients Lpq in (22), wenote that the �ux density Jp along z axis 
an be foundas the ratio of the total �ux through one site lying inthe plane (0,0,0) to the area S = a20=2 
orresponding tothis site, while the di�eren
e Æ�p in Eq. (38) is simplyexpressed via r�q = (0; 0; d�q=dz):Jp = 4Jp0!1=S = 8Jpi!j=a20; (39)Æ�p = (d�p=dz)a0=2: (40)Substituting these relations into (38) and 
omparingthe result with a z-
omponent of Eq. (22), we �nd:Lpq = �4Apq=a0 = �na20Apq ; (41)where n = 4=a30 is the atomi
 density in the FCC lat-ti
e.3.2. Model of nearest-neighbor kineti
 andsaddle-point intera
tionsBelow we 
onsider the model when both the saddle-point and the kineti
 intera
tions, ��lp;ij and u�il inEqs. (9), (17), (20) and (21), are nonzero only for thenearest-neighbors. This 
orresponds to the standard��ve-frequen
y model� for FCC alloys [1�9℄. For thismodel, the operator b̂p01 and the mean frequen
y !p inEqs. (20), (28) and (29) take the form:b̂p01 = nh0nh1Yl  1 +X� n�l f�p�!��Ym  1 +X� n�mf�u! ;!p = (�p=
p)hb̂p01i: (42)Here indi
es l and m indi
ate sites di�erently posi-tioned with respe
t to the bond (0,1), as shown inFig. 1. In this �gure, sites with positions Rk for kbetween 1 and 12 
orrespond to the nearest neighborsof site �0� positioned at R0 = 0, while sites positionedat R�k � R1;k = (R1 +Rk) 
orrespond to the nearest318
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al theory of di�usion : : :neighbors of site �1� with R1 = (0; a0=2; a0=2). Theevident relations�7 � 0; �6 � 9; �8 � 12; 10 � 2; 11 � 4 (43)are also taken into a

ount.In Eq. (42), index l in the �rst produ
t takes fourvalues: 2, 4, 9 or 12, whi
h 
orrespond to the nearestneighbors of bond (0,1), i. e., of both site 0 and site1. Index m in the se
ond produ
t 
orresponds to thenearest neighbors of only one of these sites, site 0 orsite 1, and takes fourteen values: 3, 5, 6, 7, 8, 10, 11,�1; �2; �3; �4; �5; �9 or 12. Quantity f�p� or f�u in Eq. (42)is the Mayer fun
tion whi
h, a

ording to Eq. (21),
orresponds to the sum of non-zero 
ontributions ofthe saddle-point intera
tion (9) and the kineti
 inter-a
tion (18): f�p� = exp[�(2u�1 ���p )℄� 1;f�u = exp(�u�1)� 1; (44)where u�1 is the nearest-neighbor kineti
 intera
tion.The va
an
y 
orrelation e�e
ts in 
on
entrated al-loys will be des
ribed using two approximations.(i) The simplest �Lidiard-Le Claire� approximationwhi
h supposes that a va
an
y that leaves the �rstneighbor shell of a solute atom does not return [8℄.It 
orresponds to the nearest-neighbor e�e
tive inter-a
tion: hn = Æn;1h1 [17℄ and will be 
alled the �nea-rest-neighbor-jump approximation� (NNJA). For theNNJA, Eqs. (33)�(36) in
lude only terms with n = 1and m = 1, and Eqs. (34) and (37) take the form:l�p;1 = 4Xk=1hŵp01(nk � nk+4 � n1;k + n1;k+4)�i; (45)mqp;1 = 4Xk=1h(ŵp0k � ŵp0;k+4)nq1i; (46)tq�p;11 == 12Xk=1*ŵp0knq1 4Xl=1(nl�nl+4�nk;l+nk;l+4)�+ : (47)(ii) The more re�ned approximation (whi
h for di-lute alloys has been suggested by Bo
quet [5℄) thatnegle
ts the probability of return of a va
an
y whi
hleaves the se
ond shell of neighbors, to be 
alled �these
ond-shell-jump� approximation (SSJA). For dilutealloys, it seems to des
ribe va
an
y 
orrelation e�e
tswith the a

ura
y of the order of per
ents [5℄ su�
ientfor most of appli
ations. In Eqs. (34)�(36), SSJA 
or-responds to nmax = 5, that is, to the presen
e of �ve

�elds hn with the following ve
tors Rn;1 in Eq. (36) (ina0=2 units):R1;1 = (0; 1; 1); R2;1 = (0; 0; 2);R3;1 = (1; 2; 1); R4;1 = (1; 1; 2);R5;1 = (0; 2; 2); (48)while the set l+n of ve
tors Rl+n in Eqs. (34) and (37)for n equal to 1, 2, 3, 4 and 5 in
ludes 6, 1, 8, 4 and 4ve
tors Rl+n , respe
tively.Therefore, to �nd atomi
 �uxes Jp0!1 in Eqs. (33),we should 
al
ulate statisti
al averages of three di�er-ent types: quantities wp = hŵp01i in Eq. (42); quan-tities l�p;n and mqp;n in Eqs. (34) and (37) whi
h in-
lude �one-site� averages hŵp01n�i i; and quantities tq�p;nmin (37) whi
h in
lude �two-site� averages hŵp01nqin�j i.4. CALCULATIONS OF STATISTICALAVERAGES4.1. Exa
t relationsBefore to dis
uss methods of 
al
ulations of aver-ages wp, l�p;n, mqp;n and tq�p;nm in Eqs. (33)�(37) we 
on-sider some exa
t relations whi
h follow either from def-initions of these averages or from the 
rystal symmetry.First, we note that a

ording to de�nitions (27),(34), (37), ea
h su
h an average is proportional tothe fa
tor exp(��v), that is, to the redu
ed thermo-dynami
 a
tivity 
oe�
ient av for va
an
ies de�ned byEqs. (65)�(69) below. This fa
tor enters into the 
o-e�
ient �p in Eqs. (28), and it is determined by theva
an
y-solute intera
tions vv�. Therefore, at nonzerosolute site fra
tions 
�, the va
an
y-solute intera
tionhas an in�uen
e on all di�usion 
oe�
ients, 
ontraryto the usual ideas [1�9; 17℄, and this in�uen
e is fullydes
ribed by the 
ommon fa
tor av = exp(��intv ) de-�ned by Eqs. (65)�(69) or (104) whi
h enters into ea
hOnsager and di�usion 
oe�
ient.Se
ond, we note two operator identities whi
h areuseful for 
al
ulations of one-site or two-site averages,i. e., of quantities l�p;n, mqp;n or tq�p;nm in Eqs. (33)�(36).These identities in
lude the produ
t of the operator nqiand one of fa
tors in two last produ
ts in Eq. (42):nqi  1 +X� n�i f�p�! = nqi eqp�;nqi  1 +X� n�i f�u! = nqi equ; (49)where we denote for brevity:eqp� = exp[�(2uq1 ��qp)℄; equ = exp(�uq1): (50)319
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orresponds toa host atom: q = h, fa
tor ehp� or ehu in (49) is unity:ehp� = ehu = 1 (51)as the produ
t nhi n�i in (49) is zero. Equations (49)imply, for example, that in Eq. (45) for l�p , the produ
t�1 +P� n�2f�p��n�2 in the operator ŵp01n�2 is redu
edto e�p�n�2 , while the produ
t �1 +P� n�6f�u�n�6 is re-du
ed to e�un�6 . It simpli�es 
al
ulations of statisti
alaverages.Third, we 
onsider the 
rystal symmetry relationsfor one-site and two-site averages, to be denoted �qpiand �q�p;ij :�qpi = hŵp01nqi i; �q�p;ij = hŵp01nqin�j i: (52)These relations 
an be 
onveniently dis
ussed usingFigs. 1 and 2 whi
h illustrate the 
rystal symmetry ofdi�erent sites near the bond (0,1) 
orresponding to aninter-site jump p � v. These sites 
an be divided intothree groups: (i) sites 0 and 1 � �0, to be 
alled �sites h�as o

upation of these sites is des
ribed in Eq. (42) bythe operators nh0 and nh1 ; (ii) sites 2, 4, 9 and 12 beingthe nearest neighbors of both sites 0 and site 1, to be
alled �sites �� as the o

upation operator n�l for ea
hof these sites enters into Eq. (42) with the fa
tor f�p�;(iii) the rest nearest neighbors of site 0 or site 1, thatis, sites 3, 5, 6, 7, 8, 10, 11, and �1; �2; �3; �4; �5; �9, 12, tobe 
alled �sites u� as the operator n�m1 or n�m2 for thesesites enters into Eq. (42) with the fa
tor f�u or f�u .The sites u 
an also be divided into three groupsof the di�erent topology illustrated by Fig. 2: (i) the�vertex� sites 3, �3, 5 and �5, to be 
alled �sites v�, (ii) the�side� sites 6, 8, 10, 11, �2; �4; �9 and 12, to be 
alled �sitess�, and (iii) the �
entral� sites 7 and �1, to be 
alled �sites
�. These di�erent types of the site symmetry will bedenoted by symbol � whi
h takes values � and u or,for a more detailed des
ription, �, v, s, and 
.The above-dis
ussed symmetry relations 
an beused to simplify Eq. (45) for l�p;1 whi
h is originallywritten asl�p;1 = hŵp01[(n1+n2+n3+n4�n5�n6�n7�n8)� �� (n�1 + n�2 + n�3 + n�4 � n�5 � n�6 � n�7 � n�8)�℄i: (53)First, three last terms in the se
ond bra
kets 
an berewritten a

ording to Eq. (43). Se
ond, terms withn�0 and n�1 in (53) vanish as the operator ŵp01 (42) in-
ludes fa
tors nh0 and nh1 while nhi n�i = 0. Thus, weobtain:
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Fig. 2. S
hemati
 representation of bonds of types(h; h), (h;�), (�;�), (�; u) and (u; u) des
ribed inthe text. Seven bonds (0; k) and seven bonds (1; �k)whi
h belong to type (h; u) are not shown for 
larity of�gure (
olor online [13℄)l�p;1 = hŵp01[(n2 + n4 + n9 + n12)� ++(n3�n5�n�3+n�5�n6�n8�n�2�n�4)�n7�n�1)�℄i: (54)Figures 1 and 2 show that the four �-sites, 2, 4, 9, 12,are equivalent to ea
h other, as well as four v-sites 3,5, �3, �5, eight s-sites 6, 8, 10, 11, �2, �4, �9, 12, and two
-sites, 7 and �1. Therefore, Eq. (54) in
ludes only threedi�erent terms:l�p;1 = (4��p� � 4��ps � 2��p
); (55)where ��p� means the one-site average ��pi (52) for a sitei of the symmetry �:��p� = hŵp01n�2 i; ��ps = hŵp01n�6 i;��p
 = hŵp01n�7 i: (56)Expressions (46) and (47) formqp;1 and tq�p;11 in
lude op-erators ŵp0k whi
h des
ribe atomi
 jumps along bonds(0; k) rather than along the bond (0,1) 
onsideredabove. To use the above-dis
ussed symmetry relations,we 
an employ the rotation of the FCC latti
e whi
htransforms the bond (0; k) into the (0,1) one. Table 1shows 
hanges of positions of di�erent sites under su
hrotations.320
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al theory of di�usion : : :Table 1. Changes of positions of latti
e sites under rotations of the FCC latti
e whi
h transform bonds (0; k) intobond (0,1)k Componentsof ve
tor R Position of sites1 (x; y; z) 1 2 3 4 5 6 7 8 9 10 11 122 (�y; x; z) 4 1 2 3 8 5 6 7 12 9 10 113 (�x;�y; z) 3 4 1 2 7 8 5 6 11 12 9 104 (y;�x; z) 2 3 4 1 6 7 8 5 10 11 12 95 (x;�z; y) 3 10 7 11 1 9 5 12 2 6 8 46 (�y;�z; x) 11 3 10 7 12 1 9 5 4 2 6 87 (x;�y;�z) 7 6 5 8 3 2 1 4 10 9 12 118 (y;�z;�x) 10 7 11 3 9 5 12 1 6 8 4 29 (�z; y; x) 12 4 11 8 9 2 10 6 1 3 7 510 (�z; x;�y) 8 12 4 11 6 9 2 10 5 1 3 711 (z;�x;�y) 6 10 2 9 8 11 4 12 7 3 1 512 (z; y;�x) 9 6 10 2 12 8 11 4 5 7 3 1Using Table 1, we 
an write mqp;1 in (46) asmqp;1 = hŵp01(n4+n3+n2�n3�n11�n7�n10)qi == (2�qp� � 2�qps � �qp
): (57)It implies lqp;1 = 2mqp;1; (58)where we use the same 
onsiderations and notation asin (53)�(56), while index q 
orresponds to either � or h.The similar methods 
an be used to expli
itly writethe average tq�p;11 in (47). It 
an be written as the sumof two terms, �one-site� and �two-site� ones:tq�p;11 = tq�1p + tq�2p : (59)The one-site term tq�1p has the form similar to (55):tq�1p = Æq� �2��p� + 2��pv + 4��ps + ��p
� ; (60)where ��pv is hŵp01n�3 i.The two-site term tq�2p in (59) in
ludes 21 non-equivalent averages �q�p;ij whi
h 
an be grouped intoterms tq�p;��0 
orresponding to symmetries � and �0 ofsites i and j: tq�2p =X�;�0 tq�p;��0 ; (61)

where both � and �0 takes the value �, v, s or 
. Thenon-zero terms tq�p;��0 in (61) 
an be written as follows:tq�p;�� = (4�2;4 + 2�2;9)q�p ;tq�p;�s = �2(�2;6 + �2;8 + �2;10 + �2;11)q�p ;tq�p;�
 = �4(�2;7)q�p ;tq�p;vv = 2(�3;�5 � �3;5 � �3;�3)q�p ;tq�p;vs = 2(�3;10 � �3;6 � �3;�2 + �3;�9)q�p ;tq�p;ss = 2(�6;10 � �6;11 + �6;�2 + �6;�4)q�p ;tq�p;s
 = 2(�6;7 + �6;�1)q�p ; tq�p;

 = (�7;�1)q�p : (62)
Here the lower index p and the upper indi
es q� atbra
kets mean that they should be put at ea
h termwithin bra
kets, while the notation �i;j (used for 
lar-ity) means the same as �ij in (52). Quantities tq��0� with�0 6= � not presented in Eqs. (62) 
an be obtained fromthose given in (62) by inter
hanging indi
es q and �:tq��0� = t�q��0 .The above-dis
ussed relations of symmetry are use-ful for statisti
al 
al
ulations using the methods morere�ned than the simple kineti
 mean-�eld approxima-tion des
ribed in Se
. 4.2, su
h as the pair-
luster ap-proximation dis
ussed in Se
. 5. These symmetry rela-tions 
an also be used to 
al
ulate quantities l�p;n, mqp;nand tq�p;nm in Eqs. (34)�(37) with n;m > 1 employed inthe SSJA.8 ÆÝÒÔ, âûï. 2 (8) 321
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 mean-�eld 
al
ulationsIn this se
tion, we des
ribe 
al
ulations of averageshŵp01i, l�p;n, mqp;n and tq�p;nm in Eqs. (42), (34), (37) usingthe simplest of our approximations whi
h negle
ts �u
-tuations of o

upation numbers npi in these averages:ea
h npi is repla
ed by its mean value hnpi i = 
p. At thesame time, thermodynami
 quantities, in parti
ular,
hemi
al potentials �� in Eqs. (28), will be found us-ing the more exa
t, pair-
luster approximation � PCA(whi
h is fully equivalent to the so-
alled �pair 
lustervariation method � pair CVM� but uses more sim-ple 
al
ulations and is more 
onvenient for generaliza-tions [24�26℄). It 
an signi�
antly raise the a

ura
y of
al
ulations with respe
t to usual, simplest versions ofthe mean-�eld approximation (MFA), parti
ularly fordilute alloys where the PCA be
omes exa
t [25, 26℄. Todi�er this our approa
h from the usual MFA, we 
all it�the kineti
 mean-�eld approximation� (KMFA).Let us �rst �nd the KMFA expression for themean frequen
y !p in Eq. (29). Repla
ing ea
h npi inEqs. (27), (28), and (42) by site fra
tion 
p, we obtain:!KMFAp � !0p = (�p=
p)
2hS4p�S14u : (63)The upper index �0� at averages wp, �p, mp, lp and tpwill mean �KMFA�, and we denote for brevity:Sp� =  1 +X� 
�f�p�! ;Su =  1 +X� 
�f�u! : (64)The fa
tor �p in (63), a

ording to (28), 
an be ex-pressed via the a
tivation frequen
y 
p and the 
hemi-
al potentials �� of va
an
ies or solute atoms with re-spe
t to host atoms. Ea
h �� is the sum of the idealsolution term �id� = T ln(
�=
h) and the intera
tionterm �int� : ��v = ln(
v=
h) + ��intv ;��� = ln(
�=
h) + ��int� : (65)In a dilute alloy, the intera
tion term �int� is linear insolute site fra
tions 
�. We will des
ribe these terms bythe PCA expressions whi
h for dilute alloys be
ome ex-a
t [26℄. For a binary alloy, these expressions are givenbelow by Eqs. (104), while for a multi-
omponent dilutealloy these terms 
an be obtained from Eqs. (26)�(31)in [26℄:

��intv = �X
 Xn=1 znfv
n 

 ;��int� = �X
 Xn=1 znf�
n 

 : (66)Here, zn is the 
oordination number for the n-th shellin the 
rystal, and f�
n is the Mayer fun
tion for the
on�gurational intera
tion v�
n (5) in this shell:f�
n = [exp(� v�
n )� 1℄: (67)Using Eqs. (28), (29), (65), we 
an write the KMFAexpressions (63) for mean frequen
ies !p as!0� = !�0
vava�S4��S14u ;!0h = !h0
vavS4h�S14u : (68)Here the fa
tor av or a� de�ned by the relationav = exp(��intv ); a� = exp(��int� ) (69)
an be 
alled �the redu
ed a
tivity 
oe�
ient� for a va-
an
y or a solute atom. For a binary alloy AB, therelation between a� in (69) and 
onventional a
tivity
oe�
ients 
B and 
A (used, e. g., in [8℄) is given byEq. (108) below.Fa
tors !p0 in Eqs. (68) are related to the va
an
ysite fra
tion 
v and to a
tivation frequen
ies 
p in (16)as follows: !�0 = 
v
�v; !h0 = 
v
hv: (70)When 
� ! 0, fa
tors av, a�, Sp�, Su in (64) and(69) tend to unity. Hen
e !p0 has the meaning of themean frequen
y of p� v jumps for a p-spe
ies atom at
� ! 0, and the KMFA results (68) for !p be
ome ex-a
t in this limit. For a 
on
entrated alloy, !0p in (68) isthe value of this mean frequen
y found in the KMFA.We note that the mean frequen
y !�0 in (70) di�ersfrom the �solute jump frequen
y� w� used in the stan-dard �ve-frequen
y model [1�9℄ whi
h is related to our!�0 as w� = !�0ev�1 ; ev�1 = exp(�vv�1 ); (71)where vv�1 is the nearest-neighbor va
an
y-solute inter-a
tion. Fa
tor ev�1 in (71) 
orresponds to the fa
torexp(�Êinpi;vj ) in (7), and it is 
an
eled in the mean fre-quen
y !�0 due to the presen
e of statisti
al averagingin Eqs. (15).Dis
ussing 
al
ulations of one-site averages �qp� inEqs. (55), (58) and (60), we �rst note that di�eren
esbetween averages whi
h in
lude o

upation operatorsof sites of a di�erent symmetry v, s or 
 arise only322
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al theory of di�usion : : :due to the inter-site 
orrelations. As in the KMFA,these 
orrelatios are negle
ted, ea
h of indi
es v, s, 
in Eqs. (56)�(60) 
an be repla
ed by the 
ommon in-dex u mentioned above. Se
ond, identities (49) showthat the average �qp� = hŵp01nq�i di�ers from the aver-age hŵp01i = w0p only by repla
ing one of fa
tors Sp� inEq. (63) (with Spu � Su) to the fa
tor 
qeqp� with eqp�from Eqs. (50). It yields the following relations:�q0p� = 
p
q!0p�qp�; �q0pu = 
p
q!0p�qu; (72)where we denote for brevity�qp� = eqp�=Sp�; �qu = equ=Su: (73)The same methods 
an be used for the KMFA 
al
u-lations of two-site averages �q�p;ij in (62). Hen
e theKMFA expressions for one-site and two-site averagesare similar:�q0pi = 
p
q!0p�qp� ; �q�;0p;ij = 
p
q
�!0p�qp���p�0 : (74)Here indi
es � and �0 equal to� or u indi
ate the above-mentioned symmetry of site i and site j, respe
tively,and relations �qpu � �qu, ��pu � ��u are implied.The resulting KMFA expressions for quantitiesmqp;1, tq�1p and tq�2p in Eqs. (58) and (59) 
an be writ-ten as followsmq0p;1 = 
p
q!0p(2�qp� � 3�qu);tq�;01p = Æq�
p
�!0p(2�qp� + 7�qu);tq�;02p = 
p
q
�!0p �� h6�qp���p��12(�qp���u+��p��qu)+11�qu��ui : (75)Cal
ulations of averages l�p;n, mqp;n and tq�p;nm inEqs. (34) and (37) for values n;m > 1 used in theSSJA 
an be made similarly to those for the NNJA de-s
ribed above, though the des
ription of rotations ofve
tors Rl+n and Rl�n in (37) (analogous to those givenby Table 1 for ve
tors R1k) should be made for ea
h nand m separately. The results 
an be written in termsof �redu
ed� quantities ~l�p;n and ~mqp;n de�ned by thefollowing relations:l�0p;n = 
�
p!0p ~l�p;n; mq0p;n = 
q
p!0p ~mqp;n; (76)where !0p is the same as in (68). Expressions for quan-tities ~l�p;n and ~mqp;n in (76) via �qp� and �qu in (73) andthe fa
tor �qu = (�qu � 1) (77)

Table 2. Redu
ed values ~l�p;n and ~mqp;n inEqs. (76)n 1 2 3 4 5~l�p;n (4��p� � 6��u) 2��u 4��u 4��u 2��u~mqp;n (2�qp� � 3�qu) 4�qu �qu 2�qu �quare given in Table 2. Similarly, matri
es tq�p;nm whi
henter into Eqs. (37) 
an be expressed via �redu
ed� ma-tri
es ~t�p;nm and ~tq�p;nm:tq�;0p;nm = 
q
p!0p �Æ q�~t�1p;nm + 
�~tq�2p;nm� : (78)Here the matrix ~t�1p;nm has a relatively simple form0BBBBBB� 2��p�+7��u ���u �2��u �2��u ���u�4��u 4��u+8 0 �4 0���u 0 2��u+9 �1 �1�2��u �1 �2 2��u+10 �2���u 0 �2 �2 ��u+11
1CCCCCCAwhile the matrix ~tq�2p;nm 
an be written as follows:0BBBBBB� ~tq�2p;11 �q�p 2�q�p 2�q�p �q�p4��qp ~tq�2;22 8"q� 8"q�+4 4"q���qp "q� ~t� q2;33 2"q�+1 "q�+12��qp 2"q�+1 4"q�+2 ~tq�2;44 2"q�+2��qp "q� 2"q�+2 2"q�+2 ~tq�2;55

1CCCCCCA ;where the diagonal elements ~tq�2p;nn are~tq�2p;11 = 6�qp���p��12��qp���u + �qu��p��++ 11�qu��u ;~tq�2;22 = 4 ��qu��u � 2�qu � 2��u� ;~tq�2;33 = �2�qu��u � 4�qu � 4��u � 5� ;~tq�2;44 = 2 �3�qu��u � 4�qu � 4��u � 1� ;~tq�2;55 = ��qu��u � 2�qu � 2��u � 9� : (79)
The non-diagonal elements are expressed via only twoquantities, �q�p and "q�:�q�p = �4�qp���u � 5�qu��u � 4�qp� + 6�qu� ;"q� = 2�qu��u = 2(�qu � 1)(��u � 1): (80)323 8*
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 mean-�eld 
al
ulations des
ribed in Se
. 4.2negle
t �u
tuations of o

upations of sites n�i in statis-ti
al averages. These �u
tuations 
an be taken into a
-
ount using more re�ned statisti
al methods or MonteCarlo simulations. In this se
tion, we des
ribe methodsof 
al
ulations of 
ontributions of these �u
tuations tostatisti
al averages (to be 
alled ��u
tuative terms�) us-ing the pair-
luster approximation � PCA mentionedin Se
. 4.2.KMFA repla
es ea
h o

upation operator nqi in sta-tisti
al averages by its mean value 
q. To des
ribe �u
-tuations, we write ea
h nqi as the sum of 
q and the�u
tuation �nqi = (nqi � 
q):nqi = (
q +�nqi ) = 
q(1 + �nqi =
q): (81)Then the �u
tuative term (to be denoted by the lowerindex �f �) for ea
h quantity 
an be 
hara
terized bythe relative di�eren
e between its exa
t value and thatgiven by the KMFA expressions (68), (74) or (75).For example, for the mean frequen
y !p in Eqs. (27)and (29), the �u
tuative term !pf is related to theKMFA value !0p as follows:!p = !0p(1 + !pf ): (82)This �u
tuative term 
an be written as the statisti-
al average of the appropriate �u
tuation operator !̂p;fwhi
h, a

ording to Eqs. (42) and (82), has the formof produ
t of four fa
tors des
ribing �u
tuations in the�rst, se
ond, third and fourth fa
tor in (42), respe
-tively:(1 + !pf ) = h1 + !̂p;f i = D �1 +�nh0=
h��� �1 +�nh1=
h�Yl  1 +X� �n�l f�p�=Sp�!��Ym  1 +X� �n�mf�u=Su!E: (83)Here Sp� and Su are the same as in (64), while l andm take the same 4 and 14 values, respe
tively, as inEq. (42).For one-site and two-site averages (52), the �u
tu-ative terms �qpi;f or �q�p;ij;f 
an be de�ned similarly toEq. (82):�qpi = �q0pi (1 + �qpi;f ); �q�p;ij = �q�;0p;ij (1 + �q�p;ij;f ); (84)

where �q0pi or �q�;0p;ij is the KMFA expression given byEq. (74). Ea
h of these �u
tuative terms is the av-erage of the appropriate �u
tuation operator �̂qpi;f or�̂q�p;ij;f . A

ording to Eqs. (52) and (49), the operator�̂qpi 
orresponds to repla
ing fa
tor (1 +P� n�i f�p�) or(1 +P� n�i f�u ) in the expression (42) for ŵp01 by theoperator nqi eqp� or nqi equ. Hen
e the �u
tuation opera-tor �̂qpi;f 
orresponds to repla
ing one of fa
tors in thethird or the fourth produ
t in Eq. (83) by a more sim-ple fa
tor (1 + �nqi =
q). For example, for site i = 2whi
h has symmetry �, �u
tuative term �qp2;f = �qp�;fis de�ned by the following relation:�1 + �qp�;f� = D �1 +�nh0=
h� �1 +�nh1=
h��� (1 + �nq2=
q)Yl6=2 1 +X� �n�l f�p�=Sp�!��Ym  1 +X� �n�mf�u=Su!E; (85)where index l in the se
ond line, unlike Eq. (83), takesonly three values: 4, 9 and 12, but not l = 2.Similarly, for a two-site average �q�p;ij in (84), the�u
tuation operator �̂q�p;ij;f is obtained by repla
ingin two last produ
ts in Eq. (83) the two fa
torswhi
h in
lude �u
tuations �ni and �nj by the fa
-tor (1 + �nqi =
q)(1 + �n�i =
�). For example, for sitei = 2 of symmetry � and site j = 6 of symmetry s, wehave:�1 + �q�p;26;f� = D�1 +�nh0=
h� �1 +�nh1=
h��� (1 + �nq2=
q)Yl6=2 1 +X� �n�l f�p�.Sp�!�� �1 +�n�6=
�� Ym 6=6 1 +X� �n�mf�u=Su!E: (86)For simpli
ity, below we 
al
ulate �u
tuative termsonly for averages wp, mqp1 and tq�p;11 in Eqs. (27), (46),(47) whi
h are used in the NNJA, and suppose thesolute-solute 
on�gurational intera
tions v�
n in (67) tobe signi�
ant only for the nearest-neighbors: v�
1 & T ,v�
n>1 � T . Then 
orrelations of �u
tuations �n�i and�n�j for the not-nearest sites i and j 
an be negle
ted,many-site 
orrelations 
an be de
oupled into the pair-wise ones [24℄, and 
al
ulations of �u
tuation terms(83)�(86) 
an be made using the simple �diagram te
h-ni
s� des
ribed below.Let us �rst 
onsider the term !pf = h!̂p;f i inEq. (83) whi
h is the sum of various �u
tuation prod-324



ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014 Statisti
al theory of di�usion : : :u
ts h�nqi : : :�nrj : : : i with some 
oe�
ients. As men-tioned, ea
h of these produ
ts 
an be de
oupled intothe sum of produ
ts of all possible pair terms whi
hin
lude the pair 
orrelators of �u
tuations, Kijqr, forneighboring sites i and j:Kijqr = h�nqi�nrj i: (87)These sites i and j are some of 20 sites k and �k shown inFig. 2, while various 
orrelators Kijqr 
orrespond to dif-ferent bonds (i; j) in this �gure, or to the bonds (0; k)or (1; �k) not shown in this �gure. As was dis
ussed inSe
. 4.1, these 20 sites 
an be divided into three groupsof sites having the di�erent 
rystal symmetry � withrespe
t to bond (0,1): sites 0 and 1 with � = h; sites 2,4, 9, 12 with � = �, and the rest 14 sites k and �k with� = u. Depending on symmetries � and �0 of sites i andj, terms with the 
orrelator Kijqr make di�erent 
on-tributions X��0 into averages h�nqi : : :�nrj : : : i whi
henter in Eq. (83):Xhh = 1
2h Khh; Xh� = 1
hSp� X� Kh�f�p�;Xhu = 1
hSu X� Kh�f�u ;Xuu = 1S2u X�� K��f�u f�u ;X�u = 1Sp�Su X�� K��f�p�f�u ;X�� = 1S2p� X�� K��f�p�f�p�:
(88)

These di�erent 
ontributions X��0 into the average !pfin Eq. (83) are illustrated by di�erent lines in Fig. 2.Terms Xhh are drawn by a thi
k line; terms Xh�, bydotted lines; terms X��, by 
hain lines; terms X�u,by dashed lines; and terms Xuu, by thin lines. TermsXhu are not shown in Fig. 2.Therefore, the PCA 
al
ulation of the average !pfin Eq. (83) yields the sum of various powers of quanti-ties X��0 presented in Eq. (88) with some 
ombinatorial
oe�
ients. If we denote for brevity:Xhh = X1; Xh� = X2; Xhu = X3;X�� = X4; X�u = X5; Xuu = X6; (89)this !pf has the form of some polynomial in Xi:!pf = Xn1;n2;:::n6 Cn1;n2;::: ;n6Xn11 Xn22 : : : Xn66 : (90)Here, ni � 0 are integers obeying evident inequalities:1 � 6Xi=1 ni � 10; (91)

while 
oe�
ient Cn1;n2;:::n6 is the total number of pos-sible sets of bonds whi
h in
lude n1 bonds of type X1,n2 bonds of type X2, : : : and n6 bonds of type X6.As explained above, ea
h site in these sets of bonds be-longs either to a single bond or to no bond at all, whilethe bonds are 
hosen among 49 bonds shown in Fig. 2and 14 bonds (0; k) and (1�k) not shown in this �gure.In terms of the graph theory [30℄, Cn1;n2;::: ;n6 isthe number of sets of edges whi
h 
ontain no adja
entedges and in
lude n1 edges of type X1, n2 edges of typeX2; : : : and n6 edges of type X6. Su
h sets of edges are
alled the independent edge sets, or �mat
hings�, andvarious problems related to mat
hings are often metin the graph theory [30℄. Thus the problem of �ndingof 
oe�
ients Cn1;n2;::: ;n6 in (90) 
an be formulated asfollows: we need to �nd all mat
hings in the graph,and ea
h of these mat
hings 
ontributes unity to the
oe�
ient Cn1;n2;::: ;n6 whi
h 
orresponds to the pres-en
e of ni edges (bonds) of type i in the mat
hing.Inequalities (91) state that ea
h mat
hing 
an in
ludeup to 10 verti
es. The empty mat
hing should not be
onsidered as it 
orresponds to the �rst term, unity, inbra
kets in (82) and hen
e makes no 
ontribution to!pf . Sin
e ea
h graph 
orresponding to Fig. 2 in
ludesnot too mu
h verti
es and edges, the problem 
an besolved by a simple expli
it re
ursive algorithm. We im-plemented su
h algorithm as a program in the Pythonprogramming language.For one-site or two-site averages �qpi or �q�p;ij de�nedby Eqs. (52), the PCA 
al
ulations of �u
tuative terms�qpi;f or �q�p;ij;f in Eq. (84) 
an be made similarly. Ex-pression for the one-site term �qpi;f di�ers from that for!pf by repla
ing the fa
tor �1 +P��n�i f�p�=Sp�� in(83) by the fa
tor (1 +�qi =
q), while the two-site term�q�p;ij;f di�ers from �qpi;f by one more repla
ing, thatof the �1 +P��n�j f�p�=Sp�� or �1 +P� �n�j f�u=Su�in (83) by (1 + �n�j =
�), as illustrated by Eqs. (85)and (86). Hen
e the above-dis
ussed �u
tuation prod-u
ts for the term �qpi;f 
an in
lude the appropriate fa
-tor Xqi� related to the 
orrelatorKijqr between site i andthe site j of the symmetry �, and this Xqi� is de�nedanalogously to X��0 in (88). Similarly, the �u
tuationprodu
ts for two-site term �q�p;ij;f 
an in
lude fa
torsXqi� , X�j� , and also fa
tor Xq�ij with the 
orrelator of�u
tuations of sites i and j (if they are the nearestneighbors):325
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q
h Kqh; Xqi� = 1
qSp� X� Kq�f�p�;Xqiu = 1
qSu X� Kq�f�u ; Xq�ij = Kq�
q
� : (92)If we denote fa
tors Xqi�, X�j� and Xq�ij in (92) similarlyto X��0 in (89),Xqih = X7; Xqi� = X8; Xqiu = X9;X�jh = X10; X�j� = X11; X�ju = X12;Xq�ij = X13; (93)then �u
tuative terms �qpi;f or �q�p;ij;f 
an be writtensimilarly to the term !pf in Eq. (90):�qpi;f = Xn1;::: ;n9 Cqn1;::: ;n9Xn11 Xn22 : : :Xn99 ;�q�p;ij;f = Xn1;::: ;n13 Cq�n1;::: ;n13Xn11 Xn22 : : : Xn1313 ; (94)while integers ni in these sums obey inequalities anal-ogous to (91)1 � 9Xi=1 ni � 10; 1 � 13Xi=1 ni � 10: (95)Coe�
ients Cqn1;::: ;n9 and Cq�n1;::: ;n13 in Eqs. (94) 
anbe found analogously to Cn1;n2;::: ;n6 in (90) by 
onsid-ering ea
h mat
hing as a term in one of sums (94).One vertex (or two verti
es) in the graph in Fig. 2 nowshould be marked by index i (or i and j), and ea
h edgeadja
ent to this vertex (these verti
es) 
ontributes anappropriate fa
tor X7, X8; : : : or X13 from (93) (ratherthan X1, X2; : : : or X6 from (89)) to the 
orrespond-ing produ
t of all Xnmm in (94). The resulting form ofexpansions (90) and (94) for !pf , �qpi;f and �qp;ij;f isillustrated in Appendix A and in [13℄.The 
orrelators Kqr = Kijqr whi
h enter into the�u
tuation fa
tors Xn in Eqs. (88)�(90) and (92)�(94)
an be found using the PCA equations for multi-
omponent alloys presented in [26℄. When both indi
esq = � and r = 
 
orrespond to solute atoms, this 
or-relator is expressed via the PCA parameters y� and Zde�ned in [26℄ as follows:K�
 = y�y
Z � 
�

 : (96)Dependen
ies of parameters y� and Z on 
on
entra-

Table 3. Estimates of Mayer fun
tions fBB1 == [exp(��vBB1 )� 1℄ from data about thermodynami
fa
tors � presented in Ref. [10℄Alloy CuNi CuPd CuAu AuNi AuAg FeNiT , K 1220 1334 1016 1173 1173 1373fBB1 0.22 �0:31 �0:29 0.27 �0:17 �0:14tions 
� for an m-
omponent alloy are determined bythe following system of (m� 1) algebrai
 equations:
� = y�Z  1 +X
 e�
y
! ;Z = 1 + 2X
 y
 +X�;
 e�
y�y
 ; (97)where e�
 is exp(��v�
1 ), and v�
1 is the 
on�gura-tional intera
tion for neighboring � and 
 atoms.If one or both indi
es q and r in the 
orrelator Kqr
orrespond to a host atom h, this Kqr 
an be expressedvia the 
orrelatorsK�� for solute atoms using the iden-tity nhi = 1�P� n�i ; for example: Kh� = �P�K��.For a binary alloy AB, Eqs. (97) 
an be solvedanalyti
ally, and the 
orrelator KBB is expressed viathe solute site fra
tion 
B = 
 and the Mayer fun
tionfBB1 = [exp(��vBB1 )� 1℄ as follows:KBB = 4
2(1� 
)2fBB1 =(R1 + 1)2; (98)where R1 is [1 + 4
(1� 
)fBB1 ℄1=2. For a dilute multi-
omponent alloy, Eqs. (97) 
an be analyti
ally solved,too, and then 
orrelator K�
 has the formK�
 = f�
1 
�

 : (99)The binary alloy result (98) 
an be used to esti-mate the order of magnitude of 
orrelators K�
 andfa
tors Xi in Eqs. (88)�(96) for real alloys. The Mayerfun
tion fBB1 
an be estimated using experimental dataabout the thermodynami
 fa
tor � whi
h in the PCAis des
ribed by Eq. (113) below. In Table 3, we showsu
h estimates for six FCC alloys with unlimited solu-bility using the thermodynami
 data about � presentedin Ref. [10℄. For simpli
ity, in these estimates, weuse the model of nearest-neighbor solute-solute inter-a
tions, the PCA expression (113) for �, and the equi-atomi
 
omposition 
 = 0:5. We see that the fBB1 val-ues estimated lie between about (�0:3) and 0.3, whi
his 
lose to the thermodynami
 stability limits for disor-dered FCC alloys with respe
t to the ordering and thede
omposition, respe
tively.326
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al theory of di�usion : : :These estimates seem to imply that the maximumvalues of jKBBj in (98) rea
hed at 
 � 0:5 are about0.02. Supposing fa
tors Xi in Eqs. (88)�(96) to havethe same order of magnitude as KBB in (98), we 
anexpe
t that expansions in powers of Xi in Eqs. (90)and (94) usually rapidly 
onverge. It is illustrated bythe estimates of terms !pi, ��p�;f and ���p;ij;f presented inAppendix A and in [13℄. Equations (98) and (99) alsoshow that for dilute alloys, the �u
tuative 
orre
tion!pf in (90) has the se
ond order in solute 
on
entra-tions 
�. Hen
e for the mean frequen
ies !p in dilutealloys, the KMFA results (68) are exa
t up to the se
-ond order in 
�.For one-site average ��pi in dilute alloys, �u
tuative
orre
tions ��pi;f in Eqs. (92)�(94) in
lude terms ��;linpi;flinear in 
�. These terms 
an be found 
onsideringFig. 2 and using Eq. (85) (or its analogues for othersymmetries �):��;linp�;f =X� f��1 
�(f�p� + 4f�u � 2);��;linpv;f =X� f��1 
�(2f�p� + 3f�u � 1);��;linps;f =X� f��1 
�(f�p� + 3f�u � 1);��;linp
;f =X� f��1 
�(4f�u � 1): (100)
Similarly, for a two-site average ���p;ij with neighboringsites i and j in dilute alloys, the �u
tuative term ���p;ij;fin Eqs. (92)�(94) in
ludes the 
onstant term ���;0p;ij;f in-dependent of 
�: ���;0p;ij;f = f��1 : (101)Both terms ��;linp�;f in (100) and ���;0p;ij;f in (101) makelinear in 
� 
ontributions to the di�usion 
oe�
ients.Hen
e they make �nite 
ontributions to the enhan
e-ment fa
tors bp for dilute alloys. At the same time,the 
ontributions to these bp of terms �hp�;f and �h�p;ij;f(whi
h 
orrespond to repla
ing a solute atom � by ahost atom h in the averages 
onsidered) are negligible:Eqs. (84)�(86) show that su
h terms in
lude a smallfa
tor 
�=
h with respe
t to terms ��p�;f and ���p;ij;f .Estimates of �u
tuative 
ontributions to di�usion
oe�
ients for some real alloys will be dis
ussed else-where.

6. DIFFUSION IN BINARY ALLOYS6.1. Expressions for intrinsi
 di�usion
oe�
ients via mean frequen
ies and
orrelation fa
torsThe intrinsi
 di�usion 
oe�
ients Dp are de�ned bythe Fi
k's �rst law [8℄:JA = �DArnA; JB = �DBrnB ; (102)where Jp is the atomi
 �ux density, and np is the num-ber density for p-spe
ies atoms (related to their sitefra
tion 
p and mean volume �v per atom as np = 
p=�v),while Eq. (22) relates the �ux Jp density to the gradi-ents of partial 
hemi
al potentials, �A and �B . These
hemi
al potentials are related to our �� = �B inEqs. (24) and to the grand 
anoni
al potential peratom, to be denoted 
, by the following relations [26℄:�B = �B +
; �A = 
: (103)The PCA expressions for �B and 
 in (103), as wellas for the 
hemi
al potential �v of va
an
ies relativeto host atoms in (65), are presented in Ref. [15, 26℄.They 
an be written as sums of the ideal solution andthe intera
tion terms marked by indi
es �id� and �int�,respe
tively:�B = �idB + �intB ; 
 = 
id +
int;�v = �idv + �intv ; �idB = T ln 

A ;
id = T ln 
A; �idv = T ln 
v
A ;�intB = �TXn=1 zn ln�1 + 2 
fBBnRn + 1� ;
int = �T2 Xn=1 zn ln�1�2 
2fBBnRn+1+2
fBBn � ;�intv = �TXn=1 zn ln�1 + 2 
fvBnRn + 1� :
(104)

Here and below, we omit index B at 
B for brevity:
 = 
B ; zn, fBBn and fBBn are the same as in (66), inparti
ular: fvBn = �exp(��vvBn )� 1� ;fBBn = �exp(��vBBn )� 1� ; (105)Rn is expressed via fBBn asRn = (1 + 4

AfBBn )1=2; (106)while PCA expressions for the �redu
ed a
tivity 
oe�-
ients�, av and aB de�ned in Se
. 4.2, are obtained by327
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on-ventional a
tivity 
oe�
ients 
B and 
A de�ned by thethermodynami
 equations [8℄�B(
) = �0 + T ln(

B);�A(
A) = �0 + T ln(
A
A) (107)(where �0 is a 
onstant independent of 
) 
an beobtained by 
omparison of Eqs. (103) and (104)with (107). It yieldsaB = exp(��intB ) = (
B=
A): (108)To write expli
it expressions for DA and DB in(102) via the Onsager 
oe�
ients Lpq in (22), we 
anuse the Gibbs�Duhem relation [8℄:
Ad�A + 
Bd�B = 
A d
+ 
 d�B = 0 (109)(whi
h for the PCA expressions (103)�(106) 
an also be
he
ked by a dire
t 
al
ulation). Using Eqs. (22), (102)and (109) and supposing the mean atomi
 volume �v toobey the Vegard's law�v � 1=n = vA
A + vB
B ; (110)where vp is the atomi
 volume of a p-
omponent in analloy, we 
an write the intrinsi
 di�usion 
oe�
ients asfollows DA = Tn2vB �LAA
A � LAB
 ��;DB = Tn2vA �LBB
 � LBA
A ��: (111)Here the �thermodynami
 fa
tor� � is related to theintera
tion term �intB in (108) and to 
B in (107) as� = 1 + 

A d(��intB )d
 = 1 + d ln 
Bd ln 
 (112)(due to the Gibbs-Duhem relation (109), the last termin (112) 
an also be written as d ln 
A=d ln 
A). ThePCA expression for � 
an be obtained if we use for�intB in (112) the PCA expression from (104):� = 1� 

A ��Xn=1 zn2fBBn Rn + 1� 4
(1� 2
)fBBn(Rn + 1)(Rn + 1 + 2
fBBn ) : (113)To dis
uss in�uen
e of various physi
al fa
torswhi
h a�e
t di�usion in an alloy, it is also 
onvenientto express ea
h Onsager 
oe�
ient LAB in (111) viathe mean frequen
y !p and the �
orrelative� 
oe�
ients

L
pq whi
h des
ribe va
an
y 
orrelation e�e
ts and arede�ned by the following relations:Tna20LAA = !A
A(1� 
L
AA);Tna20LAB = !B

AL
AB ;Tna20LBA = !B

AL
BA;Tna20LBB = !B
(1� 
AL
BB): (114)
We note that non-diagonal Onsager 
oe�
ients LABand LBA in (111), as well as L
AB and L
BA in (114),should a
tually be equal to ea
h other [8℄, and thepresen
e of this symmetry relation (dis
ussed below inSe
s. 6.2, 7.2, and 8) 
an 
hara
terize the 
onsisten
yor the a

ura
y of the theory.In the notation (114), the intrinsi
 di�usion 
oe�-
ients Dp in (111) 
an be 
on
isely written asDp = (a20=nv~p)!pfp�; (115)fA = 1��!B!A 
AL
AB + 
L
AA� ;fB = 1� (
AL
BB + 
L
AB); (116)where symbol ~p (used for brevity) means ~A � B,~B � A, and 
orrelation fa
tors fA and fB in theseequations have evidently the meaning of a 
orrelationfa
tor for a 
on
entrated alloy.Equations (111) and (116) show that ea
h intrinsi
di�usion 
oe�
ient is proportional to several fa
torsof di�erent nature: the mean frequen
y !p, the 
or-relation fa
tor fp, and the thermodynami
 fa
tor �.Equation (115) is analogous to that 
ommonly used fordilute alloys (for whi
h � = 1) [8℄, but in a 
on
en-trated alloy, ea
h of fa
tors !p, fp and � varies withthe solute site fra
tion 
. Expli
it expressions for 
or-relative 
oe�
ients L
pq in (114) are dis
ussed below inSe
s. 7 and 8.6.2. General statisti
al expressions for Onsager
oe�
ients in a binary alloyFor a binary alloy AB with h = A and � = B,�elds h��n in Eqs. (33) and (36) are zero due to the an-tisymmetry property (25). Hen
e Eqs. (36) with p = Atake the form of a system of nmax equations for nmaxdi�erent �elds h�vn = hBvn :nmaxXm=1 AnmhBvm = (mAB;nÆ�B �mBA;nÆ�A);Anm = �tBBA;nm � tABB;nm � 2mAB;nÆm1� ; (117)328
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al theory of di�usion : : :where Æm1 is unity when m = 1 and zero otherwise.In the NNJA, Eqs. (117) in
lude only one �eld hBv1whi
h is simply expressed via quantities mqp;1 and tq�p;11in Eqs. (57)�(59):hBv1 = (mAB;1Æ�B �mBA;1Æ�A)=A11;A11 = �tBBA;11 � tABB;11 � 2mAB;1� : (118)Substituting this hBv1 in Eq. (33) with nmax = 1 andusing also Eq. (58), we obtain the following relationsbetween �uxes Jp0!1 and di�eren
es Æ�q:JB0!1 == ��Æ�B �wB + 2mAB;1(wB +mBB;1)=A11�++ �Æ�A2mBA;1(wB +mBB;1)=A11;JA0!1 = ��Æ�Bv2mBA;1mAB;1=A11 �� �Æ�A �wA � 2(mBA;1)2=A11� ; (119)whi
h determine Onsager 
oe�
ients Lpq in (41).We note that the Onsager symmetry relation,LBA = LAB ; (120)in our approa
h is obeyed identi
ally. A

ording toEq. (119), Eq. (120) impliesmBB;1 +mAB;1 = �wB : (121)Using Eqs. (55)�(58), we 
an re-write (121) ashŵB [2(nB2 + nA2 )� 2(nB6 + nA6 )�� (nB7 + nA7 )℄i = �hŵBi; (122)whi
h holds identi
ally as (nBi +nAi ) � 1. In Se
. 7.2 weshow that relation (120) holds also for the SSJA, andprobably also for any value nmax in Eqs. (117) (whi
hwe 
he
ked analyti
ally for the value mmax = 2). Pres-en
e of this symmetry relation irrespe
tively of 
on
en-trations and approximations 
onsidered illustrates thetheoreti
al 
onsisten
y of the master equation approa
hused.7. EXPLICIT EXPRESSIONS FOR INTRINSICDIFFUSION COEFFICIENTS IN A BINARYALLOY7.1. Onsager and di�usion 
oe�
ients in theNNJA-KMFAUsing Eqs. (119), (120), and (29), we 
an write thegeneral NNJA expressions for Onsager 
oe�
ients in a


on
entrated binary alloy as follows:Tna20LAA = "
A!A � 2(mBA;1)2A11 # ;Tna20LAB = 2mBA;1mAB;1A11 ;Tna20LBB = "
B!B � 2(mAB;1)2A11 # ; (123)
where A11 is given in (118), while statisti
al averagesmqp;1 and tq�p;11 are de�ned by general relations (57)�(62).In this se
tion, we use for these averages and formean frequen
ies !p in (123) the KMFA expressions(68), (76) and (78). We also omit index � = B of theonly kind of solute atoms in site fra
tion 
� = 
B andin quantities ��p�, e�p�, ��u , e�u de�ned by Eqs. (73),and employ in Eqs. (123) the �redu
ed� denominatorDnn rather than quantity A11 from (118), as well asthe frequen
y ratio z = !0B=!0A rather than frequen
y!0B from (68):
B = 
; �BA� = �A�; eBA� = eA�;�Bu = �u; eBu = eu; A11 = 

A!0ADnn;z = !0B=!0A = (!B0=!A0)aBS4B�=S4A�: (124)Then expressions (123) for Onsager 
oe�
ients in theNNJA-KMFA take the following form:Tna20LAA = !0A
A �1� 2
(3�u � 2�A�)2Dnn � ;Tna20LAB = !0B

A2(3�u � 2�A�)3�Au � 2�AB�Dnn ;Tna20LBB = !0B
 �1� 2
Az(3�Au � 2�AB�)2Dnn � : (125)The denominator Dnn in (125) 
an be 
onvenientlywritten as the sum of two terms: that with no 
om-mon fa
tor of site fra
tion 
 and that in
luding thisfa
tor: Dnn = (A1;11 + 
A2;11): (126)Here quantities A1;11 and A2;11 are expressed via theredu
ed parameters ~mqp;1, ~t�1p;11, and ~tq�2p;11 in (76)and (78) in a

ordan
e with Eqs. (118) and (124):A1;11 = (~tB1A;11 � 2 ~mAB;1);A2;11 = (~tBB2A;11 � z ~tAB2B;11) (127)or, expli
itly:A1;11 = (2�A� + 7�u) + 2z(3�Au � 2�AB�); (128)329



V. G. Vaks, A. Yu. Stroev, I. R. Pankratov, A. D. Zabolotskiy ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014A2;11 = �6�2A� � 24�A��u + 11�2u���z �6�AB��B��12(�AB��u+�B��Au )+11�Au �u� : (129)In Eqs. (124)�(127), quantities �AB�, �Au , �A� and �uare de�ned by Eqs. (73) and (51):�AB� = 1=SB�; �Au = 1=Su;�A� = eA�=SA�;�u = eu=Su; �B� = eB�=SB�;SA� = 1 + 
fA�; SB� = 1 + 
fB�;Su = 1 + 
fu; fA� = eA� � 1;fB� = eB� � 1; fu = eu � 1;
(130)

while fa
tors eA� and eu in (130) are de�ned byEqs. (124), (50) and (44).The 
orrelative 
oe�
ients L
pq in (116) forNNJA-KMFA 
an be found 
omparing Eqs. (114)and (125):L
AA = 2(3�u � 2�A�)2=Dnn;L
AB = 2(3�u � 2�A�)(3�Au � 2�AB�)=Dnn;L
BB = 2z(3�Au � 2�AA�)2=Dnn: (131)The NNJA-KMFA expression for the di�usion 
o-e�
ient Dp is given by the general relations (115)and (116) with the KMFA expression !0p (68) for !p,expressions (131) for L
pq, and Eq. (113) for �.7.2. Onsager and di�usion 
oe�
ients in theSSJA-KMFAWhen va
an
y-solute 
orrelations are des
ribed inthe SSJA, Eqs. (37) in
lude averagesmqp;n and tq�p;nm forvalues n;m > 1. These averages 
an be 
al
ulated sim-ilarly to those for the NNJA, and results 
an be writtenin terms of �redu
ed� quantities ~l�p;n, ~mqp;n, ~t�p;nm and~tq�p;nm de�ned analogously to those in (75):l�0p;n = 
�
p!0p ~l�p;n; mq0p;n = 
q
p!0p ~mqp;n;tq�;0p;nm = 
q
p!0p �Æ q�~t�1p;nm + 
�~tq�2p;nm� ; (132)where !0p is the same as in (68). Expli
it expressionsfor quantities ~l�p;n, ~mqp;n, ~t�p;nm and ~tq�p;nm are given byTable 2 and Eqs. (78)�(80).In this se
tion, we present the SSJA-KMFA expres-sions for Onsager 
oe�
ients in a 
on
entrated binary

alloy. In the SSJA, we should solve the system of�ve linear equations (117) for e�e
tive �elds h�vm andthen �nd Onsager 
oe�
ients using Eqs. (33), (38),and (41). To this end, we �rst write the matrix Anmin (117) in terms of �redu
ed� matri
es Arnm, A1;nm andA2;nm de�ned analogously to Dnn, A1;11 and A2;11 inEqs. (126)�(129):Anm = 

A!0AArnm;Arnm = (A1;nm + 
A2;nm);A1;nm = (~tB1A;nm � 2z ~mAB;nÆm1);A2;nm = (~tBB2A;nm � z~tAB2B;nm); (133)where z is the same as in (124) and ~mAB;n is the sameas in Table 2.It will be also 
onvenient to use the shortened no-tation for quantities �qp�, �qp and ~mq0p;1 in Eqs. (73)and (75):�A� = x; �AA� = �x; �B� = y;�AB� = �y; �u = v; �Au = �v;~mA0B;1 = (2�y � 3�v); ~mB0A;1 = (2x� 3v): (134)This notation enables us, in parti
ular, to more 
on-
isely write the NNJA-KMFA expressions for quanti-ties L
pq, A1;11 and A2;11 in Eqs. (126)�(131):L
AA = 2(3v � 2x)2=Dnn;L
AB = 2(3v � 2x)(3�v � 2�y)=Dnn;L
BB = 2z(3�v � 2�y)2=Dnn;A1;11 = (2x+ 7v) + 2z(3�v � 2�y);A2;11 = (6x2 � 24xv + 11v2)�� z[6y�y� 12(�yv + y�v) + 11v�v℄:
(135)

Matrix A1;nm in (133) is the di�eren
e of matrix~tB1A in (78) and the simple one-
olumn matrix:A1 = ~tB1A � 2z0BBBBBB� ~mA0B;1 0 0 0 04�Au 0 0 0 0�Au 0 0 0 02�Au 0 0 0 0�Au 0 0 0 0
1CCCCCCA ;

330
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al theory of di�usion : : :~tB1A =
= 0BBBBBBBBBBBBB�

2x+7v �v �2v �2v �v�4v 4v+8 0 �4 0�v 0 2v+9 �1 �1�2v �1 �2 2v+10 �2�v 0 �2 �2 v+11
1CCCCCCCCCCCCCA ; (136)

where x, y, v, �v and ~mA0B;1 are the same as in Eqs. (134),while �Au is (�Au � 1) = (�v � 1).Similarly, matrix A2 in (133) is an analogue of ma-trix ~tq�2p in Eq. (78) whi
h 
an be 
on
isely written asthe sum of two more simple matri
es:
~A2 = 0BBBBBB� A2;11 ~�AB 2~�AB 2~�AB ~�AB4~�BA ~tAB;22 8~"AB 8~"AB 4~"AB~�BA ~"AB ~tAB;33 2~"AB ~"AB2~�BA 2~"AB 4~"AB ~tAB;44 2~"AB~�BA ~"AB 2~"AB 2~"AB ~tAB;55

1CCCCCCA ;
A2 = ~A2 + Æz �0BBBBBB� 0 0 0 0 00 0 0 4 00 0 0 1 10 1 2 0 20 0 2 2 0

1CCCCCCA : (137)
Here A2;11 is the same as in Eq. (135), while pa-rameters ~�AB , ~"AB , ~tAB;nn and Æz are expressed viaquantities �q�p , ��qp , "q�, ~tq�2p;nn in Eqs. (78)�(80) andthe frequen
y ratio z = !0B=!0A as follows:~�AB = (�BBA � z�ABB );~�BA = (�BBA � z�BAB );~"AB = ("BB � z"AB);~tAB;nn = (~tBB2;nn � z ~tAB2;nn); Æz = (1� z): (138)

Here �q�p , ��qp , "q� and ~tq�2p;nn in the notation (134) 
anbe written as follows:�BBA = (4xv � 5v2 � 4x+ 6v); "BB = 2�2u;�ABB = (4�yv�5v�v�4�y+6�v); "AB = 2�Au �u;�BAB = (4y�v � 5v�v � 4y + 6v);�u = (v � 1); �Au = (�v � 1); (139)

~tBB2;22 = 4v(v � 4); ~tAB2;22 = 4(v�v � 2�v � 2v);~tBB2;33 = (2v2 � 8v � 5);~tAB2;33 = (2v�v � 4v � 4�v � 5);~tBB2;44 = 2(3v2 � 8v � 1);~tAB2;44 = 2(3v�v � 4v � 4�v � 1);~tBB2;55 = (v2 � 4v � 9);~tAB2;55 = (v�v � 2v � 2�v � 9): (140)
KMFA expressions for 
oe�
ients l�p;n in Eqs. (33)are given by Eqs. (58), (132) and by Table 2, with tak-ing into a

ount identity (121). Solving Eqs. (117) forh�vm by standard methods of linear algebra and usingEqs. (33), (38), (41), we obtain the 
orrelative On-sager 
oe�
ients L
pq in (114). These 
oe�
ients are ex-pressed via the determinant D of matrix Arnm in (133)and the fun
tions Dss and �i with i equal to 
, l or rwhi
h are the following 
ombinations of minors Mmnof this determinant:D = Det jjArnmjj; Dss = D=M11;�i = Ni=M11;N
 = (�4M21 +M31 � 2M41 +M51);331



V. G. Vaks, A. Yu. Stroev, I. R. Pankratov, A. D. Zabolotskiy ÆÝÒÔ, òîì 146, âûï. 2 (8), 2014Nl = (�M12 + 2M13 � 2M14 +M15);Nr = [(4M22 �M32 + 2M42 �M52) �� 2(4M23 �M33 + 2M43 �M53) ++ 2(4M24 �M34 + 2M44 �M54)�� (4M25 �M35 + 2M45 �M55)℄ : (141)
Our numeri
al 
al
ulations have shown that quantitiesNl and N
 in (141) are identi
ally equal to ea
h other(through we did not prove it analyti
ally). This equal-ity leads also to the ful�lment of Onsager symmetryrelation (120): LAB = LBA. Taking it into a

ount,we 
an write the SSJA expressions for 
oe�
ients L
pq(114) in the form analogous to that for the NNJA inEqs. (131):L
AA = 2Dss �( ~mB0A;1)2+2 ~mB0A;1�u�
+�2u�l� ;L
AB = 2Dss � ~mB0A;1 ~mA0B;1 ++( ~mB0A;1�Au+~mB0A;1�u)�
+�Au �u�r� ;L
BB = z 2Dss �� �( ~mA0B;1)2 + 2 ~mA0B;1�Au �
 + (�Au )2�r� : (142)
Here �Au and �u are the same as in (139), ~mB0A;1 and~mA0B;1 are the same as in (134), and Dss, �
 and �r arethe same as in (141).The intrinsi
 di�usion 
oe�
ients Dp are relatedto the 
oe�
ients L
pq in (142) by the general rela-tions (115) and (116), with !p equal to !0p (68) and� given by Eq. (113). We note that the NNJA-KMFAresults (131) for L
pq 
orrespond to putting in the SSJA-KMFA expressions (142): �i = 0, Dss = Dnn.7.3. Onsager and di�usion 
oe�
ients in adilute binary alloyIn the dilute alloy limit 
! 0, frequen
ies !p tendto !p0 in (70), while parameters z, �AB�, �A�, �Au and�u in (125)�(129), a

ording to Eqs. (124) and (130),take the following values:z0 = !B0=!A0; (�AB�)0 = (�Au )0 = 1;(�A�)0 = eA�; �u0 = eu: (143)Here and below, the lower index �0� at ea
h quantityindi
ates its value at 
! 0.To relate our notation to that 
ommonly used for�ve-frequen
y model [1�9℄, we note that the jump rates(�frequen
ies�) wn of that model in our notation are

w0 = !A0; w1 = !A0eA�evB1 ;w2 = !B0evB1 ; w3 = !A0evB1 eu;w4 = !A0eu; (144)where evB1 is the same as in (71). At the same time,exponential fa
tors eu and eA� in (144) are dire
tly re-lated to the kineti
 and saddle-point intera
tions, uB1and �BA , and have a more 
lear physi
al meaning thanfrequen
ies wn. Equations (126)�(130) in
lude also fa
-tor eB� analogous to eA� whi
h des
ribes in�uen
e onthe Bi� vj jump probability of a solute atom B nearthe bond (ij). Therefore, to simplify formulas below,we use not frequen
ies wn but quantities xn and y1de�ned by the relationsx1 = eA�; x2 = !B0=!A0; x4 = eu;y1 = eB� = exp[�(2uB1 ��BB)℄ (145)with x2 equal to z0 in (143). In this notation, Mayerfun
tions fp� and fu and the low-
 values of fa
tors �uand �Au in Eqs. (130) take the following form:fA� = (x1 � 1); fB� = (y1 � 1);fu = (x4 � 1); �u = fu = (x4 � 1);�Au (
� 1) = (�
fu) = �
(x4 � 1): (146)Below we present the low-
 expansions for mean fre-quen
ies !p and Onsager 
oe�
ients Lpq up to the �rstorder in 
, and the zero-order terms in 
 for 
orrela-tive Onsager 
oe�
ients L
pq and 
orrelation fa
tors fpin Eqs. (114)�(116). The �u
tuative 
orre
tions men-tioned in the end of Se
. 5 make no 
ontribution to theseterms, hen
e we 
an use the KMFA expressions (131)and (142).Let us �rst 
onsider the mean frequen
y !p and de-�ne its enhan
ement fa
tor b!p by the usual relation!p(
) = !p0(1 + 
 b!p ): (147)Using Eqs. (68) for !0p and the PCA expressions (104)for �intB and �intv in a
tivity 
oe�
ients av and aB (69),we �nd b!A = 4fA� + 14fu + bvB ;b!B = 4fB� + 14fu + bvB + bBB: (148)Here fp� and fu are given in (146), while bvB and bBBare 
ontributions to b!p of the a
tivity 
oe�
ients, avand aB :bvB = �Xn=1 znfvBn = �12fvB1 � 6fvB2 � : : : ; (149)bBB = �Xn=1 znfBBn = �12fBB1 � 6fBB2 � : : : (150)332
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al theory of di�usion : : :Dis
ussing the low-
 expressions for 
orrelativeterms L
pq and 
orrelation fa
tors fp in (116), we �rst
onsider the more simple approximation NNJA. UsingEqs. (131)�(146), we obtain for the L
pq and fp at 
 = 0,to be denoted as L
0pq and fp0, the following expressions:L
0AA = 2(3x4 � 2x1)2=D0;L
0AB = 2(3x4 � 2x1)=D0;L
0BB = 2x2=D0; D0 = (2x1 + 2x2 + 7x4); (151)fA0 = 1� x2L
0AB ; fB0 = 1� L
0BB ; (152)where D0 is the value of the redu
ed denominator Dnnin (126) at 
 = 0.For the SSJA, expressions for Onsager 
orrelative
oe�
ients at 
 = 0 
an be obtained as 
 ! 0 lim-its of general SSJA equations (142) in whi
h values�
(
 = 0) = �0, �r(
 = 0) = �r0, and Dss(
 = 0) = D0ssare related to the so-
alled �va
an
y es
ape fun
tion�F = F (x4) used in the �ve-frequen
y modej (8) as fol-lows:�0 = 7(1� F ) = PN=PD; �r0 = �0D0=x4;D0ss = D0 � x4�0 = (2x1 + 2x2 + 7x0F ) (153)where polynomials PN = PN (x4) and PD = PD(x4)have the following form:PN (x) = A1x+A2x2 +A3x3 + 10x4;PD(x) = B0 +B1x+B2x2 +B3x3 + 2x4: (154)For the 
orrelative Onsager 
oe�
ients L
0pq . Eqs. (142)and (153) yield in the SSJA:L
0AA = 2 �(3x4 � 2x1)2 � 2(3x4 � 2x1)fu�0 ++ f2u�0D0=x4� =D0ss;L
0AB = 2(3x4 � 2x1 � fu�0)=D0ss;L
0BB = 2x2=D0ss; (155)where fu = (x4 � 1), while the SSJA expressions for
orrelation fa
tors fp in (116) at 
! 0 take the formfA0 = 1� 2x2(3x4 � 2x1 � fu�0)=D0ss;fB0 = 1� 2x2=D0ss: (156)As dis
ussed in [8℄, relations (153)�(156) are true notonly for the SSJA, but also for more a

urate approx-imations, su
h as that of Manning [3℄, but 
oe�
ientsAn and Bn in (154) for other approximations di�er

Table 4. Coe�
ients An and Bn in (154) for theSSJA [5℄ and for Manning's model [3℄Model A1 A2 A3 B0 B1 B2 B3SSJA [5℄ 1594.5 1031 190 855.5 930.5 328 45Manning [3℄ 1341 927 180.5 436 597 254 140.2from those for the SSJA. In Table 4 we present these
oe�
ients for the SSJA (�rst obtained by Bo
quet [5℄)and for the Manning model [3℄.Using Eqs. (114) and (147), we 
an also write thelow-
 expressions for Onsager 
oe�
ients in
luding allterms linear in 
:Tna20LAA = !A0 [1 + 
(b!A � 1� L
0AA)℄;Tna20LAB = !B0 
L
0AB;Tna20LBB = !B0 
 (1� L
0BB): (157)For the 
ase of a very low va
an
y 
on
entration under
onsideration (
v � 
B), our Lpq in Eqs. (157) withthe values of b!A and L
pq;0 given by Eqs. (148)�(155)
oin
ide with those found in the traditional theory [8℄.Finally, we make remarks on the di�eren
es be-tween our results and those of Nastar et al. [16�19℄mentioned in Se
. 1. First, basi
 equations given in[17℄ are 
umbersome and impli
it, thus it is di�
ultto use them. Se
ond, the �Bragg-Williams approxima-tion� employed in papers [16℄ and [18℄ 
orresponds torepla
ing the 
orrelation operator b̂pij in Eq. (28) bya 
onstant, that is, to negle
ting both the kineti
 in-tera
tions u�il and the saddle-point intera
tions ��lp;ijwhi
h are a
tually very important for solute di�usion,as both the traditional theories [1�9℄ and our resultsin [13, 14℄ show. Hen
e the reliability of this �Bragg-Williams approximation� is un
lear. Third, the expres-sion for LAA obtained by Nastar [17℄ 
orresponds tomissing the va
an
y-solute intera
tion term bvB [givenby Eq. (149)℄ in the frequen
y enhan
ement fa
tor b!Ain (157), whi
h also disagrees with the traditional the-ory [8℄. As dis
ussed in [13, 14, 21℄, the analogousmissing of va
an
y-solute intera
tion was made in the
al
ulations of tra
er self-di�usion enhan
ement fa
torbA� in [17℄ (as well as in all other 
al
ulations of this en-han
ement fa
tor [2, 4, 7℄). Let us also note that the ex-pressions for Onsager 
oe�
ients given by Eqs. (5)�(12)of paper [19℄ and derived using the NNJA and the pair
luster variation method (pair CVM) are very similar to333
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oe�
ients should 
oin
ide withea
h other, as the thermodynami
 results of PCA (usedin KMFA) 
oin
ide with those of the pair CVM [20℄. Atthe same time, the dire
t 
omparison of our expli
it ex-pressions (125)�(129) with impli
it equations (5)�(12)in [19℄ is not simple and needs e�orts.8. EFFECT OF NON-PAIRWISE VACANCYCORRELATIONS ON DIFFUSIONThe e�e
tive hamiltonian ĥeff (11) des
ribes
hanges in the distribution of va
an
ies with respe
tto solute atoms (these 
hanges are 
ommonly 
alled�va
an
y 
orrelations�) due to the presen
e of asteady-state di�usion �uxes in an alloy. The �rstterm in (11) des
ribes pairwise 
orrelations, whilethe se
ond and further terms in (11) des
ribe thenon-pairwise 
orrelations whi
h 
an be signi�
ant for a
on
entrated alloy. In this se
tion, we dis
uss in�uen
eof these non-pairwise 
orrelations on di�usion. Forsimpli
ity, we 
onsider the model for whi
h triple �eldshvBBijk in the se
ond term of Eq. (11) a
t only betweennearest neighbors, that is, only between sites whi
hform equilateral triangles in the FCC latti
e. Earlierin�uen
e of su
h triple �elds on di�usion was dis
ussedin Ref. [18℄ using the �Bragg-Wiiliams approximation�mentioned above. However, negle
ting kineti
 andsaddle-point intera
tions in this oversimpli�ed approx-imation does not allow to 
ompare our mi
ros
opi
results (formulated in terms of these intera
tions) withthose presented in [18℄.Note that the simple model used taking into a
-
ount triple e�e
tive intera
tions only within trian-gles of nearest-neighbor sites 
an not be 
onsideredas quantitative and realisti
. It is evident, in parti
-ular, that the number of triple e�e
tive intera
tionswithin triangles of next-nearest-neighbor sites of thetype (0,1,3), (1,3,4), et
 in Fig. 1 (having similar inter-site distan
es) per alloy atom mu
h ex
eeds that for thrnearest-neighbor sites, and their in�uen
e on di�usion
an be signi�
antly stronger. However, in this se
tionwe aim to study mainly methodi
al problems. First,we illustrate the methods of treatment of non-pairwiseva
an
y-solute 
orrelations in the master equation ap-proa
h. Se
ond, the results of this se
tion enable usto estimate the s
ale of manifestations of these non-pairwise 
orrelations in di�sion for real alloys.Considering general expressions (115) for di�usion
oe�
ients, we note that both the mean frequen
y !p

de�ned by Eqs. (27) and (29) and the thermodynami
fa
tor � de�ned by Eq. (112) do not depend on thee�e
tive hamiltonian ĥeff whi
h des
ribes va
an
y 
or-relations. Hen
e various treatments of ĥeff a�e
t only
orrelation fa
tors fp determined by the 
orrelative 
o-e�
ients L
pq in (116), and below we 
al
ulate onlythese L
pq.Using general methods of derivation of equationsfor time derivatives d
�=dt and �uxes Jp0!1 des
ribedin Se
s. 2, 3 and Ref. [20℄, in
luding Eq. (22) in [20℄, we
an generalize Eq. (26) for Jp0!1 to the 
ase of presen
eof triple �elds in (11) as follows:Jp0!1 == ��Dŵp01(Æ�p+ĥpv01�ĥpv10�ĥp1+ĥp0+ĥv1�ĥv0)E: (158)At p = h, operators ĥpvis and ĥpi in this equation arezero, just as operators hp�ij in Eq. (24), while at p = �these operators 
orrespond to the appropriate varia-tional derivatives of the e�e
tive hamiltonian ĥeff (11):ĥ�vis = �2ĥeff�n�i �ni = h�vis +Xj;� h�v�isj n�j ;ĥ�i = �ĥeff�n�i =Xj;� h��ij n�j + 12 Xj;�;k;� h���ijk n�j n�k; (159)
while operator ĥvi 
orresponds to repla
ing index � inthe last equation by index v.Relations of symmetry for �elds h�:::�i:::k whi
h gener-alize Eqs. (25) follow from the antisymmetry of �uxesJp0!1 (158) with respe
t to re�e
tions z ! (�z) andÆ�p ! (�Æ�p):hp�ij = �hp�ij ; hpq�ijk = �hpq�~i~j~k ; (160)where sites ~i, ~j and ~k 
orrespond to a mirror re�e
tionof sites i, j and k with respe
t to any 
rystal plane xynormal to the dire
tion z of �uxes.Equations of evolution for two-site and three-siteaverages generalizing Eq. (24) for d
pi =dt have the fol-lowing form:334
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al theory of di�usion : : :ddt hnpi nqj i =Xs(i) Dŵpisnqj(Æ�pvsi +ĥpvis�ĥpvsi �ĥps++ ĥpi + ĥvs � ĥvi )E+Xs(j) Dŵqjsnpi (Æ�qvsj ++ ĥqvjs � ĥqvsj � ĥqs + ĥqj + ĥvs � ĥvj )E;ddt hnpi nqjnrki ==Xs(i) DŵpisnqjnrkÆ�pvsi + ĥpvis � ĥpvsi � ĥps ++ĥpi+ĥvs�ĥvi )E+Xs(j) Dŵqjsnpi nrk(Æ�qvsj+ĥqvjs�� ĥqvsj � ĥqs + ĥqj + ĥvs � ĥvj )E++Xs(k)Dŵrksnpi nqj(Æ�rvsk ++ ĥrvks � ĥrvsk � ĥrs + ĥrk + ĥvs � ĥvk)E:
(161)

For the steady-state di�usion, the right-hand sideof Eqs. (161) should vanish. It is 
onvenient to writethese stationarity 
onditions using the antisymmetri

ombinations of o

upation operators:ddt hnpi nqj � npjnqi i = 0;ddt hnpi nqjnrk � np~inq~jnr~ki = 0; (162)and to 
onsider in these equations sites (i; j; k) == (0; 1; 2) (in the notation of Fig. 1). Then equa-tions for �uxes and �elds whi
h generalize relations (26)and (37) to the 
ase of presen
e of triple �elds h���ijk takethe following form:TJp0!1 = wp(�Æ�p+2hvp01)+Xj;� m�jp;01(hvp�01j � hpv�01j �� 2hp�0j + 2hv�0j ) + Xj�k� t�j;�kp;01 (�hp��0jk + hv��0jk ); (163)Xs6=1 24mq1p;0s(Æ�p�2hvp0s) ++ Xj;� tq1;�jp;0s (hpv�0sj �hvp�0sj �� hp�sj +hp�0j+hv�sj �hv�0j ) ++ 12 Xj�k� rq1;�j;�kp;0s (�hp��sjk ++ hp��0jk+hv��sjk�hv��0jk )35�

�Xs6=124mp1q;0s(Æ�q�2hvq0s) ++Xj;� tp1;�jq;0s (hqv�0sj �hvq�0sj �hq�sj++ hq�0j + hv�sj � hv�0j ) + 12 ++Xj�k� rp1;�j;�kq;0s (�hq��sjk+hq��0jk+hv��sjk�� hv��0jk )35 = 0;Xs6=1;224tq1;r2p;0s (Æ�p�2hvp0s) ++ Xj;� rq1;r2;�jp;0s (hpv�0sj �hvp�0sj �� hp�sj + hp�0j + hv�sj � hv�0j ) ++ 12 Xj�k� sq1;r2;�j;�kp;0s (�hp��sjk ++ hp��0jk + hv��sjk � hv��0jk )35�� Xs6=1;924tp1;r9q;0s (Æ�q � 2hvq0s) ++Xj;� rp1;r9;�jq;0s (hqv�0sj � hvq�0sj � hq�sj ++ hq�0j + hv�sj � hv�0j ) ++ 12 Xj�k� sp1;r9;�j;�kq;0s �� (�hq��sjk+hq��0jk+hv��sjk�hv��0jk )35�� Xs6=1;924tp1;q9r;0s (Æ�r � 2hvr0s) ++Xj;� rp1;q9;�jr;0s (hrv�0sj � hvr�0sj �� hr�sj+hr�0j+hv�sj �hv�0j ) ++ 12 Xj�k� sp1;q9;�j;�kr;0s (�hr��sjk ++ hr��0jk + hv��sjk � hv��0jk )35 = 0:

(164)

In Eqs. (164), site �9� is the nearest neighbor of sites335



V. G. Vaks, A. Yu. Stroev, I. R. Pankratov, A. D. Zabolotskiy ÆÝÒÔ, òîì 146, âûï. 2 (8), 20140, 1 and 2, as shown in Fig. 1, and quantities rqj;rk;tlp;isand sqj;rk;tl;ump;is are de�ned analogously to tqj;rkp;is in (31):rqj;rk;tlp;is = hŵpisnqjnrkntli;sqj;rk;tl;ump;is = hŵpisnqjnrkntlnumi: (165)For simpli
ity, below we use the NNJA supposingboth pairwise and triple e�e
tive intera
tions to a
tonly between nearest-neighbors. Then symmetry rela-tions (160) imply that for the given sets of spe
ies (p; �)or (p; q; �), only one pairwise �eld hp�01 or one triple �eldhpq�012 is independent and nonzero, while all other �elds
an be expressed via these hp�01 or hpq�012 . The statisti
alaverages in Eqs. (165) have the form�q1;q2:::qnp;is;i1i2:::in = hŵp01nq1i1 nq2i2 : : : nqnin i (166)analogous to �qpi and �q�p;ij in (52), and they will be 
al-
ulated using the KMFA, just as those in Se
. 4.2. Ityields the relations similar to (74):�q1;:::qnp;�1:::�n = 
p
q1 : : : 
qn!0p�q1p�1 : : : �qnp�n ; (167)where �m is the symmetry of site im, being � or u, andthe expressions for �qp� are given by Eqs. (73). Notethat averages in Eqs. (164) in
lude operators ŵp0s de-s
ribing a p� v jump along bond (0s) rather than thatalong bond (0,1), as in Eq. (166). Hen
e these averagesshould be transformed into those given by Eq. (166),using rotations of 
rystal latti
e dis
ussed in Se
. 4.1.For the 
ase of a binary alloy AB 
onsidered be-low, Eqs. (164) in
lude only three di�erent �elds: thepairwise one, hvB01 , and two triple ones, hvBB012 andhBvB012 = hBBv012 . For brevity, these �elds will be denotedas hvB01 = h1; hvBB012 = h2; hBvB012 = h3; (168)and equations for these hn 
an be obtained if we putin the �rst and the se
ond Eqs. (164): (p; q) = (B;A),(p; q; r) = (B;A;A), and (p; q; r) = (A;B;A), respe
-tively. To 
al
ulate Onsager 
oe�
ients, it is 
onve-nient to write these equations in the following form:3Xl=1 aklhl = bAk Æ�A + bBk zÆ�B ; (169)where z = !0B=!0A is the same as in (124). Coe�
ientsakl in (169) are 
al
ulated using Eqs. (164), and these
al
ulations are rather tedious. The resulting 
oe�-
ient a11 
oin
ides with Dnn in Eq. (126), while therest akl and bpk in (169) are presented in Appendix B.

The NNJA-KMFA expressions for atomi
�uxes (163) in the notation (134) take the followingform:JB0!1 = ��!0B
nÆ�B + 2
A(3�v � 2�y)h1 ++ 4
A[(2�y � 3�v) + 
A�v(2�v � �y)℄h2 ++ 4
A[(3�v � 2�y) + 
A(�y2 � �y�v � �v2)℄h3o;JA0!1 = ��!0A
A [Æ�A + 2
(2x� 3v)h1 ++ 4
2v(2v � x)h2 + 4
2(x2 � xv � v2)h3� : (170)Ea
h solution hn of linear equations (169) is thesum of two terms proportional to Æ�A and to zÆ�B :hn = hAn Æ�A + hBn zÆ�B : (171)Substituting these solutions into Eqs. (170) and 
om-paring the resulting relations with Eqs. (38), (41), and(114), we 
an express the 
orrelative Onsager 
oe�-
ients L
pq in (114) via �elds hAn and hBn in (171) asfollows:L
AA = 2(3v � 2x)hA1 + 4
v(x� 2v)hA2 �� 4
(x2 � xv � v2)hA3 ;L
AB = 2(2x� 3v)hB1 � 4
v(x� 2v)hB2 ++ 4
(x2 � xv � v2)hB3 ;L
BA = n2(3�v � 2�y)hA1 � 4[(3�v � 2�y) ++ 
A(�y�v � 2�v2)℄hA2 ++ 4[(3�v � 2�y) + 
A(�y2 � �y�v � �v2)℄hA3 o;L
BB = zn2(2�y � 3�v)hB1 + 4[(3�v � 2�y) ++ 
A(�y�v � 2�v2)℄hB2 �� 4[(3�v � 2�y) + 
A(�y2 � �y�v � �v2)℄hB3 o;
(172)

where ~mB0A;1 = (2x � 3v) is the same as in (134). Wenote that the Onsager symmetry relation (120) heretakes the form:
A[(2x�3v)hB1 �2
v(x�2v)hB2 +2
(x2�xv�v2)hB3 ℄ == 
A(3�v � 2�y)hA1 � 2
y(hA2 � hA3 ): (173)In the absen
e of triple �elds, this relation wasproved in Se
. 6.2 for any 
on
entration 
. When thetriple �elds are present, proof of Eq. (173) at any 
is 
umbersome, but we have proved it for the 
ase oflow 
 dis
ussed below. The presen
e of this symmetryrelation 
an be viewed as the eviden
e of 
orre
tnessof results of tedious 
al
ulations mentioned above andgiven by Eqs. (185)�(188).336
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al theory of di�usion : : :Linear equations (169) for �elds hpn with the 
oe�-
ients given by Eqs. (184)�(186) are simply solved usingstandard 
omputer 
odes, while Eqs. (172) expresses
oe�
ients L
pq in Eqs. (116) and hen
e 
orrelation fa
-tors fp in Eqs. (115) via these hpn. Thus, Eqs. (169)and (172) enable to 
al
ulate the e�e
t of triple va-
an
y 
orrelations on di�usion 
oe�
ients Dp at any
on
entration 
.Below we dis
uss the 
ase of dilute alloys whenEqs. (169) are greatly simpli�ed. For this 
ase, ea
h�eld hp1 in (171) 
an be 
onveniently written as a sumof the zero-order term hp10 and the linear in 
 term 
hp11where hp10 
orresponds to the solution of Eqs. (169) at
 = 0: hp1 = hp10 + 
hp11;hA10 = 3x4 � 2x1D0 ; hB10 = � 1D0 ; (174)and xn and D0 are the same as in (145) and (152).Then two systems of equations for �elds hp11, hp2 and hp3with p = A and p = B 
an be 
on
isely written asD0hp11 +A12hp2 +A13hp3 = B1p �B11hp10;D0hp11 +A22hp2 +A23hp3 = B2p �B21hp10;D0hp11 +A32hp2 +A33hp3 = B3p �B31hp10; (175)where 
oe�
ients Amn, Bmp and Bm1 are given in Ap-pendix C.Let us write the 
orrelative 
oe�
ients L
pq in (172)and the 
orrelation fa
tors fp in (116) at low 
 as fol-lows: L
pq = L
0pq + 
L
1pq; fp = fp0(1 + b
p); (176)where L
0pq and fp0 are the same as in (152), and b
p isthe 
orrelation enhan
ement fa
tor. Then Eqs. (116)show that these enhan
ement fa
tors are expressed viaL
0pq and L
1pq in (176) as follows:b
A = 1fA0 �x2L
0AB(1� l0z)� L
0AA � x2L
1AB� ;b
B = 1fB0 �L
0BB � L
0AB � L
1BB� ; (177)where l0z is the logarithmi
 derivative of the frequen
yratio z = !0B=!0A with respe
t to 
 at 
 = 0 whi
h,a

ording to Eqs. (124), 
an be written asl0z = (d ln z=d
)
=0 = 4y1 � 4x1 + bBB: (178)To �nd terms L
1pq in (176), we 
an use the followingevident relations for the derivatives  0 = (d =d
)
=0 ofvarious fun
tions  in (134):

x0 = �x1fA�; �x0 = �fA�; y0 = �y1fB�;�y0 = �fB�; v0 = �x4fu; �v0 = �fu;fA� = x1 � 1; fB� = y1 � 1; fu = x4 � 1: (179)Considering the linear in 
 terms in Eqs. (172), we�nd that terms L
1pq whi
h enter Eqs. (177) are ex-pressed via �elds hB11, hB2 , and hB3 in (175) as follows:L
1AB = 2[2x1fA��3x4fu)=D0+(2x1�3x4)hB11++ 2x4(2x4 � x1)hB2 + 2(x21 � x1x4 � x24)hB3 )℄;L
1BB = 2x2[(l0z + 2fB� � 3fu)=D0 � hB11 ++ 2y1(hB2 � hB3 )℄: (180)We note that taking into a

ount only pairwise va
an
y
orrelations (made in Se
s. 3�7) 
orresponds to puttingin Eqs. (175) hp2 = hp3 = 0, while the �eld hp11 for this
ase is hp11;PVC = (B1p �B11hp10)=D0: (181)Appli
ations of results of this se
tion for estimates ofin�uen
e of non-pairwise va
an
y-solute 
orrelations ondi�usion in real alloys.9. CONCLUSIONSWe summarize the main results of this work. Wedevelop the statisti
al theory of steady-state di�usionin 
on
entrated substitution alloys basing on the mas-ter equation approa
h. To be de�nite, we 
onsider thenearesr-neighbor pairwise intera
tion model of FCCalloys as an example. We expli
itly write all basi
equations of the theory with fully taking into a

ountthe va
an
y-solute intera
tions. General expressionsfor Onsager 
oe�
ients in terms of mi
ros
opi
 in-teratomi
 intera
tions and some statisti
al averagesare presented. We dis
uss methods of 
al
ulations ofthese averages using two statisti
al approximations:the kineti
 mean-�eld approximation (KMFA) whi
hnegle
ts statisti
al �u
tuations in these averages, while
hemi
al potentials are 
al
ulated using the more a
-
urate, pair-
luster approximation (PCA) [24�26℄, andthe full PCA whi
h also takes into a

ount these sta-tisti
al �u
tuations. To des
ribe va
an
y-solute 
orre-lations, we use the nearest-neighbor-jump approxima-tion whi
h takes into a

ount these 
orrelations onlyfor nearest neighbors, and the se
ond-shell-jump ap-proximation whi
h takes them into a

ount up to thefourth neighbors in the FCC latti
e. We also dis
usse�e
ts of non-pairwise va
an
y 
orrelations using thetriple va
an
y-solute 
orrelation model. For ea
h ofthese approximations and methods, we derive expres-sions for Onsager 
oe�
ients at any 
omposition of an9 ÆÝÒÔ, âûï. 2 (8) 337
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it expres-sions for di�usion 
oe�
ients. Appli
ations of methodsdeveloped to statisti
al 
al
ulations of di�usion 
oef-�
ients in real alloys and to estimates of interatomi
intera
tions important for di�usion from experimentaldata are des
ribed in other papers [13, 14℄.We are grateful to I. A. Zhuravlev for the great helpin this work. The work was supported by the RussianFund of Basi
 Resear
h (grant No. 12-02-00093), andby the fund for support of leading s
ienti�
 s
hools ofRussia (grants Nos. NS-215.2012.2 and NS-932.2014.2).APPENDIX AFlu
tuative term !pf in Eq. (90)To illustrate the form of expansions of 
orrelativeterms !pf , �qp�;f and �q�p;ij;f in powers of 
orrelators Xiin Eqs. (90) and (94), below we present the �rst termsof this expansion for !pf . For terms �qp�;f and �q�p;ij;f ,the analogous �shortened� expansions are presented inRef. [13℄. To make formulas not too lengthy and keep-ing in mind the estimate jXij . 0:02 obtained in Se
. 5,we in
lude in this shortened expression !shpf , in addi-tion to all terms linear and quadrati
 in Xi, only thoseterms with the higher powers ofXi whi
h at jXij = 0:02ex
eed 10�3. For brevity, ea
h term Xn11 Xn22 : : : is de-noted as X with n1 lower indi
es 1, n2 lower indi
es 2et
, for exampleX1X2X5 = X1;2;5; X2X26 = X2;6;6: (182)Then, denoting this shortened version of the �u
tuativeterm by the upper index �sh�, we have!shpf = (X1+8X2+14X3+2X4+16X5+22X6) ++ (2X1;4 + 16X1;5 + 22X1;6 + 12X2;2 + 56X2;3 ++ 8X2;4 + 96X2;5 + 176X2;6 + 49X3;3 + 28X3;4 ++ 208X3;5 + 264X3;6 +X4;4 + 16X4;5 + 44X4;6 ++ 92X5;5 + 304X5;6 + 183X6;6) + (304X1;5;6 ++ 183X1;6;6 + 264X2;2;6 + 624X2;3;5 + 1056X2;3;6 ++ 176X2;4;6 + 368X2;5;5 + 1824X2;5;6 + 1464X2;6;6 ++ 672X3;3;5 + 772X3;3;6 + 208X3;4;5 + 528X3;4;6 ++ 1104X3;5;5+3344X3;5;6+1830X3;6;6+304X4;5;6 ++ 366X4;6;6+224X5;5;5+1488X5;5;6+2120X5;5;6 ++ 720X6;6;6) + (10032X2;3;5;6 + 7320X2;3;6;6 ++ 12720X2;5;6;6+ 8880X3;3;5;6 + 14880X3;5;5;6 ++ 19080X3;5;6;6 + 8528X5;5;6;6 + 6688X5;6;6;6): (183)At Xi = 0:02, Eq. (183) yields !shpf = 2:081, whilethe total !pf in (90) is 2.064. Similarly, at Xi = �0:02

we have !shpf = �0:775, !pf = �0:771. Therefore, theshortened version (183) seems to des
ribe the total !pfin (90) within about one per
ent. For terms �qp�;f and�q�p;ij;f . similar results are presented in [13℄APPENDIX BCoe�
ients akl and bpk in Eqs. (169)Coe�
ients akl in Eqs. (169) are some polynomialsin the solute site fra
tion 
B = 
:akl = 2Xm=0 a(m)kl 
m: (184)In the notation (134), the nonzero a(m)kl in (184) area(0)21 = [2z�v(2�v � �y) + x(�x+ �v) + v(2�x+ 5�v)℄ ;a(1)21 = [z�v(8y�v � 3y�y + 8v�y � 7v�v) ++ x2(2�x+3�v)�2xv(6�x+5�v)+v2(10�x+�v)� ;a(0)31 = �2z(�v2��y2+�v�y)+x(3�v��x)+v(2�x+5�v)� ;a(1)31 == nz �y�y(3�v�2�y)+v�y(6�y�4�v)+�v2(4y�v)�++ x2(9�v�2�x)+6xv(�x�5�v)+v2(13�v�2�x)o;a(1)12 = 6zy(�y � 2�v)� 6xv � 10v2;a(2)12 = v �z(6y�y� 16v�y � 16y�v + 14v�v) �� 6x2 + 32xv � 14v2� ;a(1)22 = zy�v(3�y�8�v)�x�xv�5xv�v�4�xv2�6v2�v;a(2)22 == [zv�v(4y�y�18y�v�18v�y+19v�v)+v(28x�xv �� 4x2�x� 24�xv2 � 6x2�v + 32xv�v � 4v2�v)� ;a(1)32 = zy(2�y2�3�y�v�4�v2)�2xv�v��xv2�4v2�v;a(2)32 = �zv(4y�y2�16�y2v�6y�y�v+8v�y�v�16y�v2 ++ 4v�v2) + v(4x2�x� 14x�xv � 16x2�v ++ 62xv�v + 2�xv2 � 34v2�v)� ;a(1)13 = �6zy(�y� 2�v) + 4x2 + 2xv + 10v2;a(2)13 = z(6y�yv�4y2�y+8v2�y+12y2�v�8yv�v �� 2v2�v) + 4x3 � 18x2v + 2v3;a(1)23 = zy�v(8�v�3�y)+2x2�v�2xv�v+4v2�v+v2�x;a(2)23 = �z�v(6y�yv � 4y2�y + 16y2�v + 16�yv2 ��8yv�v�4v2�v)+4x3�x�12x2�xv+2x�xv2+4x3�v�� 12x2v�v + 2xv2�v + 14�xv3 � 2v3�v� ;338
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al theory of di�usion : : :a(1)33 = �zy(3�y�v � 2�y2 + 4�v2) + 6x2�v ++ 2x�xv + 4xv�v + 5v2�x+ 10v2�v� ;a(2)33 = �z(4y2�y�v + 4y�y2v � 4y2�y2 + 8y2�v2 �� 6y�yv�v + 8�y2v2 � 8yv�v2 � 8�yv2�v + 2v2�v2)�� 4x3�x+ 4x2�xv + 12x3�v + 6x�xv2 � 40x2v�v �� 10�xv3 � 22xv2�v + 10v3�v� ; (185)while terms bpk in the right-hand side of Eq. (169) arebA1 = (3v � 2x); bA2 = [v(2�x+ �v)� x(�x + �v)℄;bA3 = (x�x � 3x�v + 3v�v); bB1 = (2�y � 3�v);bB2 = �v(�y � 2�v); bB3 = (�y2 � �y�v � �v2): (186)APPENDIX CCoe�
ients Amn, Bnp, and Bm1 in Eqs. (175)Coe�
ients Amn, Bnp, and Bm1 in Eqs. (175) areexpressed via xn and y1 in (145) and bBB in (150) asfollows:A12 = �(6x2y1 + 6x1x4 + 10x24);A13 = (6x2y1 + 4x21 + 2x1x4 + 10x24);A22 = �(5x2y1 + 6x1x4 + 10x24);A23 = (5x2y1 + 2x21 � 2x1x4 + 5x24);A32 = �(5x2y1 + 2x1x4 + 5x24);A33 = (5x2y1 + 6x21 + 6x1x4 + 15x24);B1A = (2x21 � 2x1 � 3x24 + 3x4);B2A = (3x21 � x1x4 � 4x24) + (6x4 � 4x1);B3A = (x21 + 3x1x4 � 6x24) + (6x4 � 4x1);B1B = (3x4 � 2y1 � 1);B2B = B3B = (3x4 � y1 � 2);
(187)

B11 = D0nn = x2(18y1 � 8x1 � 5x4 + 2bBB) ++ 4(x21 � 6x1x4 + x24) +D0;B21 = x2(15y1 � 8x1 � 5x4 + 2bBB) ++ (2x21 � 25x1x4 � x24) + 2D0;B31 = x2(15y1 � 8x1 � 5x4 + 2bBB) ++ (6x21 � 29x1x4 � x24) + 2D0; (188)where D0nn is (�Dnn=�
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