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The earlier-suggested master equation approach is used to develop the statistical theory of steady-state diffusion
in concentrated substitution alloys considering FCC alloys with the nearest-neighbor pairwise interactions as an
example. General expressions for the Onsager coefficients in terms of microscopic interatomic interactions and
some statistical averages are presented. We discuss methods of calculations of these averages using various
statistical approximations and various approximations for description of vacancy correlations, with the full tak-

ing into account the vacancy-solute interactions.

Our simplest statistical approximation, called the “kinetic

mean-field approximation” (KMFA), corresponds to using the mean-field approximation for statistical averages
and the pair-cluster approximation (PCA) for calculations of thermodynamic parameters; for dilute alloys, the
KMFA is exact. To describe vacancy correlation effects at any concentrations, we develop both the nearest-
neighbor-jump approximation and the second-shell-jump approximation. We also describe methods to take into
account fluctuations in statistical averages using the PCA, and to describe non-pairwise vacancy-solute correla-
tions using the triple vacancy-solute correlation model. For each of approximations and methods developed, we
derive expressions for the Onsager coefficients at any composition of an alloy. For binary alloys, we also present
expressions for the diffusion coefficients. The results obtained can provide a basis for microscopic calculations
of diffusion coefficients at any composition of an alloy.
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1. INTRODUCTION

The existing microscopic theories of diffusion in al-
loys based on the random walk theory and the “vacan-
cy-solute association-dissociation” models (to be called
“traditional” theories) have been developed only for di-
lute alloys [1-9]. For the concentrated alloys, diffusion
is usually described using various phenomenological ap-
proaches [10-12], and some authors believe that “the
nature of concentration dependence” of diffusion coef-
ficients “has never been fully explained and there does
still not exist any adequate theories for describing such
a dependence” [11]. Even for a dilute binary alloy AB
with a low solute fraction cg < 1, calculations of lin-
ear in cp terms in diffusion coefficients (“enhancement
factors”) for both chemical and tracer solute diffusion
seem to be not performed, while existing calculations
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of tracer solvent enhancement factors (which are used,
in particular, to estimate the microscopic parameters
important for diffusion in real alloys [8, 9]) contain sig-
nificant errors discussed in Ref. [13].

The recently-suggested master equation approach
[14-21] provides opportunities for fully microscopic
treatments of diffusion at any composition of an alloy.
This approach enables to explicitly express the Onsager
and diffusion coefficients via microscopic interatomic
interactions and some statistical averages. These in-
teractions can be calculated using ab initio methods,
while statistical averages can be evaluated using well-
elaborated methods of statistical physics. As the level
of accuracy and reliability of both ab initio calcula-
tions [22, 23] and statistical methods [24-28] is steadily
increasing, the master equation approach seems to be
prospective for developments of non-empirical and pre-
dictive theories of diffusion in concentrated alloys.

At the same time, previous applications of the mas-
ter equation approach to diffusion theory made by Nas-
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tar et al. [16-19] (and called by these authors “the
self-consistent mean-field theory”) include a number of
shortcomings. As discussed below in Sec. 7.3, many
equations used in [16-19] are cumbersome, implicit,
employ unreliable approximations, and include errors,
in particular, those mentioned in [21]. It hinders the
further development of the theory.

In this work we present the formulation of the mas-
ter equation approach to diffusion theory free from
shortcomings mentioned. We aim to develop the sta-
tistical theory which can describe the steady-state dif-
fusion in substitution alloys of any composition as fully
and consistently as the canonical Gibbs theory de-
scribes properties of equilibrium systems. Our basic
equations are simple and explicit, they can be solved
using the standard methods of statistical physics, and
their possible generalizations (for example, to the case
of not-nearest or non-pairwise interactions) are evident.

To be definite, we illustrate our approach by consid-
eration of FCC alloys with the nearest-neighbor pair-
wise interactions. For a binary alloy, such a model
is equivalent to the well-known “five-frequency model”
[1-9], but we also consider the multi-component alloys
and take into account the solute-solute interactions not
considered in the standard five-frequency model.

The important general feature of our approach is
the proper description of effects of vacancy-solute in-
teraction (or “vacancy-solute binding energy” [1-9]) re-
lated to the thermodynamic activity of vacancies. As
discussed in Refs. [13,21] and in Sec. 7.3, this contribu-
tion was usually missed in the previous calculations of
diffusion coefficients, in particular, in all calculations of
the tracer self-diffusion enhancement factor b4+. This
led to spreading of a pessimistic opinion that the “dif-
fusion experiments by themselves are not sufficient to
determine this binding energy” [9]. We show that this
opinion is wrong, and in Ref. [13] we estimate this bind-
ing energy for several alloys for which necessary exper-
imental data are available.

The paper is organized as follows. In Sec. 2, we
present main equations of the master equation ap-
proach needed for what follows. In Sec. 3, these equa-
tions are used to derive general expressions for Onsager
coefficients describing steady-state diffusion in a substi-
tution alloy. In Sec. 4, we discuss both the exact rela-
tions and the methods of approximate calculations of
Onsager coefficients in alloys of any composition. Here
we also describe the kinetic mean-field approximation
(KMFA) in calculations of statistical averages, as well
as the nearest-neighbor-jump approximation (NNJA)
and the second-shell jump approximation (SSJA) in de-
scription of vacancy correlation effects. In Sec. 5, we

discuss taking into account the fluctuative terms in sta-
tistical averages using the pair-cluster approximation
(PCA) described in Refs. [24-26]. In Sec. 6, we dis-
cuss the general microscopic expressions for diffusion
coefficients in a binary alloy and define the “correla-
tive Onsager coefficients” and correlation factors for a
concentrated alloy. In Sec. 7, we present explicit ex-
pressions for the Onsager and diffusion coefficients in
a binary alloy using the NNJA-KMFA and the SSJA-
KMFA. We also show that for the case of a dilute al-
loy, these expressions turn into those obtained in tra-
ditional theories [8]. In Sec. 8, we discuss the non-pair-
wise vacancy-solute correlation considering model when
such correlations act only between three nearest neigh-
bors in the FCC lattice. Our main results are summa-
rized in Sec. 9.

2. GENERAL EQUATIONS OF DIFFUSIONAL
KINETICS IN A SUBSTITUTION ALLOY

General equations of the master equation approach
for the diffusional kinetics of alloys and their applica-
tions to studies of diffusion in interstitial alloys have
been discussed earlier [15, 20]. In this section, we
present the basic relations from Ref. [20] needed for
what follows. We consider a substitution alloy with
(m 4+ 1) components p' which include host atoms de-
noted by index h, solute atoms denoted by Greek letters
«, B, A, i, v, and vacancies denoted by v. Latin let-
ters p, ¢, r will denote all kinds of atoms, both A and
a, while Greek letters p, o, 7 will denote both solute
atoms « and vacancies v, thus the whole set p’ can be
written either as {p,v} or as {h,p} . Distributions of
atoms over lattice sites @ are described by the diffetpnt
occupation number sets {n } where the operator n? is
1 when the site ¢ is occupied by a p’-species component,
and 0 otherwisg At each i, these operators obey the
identity -, nj = 1. Hence, only m of them are inde-
pendent, and one of these operators can be expressed
via other ones. We eliminate operator n! correspond-
ing to a host atom writing it as

nh = (1—2712’). (1)

This is convenient to describe real alloys where the va-
cancy site fractions are very low: (n!) < (n$), while
Nastar et al. [16-19] eliminate operators n} for vacan-
cies.

We use the pairwise interaction model for which the
total cpnﬁgurational Hamiltonian H  can be expressed
via nj and couplings V7 as follows:
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After elimination of operators n? according to Eq. (1),

the Hamiltonian H? takes the form:

H' = FEy + Z ©on? + Hint. (3)

pi

Here constants Ey and ¢, yield some insignificant shifts
in the total energy and chemical potentials, while the
interaction Hamiltonian H;,; can be written as

Hipt = Z vozB OZTLB-}—Z’UO“) a v (4)

af,i>j a,ij

where terms vi’n{n? with vacancy-vacancy interac-
tions are neglected, and the conﬁguratlonal interaction

vy is expressed via couplings V;/ @ in (2) as follows:

ij

vif = (Ve —Veh — v Ly (5)

The fundamental master equation for the probabil-
ity P of finding an occupation number set {nf} = ¢
can be written as [15]:

d};ﬁg) Y W& nPn) —Wn,EPE)] =5P, (6)

n

where W (&, n) is the n — £ transition probability per
unit time. Adopting for probabilities W the conven-
tional “transition state” model [15, 22|, we express the
transfer matrix S in (6) in terms of the probability of an
elementary inter-site atomic exchange (“jump”) pi = vy
between neighboring sites ¢ and j per unit time:
Wi = nPnlwell exp[-B(ESE  — B ). (7)

J " pv pi,vj pi,vg

Here 3 = 1/T is the reciprocal temperature, ESP -

pi,vj
the saddle point energy, Eg}w is the initial (before the
jump) configurational energy of a jumping atom and a
vacancy, and the factor w;{f can be written as

SSP ) (8)

eff _
Wpy = Wpy €XP ( pivj

where wp, is the attempt frequency (which has the or-
der of magnitude of a mean frequency of vibrations of
a jumping atom in an alloy), and ASI;‘;ZI?)J is the en-
tropy difference between the saddle-point and initial
alloy states.

The saddle point energy E;flpvj (7) depends in

general on the atomic configuration near the ij bond.

We describe this dependence by the pairwise interac-
tion model and write this energy as [22]:

ESh =El+ Z Apln, AN,

D,j D,ij

= (5)‘1. ,—5h‘l. ) (9)

b, P,

Here E} is the saddle point energy for a p-species atom
in the pure host metal, the parameter Ap i (to be
called the “saddle-point interaction”) describes changes
in this energy due to a possible substitution of a host
atom 1n site [ by a A-species solute atom, while é‘p i
and 6 . are microscopic parameters which can be cal-
culated using either ab initio [22] or model [20] calcu-
lations.

The most general expression for the probability P
in (6) can be written as [15, 16]

P{nj} =
= exp Q+ Z Afnf — Hipt — iLeff ) (10)
eff = Z hpanpn” +
pcr ij
+ - Z hpc;c‘rnpnfrn;; ) (11)
pfr'r ijk

Here parameters A? (which are both time- and
space-dependent, in general) can be called “site chemi-
cal potentials” for an a-species atom or a vacancy with
respect to a host atom. These parameters are related
to the local chemical potentials pf and ul* as [26]:

X = (uf = ). (12)

Quantities 1§ in (11) (to be called “effective inter-
actions” [16-18]) describe renormalizations of configu-
rational interactions (5) in the course of kinetic pro-
cesses, and they can depend on both time and space,
too. Constant (2 is determined by normalization.
Multiplying Eq. (6) by operators nf and summing
over all configurations {n;\}, we obtain equations for
the mean occupations of site (“local site fractions”)

& = (nf):

defjdt = ¢ = (nfé), (13)

where ((...
e.g.

)) means averaging over distribution (10),

=Y n/P{nJ}. (14)
{n7}
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For simplicity, in Secs. 2-7 we consider the case of
presence in (11) of only pairwise effective interactions
hfj’ which is sufficient for dilute alloys; the non-pairwise
effective interactions will be considered in Sec. 8.Then
after some algebraic manipulations described in [20],
Eqs. (13) can be written similarly to Eqs. (28)—(34)

in [20]:
{exp [B (/\;l + A = hi -
i)
— Y5+ ny n}ﬂ — i 43'}} >
A
= Z<7hvbm {exp lﬂ ()\” Zhl n; >] -
i)

where we also correct some misprints made in [20] and
use the identity (¢! + >, ¢?) = (1 —cf). In Eqgs. (15),
symbol j(7) means summation over sites j being nearest
neighbors of site ¢, while the factor v,, can be called
“the activation frequency” for a p — v exchange in
a pure host metal which can be written similarly to

Eq. (7):

o
P =

Z <%“’sz

(15)

Yov = w;{jf exp(—BEP?). (16)

Here w¢f/ is the same as in (8), while EF? is the effec-
tive actlvatlon energy which is linearly expressed v1a
the saddle point energy E? in (9) and couplings Vpp

n (2) [20]. The operator l;fj in (15) (to be called “corre—
lation operator” [29]) describes influence of neighboring
solute atoms on the probability of a pi = vj jump. It
can be written as:

h, h

bp—nn]x

, (17)

X exp ZB (uij +uf)n ZBAPU
where AL

o.ij is the same as in Eq. (9), while param-
eters ufj (to be called “kinetic interactions” [29]) are
expressed via V5? in (2) as follows:

h).
We note that the kinetic interaction u§ in (17) and (18)
does not depend on the kind p of a jumping atom, un-

like the saddle-point interaction A% in (9).
Using operator identities

zl - (V V;? (18)

niny =nfdas, exp(eny)=1+nff(z),  (19)
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where 44 is the Kroneker symbol and f(z) is
we can explicitly write the operator bf; (1

(ez - 1)7
7) as follows:

l;p —nlnhH (1+ foA inf), (20)

al
PA,ij

= [exp(Buj + Bufy — BATG;) — 1. (21)

pzy)

3. GENERAL EQUATIONS FOR ONSAGER
COEFFICIENTS

3.1. Method of calculations of Onsager
coefficients in the master equation approach

The steady-state diffusion is commonly described
in terms of Onsager coefficients L,, which relate the
atomic flux density J, to the chemical potential gradi-
ents Vi, supposed to be small and constant. These
chemical potentials can be counted off the vacancy
chemical potential p, (which is zero for the usual con-
dition of diffusion when vacancies are in equilibrium
[8]), and in cubic crystals where diffusion is isotropic,
Onsager relations can be written as:

=3 LpgVi. (22)
q
In a nonuniform alloy, local values puf" = (uj — u¥) are
related to \? defined by Eqs. (12) as follows:
Pt = (¢ =AY, it ==Y (23)

Below we use the methods of calculations of On-
sager coefficients suggested by Nastar et al. [16-18].
The steady-state diffusion corresponds to a weakly non-
uniform alloy for which the local chemical potential dif-
ference oA%; = (\] — A7) in Eqs. (15) is small, while
the effective interactions hg (called also “fields” for
short) are proportional to these differences. Lineariz-
ing BEqs. (15) in §A%; and A7 and expressing d\f; via
opf; = (pf — i) according to (23), we obtain:

D

G

=/ Z <’7pv eXp(B)‘oz"'B)\v)ij
Jj(i)

= > = b +Z i — B2, ] > (24)
Al

Here and below, A\, or A, without a site index i or
j means the equilibrium value of this chemical poten-
tial, while averaging is made over the equilibrium dis-
tribution P described by Eq. (10) with A = X, and

Syl (1Y) ~
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he + = 0. In accordance with the definition (11), fields
hfj are nonzero only when index p corresponds to a so-
lute atom «, while h?j’\ = 0 (which is also illustrated by
Eqs. (15)). For the given j, each term in the right-hand
side of (24) has evidently the meaning of an atomic flux
J]’.’_H» through bond ¢j. It enables to write the linear re-
lation between these fluxes and quantities du?; and A}
in (24). It was also noted in [16, 17] that for the steady-
state diffusion, fields A7 are antisymmetric in indices
1 and j:

hoP = —hey, B =—hg. (25)

Denoting also site ¢ by index “0” and site j by index

“1", we can write the above-mentioned fluxes J§_; as
follows:
To—s1 = =B |Wp(Opp + 20" —
A A
= 2w (het —hiY =R+ R | (26)
Al

where dpy, is (1l — pb), A" is the nearest-neighbor ef-
fective interaction (being nonzero only at p # h), and
W, and v, are statistical averages:

Al

Yp

wp = (), = (Wfn}))- (27)
Here operator wh, is the product of the operator Bgl
given by Eq. (17) or (20) and the constant factor T',,

which enters into Eqgs. (24):

AP 7p
wy; = T'p by,

(28)
Iy = Yav eXP(ﬁAa + B/\v)v

I'n = Yo eXp(B)\v)~

Taking into account the presence of factor nfbn? in the
operator lA)f] (20) and the relations (65) below for A,
and A, in (28), we see that the average w, in (27) is
proportional to the site fraction ¢, of p-species atoms.
Thus this average can be written as
Wp = C¢p wWp, (29)
where w, has evidently the meaning of the mean fre-
quency of p = v jumps for a p-species atom. Therefore,
Eq. (29) provides the statistical definition of this fre-
quency, and below we mainly discuss frequencies w)
rather than averages w,,.
Fields A} in Eqs. (26) can be found from the sta-
tionarity condition for two-site averages [16, 17]:

(d/dt)(ngnf) =0, (30)
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Fig.1. Bond (0,1) in the FCC lattice and its nearest
neighbors, sites & and % discussed in the text

which yields the following equations for A7 [15-17]:

P, Al
toz,Ok

>

kA0£]

[mg{Ok (Opgo+2hor ) — Z (hS?—hZ? -

Al

O + 227

A A
— hg + het) +mpSy

a0,
— Dt
Al

where

(s = hih = B + h‘,:?)] =0, (31)

NN INON

5P
Wi 151

9 _ <wik n!

g3\ __
prik = t

Pk T

) ( )-

Following Nastar et al. [16], we consider diffusion
along z-axis of an FCC alloy when chemical potentials
py = pP(R;) depend only on z;. Let us denote po-
sitions of sites 0 and 1 in Eqgs. (26) as Ry = (0,0,0)
and Ry = (0,a0/2,a0/2) where ag is the FCC lattice
constant, while sites near the bond (0, 1) are numbered
as shown in Fig. 1. Quantity du, in Eqs. (26) is the
difference of chemical potentials between neighboring
atomic planes along z axis: dpu, = pp(ao/2) — pp(0).
The field hgl)‘ = hP*(Ryg;) does not change under rota-
tions of vector Ro; = (o, Yoi, z01) around z-axis, and
it changes sign under reflection with respect to (x,y)-
plane: A (201, yor, —201) = —h?(xor,yor, z01). For
brevity, we denote the set of crystallographically equiv-
alent sites with the same positive value zo;, > 0 as [,
the similar set with the negative value zo;, = —z,,

m (32)
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as [, and fields h**(R, +) or hP> (R,-) corresponding
to the set of sites [} or I, as h?* or (—h£}). Index
n which numbers dlfferent sets of equivalent sites, [;F
and [, is supposed to increase with the distance |Ro;|,
and for a given |Rg|, it increases with the zq; value.
Thus n = 1 corresponds to the nearest-neighbor field
hi = h(Ro1), and Egs. (26) can be concisely written
as:

P —
JO—}I -

=B |w, (0, + 2R77) +

Nmaz

+ZZI (R = mP)| . (33)

Here 7,4, is the maximum number of fields h?* taken
into account, and increase of 7,4, corresponds to a
more accurate description of vacancy correlation effects
[16]. Coefficients [} . in (33) are defined as follows:

l;z))\,n = Z <UA’gl (”[j —ny-

TR

—ny+t+ nu;)}‘). (34)

Here index A at brackets means that it should be put
at each term within brackets, e.g., (n;+ +...)* =
= (nl)‘Jr +...), and we use the following notation:

i =n(Ryx), ny e =n(Rpx +Ra). (35)

Using the same notation as in (33)—(35), we can
concisely write Eqs. (31) similarly to (33):

Mg n(Opta + 2057) =

A A A A A
+ Z Z tgz nm t;?; nm)h ) tg nmhma

A m=1

Mo n(Optp + 207") +

+ 100 haP] =0, (36)

p,nm'“m

where coefficients tg)‘nm and mJ ,, are defined as follows:
D —
tp,nm -

= Z > (g (g, =y = 1),
k=1 lj,;,l; (37)
4
my , = Z((wgk - ﬁ’op,k+4)n?z,1>-
k=1
Here n;+ and n;- are the same as in (34); operator
n% = nq(le) corresponds to the vector Ry 1 cho-
sen as “the first one” in the set of vectors R;+; n; +
defined similarly to n, .+ in Eq. (35) is n(R;+ + Ry);
and we took unto account symmetry or antisymme-
try of each average in (36) with respect to reflections
Rn,l — (_Rn,l)-

Equation (36) enables to express all fields hQ* as
linear combinations of dzi,. Then substitution of these
expressions into Eq. (33) yields the linear relation be-
tween the flux J§_,; and differences dp,:

‘]g—ﬂ = ZAPQ6MQ7 (38)

q

where parameters A, are some functions of coefficients
I3 md,, and t2) in Eq. (36). To relate parameters
Apg in (38) to the Onsager coefficients Ly, in (22), we
note that the flux density .J, along z axis can be found
as the ratio of the total flux through one site lying in
the plane (0,0,0) to the area S = a3 /2 corresponding to

this site, while the difference du, in Eq. (38) is simply

expressed via Vg = (0,0, dpg/dz):
Jp =4J5 1 /S _8‘]zp—>3/a(2)v (39)
pp = (dpp/dz)ao/2. (40)

Substituting these relations into (38) and comparing
the result with a z-component of Eq. (22), we find:

Lpg = —4Apq/a0 = —nagApy,, (41)

where n = 4 /a3 is the atomic density in the FCC lat-
tice.

3.2. Model of nearest-neighbor kinetic and
saddle-point interactions

Below we consider the model when both the saddle-
point and the kinetic interactions, AX.. and uj} in

Pij
Eqs. (9), (17), (20) and (21), are nonzero only for the
nearest-neighbors.

This corresponds to the standard
“five-frequency model” for FCC alloys [1-9]. For this

model, the operator l;gl and the mean frequency w,, in
Eqgs. (20), (28) and (29) take the form:

b, = nhnl (1 + an >
x H <1+Zn,"nf5> ,

wp = (Tp/cp)(b 01>

(42)

Here indices [ and m indicate sites differently posi-
tioned with respect to the bond (0,1), as shown in
Fig. 1. In this figure, sites with positions Ry for &
between 1 and 12 correspond to the nearest neighbors
of site “0” positioned at Ry = 0, while sites positioned
at Rg = Ry, = (R; + Ry,) correspond to the nearest
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neighbors of site “1” with Ry = (0,a0/2,a0/2). The
evident relations
7=0, 6=9, 8=12, 10=2, 11=4 (43)

are also taken into account.

In Eq. (42), index [ in the first product takes four
values: 2, 4, 9 or 12, which correspond to the nearest
neighbors of bond (0,1), i.e., of both site 0 and site
1. Index m in the second product corresponds to the
nearest neighbors of only one of these sites, site 0 or
site 1, and takes fourteen values: 3, 5, 6, 7, 8, 10, 11,
1,2,3,4,5,9 or 12. Quantity f), or fy in Eq. (42)
is the Mayer function which, according to Eq. (21),
corresponds to the sum of non-zero contributions of
the saddle-point interaction (9) and the kinetic inter-
action (18):

pa = exp[B(2uy — AD)] - 1,
fu = exp(Buy) — 1,

where uY is the nearest-neighbor kinetic interaction.

The vacancy correlation effects in concentrated al-
loys will be described using two approximations.

(i) The simplest “Lidiard-Le Claire” approximation
which supposes that a vacancy that leaves the first
neighbor shell of a solute atom does not return [8].
It corresponds to the nearest-neighbor effective inter-
action: hy, = 0p,1h1 [17] and will be called the “nea-
rest-neighbor-jump approximation” (NNJA). For the
NNJA, Egs. (33)-(36) include only terms with n = 1
and m =1, and Eqgs. (34) and (37) take the form:

(44)

4
Iy =Y (b (nk = npya — N1 g +11k44)),  (45)
k=1
4
miy = (@, — b, i), (46)
k=1
A
tg,n =

Z

4
<w0k” Z(nl—nl+4—nk7l+nk,l+4)/\>~ (47)
=1

(ii) The more refined approximation (which for di-
lute alloys has been suggested by Bocquet [5]) that
neglects the probability of return of a vacancy which
leaves the second shell of neighbors, to be called “the
second-shell-jump” approximation (SSJA). For dilute
alloys, it seems to describe vacancy correlation effects
with the accuracy of the order of percents [5] sufficient
for most of applications. In Eqs. (34)—(36), SSJA cor-
responds to ng,q, = 5, that is, to the presence of five
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fields h,, with the following vectors Ry, 1 in Eq. (36) (in
ap/2 units):

Rl,l - (Oa ]-7 1)7 R2,1 = (07 07 2)7
R3,1 = (]-7 27 ]-)7 R4,1 - (]-7 17 2)7 (48)
R5,1 = (07 27 2)7

while the set [;} of vectors R+ in Eqs. (34) and (37)
for n equal to 1, 2, 3, 4 and 5 includes 6, 1, 8, 4 and 4
vectors R+, respectively.

Therefore, to find atomic fluxes Jj_; in Eqs. (33),
we should calculate statistical averages of three differ-
ent types: quantities w, = (wh;) in Eq. (42); quan-
tities 13, and m?, in Eqs. (34) and (37) which in-
clude “one-site” averages (0§, n}); and quantities t2),
n (37) which include “two-site” averages (

N

wmnqn;‘)

4. CALCULATIONS OF STATISTICAL
AVERAGES

4.1. Exact relations

Before to discuss methods of calculations of aver-
ages Wy, [, m4 , and t2%, in Egs. (33)—(37) we con-
sider some exact relatlons which follow either from def-
initions of these averages or from the crystal symmetry.

First, we note that according to definitions (27),
(34), (37), each such an average is proportional to
the factor exp(SA,), that is, to the reduced thermo-
dynamic activity coefficient a, for vacancies defined by
Eqs. (65)-(69) below. This factor enters into the co-
efficient Iy in Eqs. (28), and it is determined by the
vacancy-solute interactions v,o. Therefore, at nonzero
solute site fractions c,, the vacancy-solute interaction
has an influence on all diffusion coefficients, contrary
to the usual ideas [1-9,17], and this influence is fully
described by the common factor a, = exp(BAi*) de-
fined by Eqs. (65)—(69) or (104) which enters into each
Onsager and diffusion coefficient.

Second, we note two operator identities which are
useful for calculations of one-site or two-site averages,
i.e., of quantities 1 ., mg  or t%  in Eqs. (33)-(36).
These identities include the product of the operator n!
and one of factors in two last products in Eq. (42):

<1+Zn )—n el

(49)
ni (1 + an‘fi‘) =nlel,
A
where we denote for brevity:
epn = exp[B(2uf — AD)],  ef =exp(Buf).  (50)
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We note that when index ¢ in Eqs. (49) corresponds to
a host atom: ¢ = h, factor el or el in (49) is unity:

eZ‘A = eZ =1 (51)
as the product n”n?} in (49) is zero. Equations (49)

imply, for example, that in Eq. (45) for lz’}, the product
(1 + 30, mh ;:A) nj in the operator w5 ny is reduced

to ez’}Ang‘, while the product (1 + Zu né‘f{j) ng is re-

duced to e)ng.
averages.
Third, we consider the crystal symmetry relations

for one-site and two-site averages, to be denoted I/gi

g .
and v,

It simplifies calculations of statistical

qA

q —
Vpij =

i

q AP 4 A
V;m <w01ni n]'

. = >7 >.
These relations can be conveniently discussed using
Figs. 1 and 2 which illustrate the crystal symmetry of
different sites near the bond (0,1) corresponding to an
inter-site jump p = v. These sites can be divided into
three groups: (i) sites 0 and 1 = 0, to be called “sites h”
as occupation of these sites is described in Eq. (42) by
the operators n? and nf; (ii) sites 2, 4, 9 and 12 being
the nearest neighbors of both sites 0 and site 1, to be
called “sites A” as the occupation operator nl}‘ for each
of these sites enters into Eq. (42) with the factor f;‘A;
(iii) the rest nearest neighbors of site 0 or site 1, that

(g n (52)

be called “sites u” as the operator nf, or ny,  for these
sites enters into Eq. (42) with the factor f¥ or fv.

The sites u can also be divided into three groups
of the different topology illustrated by Fig. 2: (i) the
“vertex” sites 3, 3, 5 and 5, to be called “sites v”, (ii) the
“side” sites 6, 8, 10, 11, 2,4,9 and 12, to be called “sites
s”, and (iii) the “central” sites 7 and 1, to be called “sites
c’. These different types of the site symmetry will be
denoted by symbol ¢ which takes values A and u or,
for a more detailed description, A, v, s, and c.

The above-discussed symmetry relations can be
used to simplify Eq. (45) for l;,"l which is originally
written as

l)\

o1 = (1@6’1[(m+n2+n3+n4—n5—n6—n7—n8))‘ —

— (n7 +n3 +ng +nz —n5 —ng —nz —nz)*]).  (53)
First, three last terms in the second brackets can be
rewritten according to Eq. (43). Second, terms with
ny and ny in (53) vanish as the operator @5, (42) in-
cludes factors n and n? while nfn} = 0. Thus, we
obtain:
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Fig.2. Schematic representation of bonds of types

(h,h), (h,A), (A,A), (A,u) and (u,u) described in

the text. Seven bonds (0, k) and seven bonds (1,k)

which belong to type (h,u) are not shown for clarity of
figure (color online [13])

A
p,1

! (g, [(n2 +ng +ng + n12)’\ +

+(ng—ns—nz+ns—ng—ng—nz—ng)—nr—ng)]). (54)
Figures 1 and 2 show that the four A-sites, 2, 4, 9, 12,
are equivalent to each other, as well as four v-sites 3,
5, 3, 5, eight s-sites 6, 8, 10, 11, 2, 4, 9, 12, and two
c-sites, 7 and 1. Therefore, Eq. (54) includes only three
different terms:

A
p,1

A
Vpe

! (dvpa — 4vp, — 20,),),

where ). means the one-site average v,; (52) for a site
1 of the symmetry &:

(55)

V;\A = <wg1n§\>a Vz))\s = <1f)0pln6>i\>7 (56)
V;)\c = <UA)(I))1n>\>

Expressions (46) and (47) for m7 | and tg:\n include op-
erators wh, which describe atomic jumps along bonds
(0,k) rather than along the bond (0,1) considered
above. To use the above-discussed symmetry relations,
we can employ the rotation of the FCC lattice which
transforms the bond (0, k) into the (0,1) one. Table 1
shows changes of positions of different sites under such
rotations.
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Table 1. Changes of positions of lattice sites under rotations of the FCC lattice which transform bonds (0, k) into
bond (0,1)
k Components Position of sites
of vector R
1 (z,y,z) 1 2 3 4 5 6 7 8 9 10 11 12
2 (—y,x,2) 4 1 2 3 8 5 6 7 12 9 10 11
3 (—x,—y,2) 3 4 1 2 7 8 5 6 11 12 9 10
4 (y,—x,z) 2 3 4 1 6 7 8 5 10 11 12 9
5 (x,—z,y) 3 10 7 11 1 9 5 12 2 6 8 4
6 (—y,—z,) 11 3 10 12 1 9 5 4 2 6 8
7 (x,—y,—2) 7 6 5 3 2 1 4 10 9 12 11
8 (y,—z,—x) 10 11 9 5 12 1 6 8 4 2
9 (—z,y,2) 12 11 9 2 10 6 1 3 7 5
10 (—z,2,—y) 12 11 6 9 10 5 1 3 7
11 (z,—x,—y) 10 8 11 12 7 3 1 5
12 (z,y,—x) 6 10 12 8 11 4 5 7 3 1

Using Table 1, we can write m/ | in (46) as

mfm = (wh, (na+nz+na—ng—niy—nr—nig)?) =
= (QI/gA —2uk — Z/gc). (57)
It implies
lp1 =2my ., (58)

where we use the same considerations and notation as
in (53)-(56), while index ¢ corresponds to either A or h.

The similar methods can be used to explicitly write
the average tz,)‘n in (47). It can be written as the sum
of two terms, “one-site” and “two-site” ones:

A

A A
= tip + tgp. (59)

The one-site term t‘f; has the form similar to (55):

t9 = 0gx (2vpa + 200, + 40 + 1), (60)

where v is (10g,13).

The two-site term tg;,‘ in (59) includes 21 non-
v
Py
terms tf:‘&, corresponding to symmetries & and & of
sites ¢ and j:

equivalent averages which can be grouped into

aN _ 2
t2p - th,&”
&8

(61)

8 ZKOT®, Bem. 2 (8)
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where both £ and £ takes the value A, v, s or ¢. The
non-zero terms tf))‘&, in (61) can be written as follows:

tz:\AA = (dva g + 21/2,9)%}\,
t;])?\As = —2(va6 + 128 + 1210+ 1/2,11);1,)‘7
tZ,AAc = —A4(vaor)2,
th, =2(vz5 — v35 — 3380, (62)
t%,}\vs = 2(1/3710 —v36—V33+ U3,§)g))\7
tg,kss = 2(Vg,10 — Vo,11 + Vg3 + Ve,a)ff,
tg):\sc = 2(7/6,7 + Vﬁ,i)g))‘a t;])?‘cc = (7/7,1);1)/\'

Here the lower index p and the upper indices g\ at
brackets mean that they should be put at each term
within brackets, while the notation v; ; (used for clar-
ity) means the same as v;; in (52). Quantities tg,)‘g with
&' # £ not presented in Eqs. (62) can be obtained from
those given in (62) by interchanging indices ¢ and A:
t9, =124,
§'e 33

The above-discussed relations of symmetry are use-
ful for statistical calculations using the methods more
refined than the simple kinetic mean-field approxima-
tion described in Sec. 4.2, such as the pair-cluster ap-
proximation discussed in Sec. 5. These symmetry rela-
tions can also be used to calculate quantities li,‘m, mj
and t93,. in Egs. (34)—(37) with n,m > 1 employed in
the SSJA.
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4.2. Kinetic mean-field calculations

In this section, we describe calculations of averages
(Why), 1y s mé  and t2%, - in Eqs. (42), (34), (37) using
the simplest of our approximations which neglects fluc-
tuations of occupation numbers n! in these averages:
each n? is replaced by its mean value (n!) = ¢,. At the
same time, thermodynamic quantities, in particular,
chemical potentials A, in Egs. (28), will be found us-
ing the more exact, pair-cluster approximation — PCA
(which is fully equivalent to the so-called “pair cluster
variation method — pair CVM” but uses more sim-
ple calculations and is more convenient for generaliza-
tions [24-26]). It can significantly raise the accuracy of
calculations with respect to usual, simplest versions of
the mean-field approximation (MFA), particularly for
dilute alloys where the PCA becomes exact [25, 26]. To
differ this our approach from the usual MFA, we call it
“the kinetic mean-field approximation” (KMFA).

Let us first find the KMFA expression for the
mean frequency w, in Eq. (29). Replacing each n! in
Eqgs. (27), (28), and (42) by site fraction ¢,, we obtain:

KMFA

“p

wy = (Tp/cp)ci Spa Sy (63)
The upper index “0” at averages wy, v, My, I, and t,
will mean “KMFA”, and we denote for brevity:

SIIA = (1 +Zcz\f1;\A> »
A

Sy = <1+Zcuf{j>.
I

The factor ', in (63), according to (28), can be ex-
pressed via the activation frequency v, and the chemi-
cal potentials A, of vacancies or solute atoms with re-
spect to host atoms. Each A, is the sum of the ideal
solution term Ai¥ = T'ln(c,/c;) and the interaction
term At

By = In(cy/cp) + BAE, (65)

BAa = In(cq/cn) + BN
In a dilute alloy, the interaction term /\f)"t is linear in
solute site fractions ¢,. We will describe these terms by
the PCA expressions which for dilute alloys become ex-
act [26]. For a binary alloy, these expressions are given
below by Eqs. (104), while for a multi-component dilute
alloy these terms can be obtained from Eqs. (26)—(31)
in [26]:
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Bt = =SS s fes,
, T (66)
BAINt — Z Z Znfrey.
v n=1

Here, z, is the coordination number for the n-th shell
in the crystal, and f£7 is the Mayer function for the
configurational interaction v?Y (5) in this shell:

fR7 = lexp(Bop”) = 1.

Using Eqgs. (28), (29), (65), we can write the KMFA
expressions (63) for mean frequencies w, as

(67)

0 4 ald
Wa = WadColylaSaaSy

68
wg = whgcvavSﬁAS}L‘l. (68)

Here the factor a, or a, defined by the relation
ay = exp(BA),  an = exp(BATY) (69)

can be called “the reduced activity coefficient” for a va-
cancy or a solute atom. For a binary alloy AB, the
relation between a, in (69) and conventional activity
coefficients yp and v4 (used, e.g., in [8]) is given by
Eq. (108) below.

Factors wpo in Eqs. (68) are related to the vacancy
site fraction ¢, and to activation frequencies v, in (16)
as follows:

(70)

Wao = CoYawv, Who = CoYho-

When ¢, — 0, factors ay, aq, Spa, S, in (64) and
(69) tend to unity. Hence wyo has the meaning of the
mean frequency of p = v jumps for a p-species atom at
¢o — 0, and the KMFA results (68) for w, become ex-
act in this limit. For a concentrated alloy, wy in (68) is
the value of this mean frequency found in the KMFA.
We note that the mean frequency wgao in (70) differs
from the “solute jump frequency” w, used in the stan-
dard five-frequency model [1-9] which is related to our
Wao aSs

(71)

wo = wWaoel”, e" = exp(fuv/?),

where v7“ is the nearest-neighbor vacancy-solute inter-
action. Factor e} in (71) corresponds to the factor
exp(BE;Zvj) in (7), and it is canceled in the mean fre-
quency wqo due to the presence of statistical averaging
in Eqgs. (15).

Discussing calculations of one-site averages l/z5 in
Eqs. (55), (58) and (60), we first note that differences
between averages which include occupation operators

of sites of a different symmetry v, s or ¢ arise only
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due to the inter-site correlations. As in the KMFA,
these correlatios are neglected, each of indices v, s, ¢
in Egs. (56)—(60) can be replaced by the common in-
dex u mentioned above. Second, identities (49) show
that the average v, = (g n{) differs from the aver-
age (wg,) = wY only by replacing one of factors Spe in
Eq. (63) (with Sp, = S,) to the factor cqej, with e],
from Eqs. (50). It yields the following relations:

q0 __ 0,9 q0 _ 0,.4q
VpA - CpcqunpA7 Upu - Cpcqunln (72)
where we denote for brevity

nf,A = egA/SpAa 4 = €%,/ Su.- (73)

The same methods can be used for the KMFA calcu-
q

lations of two-site averages I/p?;j in (62). Hence the
KMFA expressions for one-site and two-site averages
are similar:
0 0 A0 0 A

I/gi :cpcqungg, 1/;7“ —CquCAwpﬁggﬁpg- (74)
Here indices € and &' equal to A or u indicate the above-
mentioned symmetry of site ¢ and site j, respectively,
and relations n}, = ni, 77;}“ =) are implied.

The resulting KMFA expressions for quantities
mi o, t‘{; and tg; in Eqs. (58) and (59) can be writ-
ten as follows

q0 0(9,,q q
mp,l - cpcqu(anA - 377u)7
ar0 _ 09,4
tip" = dgacpeawp(2npa + Tn),
ar0 _ 0
oy = CpCqCrwy, X

X 6nZMQA—12(m‘iAn2+nQAnZ)+11nZn2]-

Calculations of averages [, m?, and %) in
Eqs. (34) and (37) for values n,m > 1 used in the
SSJA can be made similarly to those for the NNJA de-
scribed above, though the description of rotations of
vectors R;+ and R;- in (37) (analogous to those given
by Table 1 for vectors Rqj) should be made for each n
and m separately. The results can be written in terms
of “reduced” quantities l?,‘n and m ,, defined by the
following relations:

0 IN)\

A0 0 0 54
Lom = excpwp by s mb = cqepwpmd (76)

where wg is the same as in (68). Expressions for quan-

tities 3, and g ,, in (76) via 5 and n? in (73) and
the factor

w=(mi —1) (77)

Table 2. Reduced values l%,n and mj , in

Egs. (76)

n 1 2 3 4 5

D, | ns—6nd) 28 48 48 28
mi, | 2l —3nl) 4L g 2gl gl

are given in Table 2. Similarly, matrices tg:\nm which
enter into Eqs. (37) can be expressed via “reduced” ma-

: A fqx .
trices ¢ .., and 17,

A0 0 A D
t;(zl),nm - chpwp (611/\t1p,nm + c)\tgp,nm) . (78)

Here the matrix 3, ,,, has a relatively simple form

2ppa+Te e 20h —2mn
—4n)  Apd+8 0 —4 0
—n) 0 mA+9  —1 -1
—2n) —1 -2 2410 -2
—n 0 -2 -2 g+l

while the matrix 4}, can be written as follows:

PR

Bpn Xp o ng ™

e i, 8e? 844 4e?

X! g™ i, 2241 P41 |,

2N 2eP 41 4eP 2 #2042

X! e 2742 22742 HL
where the diagonal elements tgz’nn are

B 11 = nampa =12 (wam + ninms ) +
+ 1l

1% =4 (nim) — 208 —2m3) ,

105 = (20l — 4n? — 4n) — 5) ,

5 = 2 (30 — dnfl —4n) — 1),

s = (niny — 208 — 20 — 9)..

The non-diagonal elements are expressed via only two
quantities, y2* and e7*:

X = (‘MZMQ — Sy — 4nia + 6773) :

(80)
e =260 =2(nd = 1)(ny — 1).

323 ]*
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5. CALCULATIONS OF FLUCTUATIVE
TERMS USING THE PAIR-CLUSTER
APPROXIMATION

Kinetic mean-field calculations described in Sec. 4.2
neglect fluctuations of occupations of sites ng' in statis-
tical averages. These fluctuations can be taken into ac-
count using more refined statistical methods or Monte
Carlo simulations. In this section, we describe methods
of calculations of contributions of these fluctuations to
statistical averages (to be called “fluctuative terms”) us-
ing the pair-cluster approximation — PCA mentioned
in Sec. 4.2.

KMFA replaces each occupation operator n{ in sta-
tistical averages by its mean value ¢,. To describe fluc-
tuations, we write each n] as the sum of ¢, and the
fluctuation Anf = (n] — ¢,):

n? = (cg + An!) = c (1 + And/c,). (81)
Then the fluctuative term (to be denoted by the lower
index “f”) for each quantity can be characterized by
the relative difference between its exact value and that
given by the KMFA expressions (68), (74) or (75).
For example, for the mean frequency w, in Eqs. (27)
and (29), the fluctuative term wy, is related to the
KMFA value wg as follows:
Wp = Wg(l + wpy). (82)
This fluctuative term can be written as the statisti-
cal average of the appropriate fluctuation operator w,, s
which, according to Eqs. (42) and (82), has the form
of product of four factors describing fluctuations in the
first, second, third and fourth factor in (42), respec-
tively:

(I +wpp) =(L+wpy) = < (14 Ang/cn) x

x (1+Anf/en) [T (1 +y Anf”f;fA/S’pA> x
7

1
<T1 (1 + ZAngnfg/su> > (83)

Here Spa and S, are the same as in (64), while [ and
m take the same 4 and 14 values, respectively, as in
Eq. (42).

For one-site and two-site averages (52), the fluctu-
ative terms v,

i Or v >; ;¢ can be defined similarly to
Eq. (82):
0 A 2,0
vy = vy (L v ) vy =g (Ll ), (84)
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where l/zo or I/;)‘jo is the KMFA expression given by
q. (74). Each of these fluctuative terms is the av-
erage of the appropriate fluctuation operator % virf OF

A;);J - According to Eqs. (52) and (49), the operator

D5 corresponds to replacing factor (1 + 37, ny fya) or
(1 + >, n}f)) in the expression (42) for wh; by the
operator niely or niel. Hence the fluctuation opera-
tor !, corresponds to replacing one of factors in the
th1rd or the fourth product in Eq. (83) by a more sim-
ple factor (1 + An?/c,). For example, for site i = 2
which has symmetry A, fluctuative term /7 o.f = l/p ALf
is defined by the following relation:

(1 + V;Aj) = < (L4 Anf/ep) (1 + Anf/ey) x
x (14 Ang/c) [ (1 + ZAnff;A/spA> X
1#2 I

<T1 <1+ ZAn,"nf;/su> )

where index [ in the second line, unlike Eq. (83), takes

only three values: 4, 9 and 12, but not [ = 2.
Similarly, for a two-site average V;?;j

AQA

4), the

fluctuation operator 1/7 is obtained by replacing
in two last products in Eq. (83) the two factors
which include fluctuations An; and An; by the fac-
tor (1 + An?/c,)(1 + An}/cy). For example, for site
1 = 2 of symmetry A and site j = 6 of symmetry s, we
have:

in (8

(1+V 26 f) <(1+Ang/ch) (L4 Anf/ep) x

(1 + Z Antfhy s,,A> x
(1 +3 An,"nfg/su> > (86)

x (1+ And/c,) H

1#2

x (1+ Ang/cy) H

m#6

For simplicity, below we calculate fluctuative terms
only for averages W, mgl and t 1 in Eqgs. (27), (46),
(47) which are used in the NNJA and suppose the
solute-solute configurational interactions v2” in (67) to
be signiﬁcant only for the nearest-neighbors: v{” > T,

vh7, < T. Then correlations of fluctuations An} and
An;‘ for the not-nearest sites i and j can be neglected,
many-site correlations can be decoupled into the pair-
wise ones [24], and calculations of fluctuation terms
(83)—(86) can be made using the simple “diagram tech-
nics” described below.

Let us first consider the term wpyr = (Wpy) in
Eq. (83) which is the sum of various fluctuation prod-
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ucts (An{...Anj...) with some coefficients. As men-
tioned, each of these products can be decoupled into
the sum of products of all possible pair terms which
include the pair correlators of fluctuations, Ké{l, for
neighboring sites 7 and j:

K. = (AnjAnj). (87)

These sites i and j are some of 20 sites k& and &k shown in
Fig. 2, while various correlators A;{ﬂ correspond to dif-
ferent bonds (4, 7) in this figure, or to the bonds (0, k)
or (1,k) not shown in this figure. As was discussed in
Sec. 4.1, these 20 sites can be divided into three groups
of sites having the different crystal symmetry ¢ with
respect to bond (0,1): sites 0 and 1 with ¢ = h; sites 2,
4,9, 12 with ¢ = A, and the rest 14 sites k and k with
& = u. Depending on symmetries £ and & of sites i and
j, terms with the correlator K2 make different con-
tributions X¢er into averages (Anf...An%...) which
enter in Eq. (83):

1 1
— @ _ b I
Xnn = Z Knn, Xpa = PN ;Ahupra

1
X u = K Ma
h ChSu ; hufu,
1 - v
Xuu = ﬁzkuuf{jfua (88)
gy
1
Xaw=——S Kuf;f"
Au SpASu ; g prfI“

XAA = S% ZIX’MV}C}‘)LA ;)IA'
pA nv
These different contributions X¢¢ into the average wy¢
in Eq. (83) are illustrated by different lines in Fig. 2.
Terms X, are drawn by a thick line; terms Xpa, by
dotted lines; terms Xaa, by chain lines; terms Xa.,
by dashed lines; and terms X,,, by thin lines. Terms
X}, are not shown in Fig. 2.

Therefore, the PCA calculation of the average wys
in Eq. (83) yields the sum of various powers of quanti-
ties X¢e presented in Eq. (88) with some combinatorial
coefficients. If we denote for brevity:

Xnn = X1, Xpa =Xz, Xpw = X,
XAA :X47 XAu:XE'n qu :Xﬁa
this wps has the form of some polynomial in Xj:

wpr = > Coyinar g XU X52 X700 (90)

ni,n2,...ng

(89)

Here, n; > 0 are integers obeying evident inequalities:

6
1<) n; <10, (91)

i=1

while coefficient C,, n,,..ne 18 the total number of pos-
sible sets of bonds which include n; bonds of type X1,
ns bonds of type X, ... and ng bonds of type Xg.
As explained above, each site in these sets of bonds be-
longs either to a single bond or to no bond at all, while
the bonds are chosen among 49 bonds shown in Fig. 2
and 14 bonds (0, k) and (1k) not, shown in this figure.

In terms of the graph theory [30], Cp, ns.... ns 18
the number of sets of edges which contain no adjacent
edges and include n;y edges of type X1, no edges of type
X, ... and ng edges of type Xg. Such sets of edges are
called the independent edge sets, or “matchings”’, and
various problems related to matchings are often met
in the graph theory [30]. Thus the problem of finding
of coefficients Cp, n,, .. .ne i (90) can be formulated as
follows: we need to find all matchings in the graph,
and each of these matchings contributes unity to the
coefficient Cy, n,,... ns Which corresponds to the pres-
ence of n; edges (bonds) of type ¢ in the matching.
Inequalities (91) state that each matching can include
up to 10 vertices. The empty matching should not be
considered as it corresponds to the first term, unity, in
brackets in (82) and hence makes no contribution to
wps. Since each graph corresponding to Fig. 2 includes
not too much vertices and edges, the problem can be
solved by a simple explicit recursive algorithm. We im-
plemented such algorithm as a program in the Python
programming language.

For one-site or two-site averages v%; or v} ; defined
by Eqs. (52), the PCA calculations of fluctuative terms
Vi or l/z:\i].j in Eq. (84) can be made similarly. Ex-
pression for the one-site term zxzi’ f differs from that for
wpy by replacing the factor (1 +>, Anffz‘)‘A/SpA) in
(83) by the factor (1 + A?/¢c,), while the two-site term

zxz,);j, s differs from v, . by one more replacing, that

of the (14, Ant fhy/Spa ) or (145, Ant f2/S,)
in (83) by (14 An}/cy), as illustrated by Eqs. (85)
and (86). Hence the above-discussed fluctuation prod-
ucts for the term zxzi’ 7 can include the appropriate fac-
tor X fg related to the correlator Kéf, between site ¢ and
the site j of the symmetry ¢, and this X is defined
analogously to X¢e in (88). Similarly, the fluctuation
products for two-site term V;?;L s can include factors
X fg, X ]?‘5, and also factor X fj)‘ with the correlator of
fluctuations of sites ¢ and j (if they are the nearest
neighbors):
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1 1
X! = —K, _—EK iy
ih CqCh qh> chpA - qupr7
. (92)
f=—= > Kuft, Xi= oA
iU CqSu ~ QHfu ) 2] CqC

If we denote factors X, X7 and Xq’\ in (92) similarly

&>
to X&/ in (89)
X =Xr, X\ =Xs, X, =X,
X]{\h:Xloa Xj\AZX117 Xj\uZXma (93)
X;Ij/\ = X137

then fluctuative terms l/zif or l/q>;]  can be written

similarly to the term w; in Eq. (90):

q  _
Vzn}f_ Z Ogl

Lyeee s T

m]f_ Z O

102,113

ni na nog
e XIIXD2 XD,

(94)

ni yn2 niz
s XXX,

while integers n; in these sums obey inequalities anal-
ogous to (91)

9 13
1<) ni<10, 1<) 0 <10 (95)

i=1 i=1
Coefficients C¢  and C2*  in Eqs. (94) can

be found analogously to Cp, n,,... .ne in (90) by consid-
ering each matching as a term in one of sums (94).
One vertex (or two vertices) in the graph in Fig. 2 now
should be marked by index i (or 7 and j), and each edge
adjacent to this vertex (these vertices) contributes an
appropriate factor X7, Xg, ... or X3 from (93) (rather
than X, Xs,... or X4 from (89)) to the correspond-
ing product of all X in (94). The resulting form of
expansions (90) and (94) for wyy, vy, , and vj .. . is
illustrated in Appendix A and in [13].

The correlators K, = K4 which enter into the
fluctuation factors X, in Eqs. (88)—(90) and (92)—(94)
can be found using the PCA equations for multi-
component alloys presented in [26]. When both indices
¢ = a and r = v correspond to solute atoms, this cor-
relator is expressed via the PCA parameters y, and Z
defined in [26] as follows:

(96)

— CaCry.

Dependencies of parameters y, and Z on concentra-
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Table 3. Estimates of Mayer functions f{*”
= [exp(—BvP?) — 1] from data about thermodynamic
factors @ presented in Ref. [10]

Alloy | CuNi | CuPd | CuAu | AuNi| AuAg| FeNi
T,K| 1220 | 1334 | 1016 | 1173 | 1173 | 1373
BB | 022 |—0.31|—0.29| 0.27 [—0.17|—0.14

tions ¢, for an m-component alloy are determined by
the following system of (m — 1) algebraic equations:

Caq = ?-/701 (1 + ;ea'yy’y> )
Z=1+2> 5,4 earlaly,
gl oy

v

(97)

where e, is exp(—pvy"), and v{” is the configura-
tional interaction for neighboring o and v atoms.

If one or both indices ¢ and r in the correlator K,
correspond to a host atom h, this Ky, can be expressed
via the correlators K for solute atoms using the iden-
tity nf =1 — 3", n®; for example: Kjo = — > 5 Kag.

For a binary alloy AB, Eqs. (97) can be solved
analytically, and the correlator Kgp is expressed via
the solute site fraction cg = ¢ and the Mayer function

BB — [exp(—pBvEPB) — 1] as follows:

Kpp =41 — )2 B8 /(R +1)?, (98)
where Ry is [1 + 4¢(1 — ¢)fPP]'/2. For a dilute multi-
component alloy, Egs. (97) can be analytically solved,
too, and then correlator K, has the form

Koy = 17 cacy. (99)

The binary alloy result (98) can be used to esti-
mate the order of magnitude of correlators K, and
factors X; in Eqs. (88)-(96) for real alloys. The Mayer
function fPP can be estimated using experimental data
about the thermodynamic factor ® which in the PCA
is described by Eq. (113) below. In Table 3, we show
such estimates for six FCC alloys with unlimited solu-
bility using the thermodynamic data about ® presented
in Ref. [10]. For simplicity, in these estimates, we
use the model of nearest-neighbor solute-solute inter-
actions, the PCA expression (113) for ®, and the equi-
atomic composition ¢ = 0.5. We see that the f2P
ues estimated lie between about (—0.3) and 0.3, which
is close to the thermodynamic stability limits for disor-
dered FCC alloys with respect to the ordering and the
decomposition, respectively.

val-
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These estimates seem to imply that the maximum
values of |Kggl| in (98) reached at ¢ ~ 0.5 are about
0.02. Supposing factors X; in Eqs. (88)—(96) to have
the same order of magnitude as Kpp in (98), we can
expect that expansions in powers of X; in Egs. (90)
and (94) usually rapidly converge It is illustrated by
the estimates of terms wp;, v, p£ 5 and v presented in
Appendix A and in [13]. Equations (98) and (99) also
show that for dilute alloys, the fluctuative correction
wps in (90) has the second order in solute concentra-
tions ¢,. Hence for the mean frequencies w,, in dilute
alloys, the KMFA results (68) are exact up to the sec-
ond order in ¢, .

. in dilute alloys, fluctuative

corrections vy,  in Eqs. (92) (94) include terms u’\zl}"

linear in ¢,. These terms can be found considering
Fig. 2 and using Eq. (85) (or its analogues for other
symmetries ):

For one-site average v

Alin

pAf—Zf1 o A+4f5_2)7

vl = Zf cu2fh8 + 311 = 1),

)\lzn (100)
vl Zf (fhn +3fL = 1),
;;;n_zf ul4ft 1),

Similarly, for a two-site average 1/ ; with neighboring

sites ¢ and 7 in dilute alloys, the ﬂuctuatlve term 1" i f

)\u,[)

in Eqs. (92)-(94) includes the constant term v’:", in-

dependent of cq:

A0 A
piigs = 1 (101)
\lin Au,0
Both terms v,2" in (100) and v7%" in (101) make

linear in ¢, contributions to the diffusion coefficients.
Hence they make finite contributions to the enhance-
ment factors b, for dilute alloys. At the same time7
the contributions to these b, of terms l/p5 pand v p ” ’
(which correspond to replacing a solute atom A by a
host atom h in the averages considered) are negligible:
Eqs. (84)—(86) show that such terms include a small

factor cy/cp, with respect to terms v e f and v p Z] Iz

Estimates of fluctuative contributions to diffusion
coefficients for some real alloys will be discussed else-
where.
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6. DIFFUSION IN BINARY ALLOYS

6.1. Expressions for intrinsic diffusion
coefficients via mean frequencies and
correlation factors

The intrinsic diffusion coefficients D), are defined by
the Fick’s first law [8]:

Jia=—=DsVnyu, Jp=-DpVnpg, (102)

where J,, is the atomic flux density, and n,, is the num-
ber density for p-species atoms (related to their site
fraction ¢, and mean volume @ per atom as n, = ¢,/9),
while Eq. (22) relates the flux J,, density to the gradi-
ents of partial chemical potentials, u4 and up. These
chemical potentials are related to our A\, = Ap in
Eqgs. (24) and to the grand canonical potential per
atom, to be denoted €, by the following relations [26]:

MB:/\B-I-Q, MA:Q- (103)

The PCA expressions for A\g and Q in (103), as well
as for the chemical potential A\, of vacancies relative
to host atoms in (65), are presented in Ref. [15, 26].
They can be written as sums of the ideal solution and
the interaction terms marked by indices “id” and “int”,

respectively:
AB — Ald + Aznt 0= Qid + Qint,
PP VT VD VAR
CA
0 = Tlney, )\f)dz Qv
ca
. fBB
xint — TZznln<1+2R +1) (104)
n=1
- 2fBB
Q= —— pln | 1-2
Zz ! < +1+2ch3)
int va
\int — —TZznln <1+2R +1)

n=1

Here and below we omit index B at cp for brevity:

c = cg; zn, fPB and fBB are the same as in (66), in
particular:
P = lexp(=pvpP) = 1], (105)
w7 = [exp(=puf?) - 1],
Ry, is expressed via fPP as
Ry = (1+ 4eca fEP)2, (106)

while PCA expressions for the “reduced activity coeffi-
cients”, a, and ap defined in Sec. 4.2, are obtained by
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substitution of expressions for A% and A" from (104)
in Eqgs. (69). The relation between ag or A%* and con-
ventional activity coefficients vy and y4 defined by the
thermodynamic equations [8]

up(c) = ul + T n(cyp),

palca) = p® +Tn(cava) (1on

(where p° is a constant independent of ¢) can be
obtained by comparison of Eqs. (103) and (104)
with (107). It yields

ap = exp(BAEY) = (vB/74). (108)

To write explicit expressions for D4 and Dp in
(102) via the Onsager coefficients L, in (22), we can
use the Gibbs—Duhem relation [8]:

cadppg + cpdup = codQ +cdupg =0 (109)

(which for the PCA expressions (103)—(106) can also be
checked by a direct calculation). Using Eqs. (22), (102)
and (109) and supposing the mean atomic volume @ to
obey the Vegard’s law

1

v /n=Taca +Tpcg, (110)

where v, is the atomic volume of a p-component in an
alloy, we can write the intrinsic diffusion coefficients as
follows

T L L
DA = — ( AA AB) (1)7
n<v C C
TB LA L (111)
Dp = = < BB BA) &
n<vg C CA

Here the “thermodynamic factor” & is related to the
interaction term A% in (108) and to g in (107) as
int

d(pAE) dInvp
de dlne

(due to the Gibbs-Duhem relation (109), the last term
in (112) can also be written as dlnys/dInca). The
PCA expression for ® can be obtained if we use for
At in (112) the PCA expression from (104):

®=1+cca =1+

(112)

D =1-—ccy x
X Zzanf
n=1

To discuss influence of various physical factors
which affect diffusion in an alloy, it is also convenient
to express each Onsager coefficient Lap in (111) via
the mean frequency w,, and the “correlative” coefficients

5 Rn+1—4c(1—2c)fBB
(R + 1)(Ry, + 1+ 2¢fBB)’

(113)
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L;,, which describe vacancy correlation effects and are
defined by the following relations:

T
—L = 1—cL¢
na% AA wACA( & AA)a

——~Laip =wpgcca LS
na(Q) AB>»

T
—~Lpga =wpgccaL$
na% BA>

(114)

L Lpp =wpe(l = calSy).
naZ BB =wpc(l —calGp)

We note that non-diagonal Onsager coefficients L ap
and Lpa in (111), as well as LGz and L%, in (114),
should actually be equal to each other [8], and the
presence of this symmetry relation (discussed below in
Secs. 6.2, 7.2, and 8) can characterize the consistency
or the accuracy of the theory.

In the notation (114), the intrinsic diffusion coeffi-
cients D) in (111) can be concisely written as

D, = (ag/n@;)wpfp@, (115)
w

fA - ]. - (_BCAL%B + CL‘;‘;‘A> s
wa

fe=1-(calp +cLip),

(116)

where symbol j (used for brevity) means A = B,
B = A, and correlation factors f4 and fp in these
equations have evidently the meaning of a correlation
factor for a concentrated alloy.

Equations (111) and (116) show that each intrinsic
diffusion coefficient is proportional to several factors
of different nature: the mean frequency w,, the cor-
relation factor f,, and the thermodynamic factor ®.
Equation (115) is analogous to that commonly used for
dilute alloys (for which & = 1) [8], but in a concen-
trated alloy, each of factors w,, f, and @ varies with
the solute site fraction c¢. Explicit expressions for cor-
relative coefficients Ly in (114) are discussed below in
Secs. 7 and 8.

6.2. General statistical expressions for Onsager
coefficients in a binary alloy

For a binary alloy AB with h = A and a = B,
fields h%* in Eqs. (33) and (36) are zero due to the an-
tisymmetry property (25). Hence Eqs. (36) withp = A
take the form of a system of 7,4, equations for 1,4z
different fields h2? = hBv:

Nmaz

> ApmhBy
m=1

_ (BB AB A
Anm = (tA,nm - tB,nm - 2’ran(sml) )

A B
m n(sMB -—m n(sMA ;
(mp, AnOHA) a1
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where d,,1 is unity when m = 1 and zero otherwise.

In the NNJA, Egs. (117) include only one field h??

. . . . . q g\
which is simply expressed via quantities m;, ; and £,

in Eqgs. (57)-(59):
hP" = (mp,06us —m% (0pa)/Ar,

(118)
A11 = (tE,Bil — téﬁl — 2m§’1) .

Substituting this 2? in Eq. (33) with n4, = 1 and
using also Eq. (58), we obtain the following relations
between fluxes J§ ., and differences dp,:

J(?—n =

— —B6up [Wp + 2mp (e +mB ) /An] +
+ ﬂ(sMAQmE,l(mB + mg,1)/A11a

Joh = —66u302m§71m§71/1411 -

— Bopa [Wa —2(m% )% /An],

(119)

which determine Onsager coefficients L,, in (41).

We note that the Onsager symmetry relation,

Lpa = L, (120)

in our approach is obeyed identically. According to
Eq. (119), Eq. (120) implies

mp, +mp, = —Wp. (121)

Using Eqs. (55)—(58), we can re-write (121) as

(@p[2(ng +n3') —2(ng +ng) —

—(nf +n))) = —(wp), (122)

which holds identically as (n® +nf') = 1. In Sec. 7.2 we
show that relation (120) holds also for the SSJA, and
probably also for any value 7,4, in Eqgs. (117) (which
we checked analytically for the value m,q, = 2). Pres-
ence of this symmetry relation irrespectively of concen-
trations and approximations considered illustrates the
theoretical consistency of the master equation approach
used.

7. EXPLICIT EXPRESSIONS FOR INTRINSIC
DIFFUSION COEFFICIENTS IN A BINARY
ALLOY

7.1. Onsager and diffusion coefficients in the

NNJA-KMFA

Using Eqs. (119), (120), and (29), we can write the
general NNJA expressions for Onsager coefficients in a

concentrated binary alloy as follows:

T Ioo— 2(m§71)2
n—ag AA = [CAWA — Tn >
B ., A
A S UG ) (123)
nag A11
T, _ Amp,)°
na% BB = |CBWB A )

where A;; is given in (118), while statistical averages
mj, and tg:\n are defined by general relations (57)—
(62).

In this section, we use for these averages and for
mean frequencies w, in (123) the KMFA expressions
(68), (76) and (78). We also omit index o = B of the
only kind of solute atoms in site fraction ¢, = ¢p and
in quantities npa, epa, Ny, €y defined by Eqs. (73),
and employ in Egs. (123) the “reduced” denominator
Dy, rather than quantity A;; from (118), as well as
the frequency ratio z = w% /w rather than frequency
w% from (68):
efia = ean,

B
B = G, NAA = NNAA,

65 =ey, An= CCAW%Dnnv (124)

775 = Nu,
_ 0,0 _ 4 4
z=wp/wy = (wBo/wao)aBSpa/San-

Then expressions (123) for Onsager coefficients in the
NNJA-KMFA take the following form:

T 2¢(3n, — 2nan)?
— Lais=0uw" 1—
na2 AA = WycA [ Do )
T 3nd — 204
——Lap = wheca2(3n, — 2 T TIBA (125
nag LB = wheea (304 — 214n) D (125)
2c42(302 — 2naA)?
L — .0 1— u BA
na3 BB = WB€ Don

The denominator D,y in (125) can be conveniently
written as the sum of two terms: that with no com-
mon factor of site fraction ¢ and that including this
factor:

Dnn - (Al,ll + CA2,11). (]_26)

Here quantities A; 11 and Ay ;1 are expressed via the
reduced parameters ., &, ,, and fgz,n in (76)
and (78) in accordance with Eqs. (118) and (124):
A = (tPa00 — 2 0),
BB TAB (127)
As a1 = (tZA,ll - Zt2B,11)

or, explicitly:

Ai 11 = (2naa + ) + 22(37721 —205A), (128)
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Ao 1y = (anm — 24naan. + 11773) -

—z [6npanpa—12(aanu+neant)+11nin,] . (129)

In Eqs. (124)-(127), quantities ngx, 72, naa and 1,
are defined by Eqs. (73) and (51):

nga =1/Spa, 0 =1/S.,

NAA = €Ar/SAA,

Ny = €u/Su, NBA =eBA/SBA,
(130)

Saan =14+cfan, Sea=1+cfBa,

Su:]--l'cfua fAA:eAA_]-a

fu:eu_17

while factors esa and e, in (130) are defined by
Eqs. (124), (50) and (44).

The correlative coefficients L7, in (116) for
NNJA-KMFA can be found comparing Eqs. (114)
and (125):

Lya= 2(3ny — QWAA)Z/Dnnv

fBa =epa — 1,

Lp = 2(377u - 277AA)(3773 - 277gA)/Dnn7 (131)

Ly = 22(377;? - QU,?A)Z/Dnn‘

The NNJA-KMFA expression for the diffusion co-
efficient D, is given by the general relations (115)
and (116) with the KMFA expression w) (68) for wp,

expressions (131) for Ly , and Eq. (113) for ®.

7.2. Onsager and diffusion coefficients in the

SSJA-KMFA

When vacancy-solute correlations are described in
the SSJA, Eqs. (37) include averages m¢ , and t2), for

p,nm

values n,m > 1. These averages can be calculated sim-
ilarly to those for the NNJA, and results can be written
in terms of “reduced” quantities l;),"n, mi ., t?,‘,nm and
t1> . defined analogously to those in (75):

p,nm

2 _ 07 o _ 0,54
lom = ExCpwp Ly s Mg = CqCpWp T s

(132)
A0 0 A TON
t?xnm = CqCpWy (50/\t1p7nm + C/\tgp,nm) )

where w) is the same as in (68). Explicit expressions
for quantities 1 ., m% ., & and 9
Table 2 and Eqs. (78)—(80).

In this section, we present the SSJTA-KMFA expres-
sions for Onsager coefficients in a concentrated binary

are given by

alloy. In the SSJA, we should solve the system of
five linear equations (117) for effective fields A%’ and
then find Onsager coefficients using Eqgs. (33), (38),
and (41). To this end, we first write the matrix A,
in (117) in terms of “reduced” matrices A7, A1 ym and
A pm defined analogously to D, A1 11 and A 11 in
Eqs. (126)—(129):

r
nm?

Apm = ccAw%A

A:Lm = (A17nm + CAZ,nm)7
(133)
Al pm = (tlBAmm - 2zmg7n6m1)7

)

— (NBB

7AB
A27nm t2A7nm - Zt2B7nm)7

where 2 is the same as in (124) and 14 , is the same
as in Table 2. 7

It will be also convenient to use the shortened no-
tation for quantities 77, 1 and mg?l in Eqgs. (73)
and (75):

) =, (134)

mph = (27— 30), mEY = (22 - 3v).

This notation enables us, in particular, to more con-
cisely write the NNJA-KMFA expressions for quanti-
ties L, A1,11 and Az 17 in Eqgs. (126)—(131):
L% 4 = 2(3v — 22)? /Dy,
“p = 2(3v—22)(30 — 27)/Dnn,

LG = 22(30 — 2§)* /Dy,
(135)
Ay 11 = (22 + Tv) + 22(30 — 27),

Az 11 = (627 — 2420 + 110%) —

— z[6yy — 12(gv + yv) + 11vd).

Matrix Aj py in (133) is the difference of matrix
tB, in (78) and the simple one-column matrix:
= A
mB?l
4¢;)
A.l = ElBA — 2z fé
2,

&

o O O O O
S O O O O
S O O O O
o O O O O
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7 =
2e+7v —v —2v —2v —v
—4v  4u+8 0 —4 0
| 0o 20490 -1 -1 | (130
—2v -1 -2 20410 -2
—v 0 -2 -2 v+11
As11 XaB
4¥pa tapo
A, = XBA  €4B
2XBa 2éaB
XBA  £€4B
0 0
0 0
AQ:AQ +(SZX 0 0
0 1
0 0

Here A 11 is the same as in Eq. (135), while pa-
rameters YAB, £AB, fAB,,m and §. are expressed via

quantities Xg)‘, X;}q, e, Zg;,nn in Eqgs. (78)—(80) and

the frequency ratio z = w9 /w9 as follows:

XAB = (XﬁB - ZXgB)a

XBA = (XﬁB - ZXgA)a
(138)

BB

_ ZSAB)

5AB - (6 )

fAB’nn = (fgfn — zféfn), d, =(1—2).

A LA A aX
Here xI%, xp?, €7 and t5, .,

be written as follows:

in the notation (134) can

XEB el (43{,‘1} — 5’1}2 — 456 + 6'1)), EBB = 26121,7

AB

YAB = (4gu—>5v0—4y+60), 1B = fofua

(139)
YBA = (4yv — 5vv — 4y + 6v),

fu:(v_l)v 51;4:(17_1)§

where z, y, v, 7 and mg?l are the same as in Eqs. (134),
while ¢4 is (nd — 1) = (v — 1).

Similarly, matrix A, in (133) is an analogue of ma-
trix 532 in Eq. (78) which can be concisely written as

the sum of two more simple matrices:

2XAB  2XaB  XA4B
8ap 8aB 4éaB
taB3s 264 EaB )
424 tapas 28aB
264 26aB  taBss
(137)
0 0 O
0 4 0
0 1 1
2 0 2
2 20
552]32 =4o(v — 4), 55‘71232 = 4(v0 — 20 — 2v),
ty gy = (20> — 8v —5),
f§333 = (200 — 4v — 40 - 5),
toh = 2(30> — 8v — 1), (140)
t5 8, = 2(3v0 — dv — 45 — 1),
55535 = (v®> —4v —9),
Bl =0 —20-20-9).

KMFA expressions for coefficients £, in Eqs. (33)
are given by Eqs. (58), (132) and by Table 2, with tak-
ing into account identity (121). Solving Eqs. (117) for
hov by standard methods of linear algebra and using
Eqs. (33), (38), (41), we obtain the correlative On-
sager coefficients L¢ in (114). These coefficients are ex-
pressed via the determinant D of matrix A7 in (133)
and the functions Dy and p; with i equal to ¢, [ or r
which are the following combinations of minors M,
of this determinant:

D= Det||A;m||, Dys = D/Mn,
pi = Ni/Miq,

Ne = (=4M1 + M3y — 2My1 + Ms),

331



V. G. Vaks, A. Yu. Stroev, I. R. Pankratov, A. D. Zabolotskiy

MIT®, Tom 146, Boi. 2 (8), 2014

Ny = (=Mis +2My3 — 2My4 + Mys),
N, = [(4Mas — M3y + 2Mys — M) —

— 2(4M23 — M33 + 2M43 — M53) + (141)

+ 2(4Msy — M3y + 2Myg — Mss) —
— (4Mso5 — M35 + 2My5 — Mss)] .

Our numerical calculations have shown that quantities
N; and N, in (141) are identically equal to each other
(through we did not prove it analytically). This equal-
ity leads also to the fulfilment of Onsager symmetry
relation (120): Lap = Lpa. Taking it into account,
we can write the SSJA expressions for coefficients L,
(114) in the form analogous to that for the NNJA in
Eqgs. (131):

aa = [(mﬁ?1)2+2m§?1fupc+€ipl] )
8Ss
c 2 ~ B0 ~ A0
AB = P [mA,lmB 1+
N (142)
+(mﬁ?1£&4+mﬁ?l U)pc-l'qufupr] i
C — X
BB D..

X [(mg?1)2 + 2771%?153% + (f{?)zpr] -

Here & and &, are the same as in (139), m5% and
mg?l are the same as in (134), and Dy, p. and p, are
the same as in (141).

The intrinsic diffusion coefficients D,, are related
to the coefficients Ly, in (142) by the general rela-
tions (115) and (116), with w, equal to w) (68) and
® given by Eq. (113). We note that the NNJA-KMFA
results (131) for Ly correspond to putting in the SSJA-

KMFA expressions (142): p; =0, Dgs = Dy

7.3. Onsager and diffusion coefficients in a
dilute binary alloy

In the dilute alloy limit ¢ — 0, frequencies w,, tend
to wpo in (70), while parameters z, g, N4a, 7, and
7y in (125)—(129), according to Eqs. (124) and (130),
take the following values:

(Ba)o = (i )o = 1,

Nuo = €y

20 = wpo/WAo, (143)

(naa)o = ean,

Here and below, the lower index “0” at each quantity
indicates its value at ¢ — 0.

To relate our notation to that commonly used for
five-frequency model [1-9], we note that the jump rates
(“frequencies”) w,, of that model in our notation are
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vB
W = WAp, W1 = WAap€Aa€ ,

vB vB
W2 = Wpo€; , W3 = WA0€1 €y, (144)

W4 = WA0Cw,

where e?P is the same as in (71). At the same time,
exponential factors e, and e4a in (144) are directly re-
lated to the kinetic and saddle-point interactions, u?
and A and have a more clear physical meaning than
frequencies w,,. Equations (126)—(130) include also fac-
tor ega analogous to ega which describes influence on
the Bi = vj jump probability of a solute atom B near
the bond (ij). Therefore, to simplify formulas below,
we use not frequencies w, but quantities x, and y;
defined by the relations

T1=€4A, T2 =wWBo/WA0, T4 = ey,

145
y1 = epa = exp[B(2uf — AR)] (149)

with zo equal to zp in (143). In this notation, Mayer
functions f,a and f, and the low-c values of factors &,
and & in Eqgs. (130) take the following form:

faa = (v1-1), fea=(n—1),
fu:(x4_1)a fu:fu:(xll_]-)a
EMe< 1) = (—cfu) = —clzg — 1).

(146)

Below we present the low-c expansions for mean fre-
quencies w, and Onsager coefficients Ly, up to the first
order in ¢, and the zero-order terms in ¢ for correla-
tive Onsager coefficients L7 and correlation factors f)
in Eqs. (114)—(116). The fluctuative corrections men-
tioned in the end of Sec. 5 make no contribution to these
terms, hence we can use the KMFA expressions (131)
and (142).

Let us first consider the mean frequency w, and de-
fine its enhancement factor by by the usual relation

wp(c) = wpo(1+cby). (147)

Using Eqs. (68) for w)) and the PCA expressions (104)
for A&t and A"t in activity coefficients a, and ap (69),
we find

bﬁ = 4fAA + 14fu +bvB7

(148)
b% = 4fBA + 14fu + bvB + bBB~

Here fpa and f, are given in (146), while b,p and bpp
are contributions to by of the activity coefficients, a,
and apg:

bup = — Y anfiP = —12fP =655 — ..., (149)
n=1

bpp ==Y zafPP = -12fP5 - 6178 (150)

n=1
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Discussing the low-¢ expressions for correlative
terms Ly, and correlation factors f, in (116), we first
consider the more simple approximation NNJA. Using
Egs. (131)-(146), we obtain for the Lg, and f, at ¢ = 0,

to be denoted as Lf,g and fpo, the following expressions:

L%y = 2(324 — 221)?/ Dy,

L3 = 2(324 — 221)/ Do, (151)
LCBOB =2x2/Dy, Do = (221 + 25 + Tay),
fao=1—a2:L%p, fro=1-Lip, (152)

where Dy is the value of the reduced denominator D,
in (126) at ¢ = 0.

For the SSJA, expressions for Onsager correlative
coefficients at ¢ = 0 can be obtained as ¢ — 0 lim-
its of general SSJA equations (142) in which values
pe(c =0) = po, pr(c = 0) = pro, and Dys(c = 0) = DY,
are related to the so-called “vacancy escape function”
F = F(z4) used in the five-frequency modej (8) as fol-
lows:

po=T(1—F)=Px/Pp, pro=poDo/xs,

A (153)
Dss = DO — T4pPo = (21‘1 + 21‘2 + 71‘0F)

where polynomials Py = Py(z4) and Pp = Pp(z4)
have the following form:

Py(z) = Ajz + Ayx® + Azax® + 10z*,

154
Pp(x) = By + Bix + Byx? + Bsz® + 224, (154)

For the correlative Onsager coefficients LS. Eqs. (142)
and (153) yield in the SSJA:

LYy =2 [(3zs — 221) — 2(3z4 — 221) fupo +
+ fapoDo/x4] /DY,
LYs = 2(324 — 221 — fupo)/D2,,

CBOB = 2$2/Dgsv

(155)

where f, = (x4 — 1), while the SSJA expressions for
correlation factors fy, in (116) at ¢ — 0 take the form

fao=1-— 2;62(3334 — 2z — fuPO)/Dgsv
fBo =1-2x2/DY,.

As discussed in [8], relations (153)—-(156) are true not
only for the SSJA, but also for more accurate approx-
imations, such as that of Manning [3], but coefficients
A, and B, in (154) for other approximations differ

(156)
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Table 4. Coefficients A, and B, in (154) for the
SSJA [5] and for Manning’s model [3]

Model A1 A2 A3 BO Bl B2 Bg
SSJA [5] |1594.51031 190 |855.5930.5328 45
Manning [3]| 1341 927 180.5|436 597 254 140.2

from those for the SSJA. In Table 4 we present these
coefficients for the SSTA (first obtained by Bocquet [5])
and for the Manning model [3].

Using Eqs. (114) and (147), we can also write the
low-c expressions for Onsager coefficients including all
terms linear in c:

T
—5Laa=wao[1+c(bq —1—LYY],
0
r L LY (157)
— s =W C
na% AB B0 AB»
T
— _Lgp = 1—LY,).
nazlen wgo ¢ ( BB)

For the case of a very low vacancy concentration under
consideration (¢, < ¢g), our L, in Eqs. (157) with
the values of b4 and L, o given by Eqs. (148)-(155)
coincide with those found in the traditional theory [8].

Finally, we make remarks on the differences be-
tween our results and those of Nastar et al. [16-19]
mentioned in Sec. 1. First, basic equations given in
[17] are cumbersome and implicit, thus it is difficult
to use them. Second, the “Bragg-Williams approxima-
tion” employed in papers [16] and [18] corresponds to
replacing the correlation operator ij in Eq. (28) by
a constant, that is, to neglecting both the kinetic in-
teractions uf; and the saddle-point interactions Ag‘fij
which are actually very important for solute diffusion,
as both the traditional theories [1-9] and our results
in [13, 14] show. Hence the reliability of this “Bragg-
Williams approximation” is unclear. Third, the expres-
sion for L4 obtained by Nastar [17] corresponds to
missing the vacancy-solute interaction term b,p [given
by Eq. (149)] in the frequency enhancement factor b
in (157), which also disagrees with the traditional the-
ory [8]. As discussed in [13, 14, 21], the analogous
missing of vacancy-solute interaction was made in the
calculations of tracer self-diffusion enhancement factor
ba~ in [17] (as well as in all other calculations of this en-
hancement factor [2, 4, 7]). Let us also note that the ex-
pressions for Onsager coefficients given by Eqs. (5)—(12)
of paper [19] and derived using the NNJA and the pair
cluster variation method (pair CVM) are very similar to
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our NNJA-KMFA expressions (125)—(129). Most prob-
ably, the NNJA-pair CVM and the NNJA-KMFA ex-
pressions for Onsager coefficients should coincide with
each other, as the thermodynamic results of PCA (used
in KMFA) coincide with those of the pair CVM [20]. At
the same time, the direct comparison of our explicit ex-
pressions (125)-(129) with implicit equations (5)—(12)
in [19] is not simple and needs efforts.

8. EFFECT OF NON-PAIRWISE VACANCY
CORRELATIONS ON DIFFUSION

The effective hamiltonian herr (11) describes
changes in the distribution of vacancies with respect
to solute atoms (these changes are commonly called
“vacancy correlations”) due to the presence of a
steady-state diffusion fluxes in an alloy. The first
term in (11) describes pairwise correlations, while
the second and further terms in (11) describe the
non-pairwise correlations which can be significant for a
concentrated alloy. In this section, we discuss influence
of these non-pairwise correlations on diffusion. For
simplicity, we consider the model for which triple fields
h:’]BkB in the second term of Eq. (11) act only between
nearest neighbors, that is, only between sites which
form equilateral triangles in the FCC lattice. Earlier
influence of such triple fields on diffusion was discussed
in Ref. [18] using the “Bragg-Wiiliams approximation”
mentioned above. However, neglecting kinetic and
saddle-point interactions in this oversimplified approx-
imation does not allow to compare our microscopic
results (formulated in terms of these interactions) with
those presented in [18].

Note that the simple model used taking into ac-
count triple effective interactions only within trian-
gles of nearest-neighbor sites can not be considered
as quantitative and realistic. It is evident, in partic-
ular, that the number of triple effective interactions
within triangles of next-nearest-neighbor sites of the
type (0,1,3), (1,3,4), etc in Fig. 1 (having similar inter-
site distances) per alloy atom much exceeds that for thr
nearest-neighbor sites, and their influence on diffusion
can be significantly stronger. However, in this section
we aim to study mainly methodical problems. First,
we illustrate the methods of treatment of non-pairwise
vacancy-solute correlations in the master equation ap-
proach. Second, the results of this section enable us
to estimate the scale of manifestations of these non-
pairwise correlations in diffision for real alloys.

Considering general expressions (115) for diffusion
coefficients, we note that both the mean frequency w,
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defined by Eqs. (27) and (29) and the thermodynamic
factor ® defined by Eq. (112) do not depend on the
effective hamiltonian f, #f which describes vacancy cor-
relations. Hence various treatments of h. ¢ affect only
correlation factors f, determined by the correlative co-
efficients L§ in (116), and below we calculate only

these L7, .
Using general methods of derivation of equations
for time derivatives dc,/dt and fluxes JJ_,, described

in Secs. 2, 3 and Ref. [20], including Eq. (22) in [20], we
can generalize Eq. (26) for J§_,, to the case of presence
of triple fields in (11) as follows:

‘]0—>1 =

— B, (Opp+ by —BIg—RE-+RG+hi=ht)).  (158)

At p = h, operators izf;’ and ﬁf in this equation are
zero, just as operators hfj)‘ in Eq. (24), while at p = «
these operators correspond to the appropriate varia-
tional derivatives of the effective hamiltonian h, 7 (11):

7 av 9 heff av avo 0'
hew = = D] =KoY + Zhw

A (159)
7 8h‘ﬁ‘ff o0 1 aop,a

v g 3,0,k,p

while operator ﬁf corresponds to replacing index « in
the last equation by index v.

Relations of symmetry for fields h?"7 which gener-
alize Eqs. (25) follow from the antisymmetry of fluxes
J§_, (158) with respect to reflections z — (—z) and

Opip = (=0pp):

hpq p_

pap
ijk T —h:

pp
—h; zk’

pp _
2P = —h¥?, (160)

where sites 7, j and k correspond to a mirror reflection
of sites 7, 7 and k with respect to any crystal plane xy
normal to the direction z of fluxes.

Equations of evolution for two-site and three-site
averages generalizing Eq. (24) for dc! /dt have the fol-
lowing form:
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d N N
Pl =S < W8 (Suby +hEY Py —hP+
s(1)
4R = b))+ S (ol n? (ony
s(7)
+ B9 — hEy = b+ b+ by = BD)),

(ntning) =

= Z< wfningoul; + hEy — B — hE + (161)

+hz’+hz—h2>> +y <w§'s P (0 +hfl
s(7)
— REy — hg B 4y - B} +
+> <1ﬁ1§sn§’n§(5u§1’é +
s(k)

B = B = B R = R,

For the steady-state diffusion, the right-hand side
of Eqs. (161) should vanish. It is convenient to write

these stationarity conditions using the antisymmetric
combinations of occupation operators:

d
—(nPn? —nnl) =0,
g™t (162)
pPoa,r P d, T\ _
%(ninjnk —nzn;nl-ﬁ) =0,

and to consider in these equations sites (i,j,k) =
= (0,1,2) (in the notation of Fig. 1). Then equa-
tions for fluxes and fields which generalize relations (26)
and (37) to the case of presence of triple fields A" take
the following form:

TJ§ 1 = Wp(=Sup+2hgT)+ > myl (hols — hiy7 —
j,o
o o k: o o
2R 28Ty + S HThOR (—RETE £ B20),  (163)

jokp

Z{ pOs(6MP thf)

s#1
+ thl Neg] hpva'_hvpfr _

p,0s 0sj 0sj
- h”"+h 7+hi7—hi7) +
4= Z 7'3)10?] ok hPoP 4

sgk
JUkP

pop vop vop _
hOJk +hsgk hO]k)

- Z q Os 5”4_2]7’83)
s#1

‘|‘th1 ,0j hqvo’ tha hqa

q,0s 0sj 0sj

1
+hg;.’+h’;‘.’—hg;’)+§+
DA TR

Jjokp
— hgj,f) =0,

1,r2
> |0 (Oup—2hh) +

s7#1,2

+ E :rql ,r2,0] hpvo’_hvpa _

p,0s 0sj 0sj
po po‘ vo vo
—h. + BT+ hiT — hyT) +

+ = E : Sql ,r2,07, pk hpap

p,0s sjk
]Ukp

mwmmhmy
(164)

= > |fa6s (Ong — 2hg7) +
s#1,9

SO~ 5 0
+ hoj + R — hyT) +

+ 1 Spl r9,07, pk:

q,0s
jokp

qop | 1 qop | pUap _ 3 VOp
( hsgk+h0jk+h51k hO]k)

= > |6l (Gur — 2h83) +
s#1,9

Pl q9, CT] rvo vro
+ E Tros 7 (hosy — hosy —

h“’+h T+heT —hoT) +

E : pl,q9,07, pk rop
+35 Sr,0s hsyk +

]Ukp

%mmyfmﬁﬂ.

In Eqs. (164), site “9” is the nearest neighbor of sites
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0, 1 and 2, as shown in Fig. 1, and quantities rgi?gk’tl The NNJA-KMFA  expressions for atomic
and sgjl?:k’”’“m are defined analogously to tf,j;:k in (31):  fluxes (163) in the notation (134) take the following
’ ’ form:
padrkstl _ ap par ot ,
S pis (i ik ) (165) JOB%1 = —Bw%c{é,uB +2¢4(30 —29)hy +
SQJZTk’tlﬂlm — <’pr nin ntnt >
p,is is' G RT m _ _ ey — _
+4ca[(29 — 30) + caD(20 — §)]h2 +
For s.iml.)licity, belF)w we use? th(? NNJA supposing 4 dea[(30 — 2§) + ca(® — GO — 62)]h3}, (170)
both pairwise and triple effective interactions to act N
only between nearest-neighbors. Then symmetry rela- Joo = —Bwica [6p14 + 2¢(22 — 3v)h1 +
tions (160) imply that for the given sets of species (p, p) + 4c*v(2v — x)he + 4c*(2® — zv — v?)hg] .
or (p,q, p), only one pairwise field {7 or one triple field
h§it is independent and nonzero, while all other fields Each solution h,, of linear equations (169) is the

can be expressed via these h2? or h5%5. The statistical ~ sum of two terms proportional to x4 and to z0pup:
averages in Eqs. (165) have the form
8 as- (169) I = hASpa + hE 2005 (171)

q1,92...4n — ~D q1,.,92 dn
Uy isiitin..in <7~U01”i1 g, ”zn> (166)

Substituting these solutions into Eqgs. (170) and com-
paring the resulting relations with Egs. (38), (41), and
(114), we can express the correlative Onsager coeffi-
cients LS, in (114) via fields k7 and hZ in (171) as

analogous to v,; and l/z:\ij in (52), and they will be cal-
culated using the KMFA, just as those in Sec. 4.2. Tt

yields the relations similar to (74):

follows:
Vg T = CpCay - CanWpllpg, - Tye (167) 4 = 2(3v — 22)h{ + dev(z — 20)hy —
_ 2 2\ A
where &, is the symmetry of site i,,, being A or u, and de(a” — v —v7)hi,
the expressions for 17, are given by Egs. (73). Note L% g = 2(2x — 30)hf — dev(z — 20)hE +
that averages in Eqs. (164) include operators w§, de- +4c(a® — zv — v*)RP,
scribing a p = v jump along bond (0s) rather than that . - . - B
along bond (0,1), as in Eq. (166). Hence these averages BA = {2(3U —2yg)hy — 4{(3v - 29) +
should be transformed into those given by Eq. (166), +ealgo — 2172)]h§ + (172)
using rotations of crystal lattice discussed in Sec. 4.1. X 4
For the case of a binary alloy AB considered be- +4[(30 — 2y) + ca(y” — yv — v7)]hg }7
low, Eqs. (164) include only three different fields: the e . .B L
pairwise one, h3P, and two triple ones, h{EP and Lsp = Z{Q(Qy —30)hy’ +4{(30 - 29) +
BB = hBEv. For brevity, these fields will be denoted + ca(go — 20°)|hE —
as
—4(30 - 29) + ealy® — g0 — )nf },
heP =hi, hiBP =hs, h§4P = hs, (168)

where Mm% = (22 — 3v) is the same as in (134). We
and equations for these h, can be obtained if we put ~ note that the Onsager symmetry relation (120) here
in the first and the second Eqs. (164): (p,q) = (B, A),  takes the form:
(p,q,r) = (B, A, A), and (p,q,r) = (A, B, A), respec-

tively. To calculate Onsager coefficients, it is conve- cal(22—3v)h{ —2cv(z—20)h5 +2c(2” —zv—v?)hy] =
nient to write these equations in the following form: =ca(30 — Qg)hzl‘l — Qcy(hé‘l — h’34) (173)
3 . . .
In the absence of triple fields, this relation was
_ 1A B )
; akthy = by Opa + by 201, (169) proved in Sec. 6.2 for any concentration ¢. When the

triple fields are present, proof of Eq. (173) at any ¢
where z = w% /WY is the same as in (124). Coefficients 1 cumbersome, but we have proved it for the case of
ar in (169) are calculated using Eqs. (164), and these low ¢ discussed below. The presence of this symmetry
calculations are rather tedious. The resulting coeffi-  relation can be viewed as the evidence of correctness
cient ayy coincides with Dy, in Eq. (126), while the  of results of tedious calculations mentioned above and

rest ay and b} in (169) are presented in Appendix B. given by Eqs. (185)—(188).

336



MIT®, Tom 146, Boi. 2 (8), 2014

Statistical theory of diffusion ...

Linear equations (169) for fields h?, with the coeffi-
cients given by Eqs. (184)—(186) are simply solved using
standard computer codes, while Eqs. (172) expresses
coefficients L, in Eqs. (116) and hence correlation fac-
tors fp in Eqs. (115) via these h?. Thus, Eqgs. (169)
and (172) enable to calculate the effect of triple va-
cancy correlations on diffusion coefficients D, at any
concentration c.

Below we discuss the case of dilute alloys when
Eqs. (169) are greatly simplified. For this case, each
field hY in (171) can be conveniently written as a sum
of the zero-order term h7, and the linear in ¢ term ch?;
where h¥, corresponds to the solution of Eqs. (169) at
c=0:

hY = hiy + chfy,
3x4 — 211
Dy ’

1 (174)

Dy’

A _ B _
th_ th__

and z, and Dy are the same as in (145) and (152).
Then two systems of equations for fields hY;, h% and h%
with p = A and p = B can be concisely written as

Dohzl)l + Alghg + Alghg = Blp — Bllhll)m

Dohzl)l + A22h12) + Agghg = ng — Bglhzl)o,
Dohi’l + A32hg + Agghg = ng — Bglh:fo,

(175)

where coefficients A, Bmp and By, are given in Ap-
pendix C.

Let us write the correlative coefficients L, in (172)
and the correlation factors f, in (116) at low ¢ as fol-
lows:
+cLf!

Ly, = ng vor Jp = fro(1+ bg), (176)

where Lf,g and fyo are the same as in (152), and b is
the correlation enhancement factor. Then Eqs. (116)
show that these enhancement factors are expressed via
L5y and L5 in (176) as follows:

1
by = fT [$2L?B(1 - llz) - f40A - 932Lf413] )
10 (177)
bp = +— (L%)B - Li?B - LCBlB) )
IBo

where [, is the logarithmic derivative of the frequency

ratio 2 = w% /w9 with respect to ¢ at ¢ = 0 which,
according to Eqs. (124), can be written as
l’z = (dln Z/dc)c:() =4y, — 4z, + bpp. (178)

To find terms L&} in (176), we can use the following
evident relations for the derivatives ¢' = (di/de).—o of
various functions ¢ in (134):

9 ZKSOT®, Bem. 2 (8)
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' =—x1fan, T =—fan, ¥ =-y1[Ba,
gl = _fBAa v = _x4fua v = _fua (179)
far=z1-1, fea=yi—1, fu=x4—-1

Considering the linear in ¢ terms in Eqgs. (172), we
find that terms LS| which enter Eqs. (177) are ex-
pressed via fields hP, h, and hZ in (175) as follows:

L%g = 2[221 fan—3x4 fu)/ Do+ (221 —3x4)h D +

+ 224224 — xl)h2B +2(2? — 174 — xi)h?)],

Lyg = 222[(IL + 2fsa — 3fu)/Do — hB +
+2y1 (b — h3)].

(180)

We note that taking into account only pairwise vacancy
correlations (made in Secs. 3-7) corresponds to putting
in Eqs. (175) h5 = hE = 0, while the field A}, for this
case is

hl1)17Pvc = (Bip — Bllhlfo)/DO- (181)

Applications of results of this section for estimates of
influence of non-pairwise vacancy-solute correlations on
diffusion in real alloys.

9. CONCLUSIONS

We summarize the main results of this work. We
develop the statistical theory of steady-state diffusion
in concentrated substitution alloys basing on the mas-
ter equation approach. To be definite, we consider the
nearesr-neighbor pairwise interaction model of FCC
alloys as an example. We explicitly write all basic
equations of the theory with fully taking into account
the vacancy-solute interactions. General expressions
for Onsager coefficients in terms of microscopic in-
teratomic interactions and some statistical averages
are presented. We discuss methods of calculations of
these averages using two statistical approximations:
the kinetic mean-field approximation (KMFA) which
neglects statistical fluctuations in these averages, while
chemical potentials are calculated using the more ac-
curate, pair-cluster approximation (PCA) [24-26], and
the full PCA which also takes into account these sta-
tistical fluctuations. To describe vacancy-solute corre-
lations, we use the nearest-neighbor-jump approxima-
tion which takes into account these correlations only
for nearest neighbors, and the second-shell-jump ap-
proximation which takes them into account up to the
fourth neighbors in the FCC lattice. We also discuss
effects of non-pairwise vacancy correlations using the
triple vacancy-solute correlation model. For each of
these approximations and methods, we derive expres-
sions for Onsager coefficients at any composition of an
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alloy. For binary alloys, we also present explicit expres-
sions for diffusion coefficients. Applications of methods
developed to statistical calculations of diffusion coef-
ficients in real alloys and to estimates of interatomic
interactions important for diffusion from experimental
data are described in other papers [13, 14].
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in this work. The work was supported by the Russian
Fund of Basic Research (grant No.12-02-00093), and
by the fund for support of leading scientific schools of
Russia (grants Nos. NS-215.2012.2 and NS-932.2014.2).

APPENDIX A

Fluctuative term wyy in Eq. (90)

To illustrate the form of expansions of correlative
terms wyy, Vi, ; and zxz,}; ;.7 in powers of correlators X;
in Egs. (90) and (94), below we present the first terms
of this expansion for w,;. For terms v’ . and Vz:\i].7f,
the analogous “shortened” expansions are presented in
Ref. [13]. To make formulas not too lengthy and keep-
ing in mind the estimate | X;| < 0.02 obtained in Sec. 5,
we include in this shortened expression w;?, in addi-
tion to all terms linear and quadratic in X;, only those
terms with the higher powers of X; which at | X;| = 0.02
exceed 1073, For brevity, each term X{"' X2 ... is de-
noted as X with n; lower indices 1, ny lower indices 2
etc, for example

X1 XoX5 = Xy 05,

XoX2 = Xog. (182)

Then, denoting this shortened version of the fluctuative
term by the upper index “sh”, we have
wit = (X1+8X2+14X3+2X4+16X5+22X5) +
+ (2X1 4 +16X1 5 + 22X 6+ 12X + 56X 3 +
+8Xo4 +96X55 +176X5 6 +49X3 3 +28X3 4 +
+208X35 +264X36+ Xaa+16X45 +44X,6 +
+92X;5 5 + 304X;5 6 + 183X66) + (304X 56 +
+ 183X 6,6 +264X5 26 + 624X 35 + 1056 X336 +
+ 176 X5 46 + 368X 5 55 + 1824X, 5 6 + 1464 X5 6 6 +
+672X335+ 772X3 36+ 208X345 + 528X3.4,6 +
+ 1104X3 5 543344 X3 5 6+1830X3 6 6+304 X4 5 6 +
+366X46,6+224X5 55+1488 X5 5 64+2120X5 5 6 +
+ 720X6,6,6) + (10032X3 356 + 7320X2,3,6,6 +
+ 12720X5 56,6 + 8880X3,3 5,6 + 14880X3 55,6 +
+ 19080X73 56,6 + 8528X5 56,6 + 6688X56.6,6). (183)

At X; = 0.02, Eq. (183) yields ws} = 2.081, while
the total wy,y in (90) is 2.064. Similarly, at X; = —0.02

we have w;? = —0.775, wpy = —0.771. Therefore, the
shortened version (183) seems to describe the total wy
in (90) within about one percent. For terms zng, s and

A
]/q

vij.p- Similar results are presented in [13]

APPENDIX B

Coefficients ay; and b} in Egs. (169)

Coefficients ay; in Egs. (169) are some polynomials
in the solute site fraction cp = ¢:

2
aw =Y aem. (184)
m=0

In the notation (134), the nonzero agln) in (184) are
agi) =[220(20 — §) + x(T + 0) + v(2T + 50)],
aSl) = [25(8y® — 3yF + 8vj — Tvd) +

+ 2% (2% +30) —22v(62+50)+v (107+0)] ,

ag(i) = [22(172—372+17;17)+x(31§—a?)+v(256+517)] ,
(1) _

= {z [y7(30—27)+vy(67—40)+0° (4y—v)] +
+ x2(915—29?)+6xv(a?—51§)+v2(1315—256)},

al) = 62y (5 — 20) — 6zv — 1002,
al2) = v [2(6y7 — 1605 — 16yD + 14v5) —

— 62 + 3220 — 140°] |
a%) = 2yv(3y—80) —xzv—5rvi—4T0° —607D,

& -
= [zvi(4yg—18yT—18v§+19v0)+v(282Tv —
— 42°z — 2420° — 62”0 + 32200 — 40°0)],
aly) = 2y (292 - 3gv—402) — 2200 —T0° — 4070,
ay) = [zv(4yg?—165v—6ygo+8vgi—16ys> +

+ 400?) + v(42°% — 14xzv — 162%0 +

+ 62200 + 270° — 340°0)] ,
aly) = —62y(7 — 20) + 42 + 220 + 1007,
a§23) = z(6ygo—4y’y+8v>J+12y>v—8yvd —
— 20%0) + 4a® — 182%v + 203,

aglg) = 2y0(80—-37) + 2220 2xvv+4v2 5 +0? 7,
asy = [20(6ygv — 4y°F + 16y°D + 1650° —
—8yvo—4v?0)+4adt—1222 sv+ 2wz’ + 423 v—

— 122200 + 220%0 + 14703 — 2v31§] ,
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all) = [zy(370 — 27 + 40°) + 62%0 +
+ 2270 + 4200 + 50°T + 101)213] ,
0l = [2(4y°50 + dyg®v — 45 + 8y°0% —

(185)
— 6ygud + 872 v? — 8yvd? — 8Jv3v + 20%5%) —

— 42°% + 4270 + 122°0 + 6270> — 402200 —
— 10z0% — 222025 + 10v317] ,
while terms b} in the right-hand side of Eq. (169) are

bt = (3v—22), b3 =[v(2z+0) —z(z + )],
ba = (2% — 30+ 3vD), bP = (25 — 30), (186)
by =o(y—20), by =7 —g0o—7°).

APPENDIX C
Coefficients A,,n, Bpp, and B,,1 in Eqgs. (175)
Coefficients Ayn, Bnp, and By, in Eqgs. (175) are

expressed via z, and y; in (145) and bgp in (150) as

follows: )
Ay = —(6a2y1 + 6124 + 1027),

Az = (6xay1 + 422 + 22124 + 1027),
Asy = —(522y1 + 62124 + 1027),

Asz = (aayr + 22 — 22134 + 523),
Aszs = —(baoyr + 22124 + 5332),

Asz = (5aoyr + 6aF + 6x124 + 1523), (187)
Bia = (22?2 — 221 — 327 + 324),
Boy = (327 — xyxq — 427) 4 (624 — 41),
Bsa = (23 + 3x124 — 627) + (624 — da1),
Big = (3x4 — 2y1 — 1),
Byp = B3p = (374 —y1 — 2),
By, = D), = 22(18y1 — 81 — 5x4 + 2bpp) +
+ 4(2? — 6124 + 23) + Do,
Bsy = x2(15y1 — 821 — 524 + 2bpR) + (188)

+ (22?2 — 252124 — 23) + 2Dy,
B3 = 1‘2(153/1 — 8r1 — B4 + QbBB) +
+ (627 — 292124 — 23) + 2Dy,

where D!, is (0Dpy,/0¢)c—o with Dy, from (126), and
Dy is the same as in (151).
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