ФОТОРОЖДЕНИЕ НЕЙТРИНО НА ЭЛЕКТРОНЕ В ПЛОТНОЙ ЗАМАГНИЧЕННОЙ СРЕДЕ

Н. В. Михеев^{*}, Д. А. Румянцев^{**}, М. В. Чистяков^{***}

Ярославский государственный университет им. П. Г. Демидова 150000, Ярославль, Россия

> Поступила в редакцию 9 апреля 2013 г. после переработки 26 марта 2014 г.

Рассмотрено влияние сильно замагниченной холодной плазмы на комптоноподобный процесс фоторождения нейтрино на электроне $\gamma e \rightarrow e \nu \bar{\nu}$ и вычислен его вклад в нейтринную светимость с учетом дисперсионных свойств фотона в среде. Предложен метод вычисления светимости рассматриваемого процесса через ширину комптоновского поглощения фотона. На основе изложенной методики показано, что нейтринная светимость за счет реакции $\gamma e \rightarrow e \nu \bar{\nu}$ существенно модифицируется по сравнению с имеющимися в литературе результатами.

DOI: 10.7868/S0044451014080070

1. ВВЕДЕНИЕ

Проблема корректного описания воздействия внешней активной среды (сильного магнитного поля и/или плотной плазмы) на квантовые процессы является в настоящее время актуальной, поскольку воздействие среды на такие процессы обусловлено чувствительностью заряженных фермионов (в первую очередь электронов как частиц с наибольшим удельным зарядом) к влиянию поля, а также тем фактом, что сильно замагниченная плазма существенно меняет дисперсионные свойства фотонов, а значит, и кинематику процессов.

Условия сильно замагниченной плазмы могут реализовываться в недрах магнитаров — изолированных нейтронных звезд с магнитными полями, значительно превышающими критическое значение $B_e = m^2/e \approx 4.41 \cdot 10^{13} \ {\rm \Gammac}^{1)}$. Недавние наблюдения [1–5] позволяют, в частности, отождествить некоторые астрофизические объекты (SGR и AXP) с магнитарами.

С другой стороны, все известные теоретические модели внутреннего строения нейтронных звезд дают такие значения параметров среды (плотности и температуры), при которых замагниченная плазма является прозрачной для нейтрино. В этом случае определяющую роль в нейтринном охлаждении будут играть реакции, в которых пара нейтрино-антинейтрино находится в конечном состоянии. В частности, в недавних работах [6-8] рассматривался процесс фоторождения нейтрино (так называемый фотонейтринный процесс), $\gamma e \rightarrow e \nu \bar{\nu}$. Были получены выражения для нейтринной излучательной способности (neutrino emissivity), т.е. энергии, уносимой нейтрино из единицы объема звезды за единицу времени как в случае нерелятивистской, так и в случае релятивистской плазмы. Однако в этих работах не была учтена анизотропия в дисперсии фотонов, которая может изменить соответствующие выражения. Кроме того, в выражениях для нейтринной светимости за счет комптоноподобного процесса $\gamma e \rightarrow e \nu \bar{\nu}$ в областях нерелятивистской и релятивистской плазмы содержится ряд неточностей [7].

В настоящей работе мы подробно исследуем комптоноподобный процесс фоторождения нейтрино, $\gamma e \rightarrow e \nu \bar{\nu}$, и светимость, обусловленную им, с аккуратным учетом дисперсионных свойств фотонов как в случае нерелятивистской, так и в случае релятивистской плазмы.

^{*}E-mail: mikheev@uniyar.ac.ru

^{**}E-mail: rda@uniyar.ac.ru

^{***}E-mail: mch@uniyar.ac.ru

 $^{^{1)}}$ Используется естественная система единиц $c=\hbar=k=$ = 1, m- масса электрона. Везде в работеe>0- элементарный заряд.

2. ДИСПЕРСИОННЫЕ СВОЙСТВА ФОТОНОВ В ЗАМАГНИЧЕННОЙ ПЛАЗМЕ

Распространение электромагнитного излучения в любой активной среде удобно описывать в терминах нормальных (собственных) мод. В свою очередь, поляризационные и дисперсионные свойства нормальных мод связаны с соответственно собственными векторами и собственными значениями поляризационного оператора $\mathcal{P}_{\alpha\beta}$. При этом удобно разложить тензор $\mathcal{P}_{\alpha\beta}$ по базису из 4-векторов [9], построенных из тензора электромагнитного поля, приведенного к безразмерному виду, и 4-вектора импульса фотона q_{α}^{2} :

$$b_{\mu}^{(1)} = (\varphi q)_{\mu}, \quad b_{\mu}^{(2)} = (\tilde{\varphi} q)_{\mu}, b_{\mu}^{(3)} = q^2 (\Lambda q)_{\mu} - q_{\mu} q_{\perp}^2, \quad b_{\mu}^{(4)} = q_{\mu},$$
(1)

являющихся собственными векторами поляризационного оператора в постоянном однородном магнитном поле. При этом

$$\begin{split} (b^{(1)}b^{*(1)}) &= -q_{\perp}^{2}, \quad (b^{(2)}b^{*(2)}) = -q_{\parallel}^{2}, \\ (b^{(3)}b^{*(3)}) &= -q^{2}q_{\parallel}^{2}q_{\perp}^{2}, \quad (b^{(4)}b^{*(4)}) = q^{2}. \end{split}$$

Здесь и далее 4-векторы с индексами « \perp » и « \parallel » относятся соответственно к подпространствам Евклида $\{1,2\}$ и Минковского $\{0,3\}$. Причем, когда магнитное поле **В** направлено вдоль оси z, соответствующие скалярные произведения определяются следующим образом:

$$(ab)_{\perp} = (a\Lambda b) = a_{\alpha}\Lambda_{\alpha\beta}b_{\beta},$$
$$(ab)_{\parallel} = (a\tilde{\Lambda}b) = a_{\alpha}\tilde{\Lambda}_{\alpha\beta}b_{\beta},$$

где введены матрицы $\Lambda_{\alpha\beta} = (\varphi\varphi)_{\alpha\beta}, \ \tilde{\Lambda}_{\alpha\beta} = (\tilde{\varphi}\tilde{\varphi})_{\alpha\beta},$ связанные соотношением

$$\Lambda_{\alpha\beta} - \Lambda_{\alpha\beta} = g_{\alpha\beta} = \operatorname{diag}(1, -1, -1, -1),$$

 $\varphi_{\alpha\beta} = F_{\alpha\beta}/B$ — приведенный к безразмерному виду тензор внешнего магнитного поля, $\tilde{\varphi}_{\alpha\beta} = = \varepsilon_{\alpha\beta\mu\nu}\varphi_{\mu\nu}/2$ — дуальный тензор поля.

Следует подчеркнуть, что в отличие от магнитного поля, для электрического поля значение $\mathcal{E}_e = B_e$ является предельным, так как генерация в макроскопической области пространства электрического поля порядка критического приведет к интенсивному рождению электрон-позитронных пар из вакуума. С другой стороны, в конфигурации, где электрическое поле направлено перпендикулярно магнитному, электрическое поле \mathcal{E} может превышать критическое значение B_e , оставаясь при этом меньше B. Но в этом случае с помощью преобразования Лоренца всегда можно перейти в систему отсчета, где есть только магнитное поле. Это утверждение можно обобщить и на случай, когда плазма, имеющая температуру T и химический потенциал μ , движется как целое вдоль магнитного поля. Для этого достаточно функцию распределения электронов записать в явном лоренц-инвариантном виде, введя 4-вектор скорости среды, u_{α} :

$$f(\mu) = \frac{1}{1 + \exp\left[((pu)_{\parallel} - \mu)/T\right]},$$

$$(pu)_{\parallel} = Eu_0 - p_z u_z, \quad E = \sqrt{p_z^2 + m^2}.$$
(2)

При этом условие, что в такой системе отсутствует электрическое поле, может быть записано в релятивистски-ковариантном виде: $(u\Lambda)_{\mu} = 0$. Следовательно, в случае, когда плазма движется как целое вдоль магнитного поля, можно рассмотреть ситуацию только чистого магнитного поля.

С учетом этого замечания в случае сильно замагниченной плазмы, когда магнитное поле является наибольшим параметром задачи, $eB \gg m^2$, μ^2 , T^2 , используя результаты работ [10–13], для $\mathcal{P}_{\alpha\beta}$ можно получить следующее разложение по обратным степеням магнитного поля:

$$\mathcal{P}_{\alpha\beta} = \sum_{\lambda} \varkappa^{(\lambda)} \frac{r_{\alpha}^{(\lambda)} (r_{\beta}^{(\lambda)})^{*}}{(r^{(\lambda)})^{2}} \approx -\frac{2\alpha}{\pi} eB\mathcal{D} \frac{(\tilde{\varphi}q)_{\alpha} (\tilde{\varphi}q)_{\beta}}{q_{\parallel}^{2}} + \frac{\alpha}{3\pi} (\varphi q)_{\alpha} (\varphi q)_{\beta} + \frac{i\alpha}{\pi} \mathcal{A} \left[\varphi_{\alpha\beta} (qu) + (q\varphi)_{\alpha} u_{\beta} - (q\varphi)_{\beta} u_{\alpha} \right] + \frac{\alpha}{3\pi} \mathcal{V} \left(q^{2}g_{\alpha\beta} - q_{\alpha}q_{\beta} \right) + O\left(\frac{1}{eB}\right), \quad (3)$$

где

$$\mathcal{D} = 2q_{\parallel}^2 m^2 \int_{-\infty}^{\infty} \frac{dp_z}{E} \frac{f(\mu) + f(-\mu)}{4(pq)_{\parallel}^2 - q_{\parallel}^4} - H\left(\frac{q_{\parallel}^2}{4m^2}\right), \quad (4)$$

$$H(z) = \frac{1}{\sqrt{z(1-z)}} \operatorname{arctg} \sqrt{\frac{z}{1-z}} - 1, \quad 0 \leqslant z \leqslant 1, \quad (5)$$

²⁾ В дальнейшем при переходе от четырехмерных обозначений к трехмерным, мы полагаем $q^{\alpha} = (\omega, \mathbf{k})$, так что $q_{\parallel}^2 = \omega^2 - k_z^2$, $q_{\perp}^2 = k_x^2 + k_y^2$.

$$\mathcal{A} = \int_{-\infty}^{\infty} \frac{dp_z}{E} (pu)_{\parallel} \left[f(\mu) - f(-\mu) \right], \qquad (7)$$

$$\mathcal{V} = \ln \frac{B}{B_e} - 1.792 + \frac{3}{2} \int_0^1 dx (1 - x^2) \times \ln \left[1 - \frac{q^2}{4m^2} (1 - x^2) \right].$$
(8)

Далее будем рассматривать только систему покоя плазмы, так что $(pu)_{\parallel} = E$. При этом в разложении собственных векторов $r_{\alpha}^{(\lambda)}$ по обратным степеням поля для получения самосогласованного результата оказывается необходимым учесть следующий порядок малости. В результате получим:

$$\begin{aligned} r_{\alpha}^{(1,3)} &= \left[\mp \sqrt{q_{\perp}^{4} + (6\mathcal{A}\omega)^{2} \frac{q^{2}}{q_{\parallel}^{2}}} - q_{\perp}^{2} \right] b_{\alpha}^{(1)} - i \frac{6\mathcal{A}\omega}{q_{\parallel}^{2}} b_{\alpha}^{(3)} + \\ &+ i \frac{\mathcal{A}k_{z} q_{\perp}^{2}}{2eB\mathcal{D}q_{\parallel}^{2}} \left[\pm \sqrt{q_{\perp}^{4} + (6\mathcal{A}\omega)^{2} \frac{q^{2}}{q_{\parallel}^{2}}} + q_{\perp}^{2} \right] b_{\alpha}^{(2)} + \\ &+ O\left(\frac{1}{(eB)^{2}}\right), \quad (9) \end{aligned}$$

$$r_{\alpha}^{(2)} = b_{\alpha}^{(2)} - i \frac{\mathcal{A}k_z}{2eB\mathcal{D}} b_{\alpha}^{(1)} + O\left(\frac{1}{(eB)^2}\right).$$
(10)

Соответствующие собственные значения в приближениях $O(1/(eB)^2)$ для $\varkappa^{(1,3)}$ и O(1/eB) для $\varkappa^{(2)}$ имеют вид

$$\begin{aligned} \varkappa^{(1,3)} &= \frac{\alpha}{3\pi} q^2 \mathcal{V} + \frac{\alpha}{6\pi} \left[\mp \sqrt{q_{\perp}^4 + (6\mathcal{A}\omega)^2 \frac{q^2}{q_{\parallel}^2}} - q_{\perp}^2 \right] \times \\ &\times \left\{ 1 \mp \frac{3(\mathcal{A}k_z)^2 q_{\perp}^2}{2eB\mathcal{D}q_{\parallel}^2} \left[q_{\perp}^4 + (6\mathcal{A}\omega)^2 \frac{q^2}{q_{\parallel}^2} \right]^{-1/2} \right\} + \\ &+ O\left(\frac{1}{(eB)^2}\right), \quad (11) \end{aligned}$$

$$\varkappa^{(2)} = \frac{\alpha}{3\pi} q^2 \mathcal{V} + \frac{2\alpha}{\pi} eB\mathcal{D} + O\left(\frac{1}{eB}\right).$$
(12)

Как видно из полученного результата, даже в приближении сильно замагниченной плазмы определение дисперсионных свойств фотонов для всех трех Фоторождение нейтрино на электроне . . .

поляризаций представляет достаточно сложную задачу. Однако, как показывает анализ (см., например, [6,14]), в случае $eB \gg m^2$, когда электроны занимают основной уровень Ландау, только фотоны с поляризацией, соответствующей вектору $r_{\alpha}^{(2)} \approx b_{\alpha}^{(2)}$, будут определять лидирующие по внешнему полю вклады в амплитуду процесса $\gamma e \to e\nu\bar{\nu}$.

В приближении холодной плазмы, $\omega, T \ll \mu-m,$ интеграл в выражении (4) вычисляется и формула (12) принимает вид ³⁾

$$\varkappa^{(2)} \approx \frac{\omega_p^2 \, q_{\parallel}^2}{\omega^2 - v_F^2 \, k_z^2}, \quad v_F = \sqrt{1 - \frac{m^2}{\mu^2}}.$$
(13)

Следует отметить, что в замагниченной плазме, в отличие от случая чистого магнитного поля, у фотона с вектором поляризации $r_{\alpha}^{(2)}$ появляется эффективная масса, так как $\varkappa^{(2)} \approx \omega_p^2$ при $\mathbf{k} = 0$. С другой стороны, $\varkappa^{(1,3)} = 0$ при $\mathbf{k} = 0$, т.е. фотоны мод 1 и 3 остаются безмассовыми.

В этом случае решение уравнения дисперсии

$$q^2 - \varkappa^{(2)} = 0 \tag{14}$$

для фотона моды 2, распространяющегося под ненулевым углом θ по отношению к магнитному полю, можно найти аналитически, как функцию $\omega = \omega(\mathbf{k})$, представимую в виде

$$\omega = \left\{ \frac{1}{2} \left[k^2 (1 + v_F^2 \cos^2 \theta) + \omega_p^2 \right] + \frac{1}{2} \times \sqrt{\left[k^2 (1 - v_F^2 \cos^2 \theta) + \omega_p^2 \right]^2 - 4\omega_p^2 (1 - v_F^2) k^2 \cos^2 \theta} \right\}^{1/2},$$
(15)

где $\omega_p^2 = (2\alpha eB/\pi)v_F$ — плазменная частота.

В частности, в случае нерелятивистской плазмы, $v_F \ll 1$, получаем

$$\omega \approx \left\{ \frac{1}{2} \left[k^2 + \omega_p^2 \right] + \frac{1}{2} \sqrt{\left[k^2 + \omega_p^2 \right]^2 - 4\omega_p^2 k^2 \cos^2 \theta} \right\}^{1/2}.$$
 (16)

В случае релятивистской плазмы, $v_F \sim 1$, имеем

$$\omega \approx \sqrt{k^2 + \omega_p^2}.$$
 (17)

В заключение этого раздела отметим, что в случае холодной плазмы перенормировка волновой

³⁾ Первым слагаемым в (12) можно пренебречь, поскольку оно не влияет на закон дисперсии в первом порядке по константе α .

функции фотона становится несущественной, поскольку основной вклад в физически наблюдаемые характеристики (например, светимость) дает область энергий фотонов $\omega \ll m$.

3. НЕЙТРИННАЯ СВЕТИМОСТЬ

Как отмечалось во Введении, нашей основной целью является получение выражения для нейтринной излучательной способности, обусловленной фоторождением нейтрино на электроне. В свою очередь излучательная способность нейтрино в предположении, что мы пренебрегаем обратным влиянием потерь энергии и импульса на состояние плазмы, может быть определена как нулевая компонента 4-вектора энергии-импульса, передаваемого в этом процессе от нейтрино единице объема внешней среды за единицу времени, и представлена в следующем виде [15, 16]:

$$Q = \frac{1}{V} \int \prod_{i} d\Gamma_{i} f_{i} \prod_{f} d\Gamma_{f} (1 \pm f_{f}) q_{0}^{\prime} \frac{|S_{if}|^{2}}{\tau}, \quad (18)$$

где $d\Gamma_i$ $(d\Gamma_f)$ — число состояний начальных (конечных) частиц; f_i (f_f) — соответствующие функции распределения, знак «+»(«–») отвечает конечным бозонам (фермионам); q'_0 — энергия нейтринной пары; V — объем плазмы, τ — время взаимодействия.

При вычислении S-матричного элемента процесса $\gamma e \rightarrow e \nu \bar{\nu}$ будем рассматривать случай относительно малых передач импульса по сравнению с массой W-бозона, $|q'^2| \ll m_W^2$. В этом случае слабое взаимодействие нейтрино с плазменными электронами можно описывать в локальном пределе эффективным лагранжианом вида

$$\mathcal{L} = \frac{G_F}{\sqrt{2}} \left[\bar{e} \gamma_\alpha (C_V + C_A \gamma_5) e \right] j_\alpha, \tag{19}$$

где $C_V = \pm 1/2 + 2\sin^2 \theta_W$, $C_A = \pm 1/2$. Здесь верхний знак соответствует электронному нейтрино ($\nu = \nu_e$), когда в реакции происходит обмен W- и Z-бозонами. Нижний знак соответствует μ - и τ -нейтрино, когда присутствует лишь обмен Z-бозонами; $j_{\alpha} = \bar{\nu} \gamma_{\alpha} (1 + \gamma_5) \nu$ — ток левых нейтрино.

Исходя из лагранжиана (19) S-матричный элемент процесса $\gamma e \to e \nu \bar{\nu}$ можно представить в виде

$$S_{\gamma e \to e\nu\bar{\nu}} = \frac{i(2\pi)^3 \delta^3(p_1 + q - p_2 - p' - p'')}{\sqrt{2\omega V \cdot 2E_1 L_y L_z \cdot 2E_2 L_y L_z \cdot 2E'V \cdot 2E''V}} \times \mathcal{M}_{\gamma e \to e\nu\bar{\nu}}, \quad (20)$$

где

$$\mathcal{M}_{\gamma e \to e\nu\bar{\nu}} = 2\sqrt{2}G_F \ me \left[C_V(q'\tilde{\varphi}j) - C_A \left(q'\tilde{\varphi}\tilde{\varphi}j\right)\right] \times \frac{\sqrt{q_{\parallel}^2(|Q_{\parallel}^2| + 4m^2)}}{(qq')_{\parallel}^2 - \varkappa^2(q\tilde{\varphi}q')^2}$$
(21)

— инвариантная амплитуда в низшем неисчезающем приближении теории возмущений по α [6]. Здесь E', E'' — энергии нейтрино и антинейтрино, $p_1^{\mu} = (E_1, \mathbf{p}_1) - 4$ -импульс начального электрона, $p_2^{\mu} = (E_2, \mathbf{p}_2) - 4$ -импульс конечного электрона, $E_{1,2} = \sqrt{p_{1,2z}^2 + m^2}, q^{\mu} = (\omega, \mathbf{k}) - 4$ -импульс начального фотона, $q'^{\mu} = (p' + p'')^{\mu}$ — суммарный 4-импульс пары нейтрино–антинейтрино, $\varkappa = \sqrt{1 - 4m^2/Q_{\parallel}^2}, Q^{\mu} = (q - q')^{\mu}, V = L_x L_y L_z$ — нормировочный объем.

Следует отметить, что вклад плазмы в амплитуду процесса $\gamma e \rightarrow e \nu \bar{\nu}$ оказывается более высокого порядка малости по константе электромагнитного взаимодействия α . Действительно, учет плазменного вклада в амплитуду приводит к дополнительным диаграммам рассеяния вперед на частицах среды и, следовательно, к дополнительной паре вершин порядка не ниже α .

Подставляя (20) в (18), получим

$$Q_{\gamma e \to e \nu \bar{\nu}} = \frac{(2\pi)^3}{L_x} \times \\ \times \int |\mathcal{M}_{\gamma e \to e \nu \bar{\nu}}|^2 \, \delta^{0,2,3}(q + p_1 - p_2 - p' - p'') \times \\ \times \frac{d^3 k}{(2\pi)^3 2\omega} \frac{1}{\exp(\omega/T) - 1} \frac{dp_{1y} dp_{1z}}{(2\pi)^2 2E_1} \frac{dp_{2y} dp_{2z}}{(2\pi)^2 2E_2} \times \\ \times \frac{Q_0 q'_0}{1 - \exp(-Q_0/T)} \, \delta(E_1 - \mu) \times \\ \times \frac{d^3 p'}{(2\pi)^3 2E'} \frac{d^3 p''}{(2\pi)^3 2E''}. \tag{22}$$

При выводе формулы (22) мы учли следующее:

1) под интегралом в формуле (18) статистические факторы начального и конечного электронов в случае почти вырожденной плазмы, $T \ll \mu - m$, представляют собой функции, близкие к ступенчатым;

2) статистические факторы начального и конечного электронов перекрываются при условии, когда разность энергий конечного и начального электронов положительна, т.е. $Q_0 = E_2 - E_1 > 0$;

3) из закона сохранения энергии следует, что разность энергий Q_0 оказывается порядка температуры; действительно, для процесса $e\gamma \to e\nu\bar{\nu}$ величина $Q_0 = E_2 - E_1 = \omega - E' - E'' \lesssim \omega$, где ω — энергия начального фотона, масштаб которой имеет порядок температуры T;

4) при сделанных предположениях область перекрытия статистических факторов оказывается очень узкой, порядка $Q_0 \ll \mu - m$, а площадь их перекрытия *s* легко вычисляется и равна

$$\begin{split} s &= \int\limits_m^\infty \frac{dE_1}{\exp\left[(E_1-\mu)/T\right]+1} \times \\ &\times \frac{1}{\exp\left[-(E_2-\mu)/T\right]+1} \approx \frac{Q_0}{1-\exp\left(-Q_0/T\right)} \end{split}$$

в пренебрежении экспоненциальными поправками порядка $T \exp \left[-(\mu - m)/T\right]$.

Поэтому, предполагая дальнейшее интегрирование по импульсу (энергии) начального электрона, произведение статистических факторов можно с хорошей точностью аппроксимировать δ -функцией [7,17]:

$$\frac{1}{\exp\left[(E_1 - \mu)/T\right] + 1} \frac{1}{\exp\left[-(E_2 - \mu)/T\right] + 1} \approx \frac{Q_0}{1 - \exp\left(-Q_0/T\right)} \,\delta(E_1 - \mu). \quad (23)$$

При вычислении светимости, обусловленной фотонейтринным процессом, оказывается возможным применить полезный методический прием факторизации амплитуды фоторождения нейтрино, $\mathcal{M}_{\gamma e \to e \nu \bar{\nu}}$, амплитудой комптоновского рассеяния фотона моды 2, $\mathcal{M}_{2\to 2}$, следующим образом (см. [18]):

$$\mathcal{M}_{\gamma e \to e \nu \bar{\nu}} = \frac{G_F}{e \sqrt{2q'_{\parallel}^2}} \left[C_V(q'\tilde{\varphi}j) - C_A(q'\tilde{\varphi}\tilde{\varphi}j) \right] \mathcal{M}_{2 \to 2}, \quad (24)$$

$$\mathcal{M}_{2\to 2} = 16\pi\alpha m \, \frac{\sqrt{q_{\parallel}^2 q'_{\parallel}^2} \sqrt{(-Q_{\parallel}^2)} \,\varkappa}{(q\tilde{\Lambda}q')^2 - \varkappa^2 (q\tilde{\varphi}q')^2}. \tag{25}$$

Теперь нейтринную светимость можно представить в виде

$$Q_{\gamma e \to e\nu\bar{\nu}} = \frac{G_F^2}{4\pi\alpha} \int \frac{d^3p'}{(2\pi)^3 2E'} \frac{d^3p''}{(2\pi)^3 2E''} \frac{q_0'^2}{q_{\parallel}'^2} \times |C_V(q'\tilde{\varphi}j) - C_A(q'\tilde{\varphi}\tilde{\varphi}j)|^2 \Gamma^{cr}(q'). \quad (26)$$

Здесь

$$\Gamma^{cr}(q') = \frac{(2\pi)^3}{2q'_0 L_x} \times \int |\mathcal{M}_{2\to 2}|^2 \delta^{0,2,3}(q+p_1-p_2-p'-p'') \times \\ \times \frac{d^3k}{(2\pi)^3 2\omega} \frac{1}{\exp(\omega/T) - 1} \frac{dp_{1y}dp_{1z}}{(2\pi)^2 2E_1} \frac{dp_{2y}dp_{2z}}{(2\pi)^2 2E_2} \times \\ \times \frac{Q_0}{1 - \exp(-Q_0/T)} \delta(E_1 - \mu) \quad (27)$$

— полная ширина рождения фотона с 4-импульсом $q^{\prime\mu}$ в комптоновском процессе $\gamma e \rightarrow \gamma e$. Она связана с соответствующей шириной комптоновского поглощения фотона, Γ^{abs} , соотношением [19]

$$\Gamma^{cr}(q) = \exp\left(-\frac{q_0}{T}\right)\Gamma^{abs}(q).$$
(28)

Последняя может быть получена из результатов работы [18] и представлена в следующем виде:

$$\Gamma^{abs}(q) = \frac{eB}{8(2\pi)^4 q_0 p_F} \int \frac{d^3 q'}{E_2 q'_0} |\mathcal{M}_{2\to 2}|^2 \times \frac{Q_0}{1 - \exp\left(-Q_0/T\right)} \frac{\delta(q_0 + \mu - E_2 - q'_0)}{1 - \exp\left(-q'_0/T\right)}.$$
 (29)

В предельных случаях нерелятивистской и релятивистской плазмы выражение для Γ^{abs} упрощается, а именно:

а) в нерелятивистской плазме

$$\Gamma^{abs}(q) \approx \frac{4\alpha^2 eBT}{3\pi p_F m} \frac{q_{\parallel}^2}{q_0^2} \left(1 - \frac{\omega_p^2}{5q_0^2}\right) \times \\ \times \frac{\Theta(q_0 - \omega_p)}{1 - \exp(-q_0/T)}, \quad \mu - m \ll m, \quad (30)$$

где $\Theta(x)$ — функция Хевисайда, $p_F = v_F \mu = \sqrt{\mu^2 - m^2};$

б) в релятивистской плазме

$$\Gamma^{abs}(q) \approx \frac{\alpha^2 T^2}{2\pi} \frac{B}{B_e} \left(\frac{m}{\mu}\right)^6 \frac{q_{\parallel}^4}{q_0} \times \left\{ \frac{1}{q_{\perp}^4} \int_{-\infty}^{(q_{\parallel}^2 - \omega_p^2)/2Tq_{\pm}} \frac{dxx}{1 - \exp(-x)} \times \frac{1}{1 - \exp(x - q_0/T)} \left(1 - \frac{2Tx}{q_{\perp}}\right) + (q_{\perp} \leftrightarrow q_{\perp}) \right\}, \quad q_{\pm} = q_0 \pm q_z, \quad \mu \gg m. \quad (31)$$

При дальнейшем интегрировании (26) по импульсам нейтрино нужно учесть, что в процессе $\gamma e \rightarrow e \nu \bar{\nu}$ не сохраняется компонента импульса вдоль оси *x*. Поэтому для упрощения дальнейших вычислений удобно ввести в (26) еще один интеграл по 4-импульсу нейтринной пары q'^{μ} , содержащий необходимую $\delta^{(4)}$ -функцию:

$$1 = \int d^4 q' \,\delta^{(4)} \,(q' - p' - p''). \tag{32}$$

После этого можно проинтегрировать (26) по импульсам нейтрино с учетом известного соотношения [20]

$$\int \frac{d^3 p'}{E'} \frac{d^3 p''}{E''} \delta^{(4)} (q' - p' - p'') j_{\alpha} j_{\beta}^* = \frac{16\pi}{3} \left(q'_{\alpha} q'_{\beta} - q'^2 g_{\alpha\beta} \right) \Theta(q'^2), \quad (33)$$

где $j_{\alpha} = \bar{\nu} \gamma_{\alpha} (1 + \gamma_5) \nu$ — нейтринный ток. Далее интегрируя (26) по поперечным импульсам поглощающегося фотона, $d^2 q_{\perp}$, представим нейтринную светимость в виде двукратного интеграла:

$$Q_{\gamma e \to e\nu\bar{\nu}} = \frac{G_F^2}{12(2\pi)^5 \alpha} \left[\overline{C_V^2} + \overline{C_A^2} \right] \times \\ \times \int_0^\infty dq_0 q_0^2 \exp(-q_0/T) \int_{-q_0}^{q_0} dq_z q_{\parallel}^4 \Gamma^{abs}(q_{\parallel}), \quad (34)$$

где константы $\overline{C_V^2} = 0.93$ и $\overline{C_A^2} = 0.75$ — результат суммирования по всем каналам рождения нейтрино типов ν_e, ν_μ, ν_τ .

Полученное выражение для светимости фотонейтринного процесса можно значительно упростить в двух предельных случаях.

 a) В случае нерелятивистской плазмы, μ ≈ m, при произвольном соотношении между плазменной частотой и температурой имеем

$$Q_{\gamma e \to e \nu \bar{\nu}} \approx Q_s F\left(\frac{\omega_p}{T}\right),$$
 (35)

где

$$Q_s = \frac{8\pi^2 \alpha G_F^2 eBT^9}{4725mp_F} \left[\overline{C_V^2} + \overline{C_A^2}\right] \approx \\ \approx 1.3 \cdot 10^6 B_{15}^2 \rho_6^{-1} T_8^9 \frac{\text{spr}}{\text{cM}^3 \cdot \text{c}} \quad (36)$$

— светимость в пределе $\omega_p \ll T$ [8]. В формуле (36) использованы обозначения $B_{15} = B/(10^{15} \text{ Гс}), \rho_6 = \rho/(10^6 \text{ г/см}^3), T_8 = T/(10^8 \text{ K}).$

Рис.1. Фактор F(y), рассчитанный по формуле (37). Точками обозначена асимптотика F(0) = 1

Фактор $F(\omega_p/T)$, зависящий от отношения плазменной частоты к температуре, может быть представлен в виде однократного интеграла:

$$F(y) = \frac{15}{8\pi^8} \int_{y}^{\infty} \frac{dx \, x^5}{\exp(x) - 1} \left(x^2 - \frac{y^2}{5}\right). \tag{37}$$

В свою очередь интеграл (37) может быть приближен следующей аппроксимационной формулой:

$$F(y) \approx \frac{3\exp(-y)}{4\pi^8} \left(2y^7 + 15y^6 + 95y^5 + 495y^4 + 2040y^3 + 6240y^2 + 12600y + 12600\right).$$
(38)

График функции F(y) представлен на рис. 1. Отметим, что численный анализ интеграла (37) в сравнении с аппроксимацией (38) дает расхождение, не превышающее 0.5 %.

б) В случае релятивистской плазмы, $\mu \gg m$, при произвольном соотношении между плазменной частотой и температурой получим

$$Q_{\gamma e \to e \nu \bar{\nu}} \approx Q_b R\left(\frac{\omega_p}{2T}\right),$$
 (39)

где

$$Q_{b} = \frac{G_{F}^{2} \alpha (\overline{C_{V}^{2}} + \overline{C_{A}^{2}})}{576(2\pi)^{11/2}} \frac{B}{B_{e}} \left(\frac{m}{\mu}\right)^{6} \omega_{p}^{15/2} T^{3/2} \times \exp\left(-\omega_{p}/T\right) \approx \\ \approx 10^{11} B_{16}^{43/4} \rho_{9}^{-6} T_{9}^{3/2} \exp\left(-6B_{16}^{1/2} T_{9}^{-1}\right) \frac{\operatorname{3pr}}{\operatorname{cm}^{3} \cdot \operatorname{c}}$$
(40)

— светимость в пределе $\omega_p \gg T$ [7]. Здесь $B_{16} = B/(10^{16} \text{ \Gammac}), \ \rho_9 = \rho/(10^9 \text{ г/см}^3), \ T_9 = T/(10^9 \text{ K}).$

Рис.2. Результаты расчета фактора R(z). Сплошной линией показан результат расчета по формуле (41). Штриховая линия обозначает асимптотику $R(\infty) = 1$

Фактор R(z) представим в виде двукратного интеграла:

$$R(z) = \frac{3z^{3/2}}{5\sqrt{\pi}} \exp(2z) \int_{0}^{\infty} dv \, v^{6} \exp(-zv) \times \\ \times \int_{0}^{1} \frac{dt \, t^{4} [1 - (v - vt)^{-2}]}{1 - \exp\left\{-z[v(1 - t) + (v - vt)^{-1}]\right\}} \times \\ \times \frac{vt - (v - vt)^{-1}}{1 - \exp\left\{-z[vt - (v - vt)^{-1}]\right\}} [vt - 5(v - vt)^{-1}], \quad (41)$$

который хорошо описывается следующей аппроксимационной формулой:

$$R(z) \approx 1 + \frac{0.7627}{z^{1/2}} + \frac{66.875}{z^{3/2}} + \frac{271.654}{z^{5/2}} + \frac{2509.36}{z^{7/2}} + \frac{6754.62}{z^{7/2}} + \frac{16612.9}{z^{11/2}} + \frac{19843.8}{z^{13/2}} + \frac{10188.5}{z^{15/2}}.$$
 (42)

График функции R(z) представлен на рис. 2. Отметим, что численный анализ интеграла (41) в сравнении с аппроксимацией (42) дает расхождение, не превышающее 0.8%. Следовательно, для приложений можно пользоваться аппроксимацией (42) для произвольной величины ω_p/T .

Из рис. 2 и аппроксимационной формулы (42) видно, что для параметров поля и плазмы, характерных для нейтронных звезд, $B \approx 50B_e$, $T \approx 10^8$ K [15], фактор $R(12) \approx 4$ и асимптотика $R(\infty) \approx 1$ не выполняется. Кроме того, из формулы (39) следует, что количественная оценка, приведенная в работе [6], является сильно завышенной. С другой стороны, аналогичная оценка, выполненная в работе [7], является, наоборот, заниженной на несколько порядков.

4. ЗАКЛЮЧЕНИЕ

Подведем некоторые итоги. Рассмотрено влияние сильно замагниченной холодной плазмы на процесс фоторождения нейтринной пары, $\gamma e \rightarrow e \nu \bar{\nu}$. Исследовано возможное изменение дисперсионных свойств фотонов при таких условиях. Показано, что учет анизотропии в дисперсии фотона в пределе нерелятивистской плазмы приводит к модификации нейтринной светимости за счет процесса $\gamma e \rightarrow e \nu \bar{\nu}$ по сравнению с полученным ранее результатом. Предложен способ вычисления светимости фотонейтринного процесса через ширину поглощения фотона в процессе комптоновского рассеяния и получена аппроксимационная формула в пределе релятивистской плазмы. Показано, что в этом пределе имеющиеся в литературе оценки для вклада фотонейтринного процесса не являются удовлетворительными.

Авторы выражают благодарность А. В. Кузнецову, А. А. Гвоздеву и И. С. Огневу за полезные обсуждения и ценные замечания.

Работа выполнена в рамках государственного задания вузу (проект № 2.7508.2013), при частичной финансовой поддержке РФФИ (гранты №№ 11-02-00394-а, 14-02-00233-а), работа Д. А. Р. также поддержана проектом № 92 в рамках базовой части государственного задания на НИР ЯрГУ.

ЛИТЕРАТУРА

- 1. В. М. Малофеев и др., Астрон. ж. 82, 273 (2005).
- 2. C. Kouveliotou et al., Nature 393, 235 (1998).
- 3. C. Kouveliotou et al., Astrophys. J. 510, L115 (1999).
- F. P. Gavriil, V. M. Kaspi, and P. M. Woods, Nature 419, 142 (2002).
- A. I. Ibrahim, S. Safi-Harb, J. H. Swank, W. Parke, and S. Zane, Astrophys. J. 574, L51 (2002).
- Д. А. Румянцев, М. В. Чистяков, ЖЭТФ 134, 627 (2008).
- А. В. Борисов, Б. К. Керимов, П. Е. Сизин, ЯФ 75, 1379 (2012).
- 8. В. В. Скобелев, ЖЭТФ 117, 1059 (2000).
- 9. И. А. Баталин, А. Е. Шабад, ЖЭТФ 60, 894 (1971).

- 10. H. Pérez Rojas and A. E. Shabad, Ann. Phys. (N.Y.)
 121, 432 (1979).
- H. Pérez Rojas and A. E. Shabad, Ann. Phys. (N.Y.) 138, 1 (1982).
- V. Περες Ροχας, ЖЭΤΦ 76, 3 (1979) [Sov. Phys. JETP 49, 1 (1979)].
- **13**. А. Е. Шабад, Труды ФИАН **192**, 5 (1988).
- 14. A. V. Kuznetsov and N. V. Mikheev, *Electroweak Processes in External Electromagnetic Fields*, Springer-Verlag, New York (2003), p. 1.

- D. G. Yakovlev, A. D. Kaminker, O. Y. Gnedin, and P. Haensel, Phys. Rep. 354, 1 (2001).
- **16**. А. А. Гвоздев, И. С. Огнев, ЖЭТФ **121**, 1219 (2002).
- 17. N. V. Mikheev and E. N. Narynskaya, Mod. Phys. Lett. A 15, 1551 (2000).
- D. A. Rumyantsev and M. V. Chistyakov, Int. J. Mod. Phys. A 24, 3995 (2009).
- 19. H. A. Weldon, Phys. Rev. D 28, 2007 (1983).
- **20**. Л. Б. Окунь, *Лептоны и кварки*, Наука, Москва (1990), с. 1.