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We investigate the exact solutions of a Bianchi type-l space-time in the context of f(R,T) gravity [1], where
f(R,T) is an arbitrary function of the Ricci scalar R and the trace of the energy-momentum tensor T'. For this
purpose, we find two exact solutions using the assumption of a constant deceleration parameter and the variation
law of the Hubble parameter. The obtained solutions correspond to two different models of the Universe. The

physical behavior of these models is also discussed.
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1. INTRODUCTION

The most popular issue in the modern-day cosmol-
ogy is the current expansion of the Universe. It is now
evident from observational and theoretical facts that
our universe is in the phase of accelerated expansion
[2-10]. The phenomenon of dark energy and dark mat-
ter is another topic of discussion [11-18]. It was Ein-
stein who first proposed the concept of dark energy and
introduced a small positive cosmological constant. But
after some time, he referred to it as the biggest mistake
in his life. However, it is now believed that the cosmo-
logical constant may be a suitable candidate for dark
energy. Another proposal to justify the current expan-
sion of the Universe comes from modified or alternative
theories of gravity. The f(T') theory of gravity is one
such example that has been recently developed. This
theory is a generalized version of teleparallel gravity
in which the Weitzenbock connection is used instead
of the Levi-Civita connection. The interesting feature
of the theory is that it may explain the current ac-
celeration without involving dark energy. A consid-
erable amount of work has been done in this theory
so far [19]. Another interesting modified theory is the
f(R) theory of gravity involving a general function of
the Ricci scalar in the standard Einstein—Hilbert La-
grangian. Some review articles [20] can be helpful in
understanding the theory.

Many authors have investigated f(R) gravity in dif-
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ferent contexts [21-34]. Spherically symmetric solu-
tions are most commonly studied solutions due to their
closeness to Nature. Vacuum and perfect fluid solu-
tions of a spherically symmetric spacetime in the met-
ric version of this theory were explored in [35]. They
used the assumption of a constant scalar curvature and
found that the solutions corresponded to the already
existing solutions in general relativity (GR). Noether
symmetries have been used in [36] to study spherically
symmetric solutions in f(R) gravity. Similarly, many
interesting results have been found using spherical sym-
metry in f(R) gravity [37]. Cylindrically symmetric
vacuum and nonvacuum solutions have also been ex-
plored in this theory [38]. Plane symmetric solutions
were found in [39]. The same authors [40] discussed
the solutions of Bianchi type-I and V cosmologies for
vacuum and nonvacuum cases. Conserved quantities in
f(R) gravity via the Noether symmetry approach were
recently calculated in [41].

In a recent paper [1], a new generalized theory
known as f(R,T') gravity was proposed. In this theory,
gravitational Lagrangian involves an arbitrary func-
tion of the scalar curvature R and the trace of the
energy—momentum tensor 7. In [42], f(R,T) gravity
was discussed with explicitly presented point-like La-
grangians. The laws of thermodynamics in this theory
were studied in [43]. The same authors [44] investigated
holographic and agegraphic f(R,T) models. In [45],
f(R,T) gravity was reconstructed by taking

f(R,T) = fi(R) + f>(T),

and it was proved that f(R,T) gravity allows transi-
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tion from matter-dominated phase to an acceleration
phase. Thus, it is hoped that f(R,T) gravity may ex-
plain the recent phase of cosmic acceleration of our Uni-
verse. This theory can be used to explore many issues
and may provide some satisfactory results.

The isotropic models are considered to be most suit-
able to study the large-scale structure of the Universe.
However, it is believed that the early Universe may not
have been exactly uniform. This prediction motivates
us to describe the early stages of the Universe with
the models having an anisotropic background. Thus,
the existence of anisotropy in early phases of the Uni-
verse is an interesting phenomenon to investigate. A
Bianchi type-I cosmological model, being a generaliza-
tion of the flat Friedmann—Robertson—-Walker (FRW)
model, is one of the simplest models of the anisotropic
Universe. Therefore, it seems interesting to explore
Bianchi-type models in the context of f(R,T) gravity.
Exact solutions of the f(R,T) field equations for a lo-
cally rotationally symmetric Bianchi type-I spacetime
were investigated in [46]. Solutions of a Bianchi type-
IIT spacetime were explored in [47] using the law of
variation of Hubble’s parameter. Bianchi type-IIT dark
energy model in the presence of a perfect fluid source
has been reported [48]. Bianchi type-V cosmology in
this theory was studied in [49] by involving the cosmo-
logical constant in the field equations. Solutions of the
Bianchi type-V bulk viscous string cosmological model,
were given in [50].

In this paper, we focuse on investigating the exact
solutions of a Bianchi type-I spacetime in the frame-
work of f(R,T) gravity. The plan of the paper is as
follows. In Sec. 2, we give some basics of f(R,T') grav-
ity. Section 3 provides the exact solutions for a Bianchi
type-I spacetime. Concluding remarks are given in the
last section.

2. SOME BASICS OF f(R,T) GRAVITY

The f(R,T) theory of gravity is a generalization or
modification of GR. The action for this theory is given

by [1]

o[l

where f(R,T) is an arbitrary function of the Ricci
scalar R and the trace T' of the energy—momentum ten-
sor T}, and L,, is the usual matter Lagrangian. It is
worth mentioning that if we replace f(R,T) with f(R),
we obtain the action for f(R) gravity, and the replace-
ment of f(R,T) with R leads to the GR action. The

energy-momentum tensor T}, is defined as [51]

Ly

e (R,T)-l-Lm) d'z, (1)
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2 J (V _ng)
V=g  dgm
We assume that the dependence of the matter La-
grangian is merely on the metric tensor g, rather than
on its derivatives. In this case, we obtain

6L,
Sgrv’

T = —

(2)

2 (3)
The f(R,T) gravity field equations are obtained by
varying the action S in Eq. (1) with respect to the
metric tensor g,

Tm/ = nguu -

fR(RaT)RuV - %f(Ra T)guu - (vuvu - gpw[l) X
x fr(R,T) = KTy — Ir(R, T)(T;w + G)u'/)7 (4)

where V,, denotes the covariant derivative and

Ofn(R,T
O=viv,, fR(R,T):%,
 fa(R.T) 6T

fr(r, 1) = LT e, — ot

Contraction of (4) yields

fr(R,T)R+30fr(R,T) - 2f(R,T) =

=kT - fr(R,T)(T+0O), (5

where

0 =0,"

This is an important equation because it provides a re-
lation between the Ricci scalar R and the trace T of
the energy-momentum tensor. Using the matter La-
grangian L,,, the standard matter energy—momentum
tensor is derived as

(6)

T;u/ = (p + p)uuuu — P9uv,

where
U’H = \/go()(]., 0, 0, 0)

is the four-velocity in comoving coordinates and p and
p respectively denote the energy density and pressure
of the fluid. Perfect-fluid problems involving energy
density and pressure are not easy tasks. Moreover,
there does not exist any unique definition for the mat-
ter Lagrangian. We can assume the matter Lagrangian
L,, = —p, which gives

27,

s (7)

®uu = —Puv —

and consequently field equations (4) take the form

1
fR(R, TR, — if(Ra T)guw — (ViVy = gu0) x

X fR(RvT) = K'Tul/ + fT(RvT)(TuV +pgu'/)' (8)
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We note that these field equations depend on the phys-
ical nature of the matter field. Many theoretical mod-
els corresponding to different matter contributions for
f(R,T) gravity are possible. However, three classes of
these models were given in [1]:

R+2f(T),
fi(R) + f2(T),
fi(R) + f2(R) f5(T).

In this paper, we focuse on the first class, i.e.,

f(R,T) =

f(R,T)=R+2f(T).

For this model, the field equations become

1
R, iRgW = KT + 2f(T) Ty +

+[£(T) + 20 (D) g (9)

where the prime represents the derivative with respect
to T

3. EXACT SOLUTIONS OF THE BIANCHI
TYPE-I UNIVERSE

In this section, we find exact solutions of a Bianchi-I
spacetime in f(R,T) gravity. For simplicity, we use the
natural system of units (G = ¢ = 1) and f(T) = AT,
where A is an arbitrary constant. For a Bianchi type-I
spacetime, the line element is given by

(t) dy?

where A, B, and C are defined as cosmic scale factors.
The Bianchi-I Ricci scalar turns out to be

ds®> = dt®> — A%(t) da® — B> - C*(t)d=*, (10)

A B C AB BC CA

R==213+s et a0 " Ca

(11)

where the dot denotes the derivative with respect to t.
Using Eq. (9), we obtain four independent field
equations,

AB BC CA

Btpeter =BT -dn (12)
g + g + ﬁg =\p— (87 + 3)\)p, (13)
g n % i_é =\p— (87+3\)p,  (14)
ﬁ + g + ig = Ap— (87 + 3\)p. (15)

These are four nonlinear differential equations with five
unknowns A, B, C, p, and p. Subtracting Eq. (14)
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from Eq. (13), Eq. (15) from Eq. (14
from Eq. (12) yields

), and Eq. (15)

L)
s A
283G w

These equations imply that
g = d; exp :cl %- ; (19)
% = dy exp :02 %- ) (20)
% = d3 exp :03 %- , (21)

where c1, ¢2, c3 and dy, d2, d3 are integration constants
that satisfy the relations

Cc1 +co+c3 = 0, d1d2d3 =1. (22)

Using Eqgs. (19)—(21), we can write the unknown metric
functions in the explicit form

_ gt
A =apiexp |q1 el (23)
- gt
B=apsexp (g2 [ — |, (24)
- gt
C=apgexp a3 [ |, (25)
where
pr=(di 2do )3 po = (dids )3, (26)
ps = (didy”)*/?
and
201+02 C1—Co Cl+202
=" = —— =—= (27
q1 3 ) q2 3 ) q3 3 ( )
We note that pi, p2, p3 and q1, g2, g3 also satisfy the
relation
pipep3 =1, q1+¢q +q3=0. (28)

3.1. Some important physical parameters

We now present some important definitions of phys-
ical parameters. The average scale factor a and the
volume scale factor V' are defined as

a=VABC, V =d*=ABC. (29)
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The generalized mean Hubble parameter H is given by

1
H=§(H1+H2+H3), (30)
where ) ) )
A B C
H = — Ho = — Ho = —
1 A7 2 37 3 O

are defined as the directional Hubble parameters in the
directions of x, y, and z axes. The mean anisotropy
parameter A is

) 2

The expansion scalar # and the shear scalar o2 are de-
fined as

H, —H

A=
H

3

S ( (31)

i=1

A B C
— g = _ —
b=ul,=2+5+5 (32)
. 2 . 2
21w LAY (B .
o —2U;u/‘7 3 A B
C AB BC C(CA
+<5> ~a5 Bc cal ¥
where
1 o a1
Ouv = g(uu;ahy + 'U/l/;ozhu) - gehuu (34)
with

hyv = guv — upty

defined as the projection tensor. The deceleration pa-
rameter ¢ is the measure of the cosmic accelerated ex-
pansion of the Universe. It is defined as

(35)

The behavior of the Universe models is determined
by the sign of g. The positive value of the deceleration
parameter suggests a decelerating model, while the neg-
ative value indicates inflation. Because there are four
equations (12)—(15) and five unknowns, we need an ad-
ditional constraint to solve them. Here, we use a well-
known relation [52] between the average scale factor a
and the Hubble parameter H to solve the equations,

H=1la"", (36)

where [ and n are positive constants. This is an im-
portant relation because it yields a constant value of
the deceleration parameter and we consequently obtain
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power-law and exponential models of the Universe. Us-
ing Eqs. (30) and (36), we obtain

a=la'™" (37)
and the deceleration parameter becomes
g=n—1. (38)
Integrating Eq. (37) yields
a=(nlt+k)/", n#0, (39)
and
a = kyexp(lt), n=0, (40)

where k; and ko are integration constants.

3.2. Singular model of the Universe

Here, we investigate the model of the Universe when
n # 0, i.e.,
a= (nlt + k)"
In this case, the metric coefficients A, B, and C take
the form

q1 (nlt + kl)(n73)/n
I(n —3)
n # 3,

A= pi(nlt + kl)l/" exp [ ] o

{2 (nlt + kl)(n73)/n
I(n—3)

B :pZ(nlt+k1)1/” exp |: ] ) (42)

n # 3,
It + ky)(n=3)/n
C = ps(nit + k)™ e [qg(n ,

pa( 1) Xp I(n —3) (43)

The directional Hubble parameters H; (i = 1,2, 3) turn
out to be

! 4i
- . 44
onlt 4k + (nlt + kp)3/n (44)

The mean generalized Hubble parameter and the vol-
ume scale factor are

l

H=———, V=(nt+k)*" 45
e V= (it k) (45)
The mean anisotropy parameter becomes
2 2 2
01” +q2” +q3 (46)

= 312(nlt + ky)6-2m/n
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Behavior of the energy density (a) and pressure (b) versus time for t > 0 withn =2, A\ =1, 1 =1, k1 =0,

q1:1:q2,andq3:—2

The expansion scalar and shear scalar for this model
are given by

3 s 2+ @’ + s’
- ’fllt-i—k‘l7

= . 47

With Eqs. (12)—(15), the energy density of the Universe
turns out to be

1
P02+ 4n)
31 71G2 + @293 + @3q1
4N+ 3 -
X { (A + ﬂ—){(nlt+k1)2 (nlt + ki )6/
201 _ 2 2 2
(nlt+k1)2 (nlt+k1)6/”

while the pressure of the Universe becomes

-1
T 20t 2m) (A + 4m)

31 Qq2 + 03 + GO
4
X { ”{(nlt+k1)2 T G
312(1—n)

I 0’ + @*+ s° (49)
(nlt + k1) (nlt + ky)8/n '

p

+ (3A + 871'){

The plots of p, p, and the equation-of-state parame-
ter w = p/p as functions of the time coordinate ¢ are
shown in Figs. 1 and 2. It is evident from Fig. 2 that
w — 1/3 as t = oo. Thus, the model corresponds to a
radiation-dominated Universe as the time increases.

3.3. Nonsingular model of the Universe

For this model, n = 0 and the average scale factor

a = ko exp(lt)

0.30 |
0.25 -
0.20 |
0.15 |
0.10 -
0.05 |
0
—-0.05 L

Fig.2. Behavior of w versus time for ¢t > 0 with n = 2,
A=1,1=1k =0,¢q =1=q, and g3 = -2

turns the metric coefficients A, B, and C' into

[ =3It)]
A = pyks exp(It) exp —w%) , (50)
L RIS J
[ ¢ =3It)]
B = paks exp(lt) exp —w(g) ) (51)
L 3lko
[ =3lt)]
C = p3ko exp(lt) exp _w(s) . (52)
L 3lko
The directional Hubble parameters H; become
Hi=1+ % exp(—311). (53)
2

The mean generalized Hubble parameter and the vol-
ume scale factor turn out to be
H=1,

V = ky® exp(3lt). (54)
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The mean anisotropy parameter, the expansion scalar, w
and the shear scalar are —1.0000 -
o’ + @ +qs°
= a6 =3 —1.0005 |
312ky” exp(6lt) 55 :
s P+ 0’44’ (55)
= —1.0010 F
2k»" exp(6lt)
The energy density and pressure of the Universe take —1.0015 |
the form
—1.0020 L
P= 1200+ 20) (1 + 4n) | - - - -
4192 + G293 + q3q 0 2 ’ 4 >
x[4(/\+37r){312+ 1> 020 31}_ ;
k2" exp(6lt)
_ /\{312 + 0> +¢° +¢° }} (56) Fig. 4. Behavior of w versus time for t > 0 with n = 2,
ko® exp(61t) ' A=11l=1,k=1g=1=¢,and g3 = 2

-1
P= B 2m+dm)
% [47r{3l2 n q192 -|;Q2Q3 + @3¢ } n
k2" exp(61t)
o’ + @ + ¢3° }]
ko® exp(61t) )

in the framework of the recently proposed f(R,T') the-
ory of gravity. For this purpose, we take

R, T)=R+2\T
+ 3+ 8#){312 + (57) f(RT) = R+
and explore the exact solutions of the Bianchi type-I

For this model, the plots of p, P, and w as functions  ¢ogmological model. We obtain two exact solutions us-

of the time coordinate ¢ are shown in Figs. 3 and 4. It
can be seen from Fig. 4 that w — —1 as ¢t — oo, which
indicates that the nonsingular model corresponds to a
vacuum fluid-dominated Universe.

4. CONCLUDING REMARKS

This paper is devoted to a discussion of the current
phenomenon of accelerated expansion of the Universe

ing the assumption of a constant value of the deceler-
ation parameter and the law of variation of the Hub-
ble parameter. The obtained solutions correspond to
two different models of the Universe. The first solution
forms a singular model with a power-law expansion,
while the second solution gives a nonsingular model
with exponential expansion of Universe. The physical
parameters for both of these models are discussed be-
low.
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The singular model of the universe corresponds to
n # 0 with the average scale factor

a = (nlt —+ kl)l/n.

This model has a point singularity when

_kl

t —.
nl

ts =

The volume scale factor vanishes and the metric co-
efficients A, B, and C vanish at this singularity point.
The cosmological parameters Hy, Hy, H3, H, #, and o>
are all infinite at this point of singularity. If we choose
k1 = 0, Fig. 1 suggests that the energy density of the
Universe is zero at this time. The pressure approaches
negative infinity as ¢ — 0. This strong negative pres-
sure is an indication of dark energy. For this model,
w — 1/3 as t — oo, which corresponds to a radia-
tion-dominated Universe. The mean anisotropy param-
eter A also becomes infinite at this point for 0 < n < 3
and vanishes for n > 3. Moreover, the isotropy condi-
tion 02/6 — 0 as t — oo is verified for this model. All
these conclusive observations suggest that the Universe
starts its expansion with zero volume, strong negative
pressure and energy density from ¢t = tg, and it will
continue to expand for 0 < n < 3.

We now discuss the nonsingular model of the Uni-
verse corresponding to n = 0. For this model, the aver-
age scale factor is a = ks exp(It). The model is nonsin-
gular due to its exponential behavior. The expansion
scalar # and the mean generalized Hubble parameter
H are constant in this case. For finite values of ¢, the
physical parameters Hy, H», Hs, 02, and A are all fi-
nite. The metric functions are defined for finite times
and the isotropy condition is satisfied. There is an ex-
ponential increase in the volume as the time increases.
However, the energy density is approximately zero ini-
tially and becomes constant after some time. Pressure
of the Universe remains in the negative zone for this
model, which may be an indication of the presence of
dark energy in the Universe. Figure 4 suggests that
w — —1 as t — oo. Hence, the exponential model cor-
responds to a vacuum fluid-dominated Universe. Ac-
cording to the observations in [53], the expansion of
the Universe is accelerating when w ~ —1.

Therefore, we can hope that the problematic issues
such as dark energy and accelerated expansion of the
Universe may be addressed using modified theories of
gravity, especially the f(R,T) gravity. It would be in-
teresting to explore more Bianchi-type solutions in this
context. Exact solutions of a Bianchi type-V cosmo-
logical model in this theory are in progress.
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