РЕЛАКСАЦИЯ ВОЗБУЖДЕННЫХ СОСТОЯНИЙ ЭМИТТЕРА ВБЛИЗИ МЕТАЛЛИЧЕСКОЙ НАНОЧАСТИЦЫ: АНАЛИЗ С ПОМОЩЬЮ ТЕОРИИ СВЕРХИЗЛУЧЕНИЯ

И. Е. Проценко^{а,c*}, А. В. Усков^{а,c}, В. М. Рудой^{b,c}

^а Физический институт им. П. Н. Лебедева Российской академии наук 119991, Москва, Россия

^b Институт физической химии и электрохимии им. А. Н. Фрумкина Российской академии наук 119071, Москва, Россия

> ^с ООО «Новые энергетические технологии» 143025, Сколково, Московская обл., Россия

Поступила в редакцию 31 декабря 2013 г.

Методами теории сверхизлучения определена скорость релаксации возбужденного состояния резонансного эмиттера (атома, молекулы, квантовой точки) вблизи металлической наночастицы при резонансном возбуждении в ней «плазмонов» — мод пространственно-однородных (дипольных) гармонических колебаний электронной плотности. Учтены отстройки от резонанса и нерадиационные потери, вызывающие подавление излучения эмиттера вблизи поверхности наночастицы. Результаты использованы для оценки пороговых условий генерации плазмонного («дипольного») нанолазера. Показано, что для эмиттера на расстоянии в 5–40 нм от эллипсоидальной наночастицы пороговые условия вынужденной (лазерной) генерации плазмонов оказываются выполненными при сравнительно небольших, порядка скорости спонтанного излучения эмиттера в свободное пространство, скоростях накачки эмиттера.

DOI: 10.7868/S0044451014080057

1. ВВЕДЕНИЕ

В теории сверхизлучения (ТСИ) решена задача о спонтанном излучении нескольких атомов [1-3]. Подход, использованный в работах [1-3], есть обобщение теории [4,5] спонтанного излучения в свободном пространстве, где решаются уравнения для амплитуд вероятностей состояний системы «атомы + + поле». Поле рассматривается как термостат: испущенный атомом фотон никогда не возвратится к атому из бесконечно большого числа своих состояний, возбуждение каждого из которых является малым возмущением. Первая задача данной работы обобщение подхода [1-3] на случай, когда рядом с атомом или квантовым резонансным эмиттером (молекулой, квантовой точкой) находится не другой атом, как в [1-3], а металлическая наночастица с частотами локализованных плазмонных резонан-

сов (ЛПР) гармонических колебаний электронной плотности, близкими к частоте излучающего перехода эмиттера. Излучение квантовых эмиттеров вблизи металлических наночастиц привлекает большое внимание, в частности, в связи с гигантским комбинационным рассеянием (Surface Enhanced Raman Scattering, SERS), флюоресценцией, усиленной поверхностью, (Surface Enhanced Fluorescence, SEF) и другими эффектами [6, 7]. Резонансное излучение эмиттеров вблизи металлических наночастиц исследовалось многими авторами (см., например, [8,9] и обзоры [6,10,11]), но без использования подходов ТСИ. Последние могут дать дополнительную информацию, например, описать неэкспоненциальный распад возбужденных состояний эмиттеров, генерацию плазмонов, в том числе в случае отстройки резонансной частоты эмиттера от частоты ЛПР. Подход на основе ТСИ, как будет видно из дальнейшего, прост, удобен, легко обобщается на случай многих частиц, его результаты представимы в виде аналитических формул либо являются решением систем

^{*}E-mail: protsenk@gmail.com

линейных дифференциальных уравнений, которые сравнительно легко интегрируются численно. Квантовый эмиттер и наночастица обмениваются одним фотоном, при этом могут оказаться существенными квантовые эффекты, они учитываются в подходе TCИ естественным образом.

Второй целью работы является использование ТСИ для решения конкретной задачи: расчета скорости перехода эмиттера из возбужденного состояния в основное вблизи эллипсоидальной металлической наночастицы, имеющей резонансные и нерезонансные по отношению к эмиттеру моды ЛПР. Отличие скорости спонтанного излучения эмиттера вблизи нанотел, в резонаторе и т. д. от скорости его спонтанного излучения в свободном пространстве характеризуется фактором Парселла [12]. Модификация фактора Парселла для случая неточного резонанса при спонтанном излучении в резонаторе Фабри-Перо предложена в работе [5]. Ниже подход ТСИ обобщается для расчета фактора Парселла эмиттеров вблизи наночастиц при отстройке от резонанса и наличии нерадиационных потерь. Показано, что в случаях, когда справедлив классический подход [13] или квантовый подход [14] к расчету фактора Парселла эмиттеров вблизи наночастиц, результаты, полученные с их помощью и методами ТСИ в нашей работе, совпадают.

На пороге генерации обычных лазеров инверсия населенностей состояний их активной среды равна пороговому значению, при котором усиление активной среды компенсирует потери. При этом пренебрегают спонтанным излучением в моду генерации, так как оно практически не влияет на порог обычных лазеров. Однако в полупроводниковых лазерах с микрорезонатором [15], в лазерах с резонатором в виде микросферы [16], а также плазмонных нанолазерах [17] спонтанное излучение существенно влияет на порог генерации. Физический смысл и определение порогового условия для этого случая сформулированы в работе [15]: при достижении порога генерации вынужденное излучение начинает доминировать над спонтанным излучением в моду генерации. В работах [16, 17] получено выражение для инверсии населенностей D активной среды, справедливое при любых скоростях накачки и с учетом спонтанного излучения в моду (как выше, так и ниже порога): $D = D_0 - n_0/n_s$, где D_0 — инверсия населенностей в отсутствие фотонов, n₀ — число фотонов в моде генерации. Здесь и далее инверсия D безразмерна, это разность населенностей верхнего и нижнего состояний лазерного перехода атома активной среды, -1 < D < 1. Для лазера с двухуровневой активной

ЖЭТФ, том **146**, вып. 2 (8), 2014

средой $D_0 = (\Gamma_p \tau - 1)/(\Gamma_p \tau + 1)$, где Γ_p — скорость накачки, τ — время релаксации возбужденного состояния лазерного перехода, $n_s = (1 + \Gamma_p \tau)/(4\Gamma \tau)$, Γ — полуширина линии лазерной моды¹⁾ (здесь и далее Γ_p , τ^{-1} и Γ имеют размерности с⁻¹). Чтобы определить лазерный порог при наличии n_0 фотонов в моде генерации, нужно, во-первых, решить задачу о лазерной генерации, определяющую n_0 при любых $\Gamma_p > 0$, в том числе ниже порога, во-вторых, найти пороговую скорость накачки, когда вынужденное излучение в моду генерации начинает доминировать над спонтанным. Это сделано в работах [16, 17], в результате для пороговой величины Γ_{th} скорости накачки получено следующее выражение [17]:

$$\Gamma_{th} = \frac{1 + D_{th} + C}{(1 - D_{th})\tau},$$
(1)

где D_{th} — величина инверсии на пороге генерации, явное выражение D_{th} из [18] приводится в разд. 6. Безразмерный коэффициент C > 0, из-за которого (1) отличается от обычного порогового условия, появляется из-за присутствия в лазерной моде на пороге генерации n_0 фотонов спонтанного излучения. Понятно, что присутствие фотонов спонтанного излучения в моде генерации увеличивает Γ_{th} : энергия накачки на пороге тратится не только на компенсацию потерь, но и на генерацию фотонов. Покажем, что $C \propto n_0$, на примере лазеров с высокодобротными резонаторами, в которых $\Gamma \tau \ll 1$, рассматривая отношение $n_0/n_s \ll 1$ в выражении $D = D_0 - n_0/n_s$ как возмущение. В нулевом приближении, на пороге $n_0 = 0$ и пороговое значение инверсии $D_{th} = D_0$; в первом приближении $D_{th} = D_0 - n_0 / n_s$. Подставляя сюда выражения для D_0 и n_s через $\Gamma_p \tau$, выражая Γ_p через остальные величины и выполняя разложение по малой величине n_0/n_s до первого порядка, получаем (1) с $C = 4\Gamma \tau n_0$.

В работе [18] предложен «дипольный» нанолазер (ДНЛ), представляющий собой нанорезонатор — металлическую наночастицу (наноантенну), — рядом с которым расположены один или несколько эмиттеров с частотами излучающих переходов, близкими к частоте одного из ЛПР наночастицы. Наночастица и эмиттеры взаимодействуют друг с другом через «ближнее» (кулоновское) электрическое поле, и в наночастице происходит когерентная генерация

¹⁾ Смысл соотношения $D = D_0 - n_0/n_s$ заключается в том, что излучение фотонов уменьшает инверсию D_0 , обусловленную только накачкой и релаксацией. В частности, если ширина линии лазерной моды равна ширине лазерного перехода, $2\Gamma = \tau^{-1} + \Gamma_p$, то $D = D_0 - 2n_0$, т. е. излучение одного фотона приводит, как и следовало ожидать, к уменьшению D_0 на 2.

плазмонов — квантов гармонических колебаний ее электронной плотности на частоте ЛПР. В обычных условиях число плазмонов в ДНЛ с небольшим числом эмиттеров имеет порядок единицы, поэтому существенна спонтанная генерация плазмонов. Она учитывалась в работе [17], где для пороговой скорости накачки получено выражение (1). Поскольку для ДНЛ условие $\Gamma \tau \ll 1$ не выполняется, выражение для С из [17] отличается от приведенного выше, но его смысл остается тем же. Из формулы (1) следует, что генерация ДНЛ возможна, если $0 < D_{th} < 1$ и $\Gamma_p > \Gamma_{th}$, причем²⁾ $\Gamma_{th} \sim \tau^{-1}$. В обычном лазере τ определяется спонтанным излучением в свободное пространство и процессами нерадиационного распада, если они есть, возбужденных состояний активной среды. В ДНЛ возможно многократное уменьшение т по сравнению с обычными лазерными средами, во-первых, из-за ускорения радиационного распада возбужденных состояний эмиттера металлической наночастицей, и во-вторых, из-за нерадиационного распада этих состояний вблизи поверхности металлической частицы. И первый эффект — флюоресценция, усиленная поверхностью, и второй — тушение флюоресценции — хорошо известны [6, 7, 19, 20]. В работе [21] утверждается, что из-за многократного увеличения скорости спонтанного излучения лазерного перехода эмиттера вблизи металлических волноводных наноструктур и наночастиц пороговые значения плотности тока накачки наноразмерных полупроводниковых «плазмонных» лазеров типа ДНЛ, включающих эти структуры в качестве резонаторов, будут очень высоки, 100–1000 кA/см², что делает невозможной реализацию таких нанолазеров с накачкой током инжекции и непрерывным режимом генерации. С точки зрения авторов [21] могут быть реализованы только плазмонные лазеры с импульсной накачкой мощным лазерным излучением, которые, конечно, не столь интересны, как плазмонные лазеры на основе полупроводников с накачкой током инжекции. Для того чтобы теоретически показать возможность реализации ДНЛ и ему подобных плазмонных лазеров на полупроводниковых структурах с накачкой током инжекции, необходимо найти условия, при которых ускорение спонтанного распада возбужденных состояний эмиттеров вблизи металлических наночастиц не мешает генерации. Определение таких условий с использованием результатов, полученных с помощью ТСИ, является третьей задачей настоящей работы.

В частности, важным условием реализации ДНЛ является определение оптимального расстояния от наночастицы до эмиттера: на слишком больших расстояниях взаимодействие эмиттера и наночастицы будет слабым, на слишком малых — излучение эмиттера будет подавляться. Ниже будет показано, как определить это оптимальное расстояние, используя методы ТСИ.

В разд. 2 описываются состояния и гамильтониан для резонансного взаимодействия наночастицы и эмиттера. В разд. 3 выводятся уравнения движения для амплитуд вероятностей возбужденных состояний системы, состоящей из взаимодействующих эмиттера и металлической наночастицы. В разд. 4 рассчитываются скорости релаксации квазистационарных возбужденных состояний этой системы. В разд. 5 находятся скорость релаксации возбужденного состояния эмиттера вблизи наночастицы и фактор Парселла, обобщенный с учетом отстройки частоты излучения эмиттера от частоты ЛПР наночастицы и нерадиационного затухания состояний эмиттера вблизи наночастицы. В разд. 6 приводятся оценки фактора Парселла для серебряных и золотых наночастиц при условиях генерации ДНЛ. Результаты работы и перспективы применения методов ТСИ для теоретических исследований плазмонных нанолазеров и им подобных устройств обсуждаются в Заключении.

2. СОСТОЯНИЯ СИСТЕМЫ, ВОЛНОВАЯ ФУНКЦИЯ И ГАМИЛЬТОНИАН

Рассмотрим систему, состоящую из металлической наночастицы—эллипсоида вращения и резонансного эмиттера, например, атома в прозрачном диэлектрике с показателем преломления *n*, см. рис. 1.

Рис.1. Взаимное расположение наночастицы-эллипсоида вращения и эмиттера, система координат и состояния валентного электрона эмиттера с матричными элементами дипольного момента перехода вдоль осей x, y и z. Показаны волновой вектор k и два единичных вектора e_{1k} , e_{2k} поляризации фотона — плоской волны, излучаемой эмиттером

²⁾ Если оказывается, что $D_{th} > 1$, то генерация невозможна для любых Γ_p [18].

Эмиттер находится на расстоянии r от центра наночастицы, на продолжении одной из ее главных осей. Возбужденные состояния эмиттера имеют матричный элемент d_e дипольного момента перехода в основное состояние по направлению вдоль осей х, у и z (параллельных главным осям наночастицы-эллипсоида) системы координат с началом в месте расположения эмиттера. В начальный момент времени t = 0 валентный электрон эмиттера находится в одном из возбужденных состояний. При t > 0 эмиттер переходит из возбужденного состояния в основное, испуская фотон. Наночастица взаимодействует с этим фотоном, в результате чего в ней возникают пространственно-однородные (дипольные) гармонические колебания электронной плотности. Размеры наночастицы предполагаются много меньшими длины волны испущенного эмиттером фотона. Резонансные частоты $\omega_{\alpha}, \alpha = x, y, z,$ этих колебаний вдоль главных осей наночастицы соответствуют трем ЛПР колебаний ее электронной плотности. Предполагаем, что частота ω_e перехода эмиттера $\omega_e = \omega_z$. Наночастица не слишком вытянута, так что частоты всех ЛПР близки:

$$\omega_{\alpha} - \omega_{\beta} \ll \omega_{\alpha}, \quad \alpha, \beta = x, y, z. \tag{2}$$

Пространственно-однородные колебания электронной плотности наночастицы будем описывать как колебания квантового трехмерного гармонического осциллятора с частотами ω_{α} вдоль ее главных осей осей системы координат на рис. 1. В системе «эмиттер + наночастица» может существовать не более одного возбуждения. Возбуждением может быть фотон электромагнитного поля, плазмон — квант колебания электронной плотности наночастицы — или, если фотон и плазмон отсутствуют, эмиттер может находиться в возбужденном состоянии. Таким образом, для описания системы достаточно ограничиться только следующими ее состояниями: $|\alpha, 0, 0\rangle$ эмиттер в возбужденном состоянии с дипольным моментом перехода в основное, направленным вдоль оси $\alpha = x, y, z$, наночастица в основном состоянии, поле не имеет фотонов; $|0, \alpha, 0\rangle$ — эмиттер в основном состоянии, наночастица в первом возбужденном состоянии с дипольным моментом перехода в основное, направленным вдоль оси α , поле не имеет фотонов; $|0,0,f\rangle$ — эмиттер и наночастица в основном состоянии, поле имеет один фотон моды f. В качестве мод электромагнитного поля рассматриваем плоские волны. Есть также основное состояние 0,0,0 системы, в котором эмиттер и наночастица не возбуждены, фотонов нет. Таким образом, базисные состояния системы — это набор

$$\{ |\alpha, 0, 0\rangle, |0, \alpha, 0\rangle, |0, 0, f\rangle, |0, 0, 0\rangle \}$$

для $\alpha = x, y, z$ и бесконечного числа мод поля с индексами f. Подход, при котором рассматривается ограниченное число состояний системы, использовался при анализе [1-3] сверхизлучения двух атомов, но здесь вместо одного из атомов рассматривается квантовый трехмерный гармонический осциллятор — металлическая наночастица. Наночастица-осциллятор характеризуется также матричными элементами $d_{p\alpha}$ дипольных моментов переходов между своими состояниями; $d_{p\alpha}$ могут быть выражены, как показано в работе [18] и в Приложении А, через резонансную поляризуемость наночастицы, которая определяется материалом, размерами и формой наночастицы. Отметим, что колебания электронной плотности наночастицы описывались с помощью модели квантового гармонического осциллятора с бозе-операторами рождения и уничтожения плазмонов в ряде работ, например, в работах [8, 9, 17, 18].

Из соображений симметрии очевидно, что в выбранной системе координат и при расположении наночастицы и эмиттера, показанном на рис. 1, дипольный момент наночастицы будет параллелен дипольному моменту, возникающему при переходе эмиттера из возбужденного состояния в основное. Анализ частного случая, представленного на рис. 1, может быть легко обобщен на случай произвольного расположения эмиттера и наночастицы-эллипсоида, это сделано в Приложении В.

Волновая функция системы «наночастица + + эмиттер» имеет вид

$$\begin{split} \psi \rangle &= \left(C_{10}^{(\alpha)} | \alpha, 0, 0 \rangle + C_{01}^{(\alpha)} | 0, \alpha, 0 \rangle + \right. \\ &+ \left. \sum_{f} C_{f} | 0, 0, f \rangle \right) \exp(-i\omega_{e} t), \quad (3) \end{split}$$

где комплексные коэффициенты $C_{10}^{(\alpha)}$, $C_{01}^{(\alpha)}$, C_f — медленно изменяющиеся амплитуды вероятностей соответствующих состояний, $\exp(-i\omega_e t)$ — быстро осциллирующий множитель. Гамильтониан системы

$$H = H_p + H_e + \sum_f H_f + \sum_f (V_{pf} + V_{ef})$$
(4)

есть сумма гамильтонианов: H_p — наночастицы, H_e — эмиттера, H_f — моды f поля, V_{pf} — взаимодействия наночастицы-диполя с модой поля, характеризуемой набором $f = \{\mathbf{k}, \lambda_{\mathbf{k}}\}$, т. е. волновым вектором \mathbf{k} и двумя направлениями поляризации, обозначенными индексами $\lambda_{\mathbf{k}} = 1, 2$, и V_{ef} — резонансного взаимодействия эмиттера с модой f поля,

$$V_{pf} = -\hbar \sum_{\alpha} \Omega_{pf}^{(\alpha)} \left[a_f^+ e^{-i\varphi_p(\mathbf{k})} a_\alpha + a_\alpha^+ a_f e^{i\varphi_p(\mathbf{k})} \right].$$
(5)

Здесь a_f^+ — оператор рождения фотона моды f, например, $a_f^+ | \alpha, 0, 0 \rangle = | \alpha, 0, f \rangle$, a_f — оператор уничтожения фотона: $a_{f'} | 0, 0, f \rangle = \delta_{ff'} | 0, 0, 0 \rangle$, $\delta_{ff'}$ символ Кронекера; a_{α} — оператор перехода наночастицы-гармонического осциллятора из первого возбужденного состояния в основное с дипольным моментом перехода, параллельным оси α , например, $a_{\alpha'} | \alpha, 0, 0 \rangle = \delta_{\alpha', \alpha} | 0, 0, 0 \rangle$, $\delta_{\alpha', \alpha}$ — символ Кронекера; a_{α}^+ — оператор перехода наночастицы в первое возбужденное состояние из основного: $a_{\alpha}^+ | 0, 0, 0 \rangle =$ $= | \alpha, 0, 0 \rangle$; $\varphi_p(\mathbf{k})$ — фаза поля моды f в центре наночастицы,

$$\varphi_p(\mathbf{k}) = \mathbf{k} \cdot \mathbf{r}_p, \tag{6}$$

 \mathbf{r}_p — радиус-вектор центра наночастицы в системе координат, на рис. 1 $\mathbf{r}_p \equiv \mathbf{r}$. Для моды поля в прозрачном диэлектрике [22]

$$\Omega_{pf}^{(\alpha)} = \sqrt{\frac{2\pi d_p^2 \omega}{n^2 \hbar V}} \cos \theta_{\lambda_{\mathbf{k}}}^{(\alpha)}, \qquad (7)$$

где d_p — матричный элемент дипольного момента перехода между соседними возбужденными состояниями наночастицы³, $\theta_{\lambda_{\mathbf{k}}}^{(\alpha)}$ — угол между дипольным моментом перехода наночастицы вдоль оси α системы координат и направлением поляризации поля моды f с индексом $\lambda_{\mathbf{k}}$, n — показатель преломления прозрачной среды, в которой находятся эмиттер и наночастица, V — объем квантования, ω — частота моды поля, которое предполагается резонансным: $\omega \approx \omega_e \approx \omega_{\alpha}$. Волновое число $k \equiv |\mathbf{k}| = n\omega/c$, где c — скорость света в вакууме. Оператор энергии резонансного взаимодействия эмиттера с модой f поля имеет вид

$$V_{ef} = -\hbar \sum_{\alpha} \Omega_{ef}^{(\alpha)} \left[a_f^+ e^{-i\varphi_e(\mathbf{k})} \sigma_{\alpha} + \sigma_{\alpha}^+ a_f e^{i\varphi_e(\mathbf{k})} \right].$$
(8)

Здесь σ_{α} — оператор перехода электрона эмиттера из возбужденного состояния в основное с дипольным моментом перехода, направленным вдоль оси α ,

$$\varphi_e(\mathbf{k}) = \mathbf{k} \cdot \mathbf{r}_e, \tag{9}$$

 ${f r}_e$ — радиус-вектор в точку расположения эмиттера, в системе координат на рис. 1 ${f r}_e=0,$

$$\Omega_{ef}^{(\alpha)} = \sqrt{\frac{2\pi d_e^2 \omega}{n^2 \hbar V}} \cos \theta_{\lambda_{\mathbf{k}}}^{(\alpha)}, \qquad (10)$$

в силу сферической симметрии эмиттера матричный элемент d_e дипольного момента перехода между состояниями эмиттера одинаков для всех α . Поскольку при взаимодействии наночастицы и эмиттера направления дипольных моментов их переходов совпадают, величина сов $\theta_{\lambda_k}^{(\alpha)}$ в формулах (7) и (10) одинакова для одной и той же моды f поля. Величины d_p и d_e считаем действительными, их фазы отнесены к амплитудам вероятностей.

3. УРАВНЕНИЯ ДВИЖЕНИЯ ДЛЯ АМПЛИТУД ВЕРОЯТНОСТЕЙ

Подставляя волновую функцию (3) в уравнение Шредингера

$$i\hbar \frac{d|\psi\rangle}{dt} = H|\psi\rangle \tag{11}$$

с гамильтонианом (4), пользуясь взаимной ортогональностью базисных состояний системы, а также тем, что

$$H_p |\alpha, 0, 0\rangle = \hbar \omega_\alpha |\alpha, 0, 0\rangle,$$

$$H_e |0, \alpha, 0\rangle = \hbar \omega_e |0, \alpha, 0\rangle,$$

$$H_f |0, 0, f\rangle = \hbar \omega |0, 0, f\rangle$$
(12)

(действия H_p , H_e или H_f на остальные базисные состояния дают нуль), получаем систему уравнений для медленно изменяющихся амплитуд вероятностей:

$$\begin{split} \dot{C}_{10}^{(\alpha)} &= i \sum_{f} \Omega_{ef}^{(\alpha)} C_{f} e^{i\varphi_{e}(\mathbf{k})}, \\ \dot{C}_{01}^{(\alpha)} &= i(\omega_{e} - \omega_{p\alpha}) C_{01}^{(\alpha)} + i \sum_{f} \Omega_{pf}^{(\alpha)} C_{f} e^{i\varphi_{e}(\mathbf{k})}, \\ \dot{C}_{f} &= i(\omega_{e} - \omega) C_{f} + \\ &+ i \left[\Omega_{ef}^{(\alpha)} C_{10}^{(\alpha)} e^{-i\varphi_{e}(\mathbf{k})} + \Omega_{pf}^{(\alpha)} C_{01}^{(\alpha)} e^{-i\varphi_{p}(\mathbf{k})} \right]. \end{split}$$
(13)

В рассматриваемом случае, когда дипольные моменты переходов эмиттера и наночастицы параллельны друг другу, имеются три независимые системы уравнений: для каждого $\alpha = x$ или $\alpha = y$, или $\alpha = z$. Поскольку при t = 0 возбуждается состояние эмиттера с определенным индексом α , в уравнении для C_f присутствует только один индекс α . Следуя [2,3],

³⁾ Для слабовытянутых частиц, для которых выполняется условие (2), можно пренебречь разницей между дипольными моментами для разных главных осей наночастицы и считать, что все дипольные моменты одинаковы и равны d_p .

адиабатически исключим C_f из (13). Для этого, интегрируя последнее из уравнений (13) по времени, найдем

$$C_f(t) = i \left[\Omega_{ef}^{(\alpha)} e^{-i\varphi_e(\mathbf{k})} \int_0^t C_{10}^{(\alpha)}(\tau') e^{-i\delta\tau'} d\tau' + \Omega_{pf}^{(\alpha)} e^{-i\varphi_p(\mathbf{k})} \int_0^t C_{01}^{(\alpha)}(\tau') e^{-i\delta\tau'} d\tau' \right], \quad (14)$$

где отстройка $\delta = \omega - \omega_e$. Постоянная интегрирования в (14) равна нулю, так как фотоны при t = 0 отсутствуют. Изменение $C_f(t)$ происходит за время испускания или поглощения фотона эмиттером или наночастицей. Этот процесс намного быстрее изменения амплитуд вероятности $C_{10}^{(\alpha)}$ и $C_{01}^{(\alpha)}$, поэтому в (14) можно перейти к марковскому приближению, т.е. считать, что $C_f(t)$ определяется $C_{10}^{(\alpha)}$ и $C_{01}^{(\alpha)}$ непосредственно в момент времени t. Полагая в уравнении (14)

$$C_{10}^{(\alpha)}(\tau') = C_{10}^{(\alpha)}(t), \quad C_{01}^{(\alpha)}(\tau') = C_{01}^{(\alpha)}(t)$$

и вычисляя в нем интегралы по времени, получаем

$$C_f(t) \approx i \left[\Omega_{ef}^{(\alpha)} e^{-i\varphi_e(\mathbf{k})} C_{10}^{(\alpha)}(t) + \Omega_{pf}^{(\alpha)} e^{-i\varphi_p(\mathbf{k})} C_{01}^{(\alpha)}(t) \right] \frac{1 - e^{-i\delta t}}{i\delta}.$$
 (15)

Подстановка (15) в первые два уравнения системы (13) приводит к следующим уравнениям:

$$\dot{C}_{10}^{(\alpha)} = -\frac{\gamma_e^r}{2} C_{10}^{(\alpha)} + i\Omega_{ep} C_{01}^{(\alpha)},
\dot{C}_{01}^{(\alpha)} = -\left(\frac{\gamma_p^r}{2} + i\delta_\alpha\right) C_{01}^{(\alpha)} + i\Omega_{pe} C_{01}^{(\alpha)},$$
(16)

где

$$\gamma_e^r = 2 \sum_f \left(\Omega_{ef}^{(\alpha)}\right)^2 \frac{1 - e^{i\delta t}}{i\delta} \tag{17}$$

 скорость спонтанного излучения эмиттера в свободное пространство,

$$\Omega_{ep} = i \sum_{f} \Omega_{ef}^{(\alpha)} \Omega_{pf}^{(\alpha)} \exp\left\{i\mathbf{k} \cdot (\mathbf{r}_{e} - \mathbf{r}_{p})\right\} \times \\ \times \frac{1 - e^{-i\delta t}}{i\delta}, \\ \Omega_{pe} = i \sum_{f} \Omega_{ef}^{(\alpha)} \Omega_{pf}^{(\alpha)} \exp\left\{i\mathbf{k} \cdot (\mathbf{r}_{p} - \mathbf{r}_{e})\right\} \times \\ \times \frac{1 - e^{-i\delta t}}{i\delta},$$
(18)

отстройка

$$\delta_{\alpha} = \omega_{p\alpha} - \omega_e, \qquad (19)$$

 γ_p^r определяется соотношением, аналогичным (17), но с заменой $\Omega_{ef}^{(\alpha)}$ на $\Omega_{pf}^{(\alpha)}$. Суммы в выражениях для $\gamma_e^r, \gamma_p^r, \Omega_{ep}, \Omega_{pe}$ вычислены в Приложении В. Заметим, что резонансное электромагнитное поле является «термостатом», состоящим из бесконечного числа мод. Электромагнитное поле приводит к диссипации энергии, т. е. к релаксации возбужденных состояний эмиттера и наночастицы в их основные состояния, но одновременно и к взаимодействию наночастицы и эмиттера. Диссипация энергии в (16) описывается слагаемыми, пропорциональными γ_e^r и γ_n^r , взаимодействие — слагаемыми, пропорциональными Ω_{ep} и Ω_{pe}. Колебания электронной плотности наночастицы и состояния эмиттера могут взаимодействовать не только с резонансным электромагнитным полем, но и с другими термостатами, вызывающими диссипацию энергии [23]. Указанные термостаты не связаны, как электромагнитное поле, с взаимодействием наночастицы и эмиттера, поэтому они могут быть описаны только заменой в (16) постоянных затухания γ_e^r и γ_p^r на

$$\gamma_{e\alpha} = \gamma_{e\alpha}^{nr} + \gamma_e^r \quad \mathbf{M} \quad \gamma_p = \gamma_p^{nr} + \gamma_p^r, \qquad (20)$$

где $\gamma_{e\alpha}^{nr}$ и γ_p^{nr} — скорости «нерадиационного» затухания. Процедура адиабатического исключения переменных термостатов, приводящая к появлению слагаемых, пропорциональных $\gamma_{e\alpha}^{nr}$ и γ_p^{nr} в (16), аналогична той, что привела к появлению в (16) слагаемых, пропорциональных $\gamma_{e\alpha}^{nr}$ и γ_p^{nr} , описывающих спонтанное излучение эмиттера и наночастицы в свободное пространство.

Вблизи резонанса во всех формулах, в которых встречается резонансная частота колебаний, можно положить ее равной ω_e , за исключением формулы, определяющей отстройку δ_{α} . В частности, γ_p^r можно считать одинаковым для всех α , поэтому в (20) обозначение $\gamma_{p\alpha}$ заменено на γ_p .

Используя результаты Приложения В, уравнения (16) можно переписать в виде

$$\dot{C}_{10}^{(\alpha)} = -\frac{\gamma_{e\alpha}}{2} C_{10}^{(\alpha)} + i\Omega_p f_a C_{01}^{(\alpha)}, \dot{C}_{01}^{(\alpha)} = -\left(\frac{\gamma_{pa}}{2} + i\delta_\alpha\right) C_{01}^{(\alpha)} + i\Omega_p f_a C_{01}^{(\alpha)}.$$
(21)

В (21) и далее для наночастицы в виде эллипсоида вращения индексы $\alpha = z, \rho$ и $\rho = x, y,$

$$\Omega_p = \frac{nk_e^3 d_e d_p}{\hbar}, \quad \gamma_{e,p}^r = \frac{4nd_{e,p}^2\omega_e^3}{3\hbar c^3}, \tag{22}$$

 f_z и f_{ρ} определяются соотношениями (47) Приложения В, скорости нерадиационного затухания γ_e^{nr} и $\gamma_{e\alpha}^{nr}$, входящие в (21) через (20) и зависящие от параметров наночастицы, будут определены ниже.

4. СКОРОСТИ РЕЛАКСАЦИИ КВАЗИСТАЦИОНАРНЫХ СОСТОЯНИЙ ЭМИТТЕРА И НАНОЧАСТИЦЫ

Система уравнений (21) диагонализуется заменой переменных $C_{01}^{(\alpha)}, C_{10}^{(\alpha)} \to C_{+}^{(\alpha)}, C_{-}^{(\alpha)}$:

$$C_{\pm}^{(\alpha)} = A_{\pm}^{(\alpha)} C_{10}^{(\alpha)} + B_{\pm}^{(\alpha)} C_{01}^{(\alpha)}, \qquad (23)$$

где $A_{\pm}^{(\alpha)}$, $B_{\pm}^{(\alpha)}$ — коэффициенты, $C_{\pm}^{(\alpha)}$ — амплитуды вероятностей «квазистационарных» состояний $|\alpha\pm\rangle$ системы «эмиттер + наночастица». Состояния $|\alpha\pm\rangle$ не взаимодействуют друг с другом, но из-за спонтанного излучения и безызлучательной релаксации их амплитуды вероятностей уменьшаются со временем до нуля. Введя в уравнениях (21) безразмерное время $\tau_{\alpha} = (\gamma_{e\alpha}/2)t$ и записав (21) в виде

$$\dot{C}_{10}^{(\alpha)} = -C_{10}^{(\alpha)} + iD_{\alpha}C_{01}^{(\alpha)}, \dot{C}_{01}^{(\alpha)} = -\Gamma_{\alpha}C_{01}^{(\alpha)} + iD_{\alpha}C_{10}^{(\alpha)},$$
(24)

где

$$\Gamma_z = \frac{\gamma_p}{\gamma_{ez}}, \quad \Gamma_\rho = \frac{\gamma_p + 2i\delta}{\gamma_{e\rho}}, \quad D_\alpha = \frac{2\Omega_p f_\alpha}{\gamma_{e\alpha}}, \quad (25)$$

сделав в (24) замену

$$C_{10}^{(\alpha)} = A_{10}^{(\alpha)} e^{\lambda_{\alpha} \tau_{\alpha}}, \quad C_{01}^{(\alpha)} = A_{01}^{(\alpha)} e^{\lambda_{\alpha} \tau_{\alpha}},$$

где λ_{α} — инкремент, и записав условия разрешимости получившейся системы алгебраических уравнений для $A_{10}^{(\alpha)}$, $A_{01}^{(\alpha)}$ определяем два инкремента затухания:

$$\lambda_{\alpha}^{\pm} = -0.5 \left[1 + \Gamma_{\alpha} \pm \sqrt{(1 - \Gamma_{\alpha})^2 - 4D_{\alpha}^2} \right].$$
 (26)

В общем случае λ_{α}^{\pm} — комплексная величина. Действительная (всегда отрицательная) часть λ_{α}^{\pm} описывает переход эмиттера из возбужденного состояния в основное и связанное с этим возбуждение и затем затухание плазмона в наночастице, а мнимая часть — сдвиг частоты спонтанного излучения эмиттера относительно частоты его спонтанного излучения в пространстве без наночастицы. Инкременты λ_{α}^{+} и λ_{α}^{-} соответствуют быстро и медленно распадающимся («светлому» $|\alpha+\rangle$ и «темному» $|\alpha-\rangle$) состояниям системы «наночастица + эмиттер». При слабом взаимодействии между эмиттером и частицей, когда $|D_{\alpha}/\Gamma_{\alpha}| \ll 1$ или $\Omega_{\alpha} \ll \gamma_p$, и для обычного случая $|\Gamma_{\alpha}| \gg 1$ имеем

$$\lambda_{\alpha}^{+} \approx -\Gamma_{\alpha} \left(1 - \frac{D_{\alpha}^{2}}{\Gamma_{\alpha}^{2}} + \dots \right),$$

$$\lambda_{\alpha}^{-} \approx -1 - \frac{D_{\alpha}^{2}}{\Gamma_{\alpha}} \left(1 + \frac{D_{\alpha}^{2}}{4\Gamma_{\alpha}^{2}} + \dots \right),$$
(27)

где опущены слагаемые более высокого порядка малости по $D^2_{\alpha}/\Gamma^2_{\alpha}$. Заметим, что распад даже «темного» состояния (с инкрементом $\lambda^-_{\alpha} \ll \lambda^+_{\alpha}$) может оказаться быстрее, чем распад возбужденного состояния изолированного эмиттера. Состояние $|\alpha-\rangle$ является «темным» только в том смысле, что оно распадается медленнее «светлого» $|\alpha+\rangle$. Распад возбужденных состояний эмиттера происходит существенно (по крайней мере, в разы) быстрее, чем в свободном пространстве, если $|D^2_{\alpha}/\Gamma_{\alpha}| > 1$, что при достаточно большом D_{α} может иметь место и в условиях слабого взаимодействия наночастицы и эмиттера, когда $|D_{\alpha}/\Gamma_{\alpha}| \ll 1$.

5. СКОРОСТЬ РЕЛАКСАЦИИ ВОЗБУЖДЕННОГО СОСТОЯНИЯ ЭМИТТЕРА ВБЛИЗИ НАНОЧАСТИЦЫ

В начальный момент времени, когда возбужден только эмиттер, система «эмиттер + наночастица» не находится ни в одном из своих квазистационарных состояний $|\alpha \pm \rangle$. Для того чтобы получить зависимость населенности возбужденного состояния эмиттера от времени, необходимо найти решение системы уравнений (24). Используя соотношение (23), уравнения (24) и начальные условия $C_{10}^{(\alpha)}(0) = 1$, $C_{01}^{(\alpha)}(0) = 0$ при $\tau_{\alpha} = 0$, находим

$$C_{10}^{(\alpha)}(\tau_{\alpha}) = \left(\lambda_{\alpha}^{-} - \lambda_{\alpha}^{+}\right)^{-1} \times \left[\left(1 + \lambda_{\alpha}^{-}\right) e^{\lambda_{\alpha}^{+}\tau_{\alpha}} - \left(1 + \lambda_{\alpha}^{+}\right) e^{\lambda_{\alpha}^{-}\tau_{\alpha}}\right], \quad (28)$$
$$C_{01}^{(\alpha)}(\tau_{\alpha}) = iD_{\alpha} \left(\lambda_{\alpha}^{-} - \lambda_{\alpha}^{+}\right)^{-1} \left(e^{\lambda_{\alpha}^{-}\tau_{\alpha}} - e^{\lambda_{\alpha}^{+}\tau_{\alpha}}\right).$$

Населенность возбужденного состояния эмиттера $n^e_{\alpha} = |C^{(\alpha)}_{10}|^2$. Число плазмонов — квантов колебаний электронной плотности наночастицы — равно $n^p_{\alpha} = |C^{(\alpha)}_{01}|^2$. Для случая $D_{\alpha}/\Gamma_{\alpha} \ll 1$ и $\Gamma_{\alpha} \gg 1$, используя (27), получаем

$$C_{10}^{(\alpha)}(\tau_{\alpha}) = \exp\left\{-\left(1 + \frac{D_{\alpha}^{2}}{\Gamma_{\alpha}}\right)\tau_{\alpha}\right\},\$$

$$C_{01}^{(\alpha)}(\tau_{\alpha}) = \frac{iD_{\alpha}}{\Gamma_{\alpha}}\left(\exp\left\{-\left(1 + \frac{D_{\alpha}^{2}}{\Gamma_{\alpha}}\right)\tau_{\alpha}\right\} - (29)\right)$$

$$-\exp(-\Gamma_{\alpha}\tau_{\alpha})\right).$$

Как следует из (29), распад возбужденного состояния эмиттера в условиях его слабого взаимодействия с наночастицей является с хорошей точностью экспоненциальным, что отмечалось в работе [11], но для описания генерации плазмонов, сопровождающей излучение эмиттера, всегда требуются два инкремента, иначе невозможно выполнить начальные условия. Из (29) виден физический смысл условия слабой связи: если $D_{\alpha}/\Gamma_{\alpha} \ll 1$, то число генерируемых плазмонов мало, $n_{\alpha}^{p} \sim |D_{\alpha}/\Gamma_{\alpha}|^{2} \ll 1$. Для сильной связи, когда $D_{\alpha}/\Gamma_{\alpha} \geq 1$ и инкременты определяются уравнением (26), число плазмонов n_{α}^{p} является величиной порядка 1.

Из формул (27), (29) и (25) следует, что скорость релаксации $\gamma_{e\alpha}$ [c⁻¹] населенности $n^e_{\alpha}(\tau_{\alpha})$ возбужденного состояния эмиттера имеет вид

$$\gamma_{e\alpha} \equiv \gamma_e^r F_\alpha, \quad F_\alpha = 1 + F_\alpha^{nr} + F_\alpha^r, \quad F_\alpha^{nr} = \frac{\gamma_{e\alpha}^{m}}{\gamma_e^r},$$

$$F_\alpha^r = \frac{9}{4} \operatorname{Re} \left(\frac{f_\alpha^2(\xi)}{1 + \gamma_p^{nr} / \gamma_p^r + 2i\delta_\alpha / \gamma_p^r} \right).$$
(30)

Здесь фактор Парселла F_{α} определяет относительное изменение скорости распада состояния эмиттера за счет процессов нерадиационного (слагаемое F^{nr}_{α}) и радиационного (слагаемое F^{r}_{α}) затухания; $\xi = rn\omega_e/c$, функция $f_{\alpha}(\xi)$ определяется формулой (47) Приложения В, отстройка от ЛПР $\delta_{
ho} = \omega_{
ho} - \omega_e \equiv \delta, \ \delta_z = 0.$ При выводе (30) использовано соотношение $(d_p/d_e)^2 = \gamma_p^r / \gamma_e^r$. Отметим, что из-за интерференции излучений наночастицы и эмиттера (формальное отражение которой — комплексная функция $f_{\alpha}^{2}(\xi)$ в (30)) возможно выполнение соотношения $-1 < F_{\alpha}^r < 0$, т.е. скорость радиационного распада возбужденных состояний эмиттера вблизи наночастицы может быть меньше, чем в отсутствие наночастицы. Этот же эффект имеет место и в случае двух атомов [2, 3]. Для сферической наночастицы выражение (30) без учета нерадиационного затухания (т. е. при $F_{\alpha}^{nr} = 0$) совпадает с результатами классического анализа [13,24] и квантового расчета (в пределе $\xi \gg 1$) [14] фактора Парселла.

6. ОЦЕНКИ СКОРОСТИ РАСПАДА СОСТОЯНИЙ ЭМИТТЕРА ВБЛИЗИ ЭЛЛИПСОИДАЛЬНОЙ НАНОЧАСТИЦЫ

Оценим величину F_{α} в зависимости от соотношения длин полуосей наночастицы и расстояния от наночастицы до эмиттера для случая, изображенного на рис. 1. Предположим, что эмиттер и наночастица помещены в прозрачный диэлектрик (например, в полимер) с показателем преломления n = 1.5 и что нерадиационных потерь эмиттера в отсутствие наночастицы нет. Диэлектрическую проницаемость металла наночастицы описываем формулой Друдэ

$$\varepsilon(\omega) = 1 - \frac{\omega_p^2}{\omega^2 + i\gamma_p^{nr}\omega},\tag{31}$$

где ω_p — плазмонная частота. Для серебра примем те же величины параметров, что и в работе [14]: $\hbar \gamma_p^{nr} = 0.067$ эВ, $\hbar \omega_p = 8.04$ эВ. Для золота, согласно [25], $1/\gamma_p^{nr} = 14$ фс или $\hbar \gamma_p^{nr} = 0.045$ эВ, $\hbar \omega_p = 8.45$ эВ. Скорость излучательной релаксации эмиттера примем приблизительно равной 10 МГц ($\approx 10^{-7}$ эВ), что типично для дипольно-разрешенных атомных переходов видимого или ближнего ИК-диапазона. Согласно [26], поляризуемость наночастицы — эллипсоида вращения — вдоль ее главных осей $\alpha = z, \rho$ равна

$$\alpha_{p\alpha} = \frac{ab^2}{3} \frac{\varepsilon - n^2}{n^2 + (\varepsilon - n^2)n_{\alpha}},$$

$$n_z = \frac{1 - e^2}{e^3} \left[\operatorname{Arth}(e) - e\right],$$

$$n_\rho = \frac{1}{2}(1 - n_z), \quad e = \sqrt{1 - \left(\frac{b}{a}\right)^2}.$$
(32)

При расчетах полагаем, что

$$\alpha_{p\alpha} = \alpha_{pz} \equiv \alpha_p \approx ab^2 \frac{\varepsilon - n^2}{2n^2 + \varepsilon} \,. \tag{33}$$

Частота ω_e ЛПР наночастицы определяется из условия обращения в нуль действительной части знаменателя в выражении для α_{pz} , что с учетом формул (31), (32) и $\gamma_p^{nr} \ll \omega_e$ приводит к результату для частоты ЛПР вдоль оси z:

$$\omega_e^2 \approx \omega_p^2 \frac{1+3m_z}{1+2n^2} \approx \frac{\omega_p^2}{1+2n^2},\tag{34}$$

где m_z связано с n_z из (32) соотношением $n_z = 1/3 + m_z$. С точностью, такой же как и в (34), находим для частот ЛПР вдоль осей x и y

$$\omega_{\rho}^2 \approx \omega_p^2 \frac{1 - 3m_z/2}{1 + 2n^2}.$$

Учитывая последнее соотношение, формулы (34) и $\omega_{\rho}^2 - \omega_e^2 \approx 2\omega_e \delta$, находим

$$\delta = -\frac{9}{4}m_z \frac{\omega_p^2/\omega_e}{1+2n^2}.$$
(35)

Для $\delta \ll \omega_e$ должно быть $m_z \ll 1$. Пользуясь тем, что $d_p^2 = \alpha_{res} \hbar \gamma_p^{nr}/2$, где α_{res} — абсолютная величина резонансной поляризуемости наночастицы без учета ее радиационных потерь (см. Приложение А), и используя выражение (22) для γ_p^r и формулы (33) и (31), находим

$$\gamma_{p}^{r} = \frac{2n^{3}ab^{2}}{(1+2n^{2})^{2}} \frac{\omega_{p}^{2}\omega_{e}^{2}}{c^{3}},$$

$$\Delta \equiv \frac{2\delta}{\gamma_{p}^{r}} = -\frac{9}{4}m_{z}\frac{1+2n^{2}}{n^{3}ab^{2}k_{e}^{3}}.$$
(36)

При малых расстояниях между наночастицей и эмиттером возникает нерадиационное затухание возбужденных состояний последнего. Следуя работам [27,28], будем считать, что это затухание следствие взаимодействия диполя-эмиттера со своим изображением под поверхностью наночастицы, и электрическое поле изображения под поверхностью полностью поглощается наночастицей. В случае малых расстояний между частицей и эмиттером, на которых такое затухание существенно, поверхность наночастицы можно рассматривать как плоскую. Справедливость данного приближения подтверждается сравнением его результатов с результатами точных расчетов [28]. Используя формулы (26) из [27] или (3) из [28] для эмиттера, находящегося в прозрачной среде с показателем преломления n на расстоянии r > a от центра металлической наночастицы, получаем

$$\begin{split} \gamma_{ez}^{nr} &= \frac{3\gamma_e^r}{8} \operatorname{Im} \left(\frac{\varepsilon(\omega_e) - n^2}{\varepsilon(\omega_e) + n^2} \right) \frac{1}{(\xi - \xi_a)^3} = \\ &= \frac{3\gamma_e^r \gamma_p^{nr}}{2\gamma_p^r} \frac{1}{(r/a - 1)^3}, \quad \gamma_{e\rho}^{nr} = \frac{\gamma_{ez}^{nr}}{2}, \end{split}$$

где $\xi_a = an\omega_e/c$, а и r — соответственно расстояния от центра наночастицы до ее поверхности и до эмиттера. Здесь учтено, что для ЛПР $\varepsilon'(\omega_e) = -2n^2$, $\varepsilon''(\omega_e) \ll \varepsilon'(\omega_e)$, и использовано равенство

$$\frac{\gamma_p^{nr}}{\gamma_p^r} = \frac{\varepsilon''(\omega_p)}{2\xi_a^3 n^2},$$

которое следует из известного дисперсионного уравнения для дипольной моды наночастицы [11]. С учетом последних соотношений получаем, что величина F_{α}^{nr} , входящая в (30), равна

$$F_{\alpha}^{nr} = \frac{3\gamma_p^{nr}/\gamma_p^r}{2(1+\delta_{\alpha\rho})(r/a-1)^3},$$
 (37)

и должно быть r > a.

Формулы (30) и (34)–(37) позволяют оценить F_{α} , если известны параметры диэлектрической функции (31) металла наночастицы, длины ее полуосей,

5 ЖЭТФ, вып.2(8)

расстояние от наночастицы до эмиттера и показатель преломления окружающей среды.

Определим среднюю скорость $1/\tau$ затухания возбужденных состояний эмиттера в ДНЛ. Дипольную моду колебаний электронной плотности наночастицы вдоль ее большей оси, резонансную переходу эмиттера, считаем лазерной модой ДНЛ, нерезонансные дипольные моды колебаний, перпендикулярных главной оси, считаем нелазерными. Следуя работам [15, 29], исключим из $1/\tau$ скорость спонтанной генерации в лазерную моду, эта скорость уже входит в уравнения ДНЛ и определяет там скорость спонтанной и вынужденной (в расчете на один плазмон) генерации плазмонов. Таким образом, при расчете $1/\tau$ вместо F_z следует взять $F_z - F_z^r$. Поскольку некогерентная накачка ДНЛ переводит эмиттер в каждое из трех возбужденных состояний с равной вероятностью 1/3, выполняется соотношение

$$\frac{1}{\tau} = \frac{\gamma_e^r}{3} \left(F_z - F_z^r + 2F_\rho \right).$$

Используя последнее выражение и (30) для F_{α} , находим

$$\frac{1}{\tau} = \gamma_e^r F, \quad F = 1 + \frac{\gamma_p^{nr} / \gamma_p^r}{2(r/a-1)^3} + \frac{3}{2} \operatorname{Re}\left(\frac{f_\rho^2(\zeta)}{1 + \gamma_p^{nr} / \gamma_p^r + i\Delta}\right). \quad (38)$$

Единица в выражении для F относится к скорости спонтанного излучения в свободное пространство, второе слагаемое описывает нерадиационное затухание эмиттера, третье — изменение скорости спонтанного излучения эмиттера из-за его излучения в нелазерные моды наночастицы с частотами ЛПР, отстроенными от частоты ЛПР лазерной моды. Из-за интерференционных эффектов последнее слагаемое в выражении для F в (38) может быть отрицательным, но оно всегда больше -1.

Заметим, что обычно фактор Парселла [12] учитывает изменение под воздействием окружения (например, резонатора) скорости спонтанного излучения эмиттера во все пространственные моды. При этом окружение (резонатор) имеет резонанс, совпадающий с резонансом эмиттера. Фактор F, определяемый формулой (38), учитывает спонтанное излучение только в нелазерные моды, и они могут быть отстроены от резонансной частоты эмиттера. Кроме того, в выражении для F учтено изменение скорости распада возбужденного состояния эмиттера за счет нерадиационного затухания вблизи металлической

Рис.2. Факторы Парселла относительного увеличения скорости распада возбужденного состояния эмиттера при взаимодействии с резонансной лазерной модой (a) F_z и с нерезонансными нелазерными модами (b) F_ρ эллипсоидальной наночастицы в зависимости от расстояния до поверхности наночастицы при различных аспектных отношениях a/b длин ее полуосей: a/b = 1 (1) (сферическая частица), 1.1 (2), 2 (3), 3 (4). Для сравнения на рис. 2aштриховой кривой показан фактор $F_\rho < F_z$ для сферической частицы

поверхности. Поэтому F можно назвать «обобщенным фактором Парселла» для плазмонных нанолазеров.

На рис. 2 показаны F_z и F_ρ как функции расстояния от эмиттера до серебряной наночастицы-эллипсоида вращения (см. рис. 1) с длиной, меньшей полуоси b = 10 нм, и разными значениями аспектного отношения a/b длин полуосей. Видно, что $F_{\rho}(r) < F_{z}(r)$ даже для сферической наночастицы, когда частота ЛПР одинакова для всех направлений колебаний электронной плотности наночастицы. Для частицы-эллипсоида при $a/b \neq 1$ возникает отстройка частоты ЛПР колебаний электронной плотности поперек большей полуоси наночастицы от частоты резонансного перехода эмиттера. Из-за отстройки отношение $F_{\rho}(r)/F_{z}(r)$ уменьшается при увеличении *a/b*. Рисунок 2 показывает, что даже при небольшой отстройке от резонанса скорость спонтанного излучения эмиттера в нерезонансные моды наночастицы на расстоянии 5-40 нм от ее поверхности оказывается, из-за деструктивной интерференции, даже меньше, чем скорость спонтанного излучения эмиттера в свободное пространство. Скорость же спонтанного излучения эмиттера в резонансную моду на этих расстояниях быстро растет по мере его приближения к поверхности наночастицы. На расстояниях в несколько нанометров от поверхности наночастицы существенную роль начинают играть нерадиационные потери излучения эмиттера из-за его взаимодействия с изображением в металле наночастицы, поэтому F_{ρ} и F_z быстро возрастают с приближением эмиттера к наночастице.

Рис. 3. Обобщенный фактор Парселла F эмиттера без спонтанного излучения в лазерную моду в зависимости от расстояния до наночастицы. Параметры кривых 1-4 те же, что и на рис. 2

На рис. 3 представлены зависимости «обобщенного фактора Парселла» F эмиттера от расстояния между ним и наночастицей без учета спонтанного излучения в лазерную моду. В случае вытянутых наночастиц (кривые 2–4 на рис. 3) увеличение F на малых расстояниях до наночастицы происходит из-за роста нерадиационных потерь, связанных с взаимодействием эмиттера и его изображения в наночастице. При этом вплоть до расстояний в несколько нанометров значение F для вытянутых наночастиц оказывается из-за интерференционных эффектов даже меньше единицы.

Рис. 4. Зависимости необходимых для достижения вынужденной (лазерной) генерации плазмонов порогового значения инверсии (*a*) и нормированной пороговой скорости накачки (*б*) от расстояния между эмиттером и наночастицей. Параметры кривых 1–4 те же, что и на рис. 2

В работе [17] получено выражение (1) для пороговой скорости Г_р накачки ДНЛ, изображенного на рис. 1, с единственным эмиттером у наночастицы, резонансная частота которого $\omega_e = \omega_z$ совпадает с частотой ЛПР-колебаний вдоль большей полуоси частицы и оси z, а частота ω_{ρ} ЛПР-колебаний, перпендикулярных оси z, отстроена от ω_e на величину δ , определяемую (35). В такой системе будет возникать вынужденная генерация плазмонов лазерной моды на частоте ω_z . Из-за отстройки от резонанса моды ЛПР с $\omega_{\rho} \neq \omega_z$ находятся ниже порога генерации моды ω_z , вынужденная генерация плазмонов на частоте ω_{ρ} не возникнет, в этих нелазерных модах плазмонных колебаний происходит спонтанная генерация, дающая вклад в потери. Определим порог генерации ДНЛ в этих условиях, используя результаты [17] и выражение для фактора Парселла (38). Подставляя в (1) явное выражение для C из [17] и τ из (38), приводим (1) к виду

$$\frac{\Gamma_p}{\gamma_e^r} > \frac{\Gamma_{th}}{\gamma_e^r} =$$

$$= \frac{F}{1 - D_{th}} \left(1 + D_{th} + \frac{\gamma_e^{nr} \gamma_p}{\gamma_e^r F(\gamma_e^r F + \gamma_p)} \right), \quad (39)$$

$$\gamma_e^{nr} = \frac{\gamma_e^r \gamma_p^{nr} / \gamma_p^r}{2(r/a - 1)^3},$$

$$D_{th} = \frac{4\gamma_p F}{9\gamma_p^r |f_z(\xi)|^2} < 1,$$

где $f_z(\xi)$ определяется формулой (47) из Приложения В. При выводе (39) учитывался тот факт, что для случая, представленного на рис. 1, константа Ω связи эмиттера и лазерной моды наночастицы за счет их диполь-дипольного взаимодействия, использованная в работе [17], совпадает со скоростью $\Omega_p f_z(\xi)$ спонтанного излучения эмиттера в лазерную моду.

На рис. 4*a* показана величина D_{th} минимальной инверсной населенности резонансного перехода эмиттера, необходимая для вынужденного излучения (генерации) плазмонов, как функция расстояния между наночастицей и эмиттером. Видно, что необходимое условие $D_{th} < 1$ выполняется при расстоянии от эмиттера до поверхности наночастицы от нескольких нанометров до нескольких десятков нанометров. На рис. 4*б* приведена аналогичная зависимость для нормированной пороговой скорости накачки Γ_{th}/γ_e^r . Она свидетельствует о том, что для вытянутых наночастиц $\Gamma_{th}/\gamma_e^r \approx 1$ в диапазоне расстояний от эмиттера до наночастицы от 1 нм до приблизительно 40 нм.

Расчет показывает, что при выбранных значениях параметров диэлектрической функции случай золотой наночастицы ничем принципиально не отличается от случая серебряной.

7. ЗАКЛЮЧЕНИЕ

Подход, основанный на теории сверхизлучения коллективного спонтанного излучения атомов обобщен на случай эмиттера (атома, молекулы, квантовой точки) вблизи металлической наночастицы, рассматриваемой как трехмерный квантовый гармонический осциллятор. В качестве примера получены скорости релаксации возбужденных состояний эмиттера около «вытянутой» наночастицы-эллипсоида вращения, когда частота излучения эмиттера совпадает с частотой ЛПР только одной из пространственно-однородных дипольных мод колебаний электронной плотности наночастицы. Принято во внимание нерадиационное затухание излучения эмиттера вблизи поверхности металлической наночастицы. Рассмотрены случаи слабой и сильной связи эмиттера и наночастицы. В первом случае число плазмонов, возникающих в наночастице под действием излучения эмиттера, много меньше единицы и возбужденные состояния эмиттера затухают по экспоненциальному закону. При наличии сильной связи, когда число плазмонов порядка единицы, распад описывается двумя экспонентами. В случае слабой связи выражение для скорости радиационного затухания возбужденных состояний эмиттера вблизи сферической наночастицы совпадает с тем, которое получается как из классического [13,24], так и из квантового [14] анализа наночастицы и эмиттера и без учета нерадиационных потерь эмиттера.

Показано, что на расстояниях 5-40 нм от поверхности вытянутой наночастицы скорости спонтанного излучения эмиттера во все моды ее дипольных колебаний, кроме одной — резонансной, могут быть даже несколько меньше, чем в свободное пространство, в то время как скорость спонтанного излучения в резонансную дипольную моду существенно превосходит скорость спонтанного излучения в свободное пространство. При этом скорости нерадиационного распада возбужденных состояний эмиттера, связанные с его взаимодействием с поверхностью частицы, еще достаточно малы. Таким образом, увеличение фактора Парселла не является препятствием к созданию плазмонных («дипольных») нанолазеров (ДНЛ), если в качестве резонансной лазерной моды выбрать одну из дипольных мод вытянутой металлической наночастицы. Можно найти оптимальное расположение эмиттеров относительно металлической наночастицы — резонатора ДНЛ, при котором радиационные потери эмиттеров сохраняются на уровне радиационных потерь в свободное пространство (в прозрачный диэлектрик) или будут даже немного меньше их. Рост скорости спонтанного излучения эмиттеров в лазерную моду наночастицы не препятствует, а способствует достижению порога лазерной генерации в этой моде: скорость спонтанного излучения в лазерную моду совпадает со скоростью вынужденного излучения, нормированной на число фотонов в лазерной моде [15,29]. Показано, что при подстановке скорости распада возбужденных состояний эмиттера (без учета скорости излучения в лазерную моду) в условия генерации ДНЛ, полученные в работе [17], эти условия выполняются в широком диапазоне параметров при умеренных скоростях накачки эмиттера — порядка скорости его спонтанного излучения в свободное пространство. Это позволяет, в принципе, создать ДНЛ на основе полупроводниковых структур и с непрерывным режимом генерации.

Нами предполагалось, что нерадиационное затухание возбужденных состояний эмиттера в отсутствие наночастицы не имеет места. На практике это условие может нарушаться, например, при наличии нескольких эмиттеров около наночастицы из-за их взаимодействия друг с другом через ближнее поле (аналогичное взаимодействию при «самоуширении» или «резонансном уширении» в газах [30]). Учет самоуширения резонансных переходов эмиттера в ДНЛ является предметом отдельного рассмотрения.

Подход, основанный на теории сверхизлучения, может оказаться плодотворным для анализа ДНЛ и других плазмонных нанолазеров, в том числе для анализа экспериментов, аналогичных [31], по генерации в нанолазерах с резонаторами-металлическими наночастицами с накачкой мощными фемтосекундными световыми импульсами. Уравнения (6) несложно обобщить на случай, когда имеется некогерентная накачка эмиттера и число плазмонов порядка и больше единицы, а также для нескольких эмиттеров при учете их взаимодействия друг с другом. Может быть определено оптимальное расположение эмиттеров относительно вытянутых наночастиц, когда радиационные потери эмиттеров при излучении в нерезонансные нелазерные моды наночастиц минимальны, а нерадиационные потери еще несущественны при максимальной скорости излучения эмиттеров в лазерную моду.

приложение А

Вычисление матричного элемента дипольного момента перехода наночастицы-осциллятора

Комплексная амплитуда $D_p = d_p a_p$ дипольного момента квантового гармонического осциллятора, где d_p — матричный элемент дипольного момента для перехода между состояниями осциллятора, a_p — бозе-оператор уничтожения кванта колебаний осциллятора. Допустим, осциллятор находится в резонансном классическом монохроматическом электрическом поле комплексной амплитуды *E*. Уравнение движения для *a_p* есть

$$\dot{a}_p = -\frac{\gamma_p}{2} a_p + \frac{i d_p E}{\hbar},$$

где γ_p — ширина линии осциллятора. В стационарном случае $\dot{a}_p = 0$, поэтому $a_p = 2id_p E/(\gamma_p \hbar)$. По определению поляризуемости α_p осциллятора $D_p =$ $= \alpha_p E$. Таким образом, $\alpha_p E = d_p a_p$ и, используя выражение для a_p , находим $\alpha_p = 2id_p^2/(\gamma_p \hbar)$, откуда $|d_p|^2 = \hbar \gamma_p |\alpha_p|/2$. Но последнее выражение определяет $|d_p|^2$ в неявном виде, так как $\gamma_p = \gamma_p^r + \gamma_p^{nr}$, где $\gamma_p^r \sim |d_p|^2$ — вклад радиационных потерь, а γ_p^{nr} нерадиационных потерь в ширину линии. Поэтому приходим к результату, указанному после формулы (35): $|d_p|^2 = \hbar \gamma_p^{nr} \alpha_{res}/2$, где α_{res} — абсолютная величина резонансной поляризуемости наночастицы, определенная без учета ее радиационных потерь.

приложение в

Вычисление коэффициентов в уравнениях (16)

Хотя процедура вычисления скорости γ_e^r спонтанного излучения в свободное пространство хорошо известна, целесообразно привести ее, так как некоторые используемые при определении γ_e^r соотношения будут полезны при вычислении Ω_{ep} и Ω_{pe} . Выполним в (17), (18) суммирование по набору индексов f с помощью частичной замены суммирования интегрированием:

$$\sum_{f} \to V \int_{0}^{\infty} \frac{k^{2} dk}{(2\pi)^{3}} \int d\Lambda_{\mathbf{k}} \sum_{\lambda_{\mathbf{k}}} \approx V \int_{0}^{\infty} \frac{k^{2} dk}{(2\pi)^{3}} \times \int d\Lambda_{\mathbf{k}} \sum_{\lambda_{\mathbf{k}}} \approx n^{3} V \int_{-\infty}^{\infty} \frac{\omega_{e} d\delta}{(2\pi c)^{3}} \int d\Lambda_{\mathbf{k}} \sum_{\lambda_{\mathbf{k}}}, \quad (40)$$

где интеграл по направлениям волнового вектора фотона

$$\int d\Lambda_{\mathbf{k}} = \int_{0}^{2\pi} d\varphi_{\mathbf{k}} \int_{0}^{\pi} \sin \theta_{\mathbf{k}} d\theta_{\mathbf{k}}.$$

 $\varphi_{\mathbf{k}}$ и $\theta_{\mathbf{k}}$ — полярные углы волнового вектора \mathbf{k} моды поля в системе координат на рис. 1. Поскольку эмиттер излучает резонансный фотон, т.е. $\delta = \omega - \omega_e \ll \omega_e$, в (40) ω заменяется на ω_e . Для определенности предположим, что эмиттер при t = 0 возбуждается в состояние с дипольным моментом перехода, параллельным оси z. В соответствии с (17)

$$\gamma_e^r = 2\sum_f \frac{2\pi d_e^2 \omega}{n^2 \hbar V} \frac{1 - e^{-i\delta t}}{i\delta} \cos^2 \theta_{\lambda_{\mathbf{k}}}^{(z)} =$$
$$= \frac{4\pi n d_e^2 \omega_e^3}{\hbar (2\pi c)^3} \int_{-\infty}^{\infty} \frac{1 - e^{-i\delta t}}{i\delta} d\delta \int d\Lambda_{\mathbf{k}} \sum_{\lambda_{\mathbf{k}}} \cos^2 \theta_{\lambda_{\mathbf{k}}}^{(z)}.$$
 (41)

Здесь

$$\int_{-\infty}^{\infty} \frac{1 - e^{-i\delta t}}{i\delta} d\delta = \int_{-\infty}^{\infty} \frac{d\delta}{i\delta} + i \int_{-\infty}^{\infty} \frac{e^{-i\delta t} d\delta}{\delta} = -i\pi,$$

так как первый интеграл равен нулю в силу нечетности подынтегральной функции, а второй нужно брать, переходя к комплексному δ , интегрируя по контуру, замкнутому (поскольку t > 0) в нижней части плоскости комплексных δ — как показано на рис. 5 слева. Волновой вектор **k** фотона и два единичных вектора \mathbf{e}_{λ_k} поляризации этого фотона вза-имно ортогональны, так что

$$\cos^2 \theta_{\mathbf{k}} + \cos^2 \theta_{1_{\mathbf{k}}}^{(z)} + \cos^2 \theta_{2_{\mathbf{k}}}^{(z)} = 1, \qquad (42)$$

где $\theta_{1_{\mathbf{k}}}^{(z)}$, $\theta_{2_{\mathbf{k}}}^{(z)}$ — углы между векторами поляризации фотона и осью *z* системы координат на рис. 1, вдоль которой направлены дипольные моменты перехода наночастицы и эмиттера. Поскольку

$$\sum_{\lambda_{\mathbf{k}}} \cos^2 \theta_{\lambda_{\mathbf{k}}}^{(\alpha)} \equiv \cos^2 \theta_{1_{\mathbf{k}}} + \cos^2 \theta_{2_{\mathbf{k}}},$$

из (42) следует

$$\int d\Lambda_{\mathbf{k}} \sum_{\lambda_{\mathbf{k}}} \cos^2 \theta_{\lambda_{\mathbf{k}}}^{(\alpha)} = \int_{0}^{2\pi} d\varphi_{\mathbf{k}} \times \int_{0}^{\pi} \sin \theta_{\mathbf{k}} (1 - \cos^2 \theta_{\mathbf{k}}) \, d\theta_{\mathbf{k}} = 2\pi \int_{-1}^{1} (1 - x^2) \, dx = \frac{8\pi}{3}.$$

Подставляя результаты вычислений в (41), находим известное выражение (22) для скорости γ_e^r спонтанного излучения атома в прозрачной диэлектрической среде с показателем преломления *n*. Выражение для γ_p^r отличается от выражения для γ_e^r заменой d_e^2 на d_p^2 .

Перейдем к вычислению Ω_{ep} . В системе координат на рис. 1 $\mathbf{r}_e - \mathbf{r}_p = -\mathbf{r}$, где $\mathbf{r} -$ радиус-вектор из

Рис.5. Контуры интегрирования на комплексной плоскости δ: слева — при вычислении интеграла в (41), справа — при вычислении интеграла (44) для слагаемых, пропорциональных e^{ikr} (сплошная линия в верхней полуплоскости), и для слагаемых, пропорциональных e^{-ikr} (штриховая линия в нижней полуплоскости)

начала координат, где расположен эмиттер, в центр наночастицы, так что

Вычисляя

$$\Omega_{ep} = i \sum_{f} \Omega_{ef}^{(z)} \Omega_{pf}^{(z)} \exp\left\{i\mathbf{k} \cdot (\mathbf{r}_{e} - \mathbf{r}_{p})\right\} \frac{1 - e^{-i\delta t}}{i\delta} = = \frac{ind_{p}d_{e}\omega_{e}^{3}}{2\pi\hbar c^{3}} \int_{-\infty}^{\infty} \frac{(1 - e^{-i\delta t}) d\delta}{i\delta} \times \times \int_{0}^{\pi} \exp\left(-ikr\cos\theta_{\mathbf{k}}\right) (1 - \cos^{2}\theta_{\mathbf{k}}) \sin\theta_{\mathbf{k}} d\theta_{\mathbf{k}}.$$
 (43)

Здесь использовано соотношение (42) при выполнении суммирования по поляризациям фотона. Интеррал по $d\delta$ в (43) берется по контуру в комплексной плоскости: δ заменяется на $\delta - i\varepsilon$, после вычислений полагается $\varepsilon = 0$, Ω_{ep} вычисляется для стационарного случая, когда $t \to \infty$. Поскольку при $\varepsilon \neq 0$ величина Ω_{ep} должна оставаться конечной при $t \to \infty$, следует считать $\varepsilon > 0$. Устремляя $t \to \infty$, вместо (43) получаем

$$\begin{split} \Omega_{ep} &= \frac{n d_p d_e \omega_e^3}{2 \pi \hbar c^3} \int\limits_{-\infty}^{\infty} \frac{d \delta}{\delta - i \varepsilon} \times \\ &\times \int\limits_{0}^{\pi} \exp(-i k r \cos \theta_{\mathbf{k}}) (1 - \cos^2 \theta_{\mathbf{k}}) \sin \theta_{\mathbf{k}} d \theta_{\mathbf{k}}. \end{split}$$

$$\int_{0}^{n} \exp(-ikr\cos\theta_{\mathbf{k}})(1-\cos^{2}\theta_{\mathbf{k}})\sin\theta_{\mathbf{k}}d\theta_{\mathbf{k}} =$$
$$= \int_{-1}^{1} e^{-ikrx}(1-x^{2}) dx = 4 \left[\frac{\sin(kr)}{(kr)^{3}} - \frac{\cos(kr)}{(kr)^{2}}\right],$$

находим

$$\Omega_{ep} = \frac{2nd_p d_e \omega_e^3}{\pi \hbar c^3} \int\limits_{-\infty}^{\infty} \frac{d\delta}{\delta - i\varepsilon} \left[\frac{\sin(kr)}{(kr)^3} - \frac{\cos(kr)}{(kr)^2} \right].$$
(44)

Заметим, что $k = n\omega/c = n(\delta + \omega_e)/c$ зависит от δ , эта зависимость входит в выражения для фазы, поэтому в (44) нельзя просто устремить δ к нулю, как это сделано в (40). Запишем

$$\sin(kr) = \frac{e^{ikr} - e^{-ikr}}{2i}, \quad \cos(kr) = \frac{e^{ikr} + e^{-ikr}}{2}.$$

Интегралы в (44), содержащие $\exp(ikr)$, можно вычислить, замыкая контур интегрирования в верхней полуплоскости комплексных δ , где мнимая часть δ положительна и $\exp(ikr) \rightarrow 0$ при Im $\delta \rightarrow \infty$. Подынтегральное выражение в (44) имеет полюс $\delta = i\varepsilon$, см. правую часть рис. 5. При вычислении интегралов в (44), содержащих $\exp(-ikr)$, контур интегрирования замыкается в нижней полуплоскости, где полюса нет, и, следовательно, вклад таких интегралов в (44) равен нулю и в (44) их следует опустить. Поскольку

$$\int_{-\infty}^{\infty} \frac{1}{\delta - i\varepsilon} \left[\frac{1}{2i(kr)^3} - \frac{1}{2(kr)^2} \right] e^{ikr} d\delta \Big|_{\varepsilon=0} =$$
$$= 2\pi i \left[\frac{1}{2i(k_e r)^3} - \frac{1}{2(k_e r)^2} \right] e^{ik_e r},$$

получаем

$$\Omega_{ep} = \frac{2nd_p d_e \omega_e^3}{\pi \hbar c^3} \int_{-\infty}^{\infty} \frac{1}{\delta - i\varepsilon} \times \left[\frac{1}{2i(kr)^3} - \frac{1}{2(kr)^2} \right] e^{ikr} d\delta \Big|_{\varepsilon=0} = \\ = 2\Omega_p \left[\frac{1}{(nk_e r)^3} - \frac{i}{(nk_e r)^2} \right] e^{ink_e r},$$

где

$$\Omega_p = \frac{nd_p d_e \omega_e^3}{\hbar c^3}, \quad k_e = \frac{\omega_e}{c}.$$

Исходные выражения (18) для Ω_{ep} и Ω_{pe} различаются только знаком $\mathbf{k} \cdot (\mathbf{r}_p - \mathbf{r}_e) = \mathbf{k} \cdot \mathbf{r}$, а выражение (44) от этого знака не зависит, поэтому

$$\Omega_{ep} = \Omega_{pe}.$$

Чтобы получить уравнения для произвольного расположения наночастицы и эмиттера, используем известное выражение [32] для амплитуды \mathbf{E}_{21} электрического поля $\mathbf{E}_{21} \exp(-i\omega t)$ диполя, совершающего гармонические колебания с частотой ω_e и амплитудой \mathbf{d}_e в прозрачной среде с показателем преломления n:

$$\mathbf{E}_{21} = \frac{n\mathbf{d}_e\omega_e^3}{c^3} \left(\frac{1}{kr} + \frac{1}{(kr)^2} - \frac{1}{(kr)^3}\right) e^{ikr} + \frac{n\omega_e^3}{c^3} \mathbf{e}_r (\mathbf{e}_r \cdot \mathbf{d}_e) \left(-\frac{1}{kr} - \frac{3i}{(kr)^2} + \frac{3}{(kr)^3}\right) e^{ikr}, \quad (45)$$

где $k = n\omega_e/c$ — волновое число поля в среде, r — расстояние от диполя до точки наблюдения, \mathbf{e}_r — единичный вектор вдоль прямой, соединяющей диполь и точку наблюдения 2. Для случая представленного на рис. 1 диполя-эмиттера, возбужденного вдоль оси z, в центре наночастицы, находящейся на расстоянии от эмиттера, имеем

$$\mathbf{E}_{21} = 2n\mathbf{d}_e \frac{\omega_e^3}{c^3} \left(\frac{1}{(kr)^3} - \frac{i}{(kr)^2} \right) e^{ikr}.$$

Если в точке 2 находится диполь с амплитудой \mathbf{d}_p , параллельный диполю \mathbf{d}_e , то

$$\frac{\mathbf{d}_{p} \cdot \mathbf{E}_{21}}{\hbar} = \Omega_{p} 2 \left(\frac{1}{(kr)^{3}} - \frac{i}{(kr)^{2}} \right) e^{ikr} = \Omega_{ep} = \Omega_{pe}.$$
 (46)

Соотношение (46), которое получено для частного случая расположения диполей, показанного на рис. 1, и возбуждения колебаний эмиттера вдоль оси z, сохранится, очевидно, и для случая произвольного расположения диполя-эмиттера относительно наночастицы-диполя — трехмерного гармонического осциллятора. Пользуясь (46), по аналогии с (21) можно записать систему шести уравнений с $\alpha = x, y, z$ для произвольного расположения наночастицы и эмиттера в системе координат, связанной с главными осями наночастицы:

$$\begin{split} \dot{C}_{10}^{(\alpha)} &= -\frac{\gamma_{e\alpha}}{2} C_{10}^{(\alpha)} + i \sum_{\beta=x,y,z} \Omega_{\alpha\beta} C_{01}^{(\beta)}, \\ \dot{C}_{01}^{(\alpha)} &= -\left(\frac{\gamma_{p\alpha}}{2} + i\delta_{\alpha}\right) C_{01}^{(\alpha)} + i \sum_{\beta=x,y,z} \Omega_{\alpha\beta} C_{10}^{(\beta)}, \end{split}$$

где, согласно (45) и (46),

$$\begin{split} \Omega_{\alpha\beta} &= \frac{d_{p\alpha}(\mathbf{E}_{21})_{\alpha}}{\hbar} = \frac{nd_e d_p \omega_e^3}{c^3 \hbar} \,\delta_{\alpha\beta} \times \\ &\times \left(\frac{1}{kr} + \frac{i}{(kr)^2} - \frac{1}{(kr)^3}\right) e^{ikr} + \\ &+ \frac{nd_p d_e \omega_e^3}{c^3 \hbar} e_{r\alpha} e_{r\beta} \left(-\frac{1}{kr} - \frac{3i}{(kr)^2} + \frac{3}{(kr)^3}\right) e^{ikr}, \end{split}$$

или сокращенно —

$$\Omega_{\alpha\beta} = \Omega_p \left\{ f_{\rho}(\xi) \delta_{\alpha\beta} + \left[f_z(\xi) - f_{\rho}(\xi) \right] e_{r\alpha} e_{r\beta} \right\}$$

Здесь e_{ra} — компонента единичного вектора в направлении от эмиттера в центр наночастицы вдоль оси α системы координат,

$$f_{z}(\xi) = 2\left(\frac{1}{\xi^{3}} - \frac{i}{\xi^{2}}\right)e^{i\xi},$$

$$f_{\rho}(\xi) = \left(\frac{1}{\xi} - \frac{1}{\xi^{3}} + \frac{i}{\xi^{2}}\right)e^{i\xi},$$

$$\xi = rnk_{e} \equiv \frac{rn\omega_{e}}{c},$$

(47)

r — расстояние между эмиттером и центром наночастицы.

ЛИТЕРАТУРА

- 1. Th. Richter, Annalen der Physik 491, 266 (1979).
- P. W. Milonni and P. L. Knight, Phys. Rev. A 10, 1096 (1974).
- **3**. И. Е. Проценко, ЖЭТФ **130**, 195 (2006).

- 4. V. Weisskopf and E. Wigner, Z. Physik 63, 54 (1930).
- 5. А. Н. Ораевский, УФН 164, 415 (1994).
- 6. M. Rycenga et al., Chem. Rev. 111, 3669 (2011).
- 7. S. M. Morton et al., Chem. Rev. 111, 3962 (2011).
- 8. Е. С. Андрианов, А. А. Пухов, А. В. Дорофеенко и др., Письма в ЖЭТФ 97, 522 (2013).
- Е. С. Андрианов, А. А. Пухов, А. В. Дорофеенко и др., ЖЭТФ 144, 1 (2013).
- 10. В. В. Климов, УФН 173, 1008 (2003).
- **11**. В. В. Климов, *Наноплазмоника*, Физматлит, Москва (2009).
- 12. E. M. Purcell, Phys. Rev. 69, 681 (1946).
- H. Mertens, A. F. Koenderink, and A. Polman, Phys. Rev. B 76, 115123 (2007).
- 14. J. B. Khurgin and G. Sun, J. Opt. Soc. Amer. B 26, B83 (2009).
- 15. G. Bjork, A. Karlsson, and Y. Yamamoto, Phys. Rev. A 50, 1675 (1994).
- 16. I. Protsenko et al., Phys. Rev. A 59, 1667 (1999).
- 17. I. E. Protsenko, J. Rus. Laser Res. 33, 559 (2012).
- 18. I. E. Protsenko et al., Phys. Rev. A 71, 063812 (2005).
- 19. P. Anger, P. Bharadwaj, and L. Novotny, Phys. Rev. Lett. 96, 113002 (2006).

- 20. P. Johansson, H. Xu, and M. Käll, Phys. Rev. B 72, 035427 (2005).
- 21. J. B. Khurgin and G. Sun, Appl. Phys. Lett. 100, 011105 (2012).
- 22. Е. В. Ткаля, Письма в ЖЭТФ 7, 449 (2000).
- 23. M. J. Collett and C. W. Gardiner, Phys. Rev. A 30, 1386 (1984).
- 24. Y. S. Kim, P. T. Leung, and T. F. George, Surface Sci. 195, 1 (1988).
- 25. R. L. Olmon et al., Phys. Rev. B 86, 235147 (2012).
- 26. Л. Д. Ландау, Е. М. Лифшиц, Электродинамика сплошных сред, Физматлит, Москва (2001).
- 27. D. V. Guzatov and V. V. Klimov, Chem. Phys. Lett. 412, 341 (2005).
- 28. P. Bharadwaj and L. Novotny, Opt. Express 15, 14266 (2007).
- 29. N. Gregersen et al., Appl. Phys. Lett. 100, 131107 (2012).
- R. A. Pasmanter and A. Ben-Reuven, J. Quant. Spectrosc. Radiat. Transfer 13, 57 (1973).
- 31. M. A. Noginov et al., Nature 460, 1110 (2009).
- 32. Л. Д. Ландау, Е. М. Лифшиц, Теория поля, Наука, Москва (1988).