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nSQUID ARRAYS AS CONVEYERS OF QUANTUM INFORMATIONQiang Deng, Dmitri V. Averin *Department of Physi
s and Astronomy, Stony Brook University,SUNY, Stony Brook, NY 11794-3800Re
eived August 4, 2014We have 
onsidered the quantum dynami
s of an array of nSQUIDs � two-jun
tion SQUIDs with negativemutual indu
tan
e between their two arms. E�e
tive dual-rail stru
ture of the array 
reates additional internaldegree of freedom for the �uxons in the array, whi
h 
an be used to en
ode and transport quantum information.Physi
ally, this degree of freedom is represented by ele
tromagneti
 ex
itations lo
alized on the �uxon. We have
al
ulated the spatial pro�le and frequen
y spe
trum of these ex
itations. Their dynami
s 
an be redu
ed to twoquantum states, so that ea
h �uxon moving through the array 
arries with it a qubit of information. Coheren
eproperties of su
h a propagating qubit in the nSQUID array are 
hara
terized by the dynami
 suppression ofthe low-frequen
y de
oheren
e due to the motion-indu
ed spreading of the noise spe
tral density to a largerfrequen
y interval. Contribution for the JETP spe
ial issue in honor of A. F. Andreev's 75th birthdayDOI: 10.7868/S00444510141201891. INTRODUCTIONCoheren
e properties and pre
ision of 
ontrol overthe dynami
s of super
ondu
ting qubits (see, e. g., re-
ent experiments [1�5℄) have rea
hed the level when itbe
omes possible and interesting to dis
uss potentialar
hite
ture of the super
ondu
ting quantum 
omput-ing 
ir
uits either within the gate-model paradigm [6�9℄or the adiabati
 ground-state approa
h [10, 11℄. Be-sides the formidable problem of maintaining the levelof qubit 
oheren
e with in
reasing 
ir
uit 
omplexity,the 
entral issue that needs to be addressed by any ar-
hite
ture of s
alable quantum 
omputing devi
es is therequirement of rapid transfer of quantum informationamong a large number of qubits with su�
ient �delity.So far, the suggested solutions to the problem of trans-fer of quantum information were based on 
ontrollabledire
t 
oupling of qubits or 
oupling through a 
om-mon resonator. These solutions, while working ni
elyfor the 
ir
uits of few qubits, 
an not be s
aled easilyto larger 
ir
uits.The purpose of this work is to suggest another ap-proa
h to the problem of information transfer along aquantum 
ir
uit of the super
ondu
ting qubits utiliz-ing quantum dynami
s of magneti
 �ux, in whi
h the*E-mail: dmitri.averin�stonybrook.edu

quantum information is transported along the 
ir
uitby propagating 
lassi
al pulses. This approa
h usesthe arrays of two-jun
tion SQUIDs, where ea
h of themhas a negative mutual indu
tan
e between its two arms.Dynami
s of su
h �nSQUIDs� [12℄ 
an be represented interms of the two degrees of freedom, the �di�erential�mode and the �
ommon� modes, with very di�erentproperties. The former 
an be used to en
ode quantuminformation, while the latter � to transport it. Then,the overall ar
hite
ture of a quantum 
omputing 
ir-
uit built of nSQUIDs is very similar to super
ondu
t-ing 
lassi
al reversible 
ir
uits also based on nSQUIDs[13, 14℄, in whi
h the 
omputation is organized aroundthe information-
arrying pulses propagating along the
ir
uit.Existen
e of the two degrees of freedom with diffe-rent properties makes nSQUID arrays qualitatively andadvantageously di�erent from previously 
onsidered ar-rays of super
ondu
ting qubits (see, e. g., [15�17℄) orspins [18�20℄ as tools for quantum information trans-fer. In general, a physi
al variable en
oding quantuminformation and the one used to 
arry it should sat-isfy 
ompletely di�erent sets of requirements, and inthe 
ase of nSQUIDs, the 
ommon and the di�erentialdynami
 modes 
an be optimized separately to sat-isfy these di�erent requirements. Most importantly,the 
ommon mode, i. e. the degree of freedom trans-porting the quantum information, does not ne
essarily1315 12*
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e a 
lassi
al dynami
sis su�
ient to transport a qubit along the array. Thismakes potential operation of nSQUID arrays as 
onvey-ers of quantum information 
onsiderably more straight-forward, sin
e it avoids a 
hallenging problem of main-taining quantum 
oheren
e of �uxons, supported by the
ommon mode, along a large array of jun
tions.2. BASIC MODEL OF nSQUID ARRAYWe begin our detailed dis
ussion with a des
riptionof the elementary 
ell of the arrays 
onsidered in thiswork, i. e., nSQUID [12℄ � a two-jun
tion SQUID witha negative indu
tan
e between its two arms (Fig. 1).Dynami
s of this stru
ture 
an be separated naturallyinto the dynami
s of two degrees of freedom, i. e., the
ommon mode representing the total 
urrent �owingthrough the two jun
tions of the SQUID and the dif-ferential mode whi
h represents the di�eren
e of thetwo jun
tion 
urrents, i. e., the 
urrent 
ir
ulating alongthe SQUID loop. In the 
on�guration of an one-dimensional array, these two degrees of freedom giverise to the two di�erent ex
itation modes of the array.The 
ommon mode 
orresponds to ex
itations propa-gating along the array and, in the appropriate regime,takes the form of individual �uxons.The main di�eren
e between the nSQUID and theusual two-jun
tion SQUID 
an be seen if one thinksvery 
rudely about two arms of a SQUID as two paral-lel wires. For the plain wires, the mutual indu
tan
eMbetween the wires is positive,M > 0, ensuring that thee�e
tive indu
tan
e of the di�erential mode is alwayssmaller than that of the 
ommon mode. In this 
ase,the di�erential mode 
an have a non-trivial dynami
sonly together with the 
ommon mode. By 
ontrast, thenegative mutual indu
tan
e �M between the SQUIDarms makes the e�e
tive indu
tan
e of the di�erentialmode larger than the indu
tan
e of the 
ommon mode.As a result, one 
an realize a situation when the dif-ferential mode exhibits a non-trivial, e. g., bi-stable dy-nami
s at low frequen
ies without ex
iting the 
ommonmode whi
h supports only the ex
itations with largerfrequen
ies. The di�erential mode 
an then be usedto en
ode information, while the dynami
s of the 
om-mon mode is optimized separately for transfer of thisinformation along the array. If the dynami
s of bothmodes is 
lassi
al, nSQUID stru
tures provide a 
on-venient basis for implementation of 
lassi
al reversible
omputing [13, 14℄. If, however, parameters of the dif-ferential mode are su
h that its behavior is quantum, it
an be used to en
ode quantum information, whi
h 
an

�MEJ C EJ C
�e �e

L L
Fig. 1. Equivalent 
ir
uit of an nSQUID, i. e., a two-jun
tion SQUID with jun
tion 
apa
itan
es C andJosephson 
oupling energies EJ and the negative mu-tual indu
tan
e �M between its indu
tive arms withindu
tan
es L. The negative mutual indu
tan
e makesthe e�e
tive indu
tan
e of the 
ommon mode of theSQUID dynami
s mu
h smaller than the indu
tan
e ofthe di�erential mode. Also shown are the phase bias �eof the 
ommon mode and �e of the di�erential modethen be transported along the array by the evolutionof the 
ommon mode.Hamiltonian H of the individual nSQUID (Fig. 1)is given by the standard expression whi
h in
ludes the
harging energies and the Josephson 
oupling energiesof the two SQUID jun
tions. Adding the magneti
 en-ergy of the two indu
tive arms of the SQUID 
oupledby the negative mutual indu
tan
e, we obtain the fol-lowing expression for the nSQUID Hamiltonian:H = K22Ct + Q24C � 2EJ 
os� 
os�++��02��2 � (�� �e)2L�M + (�� �e)2L+M � : (1)Here �0 = �~=e is the magneti
 �ux quantum,K and �are the variables of the 
ommon mode: K = Q1+Q2 isthe total 
harge on the two 
apa
itan
es of the SQUIDjun
tions, and � = (�1 + �2)=2 is the average Joseph-son phase di�eren
e a
ross the jun
tions. The 
ommonmode has e�e
tive indu
tan
e (L �M)=2 and 
apa
-itan
e Ct, whi
h, in the 
ase of the 
ir
uit in Fig. 1,is equal to the total 
apa
itan
e 2C of the two jun
-tions, but in general 
an in
lude additional 
ontribu-1316
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onveyers of quantum informationC0 C0L0L
L
�M
�M �ML LL LFig. 2. Dual-rail Josephson array made of nSQUID 
ellsshown in Fig. 1. The array 
ells are 
oupled by in-du
tan
es LC with negative mutual indu
tan
e �MCbetween them. No bias phases are applied externally ei-ther for the 
ommon mode or the di�erential mode; thebias for the 
ommon mode is generated self-
onsistentlyby the array dynami
s. In this dynami
s, the 
ommonmode plays the role of the qubit 
ontrol signal propa-gating along the 
ontrol line with spe
i�
 
apa
itan
eC0 and indu
tan
e L0, whereas the di�erential modeen
odes a qubit of quantum information that is beingtransported along the arraytions from the external biasing 
ir
uit (as, e. g., in Fig. 2below). In quantum dynami
s, K and � are 
anon-i
ally 
onjugated variables that satisfy the 
ommuta-tion relation [�;K℄ = 2ei, standard for the 
harge andphase of a Josephson jun
tion. The 
orresponding vari-ables of the di�erential mode are the 
harge di�eren
eQ = Q1�Q2 and the phase di�eren
e � = (�1 ��2)=2whi
h have the same 
ommutation relation [�;Q℄ = 2ei.The e�e
tive indu
tan
e and 
apa
itan
e of this modeare 2(L +M) and C=2 respe
tively. (Their apparentvalues in Eq. (1) are di�erent be
ause of the 
hosennormalization of Q and �.)As mentioned above, qualitative e�e
t of the neg-ative mutual indu
tan
e is to make the dynami
properties of the 
ommon and the di�erential modesin the Hamiltonian (1) of one nSQUID very di�er-ent. If we negle
t for a moment the Josephson 
ou-pling, the resonan
e frequen
ies of the two modes are[2=(L�M)Ct℄1=2 and 1=[(L+M)C℄1=2 � !p, and in thelarge-negative-indu
tan
e limit M ! L, the ex
itationfrequen
y of the 
ommon mode be
omes mu
h largerthan that of the di�erential mode, making it possible to
learly separate the frequen
y ranges of the dynami
sof the two modes. As a result, when the nSQUID 
ellsare 
onne
ted in an array as in Fig. 2, the two modes
an be used to perform di�erent fun
tions. In parti
-

ular, if the 
oupling indu
tan
es LC are designed tohave negative mutual indu
tan
e �MC between them,the main feature of the nSQUID dynami
s is preserved:the 
ommon mode remains rigid, i. e., it is not a�e
tedby the evolution of the di�erential mode and is essen-tially �xed at some value whi
h is either applied exter-nally or generated dynami
ally. This phase plays thenthe role of the qubit 
ontrol signal whi
h is distributedalong the array through the �
lo
k� line (upper horizon-tal line in Fig. 2). The di�erential mode 
an be usedto en
ode a 
lassi
al or quantum bit of information inthe 
urrent 
ir
ulating along the 
oupled SQUID loops.Dynami
s of the 
ommon mode ensures then that theinformation en
oded by the di�erential mode is trans-ported along the array.Quantitatively, we 
onsider the arrays with no biasphases applied externally either for the 
ommon modeor the di�erential mode; rather the bias phases �e;jfor the 
ommon modes �j of the array 
ells, where theindex j numbers the 
ells, are generated dynami
allyby the array stru
ture. The phase �e;j is the phase ofthe super
ondu
ting order parameter at the bias nodepoint of the jth nSQUID, i. e., the points 
onne
ted byindu
tan
e L0 in Fig. 2. The Hamiltonian H0 of su
han array, a segment of whi
h is shown in Fig. 2, 
an bewritten asH0 =Xj (H(j) +� ~2e�2 � (�e;j � �e;j�1)22L0 ++ (�j��j�1)2LC+MC + (�e;j��j+�j�1��e;j�1)2LC�MC �) ; (2)where the sum runs over all nSQUID 
ells of the array.Ea
h term H(j) in this expression,H(j) = K2j4C + Q2j4C + K2e;j2C0 +� ~2e�2 � (�e;j � �j)2L�M ++ �2jL+M #� 2EJ 
os�j 
os�j ; (3)is the Hamiltonian of the jth 
ell, while the rest ofthe terms in Eq. (2) des
ribe the 
oupling between thenearest-neighbor 
ells due to indu
tan
es L0 and LC .In addition to the Hamiltonian (1), ea
h term H(j) in-
ludes now the 
harging energy of the 
harge Ke;j onthe 
apa
itan
e C0 of the jth 
ell. The 
harge Ke;j isthe 
onjugate variable to the phase �e;j , with the stan-dard 
ommutation relation [�e;j ;Ke;j ℄ = 2ei. As shownexpli
itly in the Appendix, in the limit of strong nega-tive 
oupling of the array indu
tan
es, M ! L, MC !! LC , when the 
hara
teristi
 features of the nSQUID1317
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s manifest themselves most prominently, the
ommon phase of ea
h 
ell of the array be
omes pinneddown to the 
orresponding bias phase �e;j , �j � �e;j ,and the array Hamiltonian H0 redu
es toH0 =Xj (K2j2Ct + Q2j4C � 2EJ 
os�j 
os�j ++ � ~2e�2 " (�j��j�1)22L0 + �2j2L+(�j��j�1)22LC #) ; (4)where Ct = 2C + C0. Note that although we in
ludedfor uniformity the negative 
ouplingMC in the require-ments of the strong-negative-
oupling limit, in prin
i-ple, as follows from the dis
ussion in the Appendix �
f. Eq. (A.7), the 
ondition M > L alone is su�
ientfor the redu
tion of the array Hamiltonian to form (4)with di�erent e�e
tive 
oupling indu
tan
e.In what follows, we 
onsider the situation whenboth the 
lo
k phases �j and the information phases�j 
an be des
ribed in the 
ontinuous approximation,�j ; �j ! �(x); �(x), where x is a 
ontinuous dimension-less position along the array (whi
h 
an be understoodas the real spatial 
oordinate in units of the size of theelementary 
ell of the array). Su
h an approximationis stri
tly valid if the 
hara
teristi
 length of variationof ea
h phase, �Josephson penetration length�, is large,�0; �C � 1, where�0 � ~2e 1p2EJL0 ; �C � ~2e 1p2EJLC :In the 
ontinuous approximation, Hamiltonian (4)of the array 
an be written asH0 = Z dx(� ~2e�2 �Ct _�2+(�0)22L0 +C _�2+ �22L ++ (�0)22LC �� 2EJ 
os�(x; t) 
os�(x; t)� ; (5)where the prime denotes the derivative with respe
tto x, and all the parameters, Ct, L0, C, LC , and EJ ,are de�ned now per unit length, with the ex
eptionof indu
tan
e L, for whi
h the inverse indu
tan
e isproportional to length, and one de�nes 1=L per unitlength.In the situation of interest for quantum informa-tion transfer, we 
an also adopt an assumption thatthe dynami
s of � is restri
ted to the regime of smallphases, j�j � 1, sin
e the qubit designs aim typi
allyat this regime to minimize the de
oheren
e e�e
ts. Inthis 
ase, we 
an expand Hamiltonian (5) in � and ex-

press it as a sum of the parts governing the evolutionof the 
lo
k and information phases:H0 = H(�) +H(�);whereH(�) == Z dx(� ~2e�2 �Ct _�22 + (�0)22L0 �� 2EJ 
os�) ; (6)and, in the quadrati
 approximation,H(�) = Z dx(� ~2e�2 �C _�2 + (�0)22LC + �22L� ++ EJ 
os�(x; t)�2) : (7)The �-part (6) is equivalent to the sine-GordonHamiltonian of a regular long Josephson jun
tion. Forthe purpose of our dis
ussion, the main feature of thisHamiltonian is that it supports propagation of the in-dividual �uxons (see, e. g., [21℄):�(x; t) = 4 tan�1 �exp�x� vt�0 �� : (8)This expression des
ribes the �uxon propagating alongthe array with a small velo
ity v � (L0Ct)�1=2. In thesituation desired in the 
ontext of quantum 
omputa-tion, the energy losses in the array are negligible. The�uxon motion in this regime is ballisti
, i. e., the velo
-ity v is determined by the pro
ess of �uxon inje
tioninto the array. In the ballisti
 regime, �uxon propaga-tion 
an be used for measurements of super
ondu
tingqubits [22�25℄. If small energy losses in the dynami
s ofthe 
ommon mode are non-negligible, velo
ity v of the�uxon motion is established by the balan
e betweenthese losses and the driving for
e 
reated by the ap-plied bias 
urrent [26�28℄. In the present 
ontext, su
ha weakly-dissipative regime of the �uxon motion doesnot prevent �uxons from serving as 
arriers of quan-tum information, as long as dissipation is 
on�ned tothe 
ommon mode dynami
s. In both regimes, velo
ityv is dire
tly related to the d
 bias voltage a
ross thenSQUIDs of the array, whi
h 
an be used to 
ontrol andmonitor the �uxon motion. In long nSQUID arrays we
onsider in this work, propagating �uxon des
ribed byEq. (8) serves as the 
lo
k pulse transporting along thearray the ex
itations of the di�erential phase �(x; t)that en
odes quantum information.1318



ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 nSQUID arrays as 
onveyers of quantum information3. LOCALIZED EXCITATIONS ASINFORMATION CARRIERSHamiltonian H(�) (7) des
ribing the dynami
s ofthe phase �(x; t) is roughly similar to the Hamiltonianof individual SQUIDs that are used in typi
al super-
ondu
ting qubits. The main new feature of the phase�(x; t) in 
omparison to the phase in usual qubits isthat �(x; t) is now a �eld with dependen
e on 
oordi-nate x, and a

ordingly, the eigenstates of H(�) havea spatial stru
ture being distributed along the array.This spatial stru
ture is 
ontrolled by the variation ofthe 
lo
k phase �(x; t) in the �uxon (8) whi
h modu-lates the energy density in H(�) (7). The lowest-energyex
itations of the information phase �(x; t) are lo
al-ized in the region where � � � and the e�e
tive Joseph-son 
oupling energy 2EJ 
os� is negative and largestin absolute value. These ex
itations 
an be used to en-
ode information, e. g., by serving as the basis state ofa qubit lo
alized on the �uxon. As one 
an see fromEq. (7), depending on the relative magnitude of theJosephson 
oupling strength and indu
tan
e L, dynam-i
s of the phase �(x; t) in the � � � region is governedby either a bi-stable potential as required for en
odingthe qubit of information in two di�erent �ux states inthe �ux qubits [29; 30℄, or a monostable potential inwhi
h the information 
an be en
oded in two di�erentenergy states, similarly to the phase qubits [31℄. In ei-ther 
ase, in the nSQUID array, the qubit is atta
hedto the �uxon and moves with it along the array.Naturally, to a

ount for the bi-stable dynami
s of�, one needs to keep higher-order terms in �2 in Hamil-tonian H(�) (7). In the following, we 
onsider quanti-tatively the situation similar to the phase qubits, whenthe relative magnitude of the Josephson 
oupling issu
h that � � 2EJL=(~=2e)2 < 1;and the e�e
tive potential for �(x; t) in Hamiltonian(7) is monostable. In this 
ase, and for � not too
lose to unity, one 
an use quadrati
 approximation,as in Eq. (7), to determine the spa
e stru
ture andfrequen
ies of information-en
oding ex
itations of thephase �(x; t).For the purpose of quantum information transfer,we are interested in the regime of the su�
iently slowevolution of �(x; t), when the 
hara
teristi
 frequen-
ies of the dynami
s of �, whi
h are of the order of!p = (2LC)�1=2, are mu
h larger than the frequen
yasso
iated with the �uxon propagation, _� � v � !p.In this adiabati
 regime, the qubit transfer pro
essalong the array that is driven by the time evolution

of �(x; t) in the moving �uxon (8), with exponentiala

ura
y does not a�e
t the states of phase �. Quanti-tatively, for adiabati
 evolution of �, we 
an negle
t thetime dependen
e in Eq. (8) when 
al
ulating the stru
-ture of the ex
itation spe
trum. Then, substituting the�uxon shape (8) into Eq. (7), we get the following equa-tion of motion for the phase �(x; t) from the resultingHamiltonian:LLC �00 = !�2p ��+ �1 + � � 2�
h2(x=�0)��: (9)As a �rst step, we solve this equation 
lassi
ally byseparating the time and spa
e dependen
e of �(x; t),and expressing it as a sum of di�erent ex
itation modeswith some 
oe�
ients 
j :�(x; t) =Xj 
j�j(x) exp(�i!jt): (10)After this substitution, Eq. (9) takes the form of anexa
tly solvable (see, e. g., [32℄) stationary S
hrödingerequation that determines the spatial pro�le �j(x) andfrequen
ies !j of the ex
itation modes:� (L=LC)�00 � 2�
h2(x=�0)� == �"1 + � ��!j!p�2# �: (11)We are interested in the dis
rete part of the spe
-trum of this system, whi
h 
onsists of the modes lo
al-ized on the �uxon, in the � � �, i. e., x � 0, region. Thequalitative features of Eq. (11) as S
hrödinger equa-tion (a potential that has the minimum value �2� atx = 0 and approa
hes zero at x!1) imply that thereis a 
ontinuous spe
trum of frequen
ies of delo
alizedmodes at ! � !pp1 + �, while the frequen
ies of themodes lo
alized on the �uxon lie within the range!pp1� � � !j � !pp1 + �: (12)Substituting into Eq. (11) the pro�le of the lo-west-frequen
y mode�0(x) = A0 [
h(x=�0)℄��0 ; (13)one sees that this equation is satis�ed for�0 = 12  r1 + 2l � 1! ;where l � L0=4LC, and gives the frequen
y!0 = !pp1+�(1�Æ0); Æ0 = �p2+l�pl�2 : (14)1319
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onvenient tohave the mode pro�le normalized by the 
onditionZ dx�20(x) = 1: (15)This 
ondition determines the normalization 
onstantfor the zeroth mode (13) asA0 = 1�1=4s�(�0 + 1=2)�0�(�0) :Depending on the indu
tan
es ratio l, the fre-quen
y (14) spans the whole interval (12). For l ! 0(i. e., L0 � LC), we have !0 ! !pp1� � qualitativelybe
ause �0 is large and the mode is strongly lo
alizedat x � 0, where e�e
tive Josephson 
oupling rea
hesminimum, �EJ . For large l, the mode is weaklylo
alized, �0 ! 0, and the frequen
y !0 approa
hesthe edge of the 
ontinuous spe
trum !pp1 + �. Themiddle of the interval, !0 = !p, is a
hieved forL0 = LC , when �0 = 1.This dis
ussion implies that the zeroth lo
alizedmode with frequen
y (14) exists for arbitrary valuesof the 
ir
uit parameters. For su�
iently small indu
-tan
e L0 (making the 
hara
teristi
 width �0 of poten-tial well large), Eq. (11) has other lo
alized modes withhigher frequen
ies. For any given value of the indu
-tan
e ratio l, the jth lo
alized mode exists ifj < 12  r1 + 2l � 1!and has the frequen
y!j = !pq1 + �(1� Æj);Æj = l "r1 + 2l � (2j + 1)#2 :As 
an be seen from Eqs. (9) and (10), dynam-i
s of ea
h lo
alized mode is equivalent to that of aharmoni
 os
illator and 
an be quantized in the stan-dard way by expressing the amplitudes of the frequen
y
omponents of �(x; t) in terms of the usual boson 
re-ation/annihalation operators aj and ayj . Substitutingexpansion (10) into Hamiltonian (7) and evaluating theintegral by making use of the general properties of themode fun
tions �j(x), i. e., Eq. (11), orthogonality, andnormalization (15), we transform Hamiltonian (7) intothe standard form:H(�) =Xj ~!j �ayjaj + 12�

and obtain the quantum version of the 
lassi
al modeexpansion (10) of the phase �eld �(x; t),�(x; t) =Xj s e2~C!j �j(x) (aj + ayj); (16)and the 
harge density Q(x; t) asso
iated with the dy-nami
s of the di�erential mode on the jun
tion 
apa
-itan
e C of the nSQUIDs,Q(x; t) = ~Ce _�(x; t) == iXj p~C!j�j(x) (ayj � aj): (17)In prin
iple, the sums in all these expressions shouldrun also over the 
ontinuous part of the ex
itation spe
-trum, but for the information-en
oding purposes dis-
ussed in this work, only the dis
rete modes that arelo
alized on the moving �uxons are of interest. Thelo
alized modes 
an be used in a variety of ways to en-
ode quantum information. The most dire
t approa
his to use the similarity of the 
onsidered systems withthe 
onventional phase qubits in individual SQUIDs,and use as the two basis states of the qubit of infor-mation the ground state j0i of the dynami
s of thedi�erential phase � and the �rst ex
ited state of thelowest-frequen
y mode:fj0i; ay0j0ig: (18)As in the phase qubits, nonlinearity of the Joseph-son 
oupling energy in array Hamiltonian (5) makesit possible then to 
on�ne dynami
s of � to the twostates (18) produ
ing 
ontrollable qubit of information,whi
h now, in the nSQUID 
on�guration, is 
arriedalong the array by propagating �uxon. In the situa-tion without the external bias for � 
onsidered above,the lowest-order nonlinear perturbation V of quadrati
Hamiltonian (7) is 
reated by the fourth-order terms inthe expansion of the Josephson energy:V = V0(a0 + ay0)4; (19)V0 = EJ12 � e2~C!0�2 Z dx�40(x) � 2
h2(x=�0)�1� :Here, we took into a

ount that for the purpose of us-ing this expression in the �rst-order perturbation the-ory, one 
an keep in it the expansion (16) of the phase� trun
ated to in
lude only the same zeroth mode thatde�nes the basis states (18). Also, for the adiabati
�uxon motion, v � !p, the time dependen
e of �(x; t)1320
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ted making the nonlinearity V (19) a stati
perturbation. The perturbation V 
reates the �rst-order 
orre
tions to the harmoni
 os
illator energiesof the ex
itations of the zeroth mode obtained in thequadrati
 approximation (11). These 
orre
tions makethe energy gap between the two qubit basis states (18)di�erent by ÆE from the gap separating the upper qubitstate from the next energy level. Using the mode fun
-tion (13) to 
al
ulate the spatial integral in Eq. (19),we �nd ÆE from the standard �rst-order perturbationtheory in V :ÆE = EJp��0 �e2�(�0 + 1=2)~C!0�(�0) �2 �� (2�0 � 1=2)�(2�0)�(2�0 + 3=2) : (20)To give a numeri
al example, we take L0 = LC , when�0 = 1 and !0 = !p = (2LC)�1=2. Then the relativemagnitude of ÆE (20) 
an be expressed as ÆE=~!p == (�=10�0)(e2=~)(L=2C)1=2, and 
an be estimated tobe of the order of few tenths of a per
ent for typi
alvalues of parameter. The magnitude of nonlinearity
an be in
reased by introdu
ing the external bias intothe di�erential mode, whi
h de
reases the order of per-turbation from the forth-order term (19) to the third-order term. Finite nonlinearity is needed to operate thequbit (18) similarly to the phase qubits, by 
ontrollingit with RF pulses. The pulse frequen
y is tuned tothe energy di�eren
e between the basis states (18) ofthe �0 mode, i. e., approximately to the frequen
y !0(14), while nonlinearity ensures that these pulses do notdrive the system to the higher ex
itation states, limit-ing its dynami
s to the two basis states (18). In thisregime, the magnitude of ÆE determines the requiredqubit operation time.This energy di�eren
e makes it possible to operatethe qubit (18) similarly to the phase qubits, by 
ontrol-ling it with RF pulses. The pulse frequen
y is tunedto the energy di�eren
e between the basis states (18)of the �0 mode, i. e., approximately to the frequen
y!0 (14), while ÆE (20) ensures that these pulses do notdrive the system to the higher ex
itation states, limit-ing its dynami
s to the two basis states (18).4. DECOHERENCE PROPERTIES OF MOVINGQUBITSAlthough the stru
ture of the nSQUID arrays is op-timized for quantum information transfer, to be po-tentially useful, the moving qubits supported by thearrays should at least preserve the 
oheren
e proper-ties of the 
urrent �stati
� qubit designs, making it im-

portant to understand these properties of the nSQUIDqubits. The nSQUID arrays share two main physi
alme
hanisms of de
oheren
e with other super
ondu
tingqubits: low-frequen
y, typi
ally 1=f , noise produ
ed bythe two-level �u
tuators in the materials surroundingthe qubits (see, e. g., [33�35℄), and ele
tromagneti
 �u
-tuations in the 
ontrol lines of the devi
e. Although thelow-frequen
y noise 
an be expe
ted to play an evenstronger role in the nSQUID arrays be
ause of theirmore 
omplex, multilayer, stru
ture, de
oheren
e ef-fe
ts of this noise are suppressed by the me
hanismsinherent in the nSQUID dynami
s. Part of this sup-pression is due to the same me
hanism as in most 
ur-rent super
ondu
ting qubits: making the energy di�er-en
e between the qubit basis states only weakly (eitherlinearly with small 
oe�
ient, or quadrati
ally) depen-dent on the external 
ontrol parameters, e. g., magneti
�ux or ele
tri
 
harge, with their low-frequen
y �u
tu-ations. In the nSQUID qubits, this is the me
hanismssuppressing the de
oheren
e by the noise in the 
om-mon phase �(x; t), i. e., �u
tuations in the position orshape of the �uxon (8) 
arrying the qubit. As dis
ussedin the previous se
tion, the basis states of this qubit areautomati
ally lo
alized in the region where � � �. Forsu
h �, � 
os�=�� � 0, and Hamiltonian (7) that gov-erns dynami
s of the di�erential mode depends onlyquadrati
ally on the �u
tuations of �. In the regime ofsmall �u
tuations of � relevant for quantum 
omputa-tion, quadrati
 
oupling suppresses their de
oheren
ee�e
ts.The low-frequen
y noise also a�e
ts the dynami
sof the information-en
oding di�erential mode �(x; t) di-re
tly. In the situation of the quasi
lassi
al dynami
sof the Josephson phases of the nSQUIDs that is of in-terest for our dis
ussion, the dominant low-frequen
ynoise is the noise �(x; t) of the magneti
 �ux in thenSQUIDs. One 
an view this noise as the �u
tuatingpart of the �ux, whi
h provides the phase bias �e(t)for the di�erential phase � of ea
h individual nSQUID,and 
ouples to this phase as in Hamiltonian (1). Inthe 
ontinuous limit and for strong negative 
ouplingof indu
tan
es, this noise results then in the followingperturbation term that should be added to the basi
Hamiltonian (5):U = � ~2eL Z dx�(x; t)�(x; t): (21)Sin
e the magneti
 �ux noise is produ
ed presum-ably by the mi
ros
opi
 two-level systems lo
alized atthe super
ondu
tor-diele
tri
 interfa
es of the nSQUIDstru
ture [36�38℄, the noise �uxes are un
orrelatedamong di�erent nSQUIDs [39℄. In the 
ontinuous ap-1321
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or-related:h�(x; t)�(x0; t0)i == Æ(x� x0) Z d!2� S0(!) exp [i!(t� t0)℄ ; (22)where the spe
tral density S0(!) of noise in onenSQUID should have the 1=f pro�le:S0(!) = A=j!j; (23)with some low- and high-frequen
y 
uto�s !l and !h.In the situation of the monostable potential for thedi�erential mode �(x; t) (� < 1) and absen
e of the ex-ternal bias for it, �e(x; t) � 0, that we fo
us on in thiswork, perturbative 
orre
tions due to U (21) to the en-ergies of the qubit basis states vanish in the �rst order,as one 
an argue, e. g., from the � ! �� symmetry ofpotential in the Hamiltonian (5). Therefore, similarlyto the �u
tuations of the 
ommon mode �(x; t), theperturbation U (21) asso
iated with the �u
tuations ofthe di�erential mode produ
es only the se
ond-order,quadrati
, non-vanishing 
orre
tions to the qubit ener-gies, redu
ing the de
oheren
e e�e
ts of these �u
tua-tions.Besides this suppression of the low-frequen
y de
o-heren
e by redu
ed 
oupling to the noise sour
e, whi
his the same as in the stati
 qubits, qubits transportedalong the nSQUID arrays should exhibit another sup-pression me
hanism resulting from the dynami
 spread-ing of the noise spe
trum due to the qubit motion.Qualitatively, if the qubit is transported with velo
-ity v along the array, where the low-frequen
y noise isnot 
orrelated in di�erent nSQUIDs, the qubit sees thee�e
tive noise with the 
orrelation time of the order of1=v, the time of the qubit motion between the nearest-neighbor 
ells of the array. This means that the spe
-tral density of the noise as seen by the qubit is 
hangedfrom the low-frequen
y noise spe
trum of one nSQUIDinto the noise distributed uniformly over the frequen
yrange limited by v. Su
h spreading of the low-frequen
ynoise over a large frequen
y range results in the 
hangeof the 
oheren
e time of the qubit from some inhomoge-neous dephasing time td into homogeneous dephasingtime t � t2dv and 
an be signi�
antly in
reased by thequbit motion. Su
h a suppression of the low-frequen
yqubit de
oheren
e is qualitatively similar to the mo-tional narrowing of the NMR lines (see, e. g., [40℄), withthe main di�eren
e that it should happen not due torandom thermal motion but 
ontrolled uniform propa-gation of the qubit.To make this des
ription more quantitative, we 
on-sider spe
i�
ally the qubit dis
ussed in the previous

Se
tion, with the basis (18) spanned by the two lowestenergy states of the lowest-frequen
y lo
alized ex
ita-tion of the di�erential mode. The qubit de
oheren
edepends on the spe
tral density S(!) of the �ux noise�n(t) as seen by the qubit. For the qubit (18) trans-ported with velo
ity v, this noise is determined by thespatial pro�le �0(x) (13) of the lowest-frequen
y ex
i-tation of the di�erential mode:�n(t) = Z dx�0(x � vt)�(x; t): (24)This expression gives the following result for the noisespe
tral density S(!) seen by the qubit:S(!) = Z d�h�n(t+ �)�n(t)ie�i!� == Z d!0S0(!0)f(! � !0); (25)where the fun
tion f(!) is de�ned asf(!) = 12� Z dt Z dx�0(x)�0(x� vt)ei!t: (26)Taking the normalization 
ondition (15) into a

ount,we 
an see dire
tly from Eq. (26) that f(!) satis�es thetwo basi
 
onditions:Z d!f(!) = 1; f(0) = 12�v �Z dx�0(x)�2 : (27)Qualitatively, this fun
tion des
ribes how the noisespe
tral density is spread over the large frequen
y rangeby qubit motion. For stationary qubit, v = 0, normal-ization 
ondition (15) shows that f(!�!0) = Æ(!�!0),and the qubit states distributed over several nSQUIDsin the array see the same noise (25) as in one nSQUID:S(!) = S0(!):For rapid qubit motion, when the frequen
y rangeup to a large frequen
y proportional to v en
loses allintensity of the low-frequen
y noise, !h � v, Eq. (25)redu
es toS(!) =Wf(!); W � Z d! S0(!): (28)In general, the qubit motion does not 
hange thetotal noise intensity, as one 
an see from Eqs. (25)and (27), Z d! S(!) = W;but it 
hanges its distribution over frequen
ies. In par-ti
ular, for the rapid motion, the total intensity S0(!)1322
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Fig. 3. E�e
tive frequen
y spe
trum of the 1=f noisea
ting on the qubit transported along the nSQUID arraywith velo
ity v. The noise is redistributed over frequen-
ies by the qubit motion. The dashed line shows theoriginal 1=f noise (23). The numbers near the 
urvesare the 2v=��0!h values. For dis
ussion, see main textof the original noise is distributed over the whole fre-quen
y range given by the qubit velo
ity, and the re-sulting noise spe
trum S(!) is 
ompletely determinedby the motion as in Eq. (28). As one 
an see fromthe se
ond equation in (27), an important 
onsequen
eof this is that S(!) be
omes �at, S(!) � S(0) in thelarge frequen
y range ! � v, and its magnitude is sup-pressed by velo
ity as 1=v:S(0) = W2�v �Z dx�0(x)�2 :Su
h a suppressed spe
tral density of e�e
tively whitenoise also implies similarly suppressed qubit de
oheren-
e rate.To see this more expli
itly, we 
onsider the 
asewhen the two indu
tan
es in the nSQUID array 
ell (seeFig. 2) are equal, LC = L0. The spatial pro�le (13) ofthe lowest-frequen
y ex
itation of the di�erential modethen is �0(x) = [p2�0 
h(x=�0)℄�1:From this expression, we obtain expli
itly f(!) (26):f(!) = ��04v �
h���0!2v ���2 : (29)Making use of this f(!) in Eq. (25), we 
an �nd thenoise S(!) for the qubit moving along the nSQUID ar-ray with an arbitrary velo
ity v, whi
h results from

the dynami
 spreading of the 1=f noise (23). Figure 3shows S(!) obtained in this way for several velo
itiesv assuming a reasonable frequen
y range of the noise,!h=!l = 107. The plot illustrates the transition fromthe rapid to slower qubit motion. The lowest 
urve(largest v) 
oin
ides with Eq. (28) with f(!) given byEq. (29). In agreement with the dis
ussion above, themain feature of all 
urves in Fig. 3 is that the noisespe
trum be
omes �at for frequen
ies below the 
har-a
teristi
 frequen
y � � 2v=��0 asso
iated with thequbit motion, inverse of the time it takes a qubit tomove by a distan
e of the order of its (dimensionless)�length�. For slower qubit motion, !l � � � !h, themagnitude of S in this low-frequen
y range 
an be es-timated as S(0) � A� ln �!l : (30)Also, for � � !h, the spreading fun
tion f(!) be
omesnarrow, and S(!) 
oin
ides with S0(!) at the higher-frequen
y end of the spe
trum. (The sharp feature ofS(!) at ! = !h in this regime is explained by the 
rudemodel of hard high-frequen
y 
uto� used in the 
al
u-lation.)Dynami
 transfer of the noise spe
trum from lowto high frequen
ies in
reases the qubit dephasing time.To estimate the magnitude of this in
rease, we assumethat there is a nonvanishing di�erential phase bias forthe nSQUIDs in the array, so that the qubit is 
oupleddire
tly (linearly) to the noise, but this bias is weakand we 
an use quantitatively all the previous resultson the noise spe
trum spreading. In this 
ase, the de-phasing time td of the stationary qubit, in the regimewhen it is limited by the low-frequen
y noise produ
inginhomogeneous Gaussian de
oheren
e, is td =p4�=W(in
luding the relevant 
oupling 
onstants into the def-inition of noise). The dephasing time t(m)d of the same,but rapidly moving, qubit, whi
h sees as a result thewhite noise spe
trum produ
ing the exponential homo-geneous de
oheren
e, is t(m)d = 2=S(0). Using Eqs. (28)and (29) to �nd S(0), we obtain the relation betweenthe two dephasing times:t(m)d = �t2d=�: (31)From a 
onservative estimate of de
oheren
e time ofphase qubits, when it is dominated by the low-fre-quen
y noise, td � 200 ns, and a reasonable expe
tedpropagation frequen
y � � 1 GHz, we see that dynami
spreading of the low-frequen
y noise spe
trum shouldin
rease the dephasing time of a qubit propagating inthe nSQUID array roughly by a fa
tor of 50, to aboutt(m)d � 10 �s, the value 
omparable to the present-dayde
oheren
e times of super
ondu
ting qubits.1323



Qiang Deng, D. V. Averin ÆÝÒÔ, òîì 146, âûï. 6 (12), 20145. SUMMARY AND OUTLOOKIn summary, we have derived the 
ontinuous modelof an nSQUID array in the limit of large negative indu
-tan
es of the nSQUIDs, and 
al
ulated the frequen
yspe
trum and the spatial pro�le of the ex
itations ofthe di�erential mode in the array. Redu
ed to the two-state limit, dynami
s of these ex
itations 
an be usedto en
ode quantum information, whi
h is transportedalong the array by propagating �uxons supported bythe 
ommon mode. Qualitatively, qubit of the di�er-ential mode that is atta
hed to the �uxon turns it intoa parti
le with arti�
ial spin 1/2. We have 
al
ulatedthe de
oheren
e properties of these qubits whi
h are
hara
terized by the dynami
 spreading of the noisespe
trum due to qubit motion. The spreading redu
esthe de
oheren
e rate asso
iated with the low-frequen
ynoise.In this work, we have 
onsidered only the 
ase oflong nSQUID arrays, the 
ommon mode of whi
h 
anfully a

ommodate individual �uxons, and made theassumption that the �uxon dynami
s is 
lassi
al. ThenSQUID arrays 
an be used to transport quantum in-formation beyond this regime. The theory presentedabove is not dire
tly appli
able to the 
ase of shortarrays, arguably more a

essible experimentally. Forshort arrays, the distribution of the 
ommon phaseover the length of the array is di�erent from that ina �uxon (8), and 
ontinuous approximation may notbe valid any longer. Still, even the shortest possible�arrays� of two nSQUIDs should exhibit the informa-tion transfer dynami
s qualitatively similar to the one
onsidered above. Another interesting question is pre-sented by the possibility of quantum motion of �uxonsalong the array, whi
h is not 
ompletely out of therea
h experimentally [41℄. In this regime, when notonly the di�erential, but also the 
ommon mode of thearray behaves a

ording to the quantum me
hani
s,the information propagates along the array quantumme
hani
ally. If, in addition, the dynami
s of the dif-ferential mode is bistable as in the �ux qubits, thenSQUID arrays should provide a 
onvenient way ofimplementing the universal adiabati
 quantum algo-rithms. All these possible uses of the nSQUID arraysas 
onveyers of quantum information merit further in-vestigation.The authors a
knowledge useful dis
ussions withS. Han, K. K. Likharev, and V. K. Semenov. This workwas supported in part by the NSF grant PHY-1314758and the European Union Seventh Framework Pro-gramme INFERNOS (FP7/2007-2013) under the grantagreement No. 308850.

APPENDIXRedu
tion of the array HamiltonianIn this Appendix, we show expli
itly how Hamil-tonian (2) of the nSQUID array, segment of whi
his shown in Fig. 2, is redu
ed to the form given byEq. (4) in the large-negative-indu
tan
e limit M ! L,MC ! LC . In order to do this, we start by transform-ing two of the initial degrees of freedom of ea
h 
ell ofthe array, the 
ommon phase �j of the jth nSQUID,and the super
ondu
ting phase �e;j at bias node pointof this nSQUID (see Fig. 2), into two new variables, �jand �j , de�ned as�j = ~2e(�j � �e;j);�j = ~2eCt (2C�j + C0�e;j): (A.1)The 
orresponding 
anoni
al �momenta� 
onjugatedto these new 
oordinates are the following 
ombinationsof 
harges Kj and Ke;j :qj = (C0Kj � 2CKe;j)=Ct; pj = Kj +Ke;j : (A.2)One 
an see dire
tly that they indeed satisfy the ne
-essary 
ommutation relations:[�j ; qj ℄ = i~; [�j ; pj ℄ = i~; [�j ; pj ℄ = 0; [�j ; qj ℄ = 0:This transformation is performed to separate ex-pli
itly the relative dynami
s of the two phases, �jand �e;j , whi
h will be quen
hed in the limit M ! L,MC ! LC . To see this, we 
onsider the relevant, di-verging in this limit, part H 0 of the total array Hamil-tonian H0 given by Eqs. (2) and (3):H 0 =Xj (K2j4C+K2e;j2C0 +� ~2e�2 � (�e;j � �j)2L�M ++ (�e;j � �j + �j�1 � �e;j�1)2LC �MC �) : (A.3)To make the subsequent 
al
ulation expli
it, we needto spe
ify the array stru
ture. We assume the array ofN 
ells with periodi
 boundary 
onditions at the ends,e. g., �0 � �N . Then, inverting the relations (A.2):Kj = qj + 2CpjCt ; Ke;j = C0Ct pj � qj ;we express Eq. (A.3) in terms of new variables:H 0 = NXj=1 " p2j2Ct+ q2j2Cr+ �2jL�M+(�j��j�1)2LC �MC # ; (A.4)1324



ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 nSQUID arrays as 
onveyers of quantum informationwhere Cr = 2CC0=(2C + C0). The last three termsin this expression form the Hamiltonian Hd whi
h gov-erns the relative dynami
s of the phases �j and �e;j .As usual, this Hamiltonian 
an be diagonalized by in-trodu
ing plane-wave ex
itations with waveve
torsk = 2�nN ; n = �N � 12 ;�N � 12 + 1; : : : ; N � 12(we assume for simpli
ity that N is odd), with 
orre-sponding 
reation/annihalation operators bk and byk:�j =Xk r ~2Cr!kN (bk + by�k)eikj ; (A.5)qj = �iXk r~Cr!k2N (bk � by�k)eikj : (A.6)In terms of these plane waves, the Hamiltonian has theusual �phonon� formHd =Xk ~!k �bykbk + 12� ;with the following frequen
y spe
trum:!k =s 2Cr � 1L�M + 4 sin2(k=2)LC �MC �; (A.7)whi
h satis�es the 
ondition !k = !�k.The main feature of this spe
trum is that all fre-quen
ies be
ome very large, !k ! 1 in the large-negative-indu
tan
e limit. This means that thesephonon modes 
annot be ex
ited by the dynami
s ofthe nSQUID array whi
h o

urs at mu
h smaller fre-quen
ies, and the modes remain in the ground statethroughout the time evolution of the array. The Hamil-tonianHd of the relative dynami
s of the phases �j and�e;j e�e
tively redu
es in this regime to a 
onstant,Hd = Pk ~!k=2, irrelevant for the system dynami
s.Then, the part H 0 (A.3) of the array Hamiltonian 
on-sidered in this Appendix redu
es toH 0 = 12Ct NXj=1 p2j + 12Xk ~!k: (A.8)As one 
an see from Eq. (A.5), suppression of thedynami
s of the !k modes to their ground states, withadded 
ondition !k ! 1, also implies that �j ! 0.Indeed, simple estimate of the �u
tuations of �j usingEq. (A.5) shows that h�2j i < ~[(L�M)=8Cr℄1=2 ! 0 forM ! L, e�e
tively imposing the 
onstraint �j = �e;jon the system dynami
s. This 
onstraint means that

the �
enter-of-mass� 
oordinate �j (A.1) of these twophases also 
oin
ides with them, �j = (~=2e)�j , andthe momentum pj in Hamiltonian (A.8) 
onjugate tothis 
oordinate a
ts simultaneously as the momentumasso
iated with the 
ommon phase �j . (The di�er-en
e between the two momenta 
an be seen only at thelarge frequen
ies !k not present in the system dynam-i
s.) Taking this into a

ount and inserting the partH 0 in the form (A.8), but without the irrelevant 
on-stant, ba
k into the total array Hamiltonian H0, we ob-tain H0 in the large-negative-indu
tan
e limit M ! L,MC ! LC as given by Eq. (4).REFERENCES1. M. Neeley, R. C. Bial
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