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nSQUID ARRAYS AS CONVEYERS OF QUANTUM INFORMATIONQiang Deng, Dmitri V. Averin *Department of Physis and Astronomy, Stony Brook University,SUNY, Stony Brook, NY 11794-3800Reeived August 4, 2014We have onsidered the quantum dynamis of an array of nSQUIDs � two-juntion SQUIDs with negativemutual indutane between their two arms. E�etive dual-rail struture of the array reates additional internaldegree of freedom for the �uxons in the array, whih an be used to enode and transport quantum information.Physially, this degree of freedom is represented by eletromagneti exitations loalized on the �uxon. We havealulated the spatial pro�le and frequeny spetrum of these exitations. Their dynamis an be redued to twoquantum states, so that eah �uxon moving through the array arries with it a qubit of information. Cohereneproperties of suh a propagating qubit in the nSQUID array are haraterized by the dynami suppression ofthe low-frequeny deoherene due to the motion-indued spreading of the noise spetral density to a largerfrequeny interval. Contribution for the JETP speial issue in honor of A. F. Andreev's 75th birthdayDOI: 10.7868/S00444510141201891. INTRODUCTIONCoherene properties and preision of ontrol overthe dynamis of superonduting qubits (see, e. g., re-ent experiments [1�5℄) have reahed the level when itbeomes possible and interesting to disuss potentialarhiteture of the superonduting quantum omput-ing iruits either within the gate-model paradigm [6�9℄or the adiabati ground-state approah [10, 11℄. Be-sides the formidable problem of maintaining the levelof qubit oherene with inreasing iruit omplexity,the entral issue that needs to be addressed by any ar-hiteture of salable quantum omputing devies is therequirement of rapid transfer of quantum informationamong a large number of qubits with su�ient �delity.So far, the suggested solutions to the problem of trans-fer of quantum information were based on ontrollablediret oupling of qubits or oupling through a om-mon resonator. These solutions, while working nielyfor the iruits of few qubits, an not be saled easilyto larger iruits.The purpose of this work is to suggest another ap-proah to the problem of information transfer along aquantum iruit of the superonduting qubits utiliz-ing quantum dynamis of magneti �ux, in whih the*E-mail: dmitri.averin�stonybrook.edu

quantum information is transported along the iruitby propagating lassial pulses. This approah usesthe arrays of two-juntion SQUIDs, where eah of themhas a negative mutual indutane between its two arms.Dynamis of suh �nSQUIDs� [12℄ an be represented interms of the two degrees of freedom, the �di�erential�mode and the �ommon� modes, with very di�erentproperties. The former an be used to enode quantuminformation, while the latter � to transport it. Then,the overall arhiteture of a quantum omputing ir-uit built of nSQUIDs is very similar to superondut-ing lassial reversible iruits also based on nSQUIDs[13, 14℄, in whih the omputation is organized aroundthe information-arrying pulses propagating along theiruit.Existene of the two degrees of freedom with diffe-rent properties makes nSQUID arrays qualitatively andadvantageously di�erent from previously onsidered ar-rays of superonduting qubits (see, e. g., [15�17℄) orspins [18�20℄ as tools for quantum information trans-fer. In general, a physial variable enoding quantuminformation and the one used to arry it should sat-isfy ompletely di�erent sets of requirements, and inthe ase of nSQUIDs, the ommon and the di�erentialdynami modes an be optimized separately to sat-isfy these di�erent requirements. Most importantly,the ommon mode, i. e. the degree of freedom trans-porting the quantum information, does not neessarily1315 12*



Qiang Deng, D. V. Averin ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014need to be itself quantum, sine a lassial dynamisis su�ient to transport a qubit along the array. Thismakes potential operation of nSQUID arrays as onvey-ers of quantum information onsiderably more straight-forward, sine it avoids a hallenging problem of main-taining quantum oherene of �uxons, supported by theommon mode, along a large array of juntions.2. BASIC MODEL OF nSQUID ARRAYWe begin our detailed disussion with a desriptionof the elementary ell of the arrays onsidered in thiswork, i. e., nSQUID [12℄ � a two-juntion SQUID witha negative indutane between its two arms (Fig. 1).Dynamis of this struture an be separated naturallyinto the dynamis of two degrees of freedom, i. e., theommon mode representing the total urrent �owingthrough the two juntions of the SQUID and the dif-ferential mode whih represents the di�erene of thetwo juntion urrents, i. e., the urrent irulating alongthe SQUID loop. In the on�guration of an one-dimensional array, these two degrees of freedom giverise to the two di�erent exitation modes of the array.The ommon mode orresponds to exitations propa-gating along the array and, in the appropriate regime,takes the form of individual �uxons.The main di�erene between the nSQUID and theusual two-juntion SQUID an be seen if one thinksvery rudely about two arms of a SQUID as two paral-lel wires. For the plain wires, the mutual indutaneMbetween the wires is positive,M > 0, ensuring that thee�etive indutane of the di�erential mode is alwayssmaller than that of the ommon mode. In this ase,the di�erential mode an have a non-trivial dynamisonly together with the ommon mode. By ontrast, thenegative mutual indutane �M between the SQUIDarms makes the e�etive indutane of the di�erentialmode larger than the indutane of the ommon mode.As a result, one an realize a situation when the dif-ferential mode exhibits a non-trivial, e. g., bi-stable dy-namis at low frequenies without exiting the ommonmode whih supports only the exitations with largerfrequenies. The di�erential mode an then be usedto enode information, while the dynamis of the om-mon mode is optimized separately for transfer of thisinformation along the array. If the dynamis of bothmodes is lassial, nSQUID strutures provide a on-venient basis for implementation of lassial reversibleomputing [13, 14℄. If, however, parameters of the dif-ferential mode are suh that its behavior is quantum, itan be used to enode quantum information, whih an
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Fig. 1. Equivalent iruit of an nSQUID, i. e., a two-juntion SQUID with juntion apaitanes C andJosephson oupling energies EJ and the negative mu-tual indutane �M between its indutive arms withindutanes L. The negative mutual indutane makesthe e�etive indutane of the ommon mode of theSQUID dynamis muh smaller than the indutane ofthe di�erential mode. Also shown are the phase bias �eof the ommon mode and �e of the di�erential modethen be transported along the array by the evolutionof the ommon mode.Hamiltonian H of the individual nSQUID (Fig. 1)is given by the standard expression whih inludes theharging energies and the Josephson oupling energiesof the two SQUID juntions. Adding the magneti en-ergy of the two indutive arms of the SQUID oupledby the negative mutual indutane, we obtain the fol-lowing expression for the nSQUID Hamiltonian:H = K22Ct + Q24C � 2EJ os� os�++��02��2 � (�� �e)2L�M + (�� �e)2L+M � : (1)Here �0 = �~=e is the magneti �ux quantum,K and �are the variables of the ommon mode: K = Q1+Q2 isthe total harge on the two apaitanes of the SQUIDjuntions, and � = (�1 + �2)=2 is the average Joseph-son phase di�erene aross the juntions. The ommonmode has e�etive indutane (L �M)=2 and apa-itane Ct, whih, in the ase of the iruit in Fig. 1,is equal to the total apaitane 2C of the two jun-tions, but in general an inlude additional ontribu-1316



ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 nSQUID arrays as onveyers of quantum informationC0 C0L0LL�M�M �ML LL LFig. 2. Dual-rail Josephson array made of nSQUID ellsshown in Fig. 1. The array ells are oupled by in-dutanes LC with negative mutual indutane �MCbetween them. No bias phases are applied externally ei-ther for the ommon mode or the di�erential mode; thebias for the ommon mode is generated self-onsistentlyby the array dynamis. In this dynamis, the ommonmode plays the role of the qubit ontrol signal propa-gating along the ontrol line with spei� apaitaneC0 and indutane L0, whereas the di�erential modeenodes a qubit of quantum information that is beingtransported along the arraytions from the external biasing iruit (as, e. g., in Fig. 2below). In quantum dynamis, K and � are anon-ially onjugated variables that satisfy the ommuta-tion relation [�;K℄ = 2ei, standard for the harge andphase of a Josephson juntion. The orresponding vari-ables of the di�erential mode are the harge di�ereneQ = Q1�Q2 and the phase di�erene � = (�1 ��2)=2whih have the same ommutation relation [�;Q℄ = 2ei.The e�etive indutane and apaitane of this modeare 2(L +M) and C=2 respetively. (Their apparentvalues in Eq. (1) are di�erent beause of the hosennormalization of Q and �.)As mentioned above, qualitative e�et of the neg-ative mutual indutane is to make the dynamiproperties of the ommon and the di�erential modesin the Hamiltonian (1) of one nSQUID very di�er-ent. If we neglet for a moment the Josephson ou-pling, the resonane frequenies of the two modes are[2=(L�M)Ct℄1=2 and 1=[(L+M)C℄1=2 � !p, and in thelarge-negative-indutane limit M ! L, the exitationfrequeny of the ommon mode beomes muh largerthan that of the di�erential mode, making it possible tolearly separate the frequeny ranges of the dynamisof the two modes. As a result, when the nSQUID ellsare onneted in an array as in Fig. 2, the two modesan be used to perform di�erent funtions. In parti-

ular, if the oupling indutanes LC are designed tohave negative mutual indutane �MC between them,the main feature of the nSQUID dynamis is preserved:the ommon mode remains rigid, i. e., it is not a�etedby the evolution of the di�erential mode and is essen-tially �xed at some value whih is either applied exter-nally or generated dynamially. This phase plays thenthe role of the qubit ontrol signal whih is distributedalong the array through the �lok� line (upper horizon-tal line in Fig. 2). The di�erential mode an be usedto enode a lassial or quantum bit of information inthe urrent irulating along the oupled SQUID loops.Dynamis of the ommon mode ensures then that theinformation enoded by the di�erential mode is trans-ported along the array.Quantitatively, we onsider the arrays with no biasphases applied externally either for the ommon modeor the di�erential mode; rather the bias phases �e;jfor the ommon modes �j of the array ells, where theindex j numbers the ells, are generated dynamiallyby the array struture. The phase �e;j is the phase ofthe superonduting order parameter at the bias nodepoint of the jth nSQUID, i. e., the points onneted byindutane L0 in Fig. 2. The Hamiltonian H0 of suhan array, a segment of whih is shown in Fig. 2, an bewritten asH0 =Xj (H(j) +� ~2e�2 � (�e;j � �e;j�1)22L0 ++ (�j��j�1)2LC+MC + (�e;j��j+�j�1��e;j�1)2LC�MC �) ; (2)where the sum runs over all nSQUID ells of the array.Eah term H(j) in this expression,H(j) = K2j4C + Q2j4C + K2e;j2C0 +� ~2e�2 � (�e;j � �j)2L�M ++ �2jL+M #� 2EJ os�j os�j ; (3)is the Hamiltonian of the jth ell, while the rest ofthe terms in Eq. (2) desribe the oupling between thenearest-neighbor ells due to indutanes L0 and LC .In addition to the Hamiltonian (1), eah term H(j) in-ludes now the harging energy of the harge Ke;j onthe apaitane C0 of the jth ell. The harge Ke;j isthe onjugate variable to the phase �e;j , with the stan-dard ommutation relation [�e;j ;Ke;j ℄ = 2ei. As shownexpliitly in the Appendix, in the limit of strong nega-tive oupling of the array indutanes, M ! L, MC !! LC , when the harateristi features of the nSQUID1317



Qiang Deng, D. V. Averin ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014dynamis manifest themselves most prominently, theommon phase of eah ell of the array beomes pinneddown to the orresponding bias phase �e;j , �j � �e;j ,and the array Hamiltonian H0 redues toH0 =Xj (K2j2Ct + Q2j4C � 2EJ os�j os�j ++ � ~2e�2 " (�j��j�1)22L0 + �2j2L+(�j��j�1)22LC #) ; (4)where Ct = 2C + C0. Note that although we inludedfor uniformity the negative ouplingMC in the require-ments of the strong-negative-oupling limit, in prini-ple, as follows from the disussion in the Appendix �f. Eq. (A.7), the ondition M > L alone is su�ientfor the redution of the array Hamiltonian to form (4)with di�erent e�etive oupling indutane.In what follows, we onsider the situation whenboth the lok phases �j and the information phases�j an be desribed in the ontinuous approximation,�j ; �j ! �(x); �(x), where x is a ontinuous dimension-less position along the array (whih an be understoodas the real spatial oordinate in units of the size of theelementary ell of the array). Suh an approximationis stritly valid if the harateristi length of variationof eah phase, �Josephson penetration length�, is large,�0; �C � 1, where�0 � ~2e 1p2EJL0 ; �C � ~2e 1p2EJLC :In the ontinuous approximation, Hamiltonian (4)of the array an be written asH0 = Z dx(� ~2e�2 �Ct _�2+(�0)22L0 +C _�2+ �22L ++ (�0)22LC �� 2EJ os�(x; t) os�(x; t)� ; (5)where the prime denotes the derivative with respetto x, and all the parameters, Ct, L0, C, LC , and EJ ,are de�ned now per unit length, with the exeptionof indutane L, for whih the inverse indutane isproportional to length, and one de�nes 1=L per unitlength.In the situation of interest for quantum informa-tion transfer, we an also adopt an assumption thatthe dynamis of � is restrited to the regime of smallphases, j�j � 1, sine the qubit designs aim typiallyat this regime to minimize the deoherene e�ets. Inthis ase, we an expand Hamiltonian (5) in � and ex-

press it as a sum of the parts governing the evolutionof the lok and information phases:H0 = H(�) +H(�);whereH(�) == Z dx(� ~2e�2 �Ct _�22 + (�0)22L0 �� 2EJ os�) ; (6)and, in the quadrati approximation,H(�) = Z dx(� ~2e�2 �C _�2 + (�0)22LC + �22L� ++ EJ os�(x; t)�2) : (7)The �-part (6) is equivalent to the sine-GordonHamiltonian of a regular long Josephson juntion. Forthe purpose of our disussion, the main feature of thisHamiltonian is that it supports propagation of the in-dividual �uxons (see, e. g., [21℄):�(x; t) = 4 tan�1 �exp�x� vt�0 �� : (8)This expression desribes the �uxon propagating alongthe array with a small veloity v � (L0Ct)�1=2. In thesituation desired in the ontext of quantum omputa-tion, the energy losses in the array are negligible. The�uxon motion in this regime is ballisti, i. e., the velo-ity v is determined by the proess of �uxon injetioninto the array. In the ballisti regime, �uxon propaga-tion an be used for measurements of superondutingqubits [22�25℄. If small energy losses in the dynamis ofthe ommon mode are non-negligible, veloity v of the�uxon motion is established by the balane betweenthese losses and the driving fore reated by the ap-plied bias urrent [26�28℄. In the present ontext, suha weakly-dissipative regime of the �uxon motion doesnot prevent �uxons from serving as arriers of quan-tum information, as long as dissipation is on�ned tothe ommon mode dynamis. In both regimes, veloityv is diretly related to the d bias voltage aross thenSQUIDs of the array, whih an be used to ontrol andmonitor the �uxon motion. In long nSQUID arrays weonsider in this work, propagating �uxon desribed byEq. (8) serves as the lok pulse transporting along thearray the exitations of the di�erential phase �(x; t)that enodes quantum information.1318



ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 nSQUID arrays as onveyers of quantum information3. LOCALIZED EXCITATIONS ASINFORMATION CARRIERSHamiltonian H(�) (7) desribing the dynamis ofthe phase �(x; t) is roughly similar to the Hamiltonianof individual SQUIDs that are used in typial super-onduting qubits. The main new feature of the phase�(x; t) in omparison to the phase in usual qubits isthat �(x; t) is now a �eld with dependene on oordi-nate x, and aordingly, the eigenstates of H(�) havea spatial struture being distributed along the array.This spatial struture is ontrolled by the variation ofthe lok phase �(x; t) in the �uxon (8) whih modu-lates the energy density in H(�) (7). The lowest-energyexitations of the information phase �(x; t) are loal-ized in the region where � � � and the e�etive Joseph-son oupling energy 2EJ os� is negative and largestin absolute value. These exitations an be used to en-ode information, e. g., by serving as the basis state ofa qubit loalized on the �uxon. As one an see fromEq. (7), depending on the relative magnitude of theJosephson oupling strength and indutane L, dynam-is of the phase �(x; t) in the � � � region is governedby either a bi-stable potential as required for enodingthe qubit of information in two di�erent �ux states inthe �ux qubits [29; 30℄, or a monostable potential inwhih the information an be enoded in two di�erentenergy states, similarly to the phase qubits [31℄. In ei-ther ase, in the nSQUID array, the qubit is attahedto the �uxon and moves with it along the array.Naturally, to aount for the bi-stable dynamis of�, one needs to keep higher-order terms in �2 in Hamil-tonian H(�) (7). In the following, we onsider quanti-tatively the situation similar to the phase qubits, whenthe relative magnitude of the Josephson oupling issuh that � � 2EJL=(~=2e)2 < 1;and the e�etive potential for �(x; t) in Hamiltonian(7) is monostable. In this ase, and for � not toolose to unity, one an use quadrati approximation,as in Eq. (7), to determine the spae struture andfrequenies of information-enoding exitations of thephase �(x; t).For the purpose of quantum information transfer,we are interested in the regime of the su�iently slowevolution of �(x; t), when the harateristi frequen-ies of the dynamis of �, whih are of the order of!p = (2LC)�1=2, are muh larger than the frequenyassoiated with the �uxon propagation, _� � v � !p.In this adiabati regime, the qubit transfer proessalong the array that is driven by the time evolution

of �(x; t) in the moving �uxon (8), with exponentialauray does not a�et the states of phase �. Quanti-tatively, for adiabati evolution of �, we an neglet thetime dependene in Eq. (8) when alulating the stru-ture of the exitation spetrum. Then, substituting the�uxon shape (8) into Eq. (7), we get the following equa-tion of motion for the phase �(x; t) from the resultingHamiltonian:LLC �00 = !�2p ��+ �1 + � � 2�h2(x=�0)��: (9)As a �rst step, we solve this equation lassially byseparating the time and spae dependene of �(x; t),and expressing it as a sum of di�erent exitation modeswith some oe�ients j :�(x; t) =Xj j�j(x) exp(�i!jt): (10)After this substitution, Eq. (9) takes the form of anexatly solvable (see, e. g., [32℄) stationary Shrödingerequation that determines the spatial pro�le �j(x) andfrequenies !j of the exitation modes:� (L=LC)�00 � 2�h2(x=�0)� == �"1 + � ��!j!p�2# �: (11)We are interested in the disrete part of the spe-trum of this system, whih onsists of the modes loal-ized on the �uxon, in the � � �, i. e., x � 0, region. Thequalitative features of Eq. (11) as Shrödinger equa-tion (a potential that has the minimum value �2� atx = 0 and approahes zero at x!1) imply that thereis a ontinuous spetrum of frequenies of deloalizedmodes at ! � !pp1 + �, while the frequenies of themodes loalized on the �uxon lie within the range!pp1� � � !j � !pp1 + �: (12)Substituting into Eq. (11) the pro�le of the lo-west-frequeny mode�0(x) = A0 [h(x=�0)℄��0 ; (13)one sees that this equation is satis�ed for�0 = 12  r1 + 2l � 1! ;where l � L0=4LC, and gives the frequeny!0 = !pp1+�(1�Æ0); Æ0 = �p2+l�pl�2 : (14)1319



Qiang Deng, D. V. Averin ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014For the subsequent quantization, it is onvenient tohave the mode pro�le normalized by the onditionZ dx�20(x) = 1: (15)This ondition determines the normalization onstantfor the zeroth mode (13) asA0 = 1�1=4s�(�0 + 1=2)�0�(�0) :Depending on the indutanes ratio l, the fre-queny (14) spans the whole interval (12). For l ! 0(i. e., L0 � LC), we have !0 ! !pp1� � qualitativelybeause �0 is large and the mode is strongly loalizedat x � 0, where e�etive Josephson oupling reahesminimum, �EJ . For large l, the mode is weaklyloalized, �0 ! 0, and the frequeny !0 approahesthe edge of the ontinuous spetrum !pp1 + �. Themiddle of the interval, !0 = !p, is ahieved forL0 = LC , when �0 = 1.This disussion implies that the zeroth loalizedmode with frequeny (14) exists for arbitrary valuesof the iruit parameters. For su�iently small indu-tane L0 (making the harateristi width �0 of poten-tial well large), Eq. (11) has other loalized modes withhigher frequenies. For any given value of the indu-tane ratio l, the jth loalized mode exists ifj < 12  r1 + 2l � 1!and has the frequeny!j = !pq1 + �(1� Æj);Æj = l "r1 + 2l � (2j + 1)#2 :As an be seen from Eqs. (9) and (10), dynam-is of eah loalized mode is equivalent to that of aharmoni osillator and an be quantized in the stan-dard way by expressing the amplitudes of the frequenyomponents of �(x; t) in terms of the usual boson re-ation/annihalation operators aj and ayj . Substitutingexpansion (10) into Hamiltonian (7) and evaluating theintegral by making use of the general properties of themode funtions �j(x), i. e., Eq. (11), orthogonality, andnormalization (15), we transform Hamiltonian (7) intothe standard form:H(�) =Xj ~!j �ayjaj + 12�

and obtain the quantum version of the lassial modeexpansion (10) of the phase �eld �(x; t),�(x; t) =Xj s e2~C!j �j(x) (aj + ayj); (16)and the harge density Q(x; t) assoiated with the dy-namis of the di�erential mode on the juntion apa-itane C of the nSQUIDs,Q(x; t) = ~Ce _�(x; t) == iXj p~C!j�j(x) (ayj � aj): (17)In priniple, the sums in all these expressions shouldrun also over the ontinuous part of the exitation spe-trum, but for the information-enoding purposes dis-ussed in this work, only the disrete modes that areloalized on the moving �uxons are of interest. Theloalized modes an be used in a variety of ways to en-ode quantum information. The most diret approahis to use the similarity of the onsidered systems withthe onventional phase qubits in individual SQUIDs,and use as the two basis states of the qubit of infor-mation the ground state j0i of the dynamis of thedi�erential phase � and the �rst exited state of thelowest-frequeny mode:fj0i; ay0j0ig: (18)As in the phase qubits, nonlinearity of the Joseph-son oupling energy in array Hamiltonian (5) makesit possible then to on�ne dynamis of � to the twostates (18) produing ontrollable qubit of information,whih now, in the nSQUID on�guration, is arriedalong the array by propagating �uxon. In the situa-tion without the external bias for � onsidered above,the lowest-order nonlinear perturbation V of quadratiHamiltonian (7) is reated by the fourth-order terms inthe expansion of the Josephson energy:V = V0(a0 + ay0)4; (19)V0 = EJ12 � e2~C!0�2 Z dx�40(x) � 2h2(x=�0)�1� :Here, we took into aount that for the purpose of us-ing this expression in the �rst-order perturbation the-ory, one an keep in it the expansion (16) of the phase� trunated to inlude only the same zeroth mode thatde�nes the basis states (18). Also, for the adiabati�uxon motion, v � !p, the time dependene of �(x; t)1320



ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 nSQUID arrays as onveyers of quantum informationwas negleted making the nonlinearity V (19) a statiperturbation. The perturbation V reates the �rst-order orretions to the harmoni osillator energiesof the exitations of the zeroth mode obtained in thequadrati approximation (11). These orretions makethe energy gap between the two qubit basis states (18)di�erent by ÆE from the gap separating the upper qubitstate from the next energy level. Using the mode fun-tion (13) to alulate the spatial integral in Eq. (19),we �nd ÆE from the standard �rst-order perturbationtheory in V :ÆE = EJp��0 �e2�(�0 + 1=2)~C!0�(�0) �2 �� (2�0 � 1=2)�(2�0)�(2�0 + 3=2) : (20)To give a numerial example, we take L0 = LC , when�0 = 1 and !0 = !p = (2LC)�1=2. Then the relativemagnitude of ÆE (20) an be expressed as ÆE=~!p == (�=10�0)(e2=~)(L=2C)1=2, and an be estimated tobe of the order of few tenths of a perent for typialvalues of parameter. The magnitude of nonlinearityan be inreased by introduing the external bias intothe di�erential mode, whih dereases the order of per-turbation from the forth-order term (19) to the third-order term. Finite nonlinearity is needed to operate thequbit (18) similarly to the phase qubits, by ontrollingit with RF pulses. The pulse frequeny is tuned tothe energy di�erene between the basis states (18) ofthe �0 mode, i. e., approximately to the frequeny !0(14), while nonlinearity ensures that these pulses do notdrive the system to the higher exitation states, limit-ing its dynamis to the two basis states (18). In thisregime, the magnitude of ÆE determines the requiredqubit operation time.This energy di�erene makes it possible to operatethe qubit (18) similarly to the phase qubits, by ontrol-ling it with RF pulses. The pulse frequeny is tunedto the energy di�erene between the basis states (18)of the �0 mode, i. e., approximately to the frequeny!0 (14), while ÆE (20) ensures that these pulses do notdrive the system to the higher exitation states, limit-ing its dynamis to the two basis states (18).4. DECOHERENCE PROPERTIES OF MOVINGQUBITSAlthough the struture of the nSQUID arrays is op-timized for quantum information transfer, to be po-tentially useful, the moving qubits supported by thearrays should at least preserve the oherene proper-ties of the urrent �stati� qubit designs, making it im-

portant to understand these properties of the nSQUIDqubits. The nSQUID arrays share two main physialmehanisms of deoherene with other superondutingqubits: low-frequeny, typially 1=f , noise produed bythe two-level �utuators in the materials surroundingthe qubits (see, e. g., [33�35℄), and eletromagneti �u-tuations in the ontrol lines of the devie. Although thelow-frequeny noise an be expeted to play an evenstronger role in the nSQUID arrays beause of theirmore omplex, multilayer, struture, deoherene ef-fets of this noise are suppressed by the mehanismsinherent in the nSQUID dynamis. Part of this sup-pression is due to the same mehanism as in most ur-rent superonduting qubits: making the energy di�er-ene between the qubit basis states only weakly (eitherlinearly with small oe�ient, or quadratially) depen-dent on the external ontrol parameters, e. g., magneti�ux or eletri harge, with their low-frequeny �utu-ations. In the nSQUID qubits, this is the mehanismssuppressing the deoherene by the noise in the om-mon phase �(x; t), i. e., �utuations in the position orshape of the �uxon (8) arrying the qubit. As disussedin the previous setion, the basis states of this qubit areautomatially loalized in the region where � � �. Forsuh �, � os�=�� � 0, and Hamiltonian (7) that gov-erns dynamis of the di�erential mode depends onlyquadratially on the �utuations of �. In the regime ofsmall �utuations of � relevant for quantum omputa-tion, quadrati oupling suppresses their deoherenee�ets.The low-frequeny noise also a�ets the dynamisof the information-enoding di�erential mode �(x; t) di-retly. In the situation of the quasilassial dynamisof the Josephson phases of the nSQUIDs that is of in-terest for our disussion, the dominant low-frequenynoise is the noise �(x; t) of the magneti �ux in thenSQUIDs. One an view this noise as the �utuatingpart of the �ux, whih provides the phase bias �e(t)for the di�erential phase � of eah individual nSQUID,and ouples to this phase as in Hamiltonian (1). Inthe ontinuous limit and for strong negative ouplingof indutanes, this noise results then in the followingperturbation term that should be added to the basiHamiltonian (5):U = � ~2eL Z dx�(x; t)�(x; t): (21)Sine the magneti �ux noise is produed presum-ably by the mirosopi two-level systems loalized atthe superondutor-dieletri interfaes of the nSQUIDstruture [36�38℄, the noise �uxes are unorrelatedamong di�erent nSQUIDs [39℄. In the ontinuous ap-1321



Qiang Deng, D. V. Averin ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014proximation, this means that the noise �(x; t) is Æ-or-related:h�(x; t)�(x0; t0)i == Æ(x� x0) Z d!2� S0(!) exp [i!(t� t0)℄ ; (22)where the spetral density S0(!) of noise in onenSQUID should have the 1=f pro�le:S0(!) = A=j!j; (23)with some low- and high-frequeny uto�s !l and !h.In the situation of the monostable potential for thedi�erential mode �(x; t) (� < 1) and absene of the ex-ternal bias for it, �e(x; t) � 0, that we fous on in thiswork, perturbative orretions due to U (21) to the en-ergies of the qubit basis states vanish in the �rst order,as one an argue, e. g., from the � ! �� symmetry ofpotential in the Hamiltonian (5). Therefore, similarlyto the �utuations of the ommon mode �(x; t), theperturbation U (21) assoiated with the �utuations ofthe di�erential mode produes only the seond-order,quadrati, non-vanishing orretions to the qubit ener-gies, reduing the deoherene e�ets of these �utua-tions.Besides this suppression of the low-frequeny deo-herene by redued oupling to the noise soure, whihis the same as in the stati qubits, qubits transportedalong the nSQUID arrays should exhibit another sup-pression mehanism resulting from the dynami spread-ing of the noise spetrum due to the qubit motion.Qualitatively, if the qubit is transported with velo-ity v along the array, where the low-frequeny noise isnot orrelated in di�erent nSQUIDs, the qubit sees thee�etive noise with the orrelation time of the order of1=v, the time of the qubit motion between the nearest-neighbor ells of the array. This means that the spe-tral density of the noise as seen by the qubit is hangedfrom the low-frequeny noise spetrum of one nSQUIDinto the noise distributed uniformly over the frequenyrange limited by v. Suh spreading of the low-frequenynoise over a large frequeny range results in the hangeof the oherene time of the qubit from some inhomoge-neous dephasing time td into homogeneous dephasingtime t � t2dv and an be signi�antly inreased by thequbit motion. Suh a suppression of the low-frequenyqubit deoherene is qualitatively similar to the mo-tional narrowing of the NMR lines (see, e. g., [40℄), withthe main di�erene that it should happen not due torandom thermal motion but ontrolled uniform propa-gation of the qubit.To make this desription more quantitative, we on-sider spei�ally the qubit disussed in the previous

Setion, with the basis (18) spanned by the two lowestenergy states of the lowest-frequeny loalized exita-tion of the di�erential mode. The qubit deoherenedepends on the spetral density S(!) of the �ux noise�n(t) as seen by the qubit. For the qubit (18) trans-ported with veloity v, this noise is determined by thespatial pro�le �0(x) (13) of the lowest-frequeny exi-tation of the di�erential mode:�n(t) = Z dx�0(x � vt)�(x; t): (24)This expression gives the following result for the noisespetral density S(!) seen by the qubit:S(!) = Z d�h�n(t+ �)�n(t)ie�i!� == Z d!0S0(!0)f(! � !0); (25)where the funtion f(!) is de�ned asf(!) = 12� Z dt Z dx�0(x)�0(x� vt)ei!t: (26)Taking the normalization ondition (15) into aount,we an see diretly from Eq. (26) that f(!) satis�es thetwo basi onditions:Z d!f(!) = 1; f(0) = 12�v �Z dx�0(x)�2 : (27)Qualitatively, this funtion desribes how the noisespetral density is spread over the large frequeny rangeby qubit motion. For stationary qubit, v = 0, normal-ization ondition (15) shows that f(!�!0) = Æ(!�!0),and the qubit states distributed over several nSQUIDsin the array see the same noise (25) as in one nSQUID:S(!) = S0(!):For rapid qubit motion, when the frequeny rangeup to a large frequeny proportional to v enloses allintensity of the low-frequeny noise, !h � v, Eq. (25)redues toS(!) =Wf(!); W � Z d! S0(!): (28)In general, the qubit motion does not hange thetotal noise intensity, as one an see from Eqs. (25)and (27), Z d! S(!) = W;but it hanges its distribution over frequenies. In par-tiular, for the rapid motion, the total intensity S0(!)1322
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Fig. 3. E�etive frequeny spetrum of the 1=f noiseating on the qubit transported along the nSQUID arraywith veloity v. The noise is redistributed over frequen-ies by the qubit motion. The dashed line shows theoriginal 1=f noise (23). The numbers near the urvesare the 2v=��0!h values. For disussion, see main textof the original noise is distributed over the whole fre-queny range given by the qubit veloity, and the re-sulting noise spetrum S(!) is ompletely determinedby the motion as in Eq. (28). As one an see fromthe seond equation in (27), an important onsequeneof this is that S(!) beomes �at, S(!) � S(0) in thelarge frequeny range ! � v, and its magnitude is sup-pressed by veloity as 1=v:S(0) = W2�v �Z dx�0(x)�2 :Suh a suppressed spetral density of e�etively whitenoise also implies similarly suppressed qubit deoheren-e rate.To see this more expliitly, we onsider the asewhen the two indutanes in the nSQUID array ell (seeFig. 2) are equal, LC = L0. The spatial pro�le (13) ofthe lowest-frequeny exitation of the di�erential modethen is �0(x) = [p2�0 h(x=�0)℄�1:From this expression, we obtain expliitly f(!) (26):f(!) = ��04v �h���0!2v ���2 : (29)Making use of this f(!) in Eq. (25), we an �nd thenoise S(!) for the qubit moving along the nSQUID ar-ray with an arbitrary veloity v, whih results from

the dynami spreading of the 1=f noise (23). Figure 3shows S(!) obtained in this way for several veloitiesv assuming a reasonable frequeny range of the noise,!h=!l = 107. The plot illustrates the transition fromthe rapid to slower qubit motion. The lowest urve(largest v) oinides with Eq. (28) with f(!) given byEq. (29). In agreement with the disussion above, themain feature of all urves in Fig. 3 is that the noisespetrum beomes �at for frequenies below the har-ateristi frequeny � � 2v=��0 assoiated with thequbit motion, inverse of the time it takes a qubit tomove by a distane of the order of its (dimensionless)�length�. For slower qubit motion, !l � � � !h, themagnitude of S in this low-frequeny range an be es-timated as S(0) � A� ln �!l : (30)Also, for � � !h, the spreading funtion f(!) beomesnarrow, and S(!) oinides with S0(!) at the higher-frequeny end of the spetrum. (The sharp feature ofS(!) at ! = !h in this regime is explained by the rudemodel of hard high-frequeny uto� used in the alu-lation.)Dynami transfer of the noise spetrum from lowto high frequenies inreases the qubit dephasing time.To estimate the magnitude of this inrease, we assumethat there is a nonvanishing di�erential phase bias forthe nSQUIDs in the array, so that the qubit is oupleddiretly (linearly) to the noise, but this bias is weakand we an use quantitatively all the previous resultson the noise spetrum spreading. In this ase, the de-phasing time td of the stationary qubit, in the regimewhen it is limited by the low-frequeny noise produinginhomogeneous Gaussian deoherene, is td =p4�=W(inluding the relevant oupling onstants into the def-inition of noise). The dephasing time t(m)d of the same,but rapidly moving, qubit, whih sees as a result thewhite noise spetrum produing the exponential homo-geneous deoherene, is t(m)d = 2=S(0). Using Eqs. (28)and (29) to �nd S(0), we obtain the relation betweenthe two dephasing times:t(m)d = �t2d=�: (31)From a onservative estimate of deoherene time ofphase qubits, when it is dominated by the low-fre-queny noise, td � 200 ns, and a reasonable expetedpropagation frequeny � � 1 GHz, we see that dynamispreading of the low-frequeny noise spetrum shouldinrease the dephasing time of a qubit propagating inthe nSQUID array roughly by a fator of 50, to aboutt(m)d � 10 �s, the value omparable to the present-daydeoherene times of superonduting qubits.1323



Qiang Deng, D. V. Averin ÆÝÒÔ, òîì 146, âûï. 6 (12), 20145. SUMMARY AND OUTLOOKIn summary, we have derived the ontinuous modelof an nSQUID array in the limit of large negative indu-tanes of the nSQUIDs, and alulated the frequenyspetrum and the spatial pro�le of the exitations ofthe di�erential mode in the array. Redued to the two-state limit, dynamis of these exitations an be usedto enode quantum information, whih is transportedalong the array by propagating �uxons supported bythe ommon mode. Qualitatively, qubit of the di�er-ential mode that is attahed to the �uxon turns it intoa partile with arti�ial spin 1/2. We have alulatedthe deoherene properties of these qubits whih areharaterized by the dynami spreading of the noisespetrum due to qubit motion. The spreading reduesthe deoherene rate assoiated with the low-frequenynoise.In this work, we have onsidered only the ase oflong nSQUID arrays, the ommon mode of whih anfully aommodate individual �uxons, and made theassumption that the �uxon dynamis is lassial. ThenSQUID arrays an be used to transport quantum in-formation beyond this regime. The theory presentedabove is not diretly appliable to the ase of shortarrays, arguably more aessible experimentally. Forshort arrays, the distribution of the ommon phaseover the length of the array is di�erent from that ina �uxon (8), and ontinuous approximation may notbe valid any longer. Still, even the shortest possible�arrays� of two nSQUIDs should exhibit the informa-tion transfer dynamis qualitatively similar to the oneonsidered above. Another interesting question is pre-sented by the possibility of quantum motion of �uxonsalong the array, whih is not ompletely out of thereah experimentally [41℄. In this regime, when notonly the di�erential, but also the ommon mode of thearray behaves aording to the quantum mehanis,the information propagates along the array quantummehanially. If, in addition, the dynamis of the dif-ferential mode is bistable as in the �ux qubits, thenSQUID arrays should provide a onvenient way ofimplementing the universal adiabati quantum algo-rithms. All these possible uses of the nSQUID arraysas onveyers of quantum information merit further in-vestigation.The authors aknowledge useful disussions withS. Han, K. K. Likharev, and V. K. Semenov. This workwas supported in part by the NSF grant PHY-1314758and the European Union Seventh Framework Pro-gramme INFERNOS (FP7/2007-2013) under the grantagreement No. 308850.

APPENDIXRedution of the array HamiltonianIn this Appendix, we show expliitly how Hamil-tonian (2) of the nSQUID array, segment of whihis shown in Fig. 2, is redued to the form given byEq. (4) in the large-negative-indutane limit M ! L,MC ! LC . In order to do this, we start by transform-ing two of the initial degrees of freedom of eah ell ofthe array, the ommon phase �j of the jth nSQUID,and the superonduting phase �e;j at bias node pointof this nSQUID (see Fig. 2), into two new variables, �jand �j , de�ned as�j = ~2e(�j � �e;j);�j = ~2eCt (2C�j + C0�e;j): (A.1)The orresponding anonial �momenta� onjugatedto these new oordinates are the following ombinationsof harges Kj and Ke;j :qj = (C0Kj � 2CKe;j)=Ct; pj = Kj +Ke;j : (A.2)One an see diretly that they indeed satisfy the ne-essary ommutation relations:[�j ; qj ℄ = i~; [�j ; pj ℄ = i~; [�j ; pj ℄ = 0; [�j ; qj ℄ = 0:This transformation is performed to separate ex-pliitly the relative dynamis of the two phases, �jand �e;j , whih will be quenhed in the limit M ! L,MC ! LC . To see this, we onsider the relevant, di-verging in this limit, part H 0 of the total array Hamil-tonian H0 given by Eqs. (2) and (3):H 0 =Xj (K2j4C+K2e;j2C0 +� ~2e�2 � (�e;j � �j)2L�M ++ (�e;j � �j + �j�1 � �e;j�1)2LC �MC �) : (A.3)To make the subsequent alulation expliit, we needto speify the array struture. We assume the array ofN ells with periodi boundary onditions at the ends,e. g., �0 � �N . Then, inverting the relations (A.2):Kj = qj + 2CpjCt ; Ke;j = C0Ct pj � qj ;we express Eq. (A.3) in terms of new variables:H 0 = NXj=1 " p2j2Ct+ q2j2Cr+ �2jL�M+(�j��j�1)2LC �MC # ; (A.4)1324



ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 nSQUID arrays as onveyers of quantum informationwhere Cr = 2CC0=(2C + C0). The last three termsin this expression form the Hamiltonian Hd whih gov-erns the relative dynamis of the phases �j and �e;j .As usual, this Hamiltonian an be diagonalized by in-troduing plane-wave exitations with wavevetorsk = 2�nN ; n = �N � 12 ;�N � 12 + 1; : : : ; N � 12(we assume for simpliity that N is odd), with orre-sponding reation/annihalation operators bk and byk:�j =Xk r ~2Cr!kN (bk + by�k)eikj ; (A.5)qj = �iXk r~Cr!k2N (bk � by�k)eikj : (A.6)In terms of these plane waves, the Hamiltonian has theusual �phonon� formHd =Xk ~!k �bykbk + 12� ;with the following frequeny spetrum:!k =s 2Cr � 1L�M + 4 sin2(k=2)LC �MC �; (A.7)whih satis�es the ondition !k = !�k.The main feature of this spetrum is that all fre-quenies beome very large, !k ! 1 in the large-negative-indutane limit. This means that thesephonon modes annot be exited by the dynamis ofthe nSQUID array whih ours at muh smaller fre-quenies, and the modes remain in the ground statethroughout the time evolution of the array. The Hamil-tonianHd of the relative dynamis of the phases �j and�e;j e�etively redues in this regime to a onstant,Hd = Pk ~!k=2, irrelevant for the system dynamis.Then, the part H 0 (A.3) of the array Hamiltonian on-sidered in this Appendix redues toH 0 = 12Ct NXj=1 p2j + 12Xk ~!k: (A.8)As one an see from Eq. (A.5), suppression of thedynamis of the !k modes to their ground states, withadded ondition !k ! 1, also implies that �j ! 0.Indeed, simple estimate of the �utuations of �j usingEq. (A.5) shows that h�2j i < ~[(L�M)=8Cr℄1=2 ! 0 forM ! L, e�etively imposing the onstraint �j = �e;jon the system dynamis. This onstraint means that
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