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THEORY OF A RANDOM FIBER LASERI. V. Kolokolov a*, V. V. Lebedev a**, E. V. Podivilov b, S. S. Vergeles aaLandau Institute for Theoreti
al Physi
s, Russian A
ademy of S
ien
esbInstitute of Automation and Ele
trometry, Siberian Bran
h of Russian A
ademy of S
ien
esRe
eived July 3, 2014We develop the theory explaining the role of nonlinearity in generation radiation in a �ber laser that is pumpedby external light. The pumping energy is 
onverted into the generating signal due to the Raman s
atteringsupplying an e�e
tive gain for the signal. The signal is generated with frequen
ies near the one 
orrespondingto the maximum value of the gain. Generation 
onditions and spe
tral properties of the generated signal areexamined. We fo
us mainly on the 
ase of a random laser where re�e
tion of the signal o

urs on impurities ofthe �ber. From the theoreti
al standpoint, kineti
s of a wave system 
lose to an integrable one are investigated.We demonstrate that in this 
ase, the perturbation expansion in the kineti
 equation has to use the 
losenessto the integrable 
ase. Contribution for the JETP spe
ial issue in honor of A. F. Andreev's 75th birthdayDOI: 10.7868/S00444510141201531. INTRODUCTIONWe 
onsider the theory of random �ber lasers. The
on
ept of random lasers exploiting multiple s
atteringof photons in an amplifying disordered medium in orderto generate 
oherent light without a traditional laserresonator has attra
ted mu
h attention in re
ent years.This resear
h area lies at the interfa
e of the fundamen-tal physi
s of disordered systems and laser s
ien
e. Theidea of a random laser was originally proposed in the
ontext of astrophysi
s in the 1960s by V. S. Letokhov,who studied s
attering with �negative absorption� ofthe interstellar mole
ular 
louds. Resear
h on randomlasers has developed into a mature experimental andtheoreti
al �eld. A simple design of su
h lasers wouldbe promising for potential appli
ations.In traditional random lasers, the properties of theoutput radiation are typi
ally 
hara
terized by 
om-plex features in the spatial, spe
tral, and temporal do-mains, making them less attra
tive than standard lasersystems in terms of pra
ti
al appli
ations. Re
ently, aninteresting and novel type of random lasers that operatein a 
onventional tele
ommuni
ation �bers without any*E-mail: kolokolov�itp.a
.ru**E-mail: lebede�itp.a
.ru

predesigned resonator mirrors was demonstrated. Thefeedba
k required for laser generation in the random�ber laser is provided by Rayleigh s
attering from theinhomogeneities of the refra
tive index that are nat-urally present in sili
a glass. In the proposed laser
on
ept, the randomly ba
ks
attered light is ampli�edthrough the Raman e�e
t, providing distributed gainover distan
es up to 100 km. Although an e�e
tivere�e
tion due to the Rayleigh s
attering is extremelysmall, the lasing threshold may be ex
eeded when asu�
iently large distributed Raman gain is supplied.The random distributed feedba
k �ber laser has anumber of interesting and attra
tive features. The �berwaveguide geometry provides transverse 
on�nement,and the e�e
tively one-dimensional random distributedfeedba
k leads to the generation of a stationary beamwith a narrow spe
trum. The random distributed feed-ba
k �ber laser has e�
ien
y and performan
e that are
omparable to and even ex
eed those of similar 
onven-tional �ber lasers. The key features of the generatedradiation of random distributed feedba
k �ber lasersin
lude a stationary narrow-band 
ontinuous modelessspe
trum that is free of mode 
ompetition, nonlinearpower broadening, and an output beam with a Gaus-sian pro�le in the fundamental transverse mode (gener-ated both in single-mode and multi-mode �bers). De-tails of the random laser performan
e 
an be found inre
ent review [1℄.1295
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heme illustrating arrangement of a �ber laser2. BASIC DYNAMIC EQUATIONSThe random �ber laser is a pie
e of opti
al �ber oflength L that is opti
ally pumped from the �ber ends.As a result, randomly ba
ks
attered light in the �beris ampli�ed through the Raman e�e
t, and the systemstarts to lase at some level of the ampli�
ation (seeRef. [1℄). Two ele
tromagneti
 waves propagating tothe right and to the left are generated in the �ber. As
hemati
 distribution of the generated waves along the�ber is presented in the �gure. Due to pumping, theiramplitudes in
rease during the propagation and a
hievemaxima near the ends of the �ber, before passing out-side the �ber. We stress that the nonlinear intera
tionof the generated waves propagating to the right and tothe left is weak be
ause their maxima are a
hieved atthe opposite ends of the �ber. Therefore, they 
an be
onsidered independently.We begin with the dynami
 equation des
ribing theevolution of the envelope of the generation ele
tromag-neti
 �eld,  , over the evolution 
oordinate z withinthe �ber, at 0 < z < L, where L is the �ber length.The equation for the generation wave propagating inthe �ber to the right isi (�z � ĝ) = ��2t  + 
2 j j2; (1)where t is the time, 
 is the Kerr nonlinear 
oe�
ient,and � is the quadrati
 dispersion 
oe�
ient. We 
on-sider the generation pro
esses high above the gener-ation threshold and therefore negle
t noise terms inEq. (1). An equation analogous to Eq. (1) 
an be for-mulated for the signal propagating to the left, the onlydi�eren
e being in the sign of the derivative �z.The gain operator ĝ is determined by an interplay ofthe pumping and the attenuation of the signal. In thefrequen
y domain, it is a frequen
y-dependent fa
torg = gRP (z)� �l;where gR the Raman gain 
oe�
ient, P (z) is the powerof the pumping wave, and �l is the linear attenuation
oe�
ient in the �ber. The distribution of the pump-ing over the evolution 
oordinate z is de�ned by thefa
tor P (z), whi
h is assumed to be known. The lasing

is realized for frequen
ies near the frequen
y where thegain g a
hieves a maximum. We take the frequen
yas the 
arrying frequen
y for the envelop  . Then weobtain g(!) = g0 �$!2; (2)whi
h is an expansion of the gain 
oe�
ient near itsmaximum. Here, ! is the frequen
y shift from the 
ar-rying frequen
y. We note that above the generationthreshold, the 
ondition g0 > 0 has to be ful�lled.We stress that in reality, the power P of the pum-ping wave is dependent on the generation wave  : theyare related via the balan
e equation [1, 2℄. Therefore,the problem should be solved in two steps. First, wehave to solve the balan
e equations to �nd P (z). Then,P (z) 
an be involved in 
al
ulating  . Here, we 
on-
entrate on the se
ond step.In a random �ber, almost all generated radiation is
oupled out from the �ber end. Only a small part ofthe energy is re�e
ted ba
k via Rayleigh ba
ks
atteringpro
esses. Be
ause the amplitudes of generated wavesin
reased during evolution, the s
attering pro
ess is ef-fe
tive only at the end of the �ber. This implies ane�e
tive initial 
ondition for the generation wave  +,propagating to the right, in terms the amplitude of thegeneration wave  �, propagating to the left. Formally,the initial 
onditions for the waves have the form +(0; t) = R̂l �(0; t); �(L; t) = R̂r(!) +(L; t); (3)where Rl and Rr are re�e
tion 
oe�
ients on the leftend and on the right end of the �ber, de�ned in thefrequen
y domain. They have di�erent !-dependen
esin di�erent situations. In the 
ase of the random-�berlaser, jRj � 1. The re�e
tion smallness leads to the
on
lusion that the signal is weakly disturbed by there�e
tion, thus justifying 
onditions (3).The spe
trum of the generated wave in the random-�ber laser is relatively broad (
ompared to traditionallasers) and 
onsists of a high number of spe
tral 
ompo-nents near the 
arrying frequen
y (see [1℄). The main
hallenge here is to des
ribe the in�uen
e of nonlinear-ity on the generation spe
trum. For this, we use thestandard kineti
 approa
h dealing with averaged quan-tities. We assume that the dispersion length (��2)�1(where � is the spe
tral width) is small in 
ompari-son with the �ber length L. Then the harmoni
s withdi�erent frequen
ies possess essentially di�erent phasesand therefore, under averaging over a length larger thanthe dispersion length, the harmoni
s 
an be treated asapproximately independent.1296
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t in the kineti
 theory is the pair
orrelation fun
tionh (z; t1 + t) �(z; t1)i = Z d!2� e�i!tF (z; !); (4)where angular bra
kets mean averaging over a distan
elarger than the dispersion length and ��� denotes 
om-plex 
onjugation. Due to the assumed time homogene-ity, the average in (4) depends solely on the time di�er-en
e t and is independent of t1. However, in examiningreal �bers, it is useful to average over time (integrateover t1) to eliminate e�e
ts related to di�erent �u
tu-ations (noises) negle
ted in our formalism. We stressthat due to the z-dependen
e of the generation wave,the system is not homogeneous in spa
e, in 
ontrast tothe time behavior. The fun
tion F is no other thanthe spe
trum of the generated signal. We note that thesignal intensity I 
an be expressed via the spe
trum asthe integral I � hj j2i = Z d!2� F (!): (5)Boundary 
onditions (3) lead to the following rela-tions for the averages:F+(0; !) = jRl(!)j2F�(0; !);F�(L; !) = jRr(!)j2F+(L; !); (6)where F+ and F� 
orrespond to the respe
tive gener-ation waves propagating to the right and to the left.In what follows, we 
onsider the symmetri
 stationarysituation where Rl = Rr and F+(z) = F�(L�z). Thenwe obtain the 
onditionF (0; !) = jR(!)j2F (L; !); (7)for the signal propagating to the right. The 
onditionrelates values of the 
orrelation fun
tion F taken atdi�erent ends of the �ber.3. KINETICSWe assume weak nonlinearity of the system. Thena perturbation theory has to be developed to exam-ine nonlinear e�e
ts in the random laser. The startingpoint for the theory is the basi
 equation (1) for the en-velope  (z; t). We treat the nonlinear term in Eq. (1)as a perturbation and expand the solution of the equa-tion with respe
t to the nonlinearity. Then we use theexpansion for 
al
ulating average (4).Below, our aim is to derive a dynami
 equation forthe spe
trum F . The equation enables analyzing the

form of the spe
trum and its dependen
e on the sys-tem parameters. Our derivation is performed in thespirit of the derivation of the standard kineti
 equation[3, 4℄ for 
lassi
 waves. However, our system is 
loseto an integrable one be
ause at g = 0, the basi
 equa-tion (1) is the nonlinear S
hrödinger equation, whi
his 
ompletely integrable and has an in�nite number ofintegrals of motion. There are no kineti
s in the sys-tem of waves des
ribed by the nonlinear S
hrödingerequation [5℄. Therefore, the kineti
s are related to thepresen
e of the gain term g, whi
h makes the situationabsolutely di�erent from the standard kineti
 equationand requires a 
onsistent derivation of the generalizedkineti
 equation.A formal solution of Eq. (1) 
an be written as (z; t) = Z dt0G(z; z?; t� t0) (z?; t0)� i
2 �� Z dt0 zZz? dz0G(z; z0; t� t0) (z0; t0)j (z0; t0)j2; (8)where z? is an arbitrary point. Here,G(z; z0; t) = �(z � z0) Z d!2� �� exp24�i!t+ zZz0 dz00 (g + i�!2)35 (9)is the Green's fun
tion determining a linear response ofthe system to an external in�uen
e. Analogously, it ispossible to 
onsider the evolution �ba
kward� in z. Forexample, in the linear approximation, (z0; t0) � Z dt G(z; z0; t� t0) (z; t): (10)We now pass to obtaining an equation for the fun
-tion F in (4). It follows dire
tly from Eq. (1) that�zF (z; !) = 2gF � i
2 Z dt ei!t �� 
 (z; t) �(z; 0) �j (z; t)j2 � j (z; 0)j2�� : (11)Here, as above, the angular bra
kets denote averag-ing over a distan
e larger than the dispersion length.Equation (11) implies that both the gain g and the
orrelation fun
tion F are slowly varying fun
tions atthe averaging length. We assume that ��2 � g0, andthen we 
an 
hoose the averaging length l mu
h smallerthan g�10 . In addition, the inequality $�2 � g0 hasto be satis�ed, whi
h is a manifestation of the spe
-trum narrowness in 
omparison with the 
hara
teristi
11 ÆÝÒÔ, âûï. 6 (12) 1297
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y range of Raman s
attering. Therefore, we ar-rive at the 
hain of the inequalities $�2 � g0 � ��2to be satis�ed for the validity of our theoreti
al s
heme.The phase randomization 
aused by dispersion leadsto approximately Gaussian statisti
s of the �eld  sin
eit appears to be a sum of a large number of indepen-dent terms. Therefore, in 
al
ulating averages like (11),we 
an use the Wi
k theorem (that is, the presentationof the average of some produ
t of  �elds via its pair
orrelation fun
tions). But applying the Wi
k theoremto the 
ombination in the right-hand side of Eq. (11)gives zero. Therefore, we have to take into a

ounta weak 
orrelation between di�erent harmoni
s 
ausedby nonlinearity. Te
hni
ally, we must use the nonlinear
ontribution to  from Eq. (8), non(z; t) = � i
2 Z dt0 zZ0 dz0G(z; z0; t� t0)�� Z dt1 G(z; z0; t1 � t0) (z; t1)�� ����Z dt2 G(z; z0; t2 � t0) (z; t2)����2 ; (12)where we substituted expression (10). The goal of thesubstitution is to express the variation Æ in terms of (z; t). Then averages in the right-hand side of Eq. (12)are expressed in terms of the fun
tion F (z; !) in (4).Using the Wi
k theorem, substituting expres-sion (9) and taking integrals over time, we obtain fromEq. (12) that(�z�2g)F = 
2 Z d!1d!2d!3(2�)2 Æ(!+!1�!2 � !3)�� �ga FF2F3g2a +
2 + g
 F1F2F3g2
 +
2 � 2gb FF1F3g2b +
2 � ; (13)where F = F (z; !), F1 = F (z; !1), and so on, and thefollowing notations are introdu
ed:
 = �(!2 + !21 � !22 � !23);ga = g(!) + g(!2) + g(!3)� g(!1);gb = g(!) + g(!1) + g(!3)� g(!2);g
 = g(!1) + g(!2) + g(!3)� g(!):Equation (13) is a generalized kineti
 equation de-rived for intera
ting waves in an unstable medium (dueto pumping). We see that in Eq. (13), the usual Æ-fun
-tions (that ensure the wave ve
tor 
onservation) in the
ollision integral (right-hand side) are substituted byLorentzians, where the gain g is present. This is a man-ifestation of the system inhomogeneity in z 
aused by

the gain. Other properties of the generalized kineti
equation are 
lose to those of the usual wave kineti
equation. For example, the integral over ! of the 
ol-lision integral is equal to zero. This is a 
onsequen
eof the wave a
tion (number of waves) 
onservation lawwhi
h is valid without gain.It is possible to substitute g ! g0 in the 
ollisionintegral be
ause we assume $�2 � g0 and the non-linear stage (where the 
ollision integral is relevant) isrelatively short. However, generally, we should keepthe term $!2 in the left-hand side of Eq. (13) sin
e itis relevant at the linear stage of wave evolution. As aresult, we arrive at the equation��z � 2g0 + 2$!2�F == 
2 Z d!1d!2d!3(2�)2 Æ(! + !1 � !2 � !3)�� 2g04g20+
2 [FF2F3+F1F2F3�FF1F2�F!F1F3℄ ; (14)whi
h is a starting point for the subsequent analysis.In this paper, we examine the 
ase of relativelystrong dispersion (wide spe
trum), when ��2 � g0(where � is the spe
trum width). (The 
ase of a nar-row spe
trum was 
onsidered in [2℄.) The inequality��2 � g0 means that we 
an pass to the limit of smallg in Eq. (13) or (14). However, we should be 
areful be-
ause of the noted 
an
elations. In the limit as g0 ! 0,the Lorentzian in the 
ollision integral (the right-handside of Eq. (14)) turns into a Æ-fun
tion of 
, thus a
-quiring the form of the usual 
ollision integral [4℄. Butthe 
ollision integral vanishes in this limit. This is a
onsequen
e of the 
omplete integrability of the one-dimensional nonlinear S
hrödinger equation. The exis-ten
e of an in�nite number of integrals of motion leadsin this 
ase to the absen
e of kineti
s in all orders innonlinearity [5℄.Therefore, we should go beyond the zeroth order ing0 (that gives the Æ-fun
tion) and keep the �rst orderin g0. Hen
e, we 
an negle
t g0 in 
omparison with
 in the denominator in Eq. (14) and keep g0 in thenumerator to obtain(�z � 2g)F (z) = 2g0
2�2 �� Z d!1d!2d!3(2�)2 Æ(! + !1 � !2 � !3)�� (!2 + !21 � !22 � !23)�2 �� (FF2F3 + F1F2F3 � FF1F2 � FF1F3) : (15)We note the presen
e of a singular denominator inEq. (15). This does not lead to any divergen
e just1298
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e would meanthat the 
oe�
ient at the Æ-fun
tion is nonzero). Thisequation is a starting point of subsequent 
al
ulations.As follows from Eq. (15), in the linear approxima-tion, Flin(z; !) / exp�2 Z dz (g0 �$!2)� : (16)This expression des
ribes the exponential growth of thesignal amplitude. Besides, relation (16) shows that inthe linear regime, the laser spe
trum be
omes narrowerfollowing the gain spe
tral shape g(!). If A > ��20 ,where A = R dz $ and �0 is the initial spe
trum widthat z = 0, then the spe
trum width � at the end of thelinear stage 
an be estimated as � � A�1=2. We notethat the spe
tral width in this 
ase does not depend onthe initial spe
tral width at z = 0.4. SOLUTIONThe right-hand side of Eq. (15) 
an be estimated asg0F (
I=��2)2. We �rst analyze the 
ase where 
I �� ��2 at the end of the �ber. That means that theinequality is satis�ed everywhere be
ause I in
reasesmonotoni
ally as z in
reases. The inequality 
I � ��2means that the linear term 2g in the left-hand sideof Eq. (15) is larger than the 
ollision integral (theright-hand side of the same equation). Then the leading
ontribution to the F -evolution by the 
ollision integralis produ
ed at the nearest-to-the-�ber-end interval ofthe length of the order of g�10 .To 
al
ulate the nonlinear (
ollision) 
ontributionto F (L), we 
an use the linear law (16) (where theterm with $ 
an be negle
ted) to obtainF (z) = exp[2g0(z � L)℄F (L):Then in a

ordan
e with Eq. (15), the nonlinear 
or-re
tion to F 
an be written asFnon = 
23�2 Z d!1d!2d!3(2�)2 Æ(! + !1 � !2 � !3)�� (!2 + !21 � !22 � !23)�2 �� (FF2F3 + F1F2F3 � FF1F2 � FF1F3) ; (17)where all fun
tions, F; F1; : : : , are taken at z = L.To a
hieve a statisti
ally steady state, we have tosatisfy relation (7). We assume here that the signals
attering is produ
ed by impurities. Then the re-�e
tion 
oe�
ient R depends weakly on the frequen
y!, be
ause the impurity size is mu
h smaller than the

wavelength. In this 
ase, the only relevant parameteris � = jR!j2 � 1. Then it follows from Eq. (7)F (0; !) = �F (L; !): (18)To satisfy Eq. (18), we have to assume that the $-
ont-ribution to the law (16) is small. Therefore,� exp0�2 LZ0 dz g01A = 1 + �; (19)where � � 1.Using relations (16), (17), and (19), we �nd fromthe 
ondition (18) that(��2A!2)F+ 
22�2 Z d!1d!2d!3(2�)2 Æ(!+!1�!2�!3)�� 1(!2 + !21 � !22 � !23)2 �� [FF2F3 + F1F2F3 � FF1F2 � FF1F3℄ = 0; (20)where all fun
tions are taken at z = L and A = LR0 dz $.As follows from Eq. (20), the spe
trum width is deter-mined by the balan
e of the terms in the left-hand side,that is, � =r �2A : (21)We note the smallness of � in �. Comparing di�erentterms in Eq. (20) we �ndI � ��3=2
Aand I � �
pA�3: (22)Hen
e, � / I1=3 in the regime.Equation (20) admits a self-similar substitutionF (L; !) = ��
pA �� !�� ; (23)where� is determined by Eq. (21). Then Eq. (20) leadsto the universal form of the equation for the self-similarfun
tion(x2 � 1)�(x) = Z dx2dx3(4�)2 �� ��2�3 + �1�2�3 � ��1�2 � ��1�3(x � x2)2(x� x3)2 ; (24)1299 11*
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al solution of theequation gives the normalization fa
torZ dx �(x) � 23:8:We see from Eq. (22) that the spe
tral width � in-
reases as the intensity I in
reases. At some level ofpumping, 
I be
omes of the order of ��2. For higherpumping levels, the lasing regime 
ompletely 
hanges.The regime requires a separate 
onsideration. Our pre-liminary analysis shows that in this regime, the relation
I � ��2 is satis�ed during the nonlinear stage of thegeneration wave propagation (near the �ber end). Theresult needs an additional justi�
ation.5. CONCLUSIONWe analyzed the signal spe
trum of a �ber laser thatis pumped by external light (due to Raman s
attering).We use a generalized kineti
 equation for the analysis.A pe
uliarity of the wave system under 
onsiderationis its 
loseness to the 
ompletely integrable 
ase of theone-dimensional nonlinear S
hrödinger equation. We�nd a relation between the spe
trum width and the in-tensity of the signal, that is 
hara
terized by a powerlaw. We also establish exponential tails of the spe
trum(with power-law 
orre
tions). The exponential 
hara
-ter of the tails is ultimately 
aused by the frequen
y
onservation law, satis�ed due to homogeneity of thesystem in time. From the other side, our system isspatially inhomogeneous. However, the inhomogeneitywas assumed to be weak in 
omparison with the phasevariations 
aused by dispersion. The last 
ondition im-plies that the spe
trum width has to be large enough.The opposite 
ase was analyzed in [2℄.It is instru
tive to 
ompare our generalized equationwith the usual kineti
 equation for weak wave turbu-len
e [4℄. The last one has two types of solutions: equi-librium solutions and �ux solutions, both with powerspe
tra. In our 
ase, the 
ollision integral is nonzero,be
ause it must be balan
ed by some additional termappearing due to the spatial inhomogeneity of the sys-tem. That leads to the existen
e of a z-dependent 
har-a
teristi
 spe
trum width. Formally, it is a 
onsequen
e

of the �lo
ality� property of our 
ollision integral (it isdetermined by frequen
ies of the order of the externalfrequen
y); the �lo
ality� property is also 
hara
teristi
of the 
ollision integral in usual weak wave turbulen
e.Another pe
uliarity of our system, distinguishing itfrom the traditional weak wave turbulen
e, is the nearlyintegrable 
hara
ter of the system. Indeed, in the lead-ing approximation, the wave propagation through a�ber is des
ribed by the nonlinear S
hrödinger equa-tion that is 
ompletely integrable. The wave kineti
s inthe integrable 
ase are absent [5℄. Therefore, the wavekineti
s in our 
ase are related mainly to the spatialnonhomogeneity of the �ber 
aused by the gain (andthe relaxation). Therefore, we have to use the doubleperturbation theory, using weakness of both the nonlin-earity and the nonintegrability. That is why the result-ing wave kineti
s appear to be essentially di�erent fromthose in the traditional weak wave turbulen
e: insteadof a power-law spe
trum, we arrive at exponential tailsin the spe
trum.Our predi
tions are in good agreement with experi-mental observations. The 
omparison will be publishedelsewhere.We thank S. A. Babin, D. V. Churkin, and S. K. Tu-ritsyn for numerous helpful dis
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