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We discuss transport of particles along random rough surfaces in quantum size effect conditions. As an intrigu-
ing application, we analyze gravitationally quantized ultracold neutrons in rough waveguides in conjunction with
GRANIT experiments (ILL, Grenoble). We present a theoretical description of these experiments in the biased
diffusion approximation for neutron mirrors with both one- and two-dimensional (1D and 2D) roughness. All
system parameters collapse into a single constant which determines the depletion times for the gravitational
quantum states and the exit neutron count. This constant is determined by a complicated integral of the correla-
tion function (CF) of surface roughness. The reliable identification of this CF is always hindered by the presence
of long fluctuation-driven correlation tails in finite-size samples. We report numerical experiments relevant for
the identification of roughness of a new GRANIT waveguide and make predictions for ongoing experiments. We
also propose a radically new design for the rough waveguide.
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1. INTRODUCTION

The role of surface scattering increases dramatically
with advances in micro- and nanofabrication, multi-
layer systems, pure materials, vacuum technology, etc.
Below, we address some universal features of trans-
port of particles or waves along random rough walls
in quantum size effect conditions. As an application,
we look at the gravitationally quantized ultracold neu-
trons in rough waveguides in conjunction with ongoing
GRANIT experiments (ILL, Grenoble). This is one of
the cleanest model-free testing grounds for our theory.

Intuitively, scattering by surface inhomogeneities
should not be very different from scattering by other
static defects such as bulk impurities. However, while
the basic effects of impurity scattering are described in
elementary textbooks, a similar simple general account
for surface roughness has been missing. This is not en-
tirely surprising. The underlying issue is an unusual
structure of the perturbation theory. Randomly vary-
ing space inside corrugated systems makes it difficult

“E-mail: Alexander_ Meyerovich@uri.edu

to introduce a proper set of basis wave functions which
are necessary for perturbative expansions. It is not al-
ways clear when this issue is important and what to do
when it is.

Recently, we developed a consistent perturbative
approach within which this issue disappears, clear-
ing the way to a rigorous impurity-like description
of quantum transport of particles in systems with
rough boundaries. What is more, the structure of the
corrugation-driven scattering probabilities is largely
universal, irrespective of particle spectra, types of sur-
faces, and bulk fields between them.

The next section contains a simplified outline of
our general transport results for systems with slight
roughness, which are relevant for further discussion. In
Sec. 3, we apply these results to beams of the gravita-
tionally quantized neutrons in rough waveguides. In
Sec. 4, we discuss correlation properties of random
rough surfaces. We show that the identification of the
roughness correlation function (CF) is not trivial and
should not be based solely on a statistical quality of
the fit to some fitting function. Section 5 contains our
conclusions, experimental predictions, and recommen-
dations.
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2. QUANTUM SIZE EFFECT AND
TRANSPORT OF PARTICLES ALONG
RANDOMLY CORRUGATED WALLS

Theoretical approaches to particle transport in
systems with random rough boundaries (see, e.g.,
books [1-4]; a brief review can be found in Ref. [5]) can
be split into two main groups. The first one deals with
boundary scattering by means of an effective boundary
condition. We prefer alternative approaches that incor-
porate the boundary scattering directly into the bulk
equations and allow using powerful bulk methods to de-
scribe the surface effects in transport and interference
phenomena, localization, etc.

If we ignore potential complications, the simplest
bulk-like approach [6] is a straightforward perturbation
expansion in small corrugation & (y, z) of the wall. We
suppose that the wall is located at © = z, + &, (v, 2)
and corresponds to an abrupt change of the potential
by [U],

U =[U]6(x = 20+ (4,2)) -

The small corrugation &, looks like a good perturbation
parameter,

U=[U]0(x—24)+[Ul&ad (& —x4) + ...

The calculation of the matrix element is trivial:

Visﬁa) = /exp (is- (@ — q')) & (s) U, 0, [U] x
X0(x—2a) =E(q—d) [U] ¥ (2a) ¥y (2a), (1)

where ¥, (z) are the wave functions in the absence
of corrugation. This simple expression can be ex-
tended [5] to systems with rough external walls for
which [U] — oot

[e% 1 ! ! !
Vi = =3t (=) ¥ (02) T (2a) . (2)

If we need a more rigorous perturbative approach or
want to study interference effects, a better option is to
map the problem with the corrugated boundaries onto
a mathematically equivalent problem with flat bound-
aries and distorted bulk [7-10]. Such mapping for a
system with two rough walls,

T = ig Fé2y,2), (3)

can be achieved [9] by the coordinate transformation
r— R,

Y= r+&/2-6)/2

C1-&4/L-&/L Y=

which makes the boundaries straight, X = +L/2, with-
out even specifying the single-valued random functions
&1,2. The rest is straightforward: we have to perform
a conjugate transformation of momenta p — P and
rewrite the original Hamiltonian ﬁo (p,r) in terms of
R and P:

~

Hy (p,r) = Ho (P,R) +V (PR, {&12 (R)}). (5)

The result is the exactly equivalent problem in which
the (random) bulk perturbation operator V replaces
the surface inhomogeneities. In simple situations, the
matrix elements of V are similar to (1) and (2). The
drawback of mapping transformation (4) is that its Ja-
cobian J # 1. When this is important, the transforma-
tion can be modified [10].

The diagrammatic derivation of the transport equa-
tion for systems with random surface inhomogeneities
has been done in Ref. [10]. The restricted motion per-
pendicular to the walls is quantized, (pm)j ~ jh/L,
E(p) — E;(q), where q = (py,ps) is the two-
dimensional momentum. This quantization is impor-
tant for ultrathin systems, multilayer media, intercon-
nects, particles absorbed on or bound to the surfaces,
quantum wells, etc. The transport equation is quantum
in the direction perpendicular to the walls and is qua-
siclassical along the walls. In ultrathin systems with a
large separation between the minibands Fj;, as well as
in thick quasiclassical films, the transport equation has
a usual Boltzmann-like form,

Byon; (q) + % - 0:0m; (q) + F - g0 (q) =
=L;{n;}. (6)

In-between, there is an anomalous regime in which the
transport equation acquires a highly unusual and com-
plicated form [10]; we do not deal with this situation
here. Since the mapping transformation approach is
mathematically rigorous, it can be extended to more
complex situations, including the surface-driven local-
ization [11], interference between surface and bulk scat-
tering processes [12], topological phase transitions [13],
etc.

The perturbative collision integrals L; are deter-
mined by the transition probabilities W;j (q,q') =

= <|ijq’j’q’|2> between the states (4,q) — (4',4'):

L; = QFZ/W]']" (a,q9) [njrqr — njq] X
]'!

d2ql
X 6 (€jq — €jrar) W (7)
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Generally, the transition probabilities W;; (q,q’) fac-
tor into the products of the CF of surface roughness
((q—dq') and the boundary values of the wave func-
tions ¥; in the absence of corrugation. These com-
binations depend on the structure of the system, the
number of interfaces, and the correlation between in-
homogeneities from different walls.

The CF of surface inhomogeneities (o3 (|s]) and its
power spectrum (o5 (|q|) are defined as

Cap (I]) = (€als1)&s(s1 +8)) =
=A"! /fa(51)§3(51 +s)dsy,

Gon (a) = [ sexp (52 Gus (s = ()
e

where A is the area, and the indices «, 5 indicate the
surfaces that are the sources of inhomogeneities &,
and &g.

If the system has only one rough surface at
x = L+¢&(y, z) with the potential jump [U] on it, then,
according to Eq. (1),

Wiy = Cla—ad) [UP 125 (D)P 12 (DF . (9)

If, on the other hand, there are several interfaces at
o = Lo + & (y, 2) with different discontinuities [U],,
then

W =

Ji’
= Re [Cap (a=d') [U], [U]; W5 Wyrajs¥is] . (10)

where U, = ¥ (L,). The full scattering probability W
is the sum of all these W2, For a system with two ex-
ternal walls with [U], , — 0o, Eq. (2), the probabilities
W are
WQB _ 1 R ‘IJ*, ‘I’I ‘Ijr */
i = s R | jaWa Vs | (11)
a,f=1,2

and the interference between inhomogeneities on the
external wall () and the internal interface (3) yields

1
B8 _ * x
W = 5 Re [CagUsWIL W, W07, 5] (12)

Equation (10) for internal interfaces is the same irre-
spective of the particle spectrum, while Egs. (11) and
(12) are given for € = p?/2m (equations for arbitrary
€ (p) are more cumbersome [5]).

The terms with a = 8 and a # [ describe the in-
trawall and interwall correlations of inhomogeneities.
The interwall contribution a # 3, when it exists [14],
is nontrivial. =~ While W* is always positive, the
sign of the interwall term W% with o # 3 is not
fixed, and the interwall interference can be construc-
tive or destructive depending on a particular realiza-
tion of the system (overall, W is positive because
Caa (a) +Csp () > 2|Cap (q)| for any corrugation). For
illustration, here is the full roughness-driven transition
probability for particles with the quadratic spectrum
in a homogeneous quantum well with infinite potential
walls:

Wiy = [Cn + (o2 + 2 (—1)j+jl C12] X

@) () o

The interwall correlation term with (15 has an oscillat-
ing structure and can sometimes lead to a large increase
in transport coefficients [15].

The collision operator and transition probabilities
(7)—(13) have a simple structure and, with the excep-
tion of the interference terms, resemble those for impu-
rity scattering with the roughness CF ( playing the role
of the impurity scattering cross section ¢yy,,,. There-
fore, transport calculations could be done essentially in
the same way as for bulk impurities. The quantization
of motion actually simplifies the problem by replacing
the integral transport equation by a finite set of coupled
linear equations. Under certain conditions, these equa-
tions decouple and we can obtain semi-analytic results
for the transport coefficients via the zeroth and first
harmonics of the roughness CF [5, 15, 16].

m2L2

3. APPLICATION TO GRAVITATIONALLY
QUANTIZED ULTRACOLD NEUTRONS IN
ROUGH WAVEGUIDES

Recent observation by the GRANIT group (ILL,
Grenoble) [17] of quantization of motion of ultracold
neutrons by Earth’s gravitational field predicted in
Ref. [18] is an exciting breakthrough in neutron physics
(see also reviews [19] and Refs. [20, 21]; for general
properties of ultracold neutrons, see Refs. [22]). Al-
though the quantization of motion by a linear field
such as gravity is not new by itself [23] and has al-
ready been observed in a low-temperature context [24],
the experimental access to well-defined neutron states
in the 1 peV range opens the way for using ultracold
neutrons as a very sensitive probe for extremely weak
fundamental forces [19, 25, 26].

1284



MIT®, Tom 146, Bo. 6 (12), 2014

Quantum transport equation for systems ...

The experiment is based on sending a beam of ul-
tracold neutrons between two horizontal mirrors. The
top mirror is intentionally made rough, while the flat
bottom one can ensure thousands of consecutive specu-
lar reflections [27] if the vertical velocity of neutrons is
below a certain threshold (about 4 m/s in GRANIT ex-
periments). If the vertical velocity exceeds this thresh-
old, the neutrons penetrate the mirrors and disappear.
The ultracold neutrons entering the waveguide have a
large horizontal velocity comparable to the penetra-
tion threshold, and, as a result of collimation, a much
smaller residual vertical velocity. The scattering of
neutrons by the rough upper mirror turns the veloc-
ity vector and increases its vertical component, lead-
ing to an eventual escape of neutrons through the mir-
rors. The quantization of the vertical motion of neu-
trons by Earth’s gravity field discretizes the amplitudes
of bounces of neutrons from the bottom mirror. The
roughness-driven turning of the velocity corresponds to
the scattering-driven transitions of neutrons into higher
quantum states j. Only the neutrons in the lowest
gravitational states, which have the lowest amplitudes
of bounces, cannot reach the rough upper mirror and
continue bouncing along the bottom mirror until they
reach the exit neutron counter. In principle, decreas-
ing the separation between the mirrors should result in
a stepwise disappearance of neutrons from lower and
lower states. So far, this stepwise depletion of the grav-
itational quantum states has not been observed. The
question is, why?

Earlier [28, 29], we developed a theoretical frame-
work for describing experiments with collimated beams
of ultracold neutrons in rough waveguides and demon-
strated that the neutron count depends on the correla-
tion properties of the rough mirror [30]. The agreement
between our theory and experiment was actually bet-
ter than one would expect with the uncertainty in the
input parameters existing at the time. An alternative
description of the same experiment [31] used a large set
of independent fitting parameters that were unrelated
to the properties of the waveguide.

Below, we finalize our theory with an eye on the
ongoing experiments with a new waveguide. Among
other things, we include scattering in all, and not only
vertical, directions, derive scaling equations for the de-
pletion times and the exit neutron count, and develop
methods for identification of the roughness CF in ap-
plication to the experimental data for the new rough
mirror. We also demonstrate that the fitting param-
eters used in Ref. [31] as independent have universal
ratios.

We use dimensionless variables, which are common

to the field (for details, see Ref. [29]). All distances
z are measured in units of ly, s = z/ly, where [y =
= p2/3 (2m2g)_1/3 ~ 5.871 pm is the size of the lowest
quantum state in the infinite gravitational trap (open
geometry without the upper mirror). The dimension-
less distance between the mirrors h = H/ly in experi-
ment typically does not go below 2. The main param-
eters of the roughness CF, namely, the average ampli-
tude and the correlation radius of surface roughness
n = (/lp and r = R/ly, are usually within the 0.1-1
range. The energies are measured in units of eg, where
eo = mglp ~ 0.602 peV~ 9.6366 - 10732 J is the energy
of a neutron in the lowest quantum state. The lowest
quantized levels in the gravity field A\; = €;/eq are be-
low 10 while the typical overall kinetic energy of parti-
cles in the beam ¢ = E/eqy and the absorption threshold
ue = U./eq are of the order of 105. Thus, the details of
the potential near the absorption threshold are irrele-
vant for the lowest gravitational states \; < u,e. The
energy spectrum A; (h) and the wave functions ¥; can
be found in Refs. [28, 29]. In the original GRANIT cell,
X = uc/e &~ 0.16, and in a new one, y &~ 1. The hori-
zontal velocities v; (momenta ¢;) in the beam direction
are measured in units of

h
vo = /2¢glp = — N 1.073-1072 m/s,

0

v; gl
B]:—]:\la_A]:]T

Vo

The scale for characteristic times is provided by the
oscillation frequency of neutrons in the gravitational
well,

1 V2rh

— =21 A~ 1148.7 57 . 14
o 4m I i (14)

The time of flight of neutrons through the old cell [17]
is tr /10 = 23. In the new cell [32], t1 /1 = 26.

Time evolution of the occupancy of the gravita-
tional states n; (q) is governed by transport equation

6), (7):
oum; (@) =275 / (;T—Z) Wiy (ld— o' nye

2 — q?
Wi (ja—d) )8 (e —ep + L1 15
iy la =gl (e - e + S0 ) )

with transition probabilities W;; (|q — q'|) given either
by Eq. (9) with [U] = U, or Eq. (11). The contribu-
tion from the direct transitions to the states above the
absorption threshold U, is negligible [29]. Integration
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with the energy d-function in the relaxation time ap-
proximation n; (q) = d (¢ — ¢;) N; reduces Egs. (15)
to

m
8tN]' = _271' E /d0 [Wjjr (|q]'—qu
j’

= Wiyt (|aj—ay

) Nji —

) N;], o (16)

where ¢7/2m = E — ¢; and 6 is the angle between q;
and q;.

The diffusion of neutrons between the quantum
states j has a strong directional bias upward, towards
higher j [29]. The bias is explained by the rapid
growth of the product of wave functions in Eqs. (9)
and (11) with increasing j and j’ (roughly, as j25'2, see
Eqs. (13)). This increase in the rate of jumps j — j’
is reversed by the rapid decay of the CF ( (|qj—qj, )
at large |qj—qj, > 1/R. As a result, as a function
of j/, the transition rates j — j' represent a relatively
narrow peak around some j; > j. This upward bias

is so strong that almost all the time 7; necessary for

a neutron from a low gravitational state j to go up in
states and disappear over the absorption barrier U, is
spent on the first transition upwards.

This strong upward bias allows neglecting the tran-
sitions from the higher states down in transport equa-
tion (16) for the lowest states:

ON; = ——1,

1 (17)

do
. m,z,/ﬂwjj' (laj—a;
J

while the depletion times 7; for the lowest gravitational
states j differ from each other, according to Eq. (9),
only by the values of the wave functions on the rough
mirror U (H),

),

57 {2
SR TR RS /% /10/s S
Tj bl 1 2

where 71 is the depletion time for neutrons in the lo-
west gravitational state (these depletion times are used
as independent fitting parameters in Ref. [31]). The
ratios 7; (h) /71 (h), Eq. (18), are plotted in Fig. 1 for
j = 2,3,4,5 as a function of the slit width h. These
ratios, which measure the relative widths of the eigen-
states in the biased diffusion approximation, are the
same for one-dimensional (1D) and two-dimensional
(2D) roughness and do not depend on the roughness
parameters at all (the 1D roughness is a random grat-
ing perpendicular to the beam direction). The stepwise
dependence of the exit neutron count N, on h can be

’Tj/’Tl
0.30 . T T T

0.25 L J

0.20 +

0.15 b

0.05

Fig.1. The ratios 7; (h) /71 (h), Eq. (18), for the low-
est quantum levels j = 2,3,4,5 as functions of the
slit width h. The curves are marked by the values of j.
These functions are the same for 1D and 2D roughness
and do not depend on the roughness parameters

observed ounly if the values of tr/7; = (tr/m1) (bj/b1)
are not too close to each other.

The values of 7; (h) determine the depletion of each
quantum state j and the overall exit neutron count N,

Ne=Y Nj=Y N;(0)exp(=L/vjT;),  (19)

where N; (0) is the number of neutrons in a state j en-
tering the waveguide of the length L. Equation (18)
shows that for the lowest levels with v; ~ /cvg, all
relevant parameters collapse into a single constant @,

N, = ZN]' (0) exp (_cbbj (h)) ) (20)

‘I> (h) = L/U()lel (h) y (21)

and the only remaining task is to calculate 71 (or ®).
The time 77 strongly depends on roughness, making ®
different, for 1D and 2D roughness, ®; # ®s.

In the biased diffusion approximation, transport
equations (15) decouple and

To

— =210 "huy*Fy (r,h), (22)
1
/2
Fy (r,h) = 10 5\/;4 > b (W) vs (r,y), (23)
Aj<ue/x

u u
y1=n/;cv y]’:%’rzﬁ/;c_/\jv (24)

where 2 (y;,y;) is the dimensionless zeroth harmonic
of the CF ( (Ja; — q;/|) over the angle between the vec-
tors q; and qr,

¥ (yj,95) = ¢ (g5, q50) /C*R2.
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The subscript “2” in Fb, 1 points at 2D roughness.
The main contribution to the sum in Eq. (23) comes
from the terms with large 7, and we can replace it by
the integral,

1
2,
By (r,h) =1ty / N /221/12 (y1,9) dz, (25)
0

where y1 = ry/u./x and y; =y =rv1— 22/ u./x. If
all initial occupancies are the same, N; (0) = Ny, then
N, in Eq. (20) becomes

Ne = Nof (r,h) = No 3 _ exp (=®sb; (b)), (26)

1

By (1,7) = Aoy / 24 (1, 7) d2, (27)
0
9\ 3/2 tr W52
Ay = | 2 107 2 2
2 (71.> 0 P X3/2 (28)

The equation for the exit neutron count N, for the
waveguide with 1D roughness (grating) is the same as
Eq. (26), but with ®; instead of ®5 [30]:

1

&, (n,7) = Aur / 24, (y)dz,
0 (29)

Yy =\ u./xr (1— \/1—22) ,
A1 =4- ].OistLUE/TUﬂ'X.

The calculation of the exit neutron count (26) re-
duces to the integration of the CF for the rough mirror.
The result strongly depends on the shape of the CF.
There are no experimental data on the roughness CF
of the original mirror. The only information is that the
typical lateral and vertical sizes of inhomogeneities are
about 1.19/y and 0.119/y. In the absence of the data,
it was assumed in Ref. [30] that the roughness is 1D
Gaussian with » = 1.19 and n = 0.119. At the end
of next section, we analyze the roughness of the new
mirror. Our prediction for the neutron count (26) for
this new mirror is given in Sec. 5.

It is possible to perform analytic integrations in
Eq. (29) for most common types of 1D CFs. For exam-
ple, the exponential CF ( (z) = n?exp (—x/r) yields

1 337 ru
(I)1N§A17727'2F1 <_7_7_7_ C> ~

A (4x)**
RO

(30)

In the 2D case, the expressions for the zeroth angular
harmonics for the power spectrum ¢ (|q —q'|) are

kHz
2.0

1.5

1.0 -

0.5F

Fig.2.

The energies of the gravitational quantum
states €; (h) for j = 1,3,5 as functions of the waveg-
uide width h (solid lines). The dashed lines show the
line broadening ¢; & 1/27; in kHz. The roughness is
exponential in one (black dashed lines) or two (grey

dashed lines) dimensions with = r = 1. Scaling
(31) allows recalculating the broadening for different n
and r

too complicated even for the simplest CFs [16] and the
integration in Eq. (27) is done numerically.

For moderate values of r > 0.3, the depletion times
7; and the parameter ® scale as

/15, ® = Cran’r?, (31)

where the coefficients C'; ¢ depend on the dimension-
ality and the shape of the CF, Eqs. (27) and (29). At
ue. — 00, the scaling index v = —1/2 in both 1D and
2D. If u. ~ 10°, as in experiment, the scaling index
for exponential roughness is v ~ —0.465 in 2D and
v & —0.494 in 1D (cf. Eq. (30)).

The times 7; (h) describe the depletion and broad-
ening of the quantum gravitational states, €; (h) —
— €j(h) + ih/7; (h). In Fig. 2, we plot €; (h) for
j =1,3,5 as a function of the waveguide width h (solid
black lines) together with the line broadening €; £h/27;
(dashed lines) in kHz. The roughness is exponential in
1D (black dashed lines) or 2D (grey dashed lines) with
n =r = 1. Equation (31) allows rescaling of the line
broadening for other values of n and r. The individ-
ual quantum states become meaningless when the line
broadening becomes comparable to the separation be-
tween the lines. The simplest way to preserve the states
is to decrease the roughness amplitude 1 in comparison
to its value n = 1 in Fig. 2.

These values of the line broadening/depletion times,
in combination with our predictions for the exit neutron
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count N, (h), Eq. (26), provide the full description of
the problem (see Sec. 5). The quantum steps in N, (h)
become pronounced with an increase in 72/r'/2 and the
time of flight ¢7. The only remaining issue is the value
of the correlation parameters.

4. CORRELATION PROPERTIES OF ROUGH
SURFACES

Practical applications of the transport theory re-
quire the CF of surface inhomogeneities as an input.
Often, various Gaussian, exponential, and power-law
functions are chosen at will in lieu of an unknown
CF without giving it a second thought. It is rou-
tinely assumed that if one needs the accurate CF, one
could always extract it from STM, AFM, and other
precise measurements of surface profiles (some require-
ments for profile measurements are discussed, e.g., in
Refs. [33, 34]).

The profile measurement provides one with a big
data set of discrete correlation parameters. The next
steps look straightforward: one could either identify the
CF using reasonable fitting functions or input these raw
correlation parameters directly into the equations. But
how reliable are these choices?

The best way to test this is to study rough sur-
faces with the known roughness correlators. This is
hardly feasible: the roughness correlators depend on
the surface preparation and are not known beforehand.
The best alternative is to computationally generate sur-
faces with predetermined correlators, “measure” their
profiles, extract the correlators, and compare them
to the “true” CF used to generate the surface. Be-
low, we report the results of such numerical experi-
ments (for technical details and broader applications,
see Ref. [35]).

The CFs extracted from our numerical experiments
have been fitted to Gaussian, exponential, and power-
law functions or used directly in transport computa-
tions including @4 » for our neutron problem. The pur-
pose is to see how sensitive the results for @, (the
depletion times and the exit neutron count) are to a
choice of the fitting function and, by extension, how
we should use the correlation data sets extracted from
the real experimental data. We apply these conclusions
at the end of this section to the experimental data for
the new neutron mirror.

We start from a discretized random rough profile
g = g(x;) generated using a Gaussian distribution
function P (g) embedded in many generators of ran-
dom numbers. This profile corresponds to an uncorre-

lated roughness, (g;gi) o d;; (white noise). What we
want is to produce a surface y = y (x;) with a prede-
termined desirable binary correlations ¢ (x) (or, rather,
its discrete analog (ir.),

(Yiye) = Gk = /yiykP[Y] dy. (32)

To achieve this, we rotate the uncorrelated vector g
using the matrix A [30],

-~ ~

A=V y = Ag. (33)

This procedure allowed us to generate and analyze 1D
and 2D random rough surfaces with any predetermined
correlation function ¢, Eq. (32).

The computational resources required by operation
(33) for large matrices ¢ provide the only limitation
on the surface size as measured in terms of step sizes
Ax = 2x;4; — x;. This limitation is more important
for 2D surfaces than for 1D ones: in addition to a size
explosion in the 2D case, the matrices Efor the 2D
surfaces lose their almost diagonal structure even for
very steep correlation functions.

The above approach cannot emulate the atomic-
scale roughness with discrete amplitudes in terms of
atomic sizes. In such situations, we use Monte Carlo
simulations based on exactly solvable spin lattice mod-
els for which the CFs are known. The universe of the
known CFs that are accessible in this way is limited
by the small number of exactly solvable lattice models,
mostly in 1D. Tt is even unclear whether there are re-
strictions on the form of the CF generated in this way.
What is more, in 2D, even the simplest models, such
as the Ising model, lead to the CFs for which we do not
have explicit analytic expressions, making them virtu-
ally useless for our purpose. The computational limi-
tations here are associated with long relaxation times
and with the presence of large domains. We note that
the experimental difficulties of extracting an accurate
surface correlator also multiply when we deal with the
atomic-scale roughness, even if we disregard the issue
of the accuracy of profile measurements related, for ex-
ample, to the tip profile [36] or the step size [37].

The simplest example of the latter approach is the
ferromagnetic Ising model y; = £1, for which the CF
is determined by the attractive coupling constant J in
the Hamiltonian (or, what is the same, by the Boltz-
mann factors exp (£2.J/kT)). In the 1D case, the CF
is exponential,

(e () =n?exp (—%) , r= %exp (2—;{) . (34)

Towards the end of this paper, we use this approach
for designing a new rough neutron mirror for GRANIT
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experiments. The CF for the 2D Ising model, though
known in principle [38], is described by a set of compli-
cated equations involving elliptic integrals.

We have generated numerous 1D and 2D rough sur-
faces using both methods: rotation of the uncorrelated
surfaces with the rotation operator A in Eq. (33) for
various predetermined correlators E and Monte Carlo
simulations using the Ising model. In rotations, we
routinely use matrices up to 5000 x 5000 and in Monte
Carlo simulations, up to 10* points z; and 10 Monte
Carlo cycles.

The main challenges for identifying the correlator
from the data on the surface profile arise from fluc-
tuations related to the finite size of the samples. All
CFs consist of a peak at short distances and a long
tail. For finite samples, the extracted correlators (i
do not go to zero at large distances |i — k| > 1 but
have long fluctuation-driven, often oscillating tails of
almost constant amplitude. As a result, the standard
deviation o between the measured correlation function
and the fitting function is determined by the tail area
and is more or less the same for all reasonable fitting
functions, which all go to zero at large distances. Mean-
while, many observables, including our ®; », are deter-
mined by the behavior of the correlation function at
small ¢, i.e., at large distances, and are very sensitive
to the shape of the correlators. Our conclusion (see be-
low) is that the value of o taken by itself cannot be used
for justifying the choice of the functional form of the
correlation function and cannot be considered a good
predictor for physical results.

Suppressing the fluctuations requires increasing the
size of a sample, which, unfortunately, makes the
fluctuation-driven tails longer. Another option for sup-
pressing the fluctuation-driven tails is to average the
CF over several samples, as is sometimes done in ex-
periment [39]. This assumes that the CFs for different
samples are the same and that the “true” CF does not
have a long alternating tail. These assumptions can
make the averaging over the samples inherently dan-
gerous. Still, we have performed such averaging over
several generated surfaces with the same true CF. Re-
sults of our numerical experiments show that if we know
that there are no long-range correlations, this averaging
over several samples can be helpful for 2D roughness,
but is not necessary in 1D. The same difficulty persists
if we simply cut off the long-range tails assuming that
they are driven only by the fluctuations.

Generating or measuring the CF with a large corre-
lation radius R is virtually impossible. The important
factor is not the overall number of the data points N
but the number of inhomogeneities N/N;, where N; is

the number of points in a typical inhomogeneity, which
in the 2D case grows proportionally to R2. The shape
of the CF with not very large N/Nj is often misleading
and points, rather convincingly, at fictitious long-range
correlations. One should be very cautious when identi-
fying an additional, larger correlation length from the
experimental data with fat correlation tails [40].

We have also tried an alternative to the use of the
fitting functions by using the spectral decomposition of
the raw correlation data for direct computation of ob-
servables. In 1D examples, this approach has worked
somewhat, but not much, better than using a fitting
function of a wrong shape, although still noticeably
worse than using the fitting function of the right shape.
In 2D, this approach has led to unstable results because
of the fluctuation-driven anisotropy of the extracted
correlators and smaller linear sizes of the samples than
in 1D.

The tables illustrate some of our results for gener-
ated rough surfaces with parameters close to those in
experiments with ultracold neutrons from Sec. 3.

Table 1 shows the results of our analysis of three
numerically generated 1D rough surfaces with the CF
emulating the Gaussian correlations with » = 1.19 and
17 = 0.119. As we can see, the quality of the fits ¢ g prL
for all three types of the fitting functions is more or less
the same, about 5- 1074, but the results for the phys-
ically important parameters ®,¢ g, pr differ consider-
ably, by about 25%. In our experiment, the “true”
shape of the CF is known to be Gaussian and, not sur-
prisingly, the fitting by the Gaussian function produces
the values of ®; very close to the “true” value 23.48.
The inevitable conclusion is that the quality of the fit
o does not tell much about the quality of physical re-
sults obtained using this fitting function. The results
for fitting by the power-law and exponential CFs were
relatively close to each other and very different from
those for the Gaussian fit. The explanation is simple:
the Gaussian function has a much shorter tail. The
use of the raw correlation data in the equations (®,,)
works better than the use of a wrong fitting function
but worse than using the right one.

The quality of the fits (the values of o) for 2D
roughness is worse than in the 1D case because of the
fluctuation-driven anisotropy and smaller linear sizes of
our samples, although the overall number of the data
points in our numerical experiments is larger. The only
noticeable difference in conclusions is that the use of
raw correlation data without fitting leads to unstable
results. Here, averaging over several runs leads to a
marked improvement in the results for ®.
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Table 1. Three numerical runs for 1D surfaces that emulate the Gaussian correlation of inhomogeneities
n”® exp (—2°/2r?) with r = 1.19 and 5 = 0.119 (see Sec. 3)
Ne | rg,o0q-10* | rg,orp-10* | rpr, opr - 10* | op, 1017 | @4, bip, ®ipL, P,
1 1.19, 5.24 1.59, 5.81 1.44, 5.81 1.92 23.86, 18.19, 18.81, 21.96
2 1.15, 4.49 1.53, 4.56 1.36, 4.64 1.83 23.33, 17.84, 18.65, 21.14
3 1.25, 4.37 1.69, 4.40 1.54,4.47 1.69 23.56, 17.26, 17.85, 20.96
Note.  The “true” value of ®1, Eq. (26), for such surface is ®; = 23.48. The extracted correlators were fitted

with Gaussian (n& exp (—s”/2r¢)), exponential (n% exp (—s/rg)), and power-law (n7,/ [1+ (s/rpr)’]

*/%) fitting

functions. The table contains the best fitting values of r¢, g, pr. together with o¢,r,pr., and the recalculated values
of ®1¢,r,pr.. The values of ng, g, pr. are very close to each other. The columns with ®,, and o, give the values of ®;
and the standard deviation when the spectral decomposition of the raw data is put directly into equations without

any fitting.
Table 2.  Five Monte Carlo runs for the 1D lIsing model

Ne | rg,op-10* | rg,06-10" | rpp,opr-10° | 0, - 10'7 | ®yp,  Big,  Pipr, Pin

1 1.27, 6.69 0.85, 6.93 1.26, 6.72 3.79 18.6, 274, 19.6, 25.8

2 1.23, 6.83 0.88, 6.94 1.25, 6.84 1.49 19.1, 26.8, 19.7, 26.2

3 1.04, 6.51 0.73, 6.74 1.07, 6.54 2.82 20.7, 30.2, 21.4, 27.3

4 1.18, 6.65 0.87,6.71 1.23, 6.62 3.01 19.7, 27.1, 20.0, 26.1

5 0.94, 6.44 0.74, 6.42 1.03, 6.38 1.91 22.2, 29.8, 21.9, 27.7
Note. The “true” correlation function is exponential with r = 1.19, n = 0.119, and ®; = 19.5. The CFs extracted

from the generated rough surfaces are fitted with the exponential, Gaussian, and power-law functions. The table
contains the best fitting values of rg ¢, pr and the corresponding values of og.¢,pr and ®1g,¢,pr. The values of

®y,, are obtained by direct spectral analysis of the raw correlation data.

Table 2 presents the results of five Monte Carlo runs
for the 1D Ising model in application to the neutron
mirror. The data in the columns are arranged similarly
to Table 1. The parameters of the “true” CF are the
same, r = 1.19 and n = 0.119. However, since the Ising
model corresponds to the exponential CF, Eq. (34), and
not to the Gaussian correlator as in Table 1, the true
value of parameter ®; in Eq. (30) is now ®; = 19.5.
Since the simulation is based on the Ising model with
spins +1, the extracted average amplitudes of rough-
ness np,¢,pr differ from n = 0.119 by less than 1% for
all fitting functions. The size of the sample is N = 1000
and we perform 10% Metropolis cycles. Of course, the
fit using the exponential correlator provides the best
values for ®;. Of the other two fits, it is not clear why
the power-law fit works much better than the Gaus-
sian one. The last column in the Table 2 gives the
values of @1, obtained by direct spectral analysis with
N/2 harmonics of the raw correlation data without any

fitting. These data display the worst agreement with
&, = 19.5 while the value of oy, is by 13 orders of mag-
nitude better than ¢ for any of our fitting functions.
The explanation is the same as before: the full set of
raw data is dominated by the long correlation tails that
come from the fluctuations.

The results for rough surfaces generated using the
2D Ising model above the phase transition do not pro-
vide any new information.

Our main conclusion is that the reliable identifica-
tion of the roughness CF requires having at least some
information about its shape. Without this information,
the best strategy is to rely on ¢ only in combination
with an averaging over several samples and a graphical
and numerical analysis of the shape of the correlation
function in the peak area.

Ag an application, we have analyzed the correlation
properties of a rough mirror prepared for new GRANIT
experiments with ultracold neutrons [41]. The rough-
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ness profile has been measured in five surface areas with
2500 x 2500 data points in each. Even with more than
3. 107 available data points, the extracted CF still has
a long fluctuation-driven tail, which hinders its unam-
biguous identification. These fluctuation-driven tails
are indistinguishable from those in our numerical ex-
periments. The attempts to fit the extracted correlator
to various fitting functions lead to noticeably different
predictions for the observable ®; while the statistical
quality of the fits ¢ are more or less the same for all
fitting functions. Our preferred choice, based on the
averaging over five samples and the shape of the corre-
lation peak, is the 2D isotropic exponential correlator
with n ~ 1.02 and r ~ 0.65.

5. CONCLUSIONS

In summary, we have applied our general theory of
transport of particles along rough surfaces to the gravi-
tationally quantized neutrons in a rough waveguide. In
the end, all parameters of a system collapse to a single
constant ®; ; which determines the exit neutron count.
The constant @ is closely related to the depletion time
(the line broadening) for the gravitational states ;.
The required input parameters are the roughness CF
and the distribution of neutrons entering the waveg-
uide over the gravitational states. The depletion times
7; have simple scaling properties, Eq. (31), and their ra-
tios are the universal functions of the waveguide width
(see Eq. (18) and Fig. 1).

Our numerical experiments show that the identifi-
cation of the roughness CF should not be undertaken
lightly. Our conclusion is that the CF must be iden-
tified by using the statistical quality of the fits o to
different fitting functions only in combination with the
averaging over several experimental areas and a nu-
merical and graphical analysis of the CF in the peak
area. We do not recommend avoiding the identification
of the roughness CF by inputting the raw correlation
parameters directly into the equations.

Our analysis of a new neutron mirror [41] identifies
the CF as the isotropic 2D exponential function with
the correlation radius r = R/lp = 0.65 and the am-
plitude n = ¢/l = 1.02. This fitting function yields
®y ~ 5.22-103. The predicted neutron exit count as
a function of the spacing between the rough and flat
mirrors h, Eq. (26), is plotted in Fig. 3. The steps in
the figure are the long-sought demonstration of consec-
utive depletion of the quantum gravitational states of
neutrons.

N/No
4.0 — . . . :

35|
3.0}
251
2.0 |
1.5¢
1.0+
0.5}

Fig.3. The exit neutron count N (h) /Ny, Eq. (26), as

a function of the spacing between the mirrors. Calcu-

lations for the new sapphire mirror with isotropic expo-
nential roughness r = 0.65, n = 1.02

The accuracy of this prediction is limited by a rel-
atively large value of the roughness amplitude . Any
perturbative theory assumes 1 to be the smallest length
parameter, n < r, h, which is clearly not true for this
mirror. The same factor limits the accuracy of measur-
ing the spacing between the mirrors and makes mea-
surements at small h virtually impossible. This large
value of n also leads to the smearing of the gravita-
tional quantum states. Another limitation is the lack
of accurate information on the distribution of neutrons
over the gravitational states in front of the waveguide.
We assume this distribution to be uniform at very low
energies; this assumption, although reasonable, can po-
tentially break down during the beam preparation.

In general, the sharpness of the quantum steps in
the exit neutron count N, (h) is determined by the dif-
ference in values between exp (—tr /7;) with different j,
which is determined by the values of 1/7; in Fig. 2 ad-
justed by the scaling relation (31). Since the distance
between the starting points for the state depletion in
Fig. 2 is not large, the best way to see these quantum
steps is to increase the time of flight ¢1..

Most of the uncertainties disappear if a future rough
mirror is designed differently. Our recommendation is
to use 1D roughness based on the Monte Carlo simu-
lations for the 1D Ising model (the grating of constant
amplitude but with random width and separation of
trenches, Fig. 4). The preferred correlation radius is
r &~ 2 with the amplitude of roughness in the 0.2-0.4
range. Since all the lengths are in the units of 5.87 pm,
the transfer of the generated profile onto a real surface
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1 1 |
100 110 120 130 140 150
Fig.4. A fragment of the rough upper mirror based on
Monte Carlo simulations for the 1D Ising model (the
Ising mirror). The thick black line is the surface profile
and dark bars are “Ising spins”. Mirror material (sap-
phire) is above the thick black line (all dark and light
filled areas). The amplitude of roughness is n = 0.2,
the correlation radius is » = 2, and ®; ~ 43.5. Both
axes are in units of Iy = h?/3 (Zng)_l/?’ ~ 5.871 ym
and the vertical scale is about 100 times smaller than
the horizontal one. Changing the value of 1 can be
done simply by rescaling the vertical axis

seems to be technologically feasible. The thick black
line in Fig. 4 shows the mirror profile and the grey
bars are the up and down “Ising spins”. We note that
the vertical scale is about 100 time smaller than the
horizontal one and the roughness is very mild.

The correlation function ¢ (z) for the continuous
“Ising mirror” such as in Fig. 4 is close to the expo-
nential one for the discrete 1D Ising model, Eq. (34),
and coincides with it at the integer points of z,

¢ (x) =n*[exp (= L] /r) + (z — [z]) x
x (exp (= [x] /r) —exp (=[] /r))]. (35)

The values of ®; for the true Ising correlator { (z) =
= n?exp (—z/r) are given by Eq. (30) and yield ®;
for r = 2 and n = 0.2-0.4 in the 42.5-170 range with
tr,/7o &~ 23 (the old cell) and in the 30.3-121.5 range
for t;, /7o ~ 26 (the new cell). Although we cannot give
a simple analytic expression for ®; for correlation func-
tion (35), the numerical results for this correlator differ
from the ones for the pure Ising exponent at r = 2 by
about (3-5) %. These values of ®; are sufficient for ex-
hibiting the quantum steps in the exit neutron count
(Fig. 5) and for producing neutrons with well-defined
energies in the peV range.

Fig.5. The exit neutron count N (h) /No, Eq. (26),

for the Ising mirror similar to the one in Fig. 2. The

roughness amplitude is 7 = 0.4 and the correlation ra-

dius is » = 2. The steps can be made more pronounced
by increasing n

The experimental advantage of this design is
the perfectly controllable 1D environment with the
preservation of the quantum states and without the
spikes on the surface. It allows accurate measurement
of the spacing between the mirrors and minimizes the
loss of neutrons due to the sideway scattering.

One of the authors (A. M.) appreciates the invita-
tion to participate in this special issue of JETP hon-
oring the 75th birthday of his Ph. D. advisor in the
mid-1970s, A. F. Andreev, and remembers with grat-
itude years of joint work. We acknowledge produc-
tive discussions with P. Nightingale (URI) on certain
computational aspects of the work and a long his-
tory of constructive exchanges with V. Nesvizhevsky
(TLL) and other members of the GRANIT collabo-
ration. Some of the results have been presented at
GRANIT-2014 Workshop (Les Houches, France, March
1-7, 2014) [41, 42).
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