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QUANTUM TRANSPORT EQUATION FOR SYSTEMS WITHROUGH SURFACES AND ITS APPLICATION TO ULTRACOLDNEUTRONS IN A QUANTIZING GRAVITY FIELDM. Es
obar, A. E. Meyerovi
h *Department of Physi
s, University of Rhode Island, KingstonRI 02881-0817, USARe
eived May 7, 2014We dis
uss transport of parti
les along random rough surfa
es in quantum size e�e
t 
onditions. As an intrigu-ing appli
ation, we analyze gravitationally quantized ultra
old neutrons in rough waveguides in 
onjun
tion withGRANIT experiments (ILL, Grenoble). We present a theoreti
al des
ription of these experiments in the biaseddi�usion approximation for neutron mirrors with both one- and two-dimensional (1D and 2D) roughness. Allsystem parameters 
ollapse into a single 
onstant whi
h determines the depletion times for the gravitationalquantum states and the exit neutron 
ount. This 
onstant is determined by a 
ompli
ated integral of the 
orrela-tion fun
tion (CF) of surfa
e roughness. The reliable identi�
ation of this CF is always hindered by the presen
eof long �u
tuation-driven 
orrelation tails in �nite-size samples. We report numeri
al experiments relevant forthe identi�
ation of roughness of a new GRANIT waveguide and make predi
tions for ongoing experiments. Wealso propose a radi
ally new design for the rough waveguide.Contribution for the JETP spe
ial issue in honor of A. F. Andreev's 75th birthdayDOI: 10.7868/S00444510141201411. INTRODUCTIONThe role of surfa
e s
attering in
reases dramati
allywith advan
es in mi
ro- and nanofabri
ation, multi-layer systems, pure materials, va
uum te
hnology, et
.Below, we address some universal features of trans-port of parti
les or waves along random rough wallsin quantum size e�e
t 
onditions. As an appli
ation,we look at the gravitationally quantized ultra
old neu-trons in rough waveguides in 
onjun
tion with ongoingGRANIT experiments (ILL, Grenoble). This is one ofthe 
leanest model-free testing grounds for our theory.Intuitively, s
attering by surfa
e inhomogeneitiesshould not be very di�erent from s
attering by otherstati
 defe
ts su
h as bulk impurities. However, whilethe basi
 e�e
ts of impurity s
attering are des
ribed inelementary textbooks, a similar simple general a

ountfor surfa
e roughness has been missing. This is not en-tirely surprising. The underlying issue is an unusualstru
ture of the perturbation theory. Randomly vary-ing spa
e inside 
orrugated systems makes it di�
ult*E-mail: Alexander�Meyerovi
h�uri.edu

to introdu
e a proper set of basis wave fun
tions whi
hare ne
essary for perturbative expansions. It is not al-ways 
lear when this issue is important and what to dowhen it is.Re
ently, we developed a 
onsistent perturbativeapproa
h within whi
h this issue disappears, 
lear-ing the way to a rigorous impurity-like des
riptionof quantum transport of parti
les in systems withrough boundaries. What is more, the stru
ture of the
orrugation-driven s
attering probabilities is largelyuniversal, irrespe
tive of parti
le spe
tra, types of sur-fa
es, and bulk �elds between them.The next se
tion 
ontains a simpli�ed outline ofour general transport results for systems with slightroughness, whi
h are relevant for further dis
ussion. InSe
. 3, we apply these results to beams of the gravita-tionally quantized neutrons in rough waveguides. InSe
. 4, we dis
uss 
orrelation properties of randomrough surfa
es. We show that the identi�
ation of theroughness 
orrelation fun
tion (CF) is not trivial andshould not be based solely on a statisti
al quality ofthe �t to some �tting fun
tion. Se
tion 5 
ontains our
on
lusions, experimental predi
tions, and re
ommen-dations.1282



ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 Quantum transport equation for systems : : :2. QUANTUM SIZE EFFECT ANDTRANSPORT OF PARTICLES ALONGRANDOMLY CORRUGATED WALLSTheoreti
al approa
hes to parti
le transport insystems with random rough boundaries (see, e. g.,books [1�4℄; a brief review 
an be found in Ref. [5℄) 
anbe split into two main groups. The �rst one deals withboundary s
attering by means of an e�e
tive boundary
ondition. We prefer alternative approa
hes that in
or-porate the boundary s
attering dire
tly into the bulkequations and allow using powerful bulk methods to de-s
ribe the surfa
e e�e
ts in transport and interferen
ephenomena, lo
alization, et
.If we ignore potential 
ompli
ations, the simplestbulk-like approa
h [6℄ is a straightforward perturbationexpansion in small 
orrugation � (y; z) of the wall. Wesuppose that the wall is lo
ated at x = x� + �� (y; z)and 
orresponds to an abrupt 
hange of the potentialby [U ℄, U = [U ℄ � (x� x� + �� (y; z)) :The small 
orrugation �� looks like a good perturbationparameter,U = [U ℄ � (x� x�) + [U ℄ ��Æ (x� x�) + :::The 
al
ulation of the matrix element is trivial:V (�)ik = Z exp (is� (q� q0)) �� (s)	i	k [U ℄�� Æ (x� x�) = � (q� q0) [U ℄ 	i (x�)	k (x�) ; (1)where 	i (x) are the wave fun
tions in the absen
eof 
orrugation. This simple expression 
an be ex-tended [5℄ to systems with rough external walls forwhi
h [U ℄!1:V (�)ik = � 12m�� (q� q0) 	0i (x�)	0k (x�) : (2)If we need a more rigorous perturbative approa
h orwant to study interferen
e e�e
ts, a better option is tomap the problem with the 
orrugated boundaries ontoa mathemati
ally equivalent problem with �at bound-aries and distorted bulk [7�10℄. Su
h mapping for asystem with two rough walls,x = �L2 � �1;2 (y; z) ; (3)
an be a
hieved [9℄ by the 
oordinate transformationr! R,X = x+ �1=2� �2=21� �1=L� �2=L; Y = y; Z = z; (4)

whi
h makes the boundaries straight, X = �L=2, with-out even spe
ifying the single-valued random fun
tions�1;2. The rest is straightforward: we have to performa 
onjugate transformation of momenta p! P andrewrite the original Hamiltonian bH0 (p; r) in terms ofR and P:bH0 (p; r) = bH0 (P;R) + bV (P;R; f�1;2 (R)g) : (5)The result is the exa
tly equivalent problem in whi
hthe (random) bulk perturbation operator bV repla
esthe surfa
e inhomogeneities. In simple situations, thematrix elements of bV are similar to (1) and (2). Thedrawba
k of mapping transformation (4) is that its Ja-
obian J 6= 1. When this is important, the transforma-tion 
an be modi�ed [10℄.The diagrammati
 derivation of the transport equa-tion for systems with random surfa
e inhomogeneitieshas been done in Ref. [10℄. The restri
ted motion per-pendi
ular to the walls is quantized, (px)j � j~=L,E (p) ! Ej (q), where q = (py; pz) is the two-dimensional momentum. This quantization is impor-tant for ultrathin systems, multilayer media, inter
on-ne
ts, parti
les absorbed on or bound to the surfa
es,quantum wells, et
. The transport equation is quantumin the dire
tion perpendi
ular to the walls and is qua-si
lassi
al along the walls. In ultrathin systems with alarge separation between the minibands Ej , as well asin thi
k quasi
lassi
al �lms, the transport equation hasa usual Boltzmann-like form,�tÆnj (q) + qm � �rÆnj (q) + F � �qÆnj (q) == Lj fnig : (6)In-between, there is an anomalous regime in whi
h thetransport equation a
quires a highly unusual and 
om-pli
ated form [10℄; we do not deal with this situationhere. Sin
e the mapping transformation approa
h ismathemati
ally rigorous, it 
an be extended to more
omplex situations, in
luding the surfa
e-driven lo
al-ization [11℄, interferen
e between surfa
e and bulk s
at-tering pro
esses [12℄, topologi
al phase transitions [13℄,et
.The perturbative 
ollision integrals Lj are deter-mined by the transition probabilities Wjj0 (q;q0) == DjVjq;j0q0 j2E between the states (j;q)! (j0;q0):Lj = 2�Xj0 Z Wjj0 (q;q0) [nj0q0 � njq℄�� Æ (�jq � �j0q0) d2q0(2�~)2 : (7)1283 10*



M. Es
obar, A. E. Meyerovi
h ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014Generally, the transition probabilities Wjj0 (q;q0) fa
-tor into the produ
ts of the CF of surfa
e roughness� (q� q0) and the boundary values of the wave fun
-tions 	j in the absen
e of 
orrugation. These 
om-binations depend on the stru
ture of the system, thenumber of interfa
es, and the 
orrelation between in-homogeneities from di�erent walls.The CF of surfa
e inhomogeneities ��� (jsj) and itspower spe
trum ��� (jqj) are de�ned as��� (jsj) = h��(s1)��(s1 + s)i �� A�1 Z ��(s1)��(s1 + s) ds1;��� (jqj) = Z d2s exp� iq � s~ � ��� (jsj) == 2� 1Z0 ��� (s) J0 (qs) s ds; (8)
where A is the area, and the indi
es �; � indi
ate thesurfa
es that are the sour
es of inhomogeneities ��and �� .If the system has only one rough surfa
e atx = L+� (y; z) with the potential jump [U ℄ on it, then,a

ording to Eq. (1),Wjj0 = � (q� q0) [U ℄2 j	j (L)j2 j	j0 (L)j2 : (9)If, on the other hand, there are several interfa
es atx� = L� + �� (y; z) with di�erent dis
ontinuities [U ℄�,thenW��jj0 == Re h��� (q�q0) [U ℄� [U�℄� 	�j�	j0�	j�	�j0�i ; (10)where 	� = 	(L�). The full s
attering probability Wis the sum of all these W�� . For a system with two ex-ternal walls with [U ℄1;2 !1, Eq. (2), the probabilitiesW areW��jj0 = 14m2 Re h���	�0j�	0j0�	0j�	�0j0�i ;�; � = 1; 2 (11)and the interferen
e between inhomogeneities on theexternal wall (�) and the internal interfa
e (�) yieldsW��jj0 = �12m Re ����U�	�0j�	0j0�	j�	�j0�� : (12)Equation (10) for internal interfa
es is the same irre-spe
tive of the parti
le spe
trum, while Eqs. (11) and(12) are given for � = p2=2m (equations for arbitrary� (p) are more 
umbersome [5℄).

The terms with � = � and � 6= � des
ribe the in-trawall and interwall 
orrelations of inhomogeneities.The interwall 
ontribution � 6= �, when it exists [14℄,is nontrivial. While W�� is always positive, thesign of the interwall term W�� with � 6= � is not�xed, and the interwall interferen
e 
an be 
onstru
-tive or destru
tive depending on a parti
ular realiza-tion of the system (overall, W is positive be
ause��� (q)+��� (q) > 2 j��� (q)j for any 
orrugation). Forillustration, here is the full roughness-driven transitionprobability for parti
les with the quadrati
 spe
trumin a homogeneous quantum well with in�nite potentialwalls:Wjj0 = 1m2L2 h�11 + �22 + 2 (�1)j+j0 �12i����jL �2��j0L �2 : (13)The interwall 
orrelation term with �12 has an os
illat-ing stru
ture and 
an sometimes lead to a large in
reasein transport 
oe�
ients [15℄.The 
ollision operator and transition probabilities(7)�(13) have a simple stru
ture and, with the ex
ep-tion of the interferen
e terms, resemble those for impu-rity s
attering with the roughness CF � playing the roleof the impurity s
attering 
ross se
tion �imp. There-fore, transport 
al
ulations 
ould be done essentially inthe same way as for bulk impurities. The quantizationof motion a
tually simpli�es the problem by repla
ingthe integral transport equation by a �nite set of 
oupledlinear equations. Under 
ertain 
onditions, these equa-tions de
ouple and we 
an obtain semi-analyti
 resultsfor the transport 
oe�
ients via the zeroth and �rstharmoni
s of the roughness CF [5, 15, 16℄.3. APPLICATION TO GRAVITATIONALLYQUANTIZED ULTRACOLD NEUTRONS INROUGH WAVEGUIDESRe
ent observation by the GRANIT group (ILL,Grenoble) [17℄ of quantization of motion of ultra
oldneutrons by Earth's gravitational �eld predi
ted inRef. [18℄ is an ex
iting breakthrough in neutron physi
s(see also reviews [19℄ and Refs. [20, 21℄; for generalproperties of ultra
old neutrons, see Refs. [22℄). Al-though the quantization of motion by a linear �eldsu
h as gravity is not new by itself [23℄ and has al-ready been observed in a low-temperature 
ontext [24℄,the experimental a

ess to well-de�ned neutron statesin the 1 peV range opens the way for using ultra
oldneutrons as a very sensitive probe for extremely weakfundamental for
es [19, 25, 26℄.1284



ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 Quantum transport equation for systems : : :The experiment is based on sending a beam of ul-tra
old neutrons between two horizontal mirrors. Thetop mirror is intentionally made rough, while the �atbottom one 
an ensure thousands of 
onse
utive spe
u-lar re�e
tions [27℄ if the verti
al velo
ity of neutrons isbelow a 
ertain threshold (about 4 m/s in GRANIT ex-periments). If the verti
al velo
ity ex
eeds this thresh-old, the neutrons penetrate the mirrors and disappear.The ultra
old neutrons entering the waveguide have alarge horizontal velo
ity 
omparable to the penetra-tion threshold, and, as a result of 
ollimation, a mu
hsmaller residual verti
al velo
ity. The s
attering ofneutrons by the rough upper mirror turns the velo
-ity ve
tor and in
reases its verti
al 
omponent, lead-ing to an eventual es
ape of neutrons through the mir-rors. The quantization of the verti
al motion of neu-trons by Earth's gravity �eld dis
retizes the amplitudesof boun
es of neutrons from the bottom mirror. Theroughness-driven turning of the velo
ity 
orresponds tothe s
attering-driven transitions of neutrons into higherquantum states j. Only the neutrons in the lowestgravitational states, whi
h have the lowest amplitudesof boun
es, 
annot rea
h the rough upper mirror and
ontinue boun
ing along the bottom mirror until theyrea
h the exit neutron 
ounter. In prin
iple, de
reas-ing the separation between the mirrors should result ina stepwise disappearan
e of neutrons from lower andlower states. So far, this stepwise depletion of the grav-itational quantum states has not been observed. Thequestion is, why?Earlier [28, 29℄, we developed a theoreti
al frame-work for des
ribing experiments with 
ollimated beamsof ultra
old neutrons in rough waveguides and demon-strated that the neutron 
ount depends on the 
orrela-tion properties of the rough mirror [30℄. The agreementbetween our theory and experiment was a
tually bet-ter than one would expe
t with the un
ertainty in theinput parameters existing at the time. An alternativedes
ription of the same experiment [31℄ used a large setof independent �tting parameters that were unrelatedto the properties of the waveguide.Below, we �nalize our theory with an eye on theongoing experiments with a new waveguide. Amongother things, we in
lude s
attering in all, and not onlyverti
al, dire
tions, derive s
aling equations for the de-pletion times and the exit neutron 
ount, and developmethods for identi�
ation of the roughness CF in ap-pli
ation to the experimental data for the new roughmirror. We also demonstrate that the �tting param-eters used in Ref. [31℄ as independent have universalratios.We use dimensionless variables, whi
h are 
ommon

to the �eld (for details, see Ref. [29℄). All distan
esz are measured in units of l0, s = z=l0, where l0 == ~2=3 �2m2g��1=3 � 5:871 �m is the size of the lowestquantum state in the in�nite gravitational trap (opengeometry without the upper mirror). The dimension-less distan
e between the mirrors h = H=l0 in experi-ment typi
ally does not go below 2: The main param-eters of the roughness CF, namely, the average ampli-tude and the 
orrelation radius of surfa
e roughness� = `=l0 and r = R=l0, are usually within the 0.1�1range. The energies are measured in units of e0, wheree0 = mgl0 � 0:602 peV� 9:6366 � 10�32 J is the energyof a neutron in the lowest quantum state. The lowestquantized levels in the gravity �eld �j = �j=e0 are be-low 10 while the typi
al overall kineti
 energy of parti-
les in the beam " = E=e0 and the absorption thresholdu
 = U
=e0 are of the order of 105. Thus, the details ofthe potential near the absorption threshold are irrele-vant for the lowest gravitational states �j � u
; ". Theenergy spe
trum �j (h) and the wave fun
tions 	j 
anbe found in Refs. [28, 29℄. In the original GRANIT 
ell,� � u
=" � 0:16, and in a new one, � � 1. The hori-zontal velo
ities vj (momenta qj) in the beam dire
tionare measured in units ofv0 =p2gl0 = ~ml0 � 1:073 � 10�2 m=s;�j = vjv0 =p"� �j � qj l0~ :The s
ale for 
hara
teristi
 times is provided by theos
illation frequen
y of neutrons in the gravitationalwell, 1�0 = p2�4m ~l20 � 1148:7 s�1: (14)The time of �ight of neutrons through the old 
ell [17℄is tL=�0 � 23: In the new 
ell [32℄, tL=�0 � 26.Time evolution of the o

upan
y of the gravita-tional states nj (q) is governed by transport equation(6), (7):�tnj (q) = 2�Xj0 Z d2q0(2�~)2 [Wjj0 (jq� q0j)nj0q0 �� Wjj0 (jq� q0j)njq℄ Æ��j � �j0 + q2 � q022m � ; (15)with transition probabilitiesWjj0 (jq� q0j) given eitherby Eq. (9) with [U ℄ = U
 or Eq. (11). The 
ontribu-tion from the dire
t transitions to the states above theabsorption threshold U
 is negligible [29℄. Integration1285



M. Es
obar, A. E. Meyerovi
h ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014with the energy Æ-fun
tion in the relaxation time ap-proximation nj (q) = Æ (q � qj)Nj redu
es Eqs. (15)to�tNj = m2�Xj0 Z d� �Wjj0 ���qj�qj0 ���Nj0 �� Wjj0 ���qj�qj0 ���Nj� ; (16)where q2j =2m = E � �j and � is the angle between qjand qj0 .The di�usion of neutrons between the quantumstates j has a strong dire
tional bias upward, towardshigher j [29℄. The bias is explained by the rapidgrowth of the produ
t of wave fun
tions in Eqs. (9)and (11) with in
reasing j and j0 (roughly, as j2j02, seeEqs. (13)). This in
rease in the rate of jumps j ! j0is reversed by the rapid de
ay of the CF � ���qj�qj0 ���at large ��qj�qj0 �� & 1=R. As a result, as a fun
tionof j0, the transition rates j ! j0 represent a relativelynarrow peak around some j1 � j. This upward biasis so strong that almost all the time �j ne
essary fora neutron from a low gravitational state j to go up instates and disappear over the absorption barrier U
, isspent on the �rst transition upwards.This strong upward bias allows negle
ting the tran-sitions from the higher states down in transport equa-tion (16) for the lowest states:�tNj = �Nj�j ;1�j = mXj0 Z d�2�Wjj0 ���qj�qj0 ��� ; (17)while the depletion times �j for the lowest gravitationalstates j di�er from ea
h other, a

ording to Eq. (9),only by the values of the wave fun
tions on the roughmirror 	2j (H),1�j = bjb1 1�1 ; bj = 105l0	2j (H)2 ; (18)where �1 is the depletion time for neutrons in the lo-west gravitational state (these depletion times are usedas independent �tting parameters in Ref. [31℄). Theratios �j (h) =�1 (h), Eq. (18), are plotted in Fig. 1 forj = 2; 3; 4; 5 as a fun
tion of the slit width h. Theseratios, whi
h measure the relative widths of the eigen-states in the biased di�usion approximation, are thesame for one-dimensional (1D) and two-dimensional(2D) roughness and do not depend on the roughnessparameters at all (the 1D roughness is a random grat-ing perpendi
ular to the beam dire
tion). The stepwisedependen
e of the exit neutron 
ount Ne on h 
an be

j = 2
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Fig. 1. The ratios �j (h) =�1 (h), Eq. (18), for the low-est quantum levels j = 2; 3; 4; 5 as fun
tions of theslit width h. The 
urves are marked by the values of j.These fun
tions are the same for 1D and 2D roughnessand do not depend on the roughness parametersobserved only if the values of tL=�j = (tL=�1) (bj=b1)are not too 
lose to ea
h other.The values of �j (h) determine the depletion of ea
hquantum state j and the overall exit neutron 
ount Ne,Ne =XNj =XNj (0) exp (�L=vj�j) ; (19)where Nj (0) is the number of neutrons in a state j en-tering the waveguide of the length L. Equation (18)shows that for the lowest levels with vj � p"v0, allrelevant parameters 
ollapse into a single 
onstant �,Ne =XNj (0) exp (��bj (h)) ; (20)� (h) = L=v0�1b1 (h) ; (21)and the only remaining task is to 
al
ulate �1 (or �).The time �1 strongly depends on roughness, making �di�erent for 1D and 2D roughness, �1 6= �2.In the biased di�usion approximation, transportequations (15) de
ouple and�0�1 = 2 � 10�5b1u2

2F2 (r; h) ; (22)F2 (r; h) = 10�5r 2� r4 X�j<u
=� bj (h) 2 (y1; yj) ; (23)y1 = rru
� ; yj = qjr = rru
� � �j ; (24)where  2 (yj ; yj0) is the dimensionless zeroth harmoni
of the CF � (jqj � qj0 j) over the angle between the ve
-tors qj and qj0 , 2 (yj ; yj0) = �(0) (qj ; qj0) =`2R2:1286



ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 Quantum transport equation for systems : : :The subs
ript �2� in F2,  2 points at 2D roughness.The main 
ontribution to the sum in Eq. (23) 
omesfrom the terms with large j, and we 
an repla
e it bythe integral,F2 (r; h) = r4r 2u
�3�3 1Z0 z2 2 (y1; ey) dz; (25)where y1 = rpu
=� and yj ! ey = rp1� z2pu
=�. Ifall initial o

upan
ies are the same, Nj (0) = N0, thenNe in Eq. (20) be
omesNe = N0f (r; h) = N0X exp (��2bj (h)) ; (26)�2 (�; r) = A2�2r2 1Z0 z2 2 (y1; ey) dz; (27)A2 = � 2��3=2 � 10�5 tL�0 u5=2
�3=2 : (28)The equation for the exit neutron 
ount Ne for thewaveguide with 1D roughness (grating) is the same asEq. (26), but with �1 instead of �2 [30℄:�1 (�; r) = A1�2r 1Z0 z2 1 (y) dz;y =pu
=�r �1�p1� z2 � ;A1 = 4 � 10�5tLu2
=�0��: (29)The 
al
ulation of the exit neutron 
ount (26) re-du
es to the integration of the CF for the rough mirror.The result strongly depends on the shape of the CF.There are no experimental data on the roughness CFof the original mirror. The only information is that thetypi
al lateral and verti
al sizes of inhomogeneities areabout 1:19`0 and 0:119`0. In the absen
e of the data,it was assumed in Ref. [30℄ that the roughness is 1DGaussian with r = 1:19 and � = 0:119. At the endof next se
tion, we analyze the roughness of the newmirror. Our predi
tion for the neutron 
ount (26) forthis new mirror is given in Se
. 5.It is possible to perform analyti
 integrations inEq. (29) for most 
ommon types of 1D CFs. For exam-ple, the exponential CF � (x) = �2 exp (�x=r) yields�1 � 13A1�2r 2F1 �34 ; 32 ; 74 ;�r2u
4� � �� 1:38A1�2r1=2 (4�)3=43u3=4
 : (30)In the 2D 
ase, the expressions for the zeroth angularharmoni
s for the power spe
trum �(0) (jq� q0j) are

2.0
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Fig. 2. The energies of the gravitational quantumstates �j (h) for j = 1; 3; 5 as fun
tions of the waveg-uide width h (solid lines). The dashed lines show theline broadening �j � 1=2�j in kHz. The roughness isexponential in one (bla
k dashed lines) or two (greydashed lines) dimensions with � = r = 1. S
aling(31) allows re
al
ulating the broadening for di�erent �and rtoo 
ompli
ated even for the simplest CFs [16℄ and theintegration in Eq. (27) is done numeri
ally.For moderate values of r > 0:3, the depletion times�j and the parameter � s
ale as1=�j ;� = C�;��2r
 ; (31)where the 
oe�
ients C�;� depend on the dimension-ality and the shape of the CF, Eqs. (27) and (29). Atu
 ! 1, the s
aling index 
 = �1=2 in both 1D and2D. If u
 � 105, as in experiment, the s
aling indexfor exponential roughness is 
 � �0:465 in 2D and
 � �0:494 in 1D (
f. Eq. (30)).The times �j (h) des
ribe the depletion and broad-ening of the quantum gravitational states, �j (h) !! �j (h) + i~=�j (h). In Fig. 2, we plot �j (h) forj = 1; 3; 5 as a fun
tion of the waveguide width h (solidbla
k lines) together with the line broadening �j�~=2�j(dashed lines) in kHz. The roughness is exponential in1D (bla
k dashed lines) or 2D (grey dashed lines) with� = r = 1. Equation (31) allows res
aling of the linebroadening for other values of � and r. The individ-ual quantum states be
ome meaningless when the linebroadening be
omes 
omparable to the separation be-tween the lines. The simplest way to preserve the statesis to de
rease the roughness amplitude � in 
omparisonto its value � = 1 in Fig. 2.These values of the line broadening/depletion times,in 
ombination with our predi
tions for the exit neutron1287
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ount Ne (h), Eq. (26), provide the full des
ription ofthe problem (see Se
. 5). The quantum steps in Ne (h)be
ome pronoun
ed with an in
rease in �2=r1=2 and thetime of �ight tL. The only remaining issue is the valueof the 
orrelation parameters.4. CORRELATION PROPERTIES OF ROUGHSURFACESPra
ti
al appli
ations of the transport theory re-quire the CF of surfa
e inhomogeneities as an input.Often, various Gaussian, exponential, and power-lawfun
tions are 
hosen at will in lieu of an unknownCF without giving it a se
ond thought. It is rou-tinely assumed that if one needs the a

urate CF, one
ould always extra
t it from STM, AFM, and otherpre
ise measurements of surfa
e pro�les (some require-ments for pro�le measurements are dis
ussed, e. g., inRefs. [33, 34℄).The pro�le measurement provides one with a bigdata set of dis
rete 
orrelation parameters. The nextsteps look straightforward: one 
ould either identify theCF using reasonable �tting fun
tions or input these raw
orrelation parameters dire
tly into the equations. Buthow reliable are these 
hoi
es?The best way to test this is to study rough sur-fa
es with the known roughness 
orrelators. This ishardly feasible: the roughness 
orrelators depend onthe surfa
e preparation and are not known beforehand.The best alternative is to 
omputationally generate sur-fa
es with predetermined 
orrelators, �measure� theirpro�les, extra
t the 
orrelators, and 
ompare themto the �true� CF used to generate the surfa
e. Be-low, we report the results of su
h numeri
al experi-ments (for te
hni
al details and broader appli
ations,see Ref. [35℄).The CFs extra
ted from our numeri
al experimentshave been �tted to Gaussian, exponential, and power-law fun
tions or used dire
tly in transport 
omputa-tions in
luding �1;2 for our neutron problem. The pur-pose is to see how sensitive the results for �1;2 (thedepletion times and the exit neutron 
ount) are to a
hoi
e of the �tting fun
tion and, by extension, howwe should use the 
orrelation data sets extra
ted fromthe real experimental data. We apply these 
on
lusionsat the end of this se
tion to the experimental data forthe new neutron mirror.We start from a dis
retized random rough pro�leg = g (xi) generated using a Gaussian distributionfun
tion P (g) embedded in many generators of ran-dom numbers. This pro�le 
orresponds to an un
orre-

lated roughness, hgigki / Æik (white noise). What wewant is to produ
e a surfa
e y = y (xi) with a prede-termined desirable binary 
orrelations � (x) (or, rather,its dis
rete analog �ik),hyiyki � �ik = Z yiykP [y℄ dy: (32)To a
hieve this, we rotate the un
orrelated ve
tor gusing the matrix bA [30℄,bA = b�1=2; y = bAg: (33)This pro
edure allowed us to generate and analyze 1Dand 2D random rough surfa
es with any predetermined
orrelation fun
tion �, Eq. (32).The 
omputational resour
es required by operation(33) for large matri
es b� provide the only limitationon the surfa
e size as measured in terms of step sizes�x = xi+1 � xi. This limitation is more importantfor 2D surfa
es than for 1D ones: in addition to a sizeexplosion in the 2D 
ase, the matri
es b� for the 2Dsurfa
es lose their almost diagonal stru
ture even forvery steep 
orrelation fun
tions.The above approa
h 
annot emulate the atomi
-s
ale roughness with dis
rete amplitudes in terms ofatomi
 sizes. In su
h situations, we use Monte Carlosimulations based on exa
tly solvable spin latti
e mod-els for whi
h the CFs are known. The universe of theknown CFs that are a

essible in this way is limitedby the small number of exa
tly solvable latti
e models,mostly in 1D. It is even un
lear whether there are re-stri
tions on the form of the CF generated in this way.What is more, in 2D, even the simplest models, su
has the Ising model, lead to the CFs for whi
h we do nothave expli
it analyti
 expressions, making them virtu-ally useless for our purpose. The 
omputational limi-tations here are asso
iated with long relaxation timesand with the presen
e of large domains. We note thatthe experimental di�
ulties of extra
ting an a

uratesurfa
e 
orrelator also multiply when we deal with theatomi
-s
ale roughness, even if we disregard the issueof the a

ura
y of pro�le measurements related, for ex-ample, to the tip pro�le [36℄ or the step size [37℄.The simplest example of the latter approa
h is theferromagneti
 Ising model yi = �1, for whi
h the CFis determined by the attra
tive 
oupling 
onstant J inthe Hamiltonian (or, what is the same, by the Boltz-mann fa
tors exp (�2J=kT )). In the 1D 
ase, the CFis exponential,�E (x) = �2 exp��xr � ; r = 12 exp� 2JkT � : (34)Towards the end of this paper, we use this approa
hfor designing a new rough neutron mirror for GRANIT1288
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iple [38℄, is des
ribed by a set of 
ompli-
ated equations involving ellipti
 integrals.We have generated numerous 1D and 2D rough sur-fa
es using both methods: rotation of the un
orrelatedsurfa
es with the rotation operator bA in Eq. (33) forvarious predetermined 
orrelators b� and Monte Carlosimulations using the Ising model. In rotations, weroutinely use matri
es up to 5000� 5000 and in MonteCarlo simulations, up to 104 points xi and 106 MonteCarlo 
y
les.The main 
hallenges for identifying the 
orrelatorfrom the data on the surfa
e pro�le arise from �u
-tuations related to the �nite size of the samples. AllCFs 
onsist of a peak at short distan
es and a longtail. For �nite samples, the extra
ted 
orrelators �ikdo not go to zero at large distan
es ji� kj � 1 buthave long �u
tuation-driven, often os
illating tails ofalmost 
onstant amplitude. As a result, the standarddeviation � between the measured 
orrelation fun
tionand the �tting fun
tion is determined by the tail areaand is more or less the same for all reasonable �ttingfun
tions, whi
h all go to zero at large distan
es. Mean-while, many observables, in
luding our �1;2, are deter-mined by the behavior of the 
orrelation fun
tion atsmall q, i. e., at large distan
es, and are very sensitiveto the shape of the 
orrelators. Our 
on
lusion (see be-low) is that the value of � taken by itself 
annot be usedfor justifying the 
hoi
e of the fun
tional form of the
orrelation fun
tion and 
annot be 
onsidered a goodpredi
tor for physi
al results.Suppressing the �u
tuations requires in
reasing thesize of a sample, whi
h, unfortunately, makes the�u
tuation-driven tails longer. Another option for sup-pressing the �u
tuation-driven tails is to average theCF over several samples, as is sometimes done in ex-periment [39℄. This assumes that the CFs for di�erentsamples are the same and that the �true� CF does nothave a long alternating tail. These assumptions 
anmake the averaging over the samples inherently dan-gerous. Still, we have performed su
h averaging overseveral generated surfa
es with the same true CF. Re-sults of our numeri
al experiments show that if we knowthat there are no long-range 
orrelations, this averagingover several samples 
an be helpful for 2D roughness,but is not ne
essary in 1D. The same di�
ulty persistsif we simply 
ut o� the long-range tails assuming thatthey are driven only by the �u
tuations.Generating or measuring the CF with a large 
orre-lation radius R is virtually impossible. The importantfa
tor is not the overall number of the data points Nbut the number of inhomogeneities N=Ni, where Ni is

the number of points in a typi
al inhomogeneity, whi
hin the 2D 
ase grows proportionally to R2. The shapeof the CF with not very large N=Ni is often misleadingand points, rather 
onvin
ingly, at �
titious long-range
orrelations. One should be very 
autious when identi-fying an additional, larger 
orrelation length from theexperimental data with fat 
orrelation tails [40℄.We have also tried an alternative to the use of the�tting fun
tions by using the spe
tral de
omposition ofthe raw 
orrelation data for dire
t 
omputation of ob-servables. In 1D examples, this approa
h has workedsomewhat, but not mu
h, better than using a �ttingfun
tion of a wrong shape, although still noti
eablyworse than using the �tting fun
tion of the right shape.In 2D, this approa
h has led to unstable results be
auseof the �u
tuation-driven anisotropy of the extra
ted
orrelators and smaller linear sizes of the samples thanin 1D.The tables illustrate some of our results for gener-ated rough surfa
es with parameters 
lose to those inexperiments with ultra
old neutrons from Se
. 3.Table 1 shows the results of our analysis of threenumeri
ally generated 1D rough surfa
es with the CFemulating the Gaussian 
orrelations with r = 1:19 and� = 0:119. As we 
an see, the quality of the �ts �G;E;PLfor all three types of the �tting fun
tions is more or lessthe same, about 5 � 10�4, but the results for the phys-i
ally important parameters �1G;E;PL di�er 
onsider-ably, by about 25%. In our experiment, the �true�shape of the CF is known to be Gaussian and, not sur-prisingly, the �tting by the Gaussian fun
tion produ
esthe values of �1 very 
lose to the �true� value 23:48.The inevitable 
on
lusion is that the quality of the �t� does not tell mu
h about the quality of physi
al re-sults obtained using this �tting fun
tion. The resultsfor �tting by the power-law and exponential CFs wererelatively 
lose to ea
h other and very di�erent fromthose for the Gaussian �t. The explanation is simple:the Gaussian fun
tion has a mu
h shorter tail. Theuse of the raw 
orrelation data in the equations (�n)works better than the use of a wrong �tting fun
tionbut worse than using the right one.The quality of the �ts (the values of �) for 2Droughness is worse than in the 1D 
ase be
ause of the�u
tuation-driven anisotropy and smaller linear sizes ofour samples, although the overall number of the datapoints in our numeri
al experiments is larger. The onlynoti
eable di�eren
e in 
on
lusions is that the use ofraw 
orrelation data without �tting leads to unstableresults. Here, averaging over several runs leads to amarked improvement in the results for �2.1289
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al runs for 1D surfa
es that emulate the Gaussian 
orrelation of inhomogeneities�2 exp ��x2=2r2� with r = 1:19 and � = 0:119 (see Se
. 3)� rG, �G � 104 rE , �E � 104 rPL, �PL � 104 �n � 1017 �1G, �1E , �1PL, �1n1 1.19, 5.24 1.59, 5.81 1.44, 5.81 1.92 23.86, 18.19, 18.81, 21.962 1.15, 4.49 1.53, 4.56 1.36, 4.64 1.83 23.33, 17.84, 18.65, 21.143 1.25, 4.37 1.69, 4.40 1.54, 4.47 1.69 23.56, 17.26, 17.85, 20.96Note. The �true� value of �1, Eq. (26), for su
h surfa
e is �1 = 23:48. The extra
ted 
orrelators were �ttedwith Gaussian (�2G exp ��s2=2rG�), exponential (�2E exp (�s=rE)), and power-law (�2PL= �1 + (s=rPL)2�3=2) �ttingfun
tions. The table 
ontains the best �tting values of rG;E;PL together with �G;E;PL, and the re
al
ulated valuesof �1G;E;PL. The values of �G;E;PL are very 
lose to ea
h other. The 
olumns with �n and �n give the values of �1and the standard deviation when the spe
tral de
omposition of the raw data is put dire
tly into equations withoutany �tting. Table 2. Five Monte Carlo runs for the 1D Ising model� rE ; �E � 104 rG; �G � 104 rPL; �PL � 104 �n � 1017 �1E , �1G, �1PL, �1n1 1.27, 6.69 0.85, 6.93 1.26, 6.72 3.79 18.6, 27.4, 19.6, 25.82 1.23, 6.83 0.88, 6.94 1.25, 6.84 1.49 19.1, 26.8, 19.7, 26.23 1.04, 6.51 0.73, 6.74 1.07, 6.54 2.82 20.7, 30.2, 21.4, 27.34 1.18, 6.65 0.87, 6.71 1.23, 6.62 3.01 19.7, 27.1, 20.0, 26.15 0.94, 6.44 0.74, 6.42 1.03, 6.38 1.91 22.2, 29.8, 21.9, 27.7Note. The �true� 
orrelation fun
tion is exponential with r = 1:19, � = 0:119, and �1 = 19:5. The CFs extra
tedfrom the generated rough surfa
es are �tted with the exponential, Gaussian, and power-law fun
tions. The table
ontains the best �tting values of rE;G;PL and the 
orresponding values of �E;G;PL and �1E;G;PL. The values of�1n are obtained by dire
t spe
tral analysis of the raw 
orrelation data.Table 2 presents the results of �ve Monte Carlo runsfor the 1D Ising model in appli
ation to the neutronmirror. The data in the 
olumns are arranged similarlyto Table 1. The parameters of the �true� CF are thesame, r = 1:19 and � = 0:119. However, sin
e the Isingmodel 
orresponds to the exponential CF, Eq. (34), andnot to the Gaussian 
orrelator as in Table 1, the truevalue of parameter �1 in Eq. (30) is now �1 = 19:5.Sin
e the simulation is based on the Ising model withspins �1, the extra
ted average amplitudes of rough-ness �E;G;PL di�er from � = 0:119 by less than 1% forall �tting fun
tions. The size of the sample isN = 1000and we perform 106 Metropolis 
y
les. Of 
ourse, the�t using the exponential 
orrelator provides the bestvalues for �1. Of the other two �ts, it is not 
lear whythe power-law �t works mu
h better than the Gaus-sian one. The last 
olumn in the Table 2 gives thevalues of �1n obtained by dire
t spe
tral analysis withN=2 harmoni
s of the raw 
orrelation data without any

�tting. These data display the worst agreement with�1 = 19:5 while the value of �n is by 13 orders of mag-nitude better than � for any of our �tting fun
tions.The explanation is the same as before: the full set ofraw data is dominated by the long 
orrelation tails that
ome from the �u
tuations.The results for rough surfa
es generated using the2D Ising model above the phase transition do not pro-vide any new information.Our main 
on
lusion is that the reliable identi�
a-tion of the roughness CF requires having at least someinformation about its shape. Without this information,the best strategy is to rely on � only in 
ombinationwith an averaging over several samples and a graphi
aland numeri
al analysis of the shape of the 
orrelationfun
tion in the peak area.As an appli
ation, we have analyzed the 
orrelationproperties of a rough mirror prepared for new GRANITexperiments with ultra
old neutrons [41℄. The rough-1290
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e areas with2500� 2500 data points in ea
h. Even with more than3 � 107 available data points, the extra
ted CF still hasa long �u
tuation-driven tail, whi
h hinders its unam-biguous identi�
ation. These �u
tuation-driven tailsare indistinguishable from those in our numeri
al ex-periments. The attempts to �t the extra
ted 
orrelatorto various �tting fun
tions lead to noti
eably di�erentpredi
tions for the observable �2 while the statisti
alquality of the �ts � are more or less the same for all�tting fun
tions. Our preferred 
hoi
e, based on theaveraging over �ve samples and the shape of the 
orre-lation peak, is the 2D isotropi
 exponential 
orrelatorwith � � 1:02 and r � 0:65.5. CONCLUSIONSIn summary, we have applied our general theory oftransport of parti
les along rough surfa
es to the gravi-tationally quantized neutrons in a rough waveguide. Inthe end, all parameters of a system 
ollapse to a single
onstant �2;1 whi
h determines the exit neutron 
ount.The 
onstant � is 
losely related to the depletion time(the line broadening) for the gravitational states �j .The required input parameters are the roughness CFand the distribution of neutrons entering the waveg-uide over the gravitational states. The depletion times�j have simple s
aling properties, Eq. (31), and their ra-tios are the universal fun
tions of the waveguide width(see Eq. (18) and Fig. 1).Our numeri
al experiments show that the identi�-
ation of the roughness CF should not be undertakenlightly. Our 
on
lusion is that the CF must be iden-ti�ed by using the statisti
al quality of the �ts � todi�erent �tting fun
tions only in 
ombination with theaveraging over several experimental areas and a nu-meri
al and graphi
al analysis of the CF in the peakarea. We do not re
ommend avoiding the identi�
ationof the roughness CF by inputting the raw 
orrelationparameters dire
tly into the equations.Our analysis of a new neutron mirror [41℄ identi�esthe CF as the isotropi
 2D exponential fun
tion withthe 
orrelation radius r = R=l0 = 0:65 and the am-plitude � = `=l0 = 1:02. This �tting fun
tion yields�2 � 5:22 � 103. The predi
ted neutron exit 
ount asa fun
tion of the spa
ing between the rough and �atmirrors h, Eq. (26), is plotted in Fig. 3. The steps inthe �gure are the long-sought demonstration of 
onse
-utive depletion of the quantum gravitational states ofneutrons.
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Fig. 3. The exit neutron 
ount N (h) =N0, Eq. (26), asa fun
tion of the spa
ing between the mirrors. Cal
u-lations for the new sapphire mirror with isotropi
 expo-nential roughness r = 0:65, � = 1:02The a

ura
y of this predi
tion is limited by a rel-atively large value of the roughness amplitude �. Anyperturbative theory assumes � to be the smallest lengthparameter, � � r; h, whi
h is 
learly not true for thismirror. The same fa
tor limits the a

ura
y of measur-ing the spa
ing between the mirrors and makes mea-surements at small h virtually impossible. This largevalue of � also leads to the smearing of the gravita-tional quantum states. Another limitation is the la
kof a

urate information on the distribution of neutronsover the gravitational states in front of the waveguide.We assume this distribution to be uniform at very lowenergies; this assumption, although reasonable, 
an po-tentially break down during the beam preparation.In general, the sharpness of the quantum steps inthe exit neutron 
ount Ne (h) is determined by the dif-feren
e in values between exp (�tL=�j) with di�erent j,whi
h is determined by the values of 1=�j in Fig. 2 ad-justed by the s
aling relation (31). Sin
e the distan
ebetween the starting points for the state depletion inFig. 2 is not large, the best way to see these quantumsteps is to in
rease the time of �ight tL.Most of the un
ertainties disappear if a future roughmirror is designed di�erently. Our re
ommendation isto use 1D roughness based on the Monte Carlo simu-lations for the 1D Ising model (the grating of 
onstantamplitude but with random width and separation oftren
hes, Fig. 4). The preferred 
orrelation radius isr � 2 with the amplitude of roughness in the 0.2�0.4range. Sin
e all the lengths are in the units of 5.87 �m,the transfer of the generated pro�le onto a real surfa
e1291
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Fig. 4. A fragment of the rough upper mirror based onMonte Carlo simulations for the 1D Ising model (theIsing mirror). The thi
k bla
k line is the surfa
e pro�leand dark bars are �Ising spins�. Mirror material (sap-phire) is above the thi
k bla
k line (all dark and light�lled areas). The amplitude of roughness is � = 0:2,the 
orrelation radius is r = 2, and �1 � 43:5. Bothaxes are in units of l0 = ~2=3 �2m2g��1=3 � 5:871 �mand the verti
al s
ale is about 100 times smaller thanthe horizontal one. Changing the value of � 
an bedone simply by res
aling the verti
al axisseems to be te
hnologi
ally feasible. The thi
k bla
kline in Fig. 4 shows the mirror pro�le and the greybars are the up and down �Ising spins�. We note thatthe verti
al s
ale is about 100 time smaller than thehorizontal one and the roughness is very mild.The 
orrelation fun
tion � (x) for the 
ontinuous�Ising mirror� su
h as in Fig. 4 is 
lose to the expo-nential one for the dis
rete 1D Ising model, Eq. (34),and 
oin
ides with it at the integer points of x,� (x) = �2 [exp (�bx
 =r) + (x� bx
) �� (exp (�dxe =r)� exp (�bx
 =r))℄ : (35)The values of �1 for the true Ising 
orrelator � (x) == �2 exp (�x=r) are given by Eq. (30) and yield �1for r = 2 and � = 0:2�0.4 in the 42.5�170 range withtL=�0 � 23 (the old 
ell) and in the 30.3�121.5 rangefor tL=�0 � 26 (the new 
ell). Although we 
annot givea simple analyti
 expression for �1 for 
orrelation fun
-tion (35), the numeri
al results for this 
orrelator di�erfrom the ones for the pure Ising exponent at r = 2 byabout (3�5)%. These values of �1 are su�
ient for ex-hibiting the quantum steps in the exit neutron 
ount(Fig. 5) and for produ
ing neutrons with well-de�nedenergies in the peV range.
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Fig. 5. The exit neutron 
ount N (h) =N0, Eq. (26),for the Ising mirror similar to the one in Fig. 2. Theroughness amplitude is � = 0:4 and the 
orrelation ra-dius is r = 2. The steps 
an be made more pronoun
edby in
reasing �The experimental advantage of this design isthe perfe
tly 
ontrollable 1D environment with thepreservation of the quantum states and without thespikes on the surfa
e. It allows a

urate measurementof the spa
ing between the mirrors and minimizes theloss of neutrons due to the sideway s
attering.One of the authors (A. M.) appre
iates the invita-tion to parti
ipate in this spe
ial issue of JETP hon-oring the 75th birthday of his Ph. D. advisor in themid-1970s, A. F. Andreev, and remembers with grat-itude years of joint work. We a
knowledge produ
-tive dis
ussions with P. Nightingale (URI) on 
ertain
omputational aspe
ts of the work and a long his-tory of 
onstru
tive ex
hanges with V. Nesvizhevsky(ILL) and other members of the GRANIT 
ollabo-ration. Some of the results have been presented atGRANIT-2014Workshop (Les Hou
hes, Fran
e, Mar
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