
ÆÝÒÔ, 2014, òîì 146, âûï. 6 (12), ñòð. 1266�1271 

 2014
THEORY OF DISORDERED UNCONVENTIONALSUPERCONDUCTORSA. Keles a, A. V. Andreev a, B. Z. Spivak a*, S. A. Kivelson baDepartment of Physi
s, University of Washington, Seattle, WA 98195, USAbDepartment of Physi
s, Stanford University, CA 94305, USARe
eived May 27, 2014In 
ontrast to 
onventional s-wave super
ondu
tivity, un
onventional (e. g., p- or d-wave) super
ondu
tivity isstrongly suppressed even by relatively weak disorder. Upon approa
hing the super
ondu
tor�metal transition,the order parameter amplitude be
omes in
reasingly inhomogeneous, leading to e�e
tive granularity and a phaseordering transition des
ribed by the Mattis model of spin glasses. One 
onsequen
e of this is that at su�
ientlylow temperatures, between the 
lean un
onventional super
ondu
ting and the di�usive metalli
 phases, there isne
essarily an intermediate super
ondu
ting phase that exhibits s-wave symmetry on ma
ros
opi
 s
ales.This arti
le is dedi
ated to A. F. Andreev on the o

asion of his 75th birthdayDOI: 10.7868/S00444510141201281. INTRODUCTIONGenerally, the super
ondu
ting order parameterdepends on two 
oordinates and two spin indi
es,���(r; r0). A 
lassi�
ation of possible super
ondu
tingphases in 
rystalline materials was given in Refs. [1; 2℄.The majority of 
rystalline super
ondu
tors with lowtransition temperatures have a singlet order parameterwith an s-wave orbital symmetry that does not 
hangeunder rotation of the 
oordinates. In the simplest 
ase,���(r; r0) � i(�̂2)��Æ(r� r0)�(s)(r)depends signi�
antly only on a single 
oordinate, where�̂2 is the se
ond Pauli matrix in spin spa
e, �(s)(r) isa 
omplex-valued fun
tion, and the supers
ript s in-di
ates that it has s-wave symmetry. However, overthe last de
ades, a number of super
ondu
tors havebeen dis
overed in whi
h the order parameter trans-forms a

ording to a nontrivial representation of thepoint group of the underlying 
rystal. Although su
hsuper
ondu
tors are quite 
ommon by now, following*E-mail: spivak�uw.edu

the terminology in Ref. [3℄, we refer to them as �un
on-ventional.�Important examples in
lude the high-temperature
uprate super
ondu
tors that have a singlet d-wavesymmetry [2, 4℄: ���(r; r0) = i(�̂2)���(d)(r � r0),where �(d)(r � r0) 
hanges sign under 
oordinate ro-tation by �=2. The best-known example of a p-wavesuper�uid is super�uid 3He. One of the leading 
an-didates for p-wave pairing in ele
troni
 systems isSr2RuO4 [5℄. There are numerous pie
es of experimen-tal eviden
e that the super
ondu
ting state of Sr2RuO4has odd parity, breaks time reversal symmetry, and isa spin triplet [5�10℄1). An order parameter 
onsistentwith these experiments is given by the 
hiral p-wavestate [13℄, whi
h has the form���(p) � px�ipy, where���(p) is the Fourier transform of ���(r � r0). An-derson's theorem a

ounts for the fa
t that super
on-du
tivity in s-wave super
ondu
tors is destroyed onlywhen the disorder is so strong that pF l � 1, where pFis the Fermi momentum and l is the ele
troni
 elasti
mean free path. However, in un
onventional super
on-du
tors, ���(p) depends on the dire
tion of the rela-1) There are, however, some subset of experimental observa-tions that are not easily re
on
iled with the existen
e of a 
hiralp-wave state in Sr2RuO4. See, e. g., Refs. [11℄ and [12℄ for adis
ussion.1266
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onventional super
ondu
torstive momentum p of ele
trons in the Cooper pair, andtherefore they are mu
h more sensitive to disorder; evenat the temperature T = 0, un
onventional super
on-du
tivity is destroyed when l is 
omparable to the zerotemperature 
oheren
e length �0 in the pure super
on-du
tor, l � �0 � 1=pF . The fate of un
onventional su-per
ondu
tivity subje
t to in
reasing disorder dependson the sign of the 
oupling 
onstant in the s-wave 
han-nel. It is straightforward to see that if the intera
tionin the s-wave 
hannel is attra
tive, but weaker thanthe attra
tion in an un
onventional 
hannel, then asa fun
tion of in
reasing disorder, there �rst o

urs atransition from the un
onventional to an s-wave phasewhen l � �0, whi
h is followed by a transition to anonsuper
ondu
ting phase when l � p�1F .In this arti
le, we 
onsider the more interesting andrealisti
 
ase where the intera
tion in the s-
hannel isrepulsive. In this 
ase, we show that there is ne
essar-ily a range of disorder strengths in whi
h, althoughlo
ally the pairing remains un
onventional, the sys-tem has a global s-wave symmetry with respe
t to anyma
ros
opi
 super
ondu
ting interferen
e experiments.Therefore, there must be at least two phase transi-tions as a fun
tion of in
reasing disorder: a d-wave(or p-wave) to s-wave, followed by an s-wave to nor-mal metal transition. Qualitatively, the phase diagramof disordered un
onventional super
ondu
tors is shownin Fig. 2 (see below). (An in
omplete derivation ofthese results, only in the d-wave 
ase, was obtained inRefs. [14; 15℄.)The existen
e of the intermediate s-wave super
on-du
ting phase between the un
onventional super
on-du
tor and the normal metal (and of the asso
iateds-wave to un
onventional super
ondu
tor transition)
an be understood at a mean-�eld level, whi
h negle
tsboth 
lassi
al and quantum �u
tuations of the orderparameter. The ele
tron mean free path is an average
hara
teristi
 of disorder. We introdu
e a lo
al valueof the mean free path �l(r) averaged over regions with asize of the order of �0. When the disorder is su�
ientlystrong su
h that, on average, �l < �0, the super
on-du
ting order parameter 
an be large only in the rareregions where �l(r) > �0. In this 
ase, the system 
an bevisualized as a matrix of super
ondu
ting islands thatare 
oupled through Josephson links in a nonsuper
on-du
ting metal. (The super
ondu
tivity inside an is-land 
an also be enhan
ed if the pairing intera
tion isstronger than average, i. e., if the lo
al value of �0 isanomalously small.) At su�
iently large values of dis-order, the distan
e between the islands is larger thanboth their size and the mean free path.

2. MATTIS MODEL DESCRIPTION OFDISORDERED UNCONVENTIONALSUPERCONDUCTORSBelow, we show that in the vi
inity of the super-
ondu
tor�normal-metal transition, the super
ondu
-ting phase 
an be des
ribed by the Mattis model.2.1. An isolated super
ondu
ting islandWe �rst 
onsider the mean-�eld des
ription of anisolated super
ondu
ting island. The order parameterin an individual island is written as �̂a(r; r0), where thehat indi
ates the two-by-two matrix stru
ture in spinspa
e and we label individual islands with Latin indi
esa, b, : : : Generally, as a 
onsequen
e of the random dis-order, neither the shape of the island nor the texture ofpairing tenden
ies within it have any parti
ular sym-metry, and hen
e the resulting gap fun
tion �̂a(r; r0)mixes the symmetries of di�erent bulk phases. Sin
ethere is no translational symmetry, it is 
onvenient tode�ne �̂a(~r;p) as the Fourier transform of �̂a(r; r0)with respe
t to the relative 
oordinate r � r0 and touse ~r = (r + r0)=2 as the 
enter-of-mass 
oordinate.(Be
ause all 
oordinates to appear in what follows arethe 
enter-of-mass 
oordinates, we hen
eforth drop thetilde.) In the absen
e of spin�orbit 
oupling, a sharpdistin
tion exists between spin-0 (singlet) and spin-1(triplet) pairing, although even that distin
tion is en-tirely lost in the presen
e of spin�orbit 
oupling. Themost general form of the gap fun
tion (with a phase
onvention that we spe
ify later) expressed as a se
ond-rank spinor in terms of Pauli matri
es is�̂a(r;p) = ei�a i�̂2 ��a1̂ +�a � �̂� ; (1)where the r and p dependen
e of the s
alar�a and ve
-tor�a quantities that represent the singlet and triplet
omponents of the order parameter is impli
it.The energy of a single grain is independent of theoverall phase of the order parameter �a. In the ab-sen
e of spin�orbit intera
tion, it is also independentof the dire
tion �a. An additional dis
rete degener-a
y 
an be asso
iated with time-reversal invarian
e ofthe problem. It implies that the state des
ribed by atime-reversed order parameter�̂�a(r;p) � �i�̂2[�̂a(r;�p)℄�i�̂2 (2)leads to the same energy of the grain. In the absen
eof spontaneous breaking of time reversal symmetry, thetime reversal operation leads to the same physi
al state�̂�a = �̂a; otherwise, the time-reversed state is physi-
ally di�erent.1267 9*



A. Keles, A. V. Andreev, B. Z. Spivak, S. A. Kivelson ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014It is important to note that generally (at the presentmean-�eld level), time reversal symmetry is violated indroplets of un
onventional super
ondu
tors of a ran-dom shape. This o

urs even in the 
ase where the bulkphase of the un
onventional super
ondu
tor is time-reversal invariant, su
h as d-wave super
ondu
tors orthe px and py phases realized in strained Sr2RuO4 [16℄.For example, d-wave super
ondu
ting droplets of a ran-dom shape embedded into a bulk metal 
an have, witha nonvanishing probability, a lo
al geometry analogousto that of a 
orner SQUID experiment [4℄, in whi
htwo sides of a droplet with di�erent signs of the orderparameter are 
onne
ted by a metalli
 Josephson linkwith an e�e
tive negative 
riti
al 
urrent. An equilib-rium 
urrent then �ows if the 
riti
al 
urrent of the�negative link� is su�
iently large.We 
hara
terize the degenera
y with respe
t to timereversal by a pseudo-spin index �a = �1. In this 
ase,it is 
onvenient to introdu
e a pseudospin �a in ea
hgrain to distinguish the two time-reversed states,�̂�aa (r;p) = ( �̂a(r;p); �a = +1;�̂�a(r;p); �a = �1; (3)and write the general expression for the order parame-ter in ea
h grain as ei�a�̂�aa (r;p); (4)where we expli
itly separate the U(1) phase of the orderparameter.2.2. Josephson 
oupling between islandsEle
trons propagating in nonsuper
ondu
ting met-als experien
e Andreev re�e
tion [17℄ from the super-
ondu
ting islands. This indu
es Josephson 
ouplingbetween the islands. So long as the separation betweenislands is large, the spatial dependen
e of the order pa-rameter within ea
h grain, �̂�aa (r;p), is not a�e
ted.Therefore, the low-energy Hamiltonian of the system
an be expressed in terms of the phases �a only. Theenergy of this 
oupling 
an be expressed in the formEJ = �12Xa6=b Jab(�a�b) 
os[�a � �b + �ab(�a; �b)℄; (5)where Jab(�1) > 0 is the Josephson 
oupling energybetween the islands a and b, and �ab(�a; �b) is a phasedetermined by the spatial dependen
e of the 
omplexorder parameter in the grains, �̂�aa (r;p) (whi
h in turnstill depends on whi
h state, �a = �1, is involved).

Our goal is to show that in the limit in whi
h thedistan
e between the islands is su�
iently large 
om-pared to their size, the link phases 
an be written as�ab(�a; �b) � ��aa � ��bb : (6)Equations (5) and (6) represent the xy Mattis model,whi
h is well known in the theory of spin glasses [18℄.We 
an gauge away �a, redu
ing Eq. (5) to a 
onven-tional form familiar from the s-wave super
ondu
tor,or xy ferromagnet,EJ = �12Xa6=bE�a�bab == �12Xa6=b Jab(�a�b) 
os h~�a � ~�bi ; (7)where ~�a = �a + ��aa . Therefore, the system is not asuper
ondu
ting glass be
ause its ground state has ahidden symmetry.Although our 
on
lusions are quite general, for sim-pli
ity we 
onsider the situation where the 
hara
-teristi
 radius of the grain is of order of the zero-temperature super
ondu
ting 
oheren
e length and thevalue of the order parameter in the puddles is mu
hsmaller than in pure bulk super
ondu
tors, � � �0.This situation applies, for example, near the point of aquantum super
ondu
tor�metal transition, where thetypi
al distan
e between the super
ondu
ting grains islarger than their size, whi
h is of the order of the zero-temperature 
oheren
e length [19℄. In this 
ase, at largeseparations between the grains, the Josephson 
ouplingenergy 
an be written in the formE�a�bab = 2Re hei(�a��b)Z�a�bab i ; (8)whereZ��0aa0 = tr Z dr dr0dp dp0�̂�a(r;p)�� Ĉ(r� r0;p;p0)�̂�0ya0 (r0;p0): (9)Here, tr denotes the tra
e over all spin indi
es andĈ(r � r0;p;p0) is the integral over energies of theCooperon diagrams illustrated in Fig. 1. The ex
hangeenergies J��0aa0 and the phase �aa0(�; �0) are related to themodulus and phase of2Z��0aa0 = Jaa0(��0) exp [i�aa0(�; �0)℄ :2.2.1. Singlet pairingWe begin by 
onsidering the 
ase where the Cooperpairing o

urs in the singlet 
hannel �̂�a = i�̂2��a(r;p),1268
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onventional super
ondu
tors= + + + : : :C�(r� r0;p;p0)Fig. 1. Diagrammati
 representation of the Cooperonladder. Solid lines are ele
tron Green's fun
tions,whereas dashed lines are impurities. Ĉ(r � r0;p;p)in Eq. (9) is obtained by integrating this ladder overenergywhi
h in
ludes s- and d-wave super
ondu
tors. In thepresen
e of disorder, even in the 
ase where the 
leanbulk phase is a pure d-wave super
ondu
tor, the orderparameter in ea
h grain 
ontains an s-wave 
omponent��a(r;p) = �(s);�a (r;p) + �(d);�a (r;p); (10)where the supers
ript in the parenthesis stands for theorbital symmetry, whereas � indi
ates the Ising variablethat spe
i�es whi
h of the two time-reversed versionsof the gap fun
tion is being 
onsidered. SubstitutingEq. (10) in Eq. (9) and evaluating the Cooperon, weobtain three terms 
orresponding to s�s, s�d, and d�dJosephson 
ouplings:Z��0aa0 = Z(ss);��0aa0 + Z(dd);��0aa0 + Z(sd);��0aa0 : (11)At distan
es long 
ompared to p�1F but small 
omparedto the thermal dephasing length, the s�s 
omponent isgiven by Z(ss);��0aa0 / �jra � ra0 jD h��aih��0�a0 i; (12)where � is the density of states at the Fermi level, Dis dimensionality of the system, ra and ra0 are the lo-
ations of grains a and a0, and h��ai denotes the orderparameter integrated over a single grain,h��ai = Z dr dp��a(r;p): (13)Stri
tly speaking, the slow power-law de
ay of theJosephson 
oupling 
onstant in Eq. (12) leads to a log-arithmi
 divergen
e of the ground-state energy. How-ever, multiple Andreev re�e
tions [17℄ of di�using ele
-trons from the grains provide a 
uto� of this divergen
eat large distan
es [19℄. Sin
e the 
uto� length is greaterthan the typi
al distan
e between the grains, our re-sults are not a�e
ted by the presen
e of this 
uto�.In the same long-distan
e limit, the s�d and d�d
ontributions are given byZ(sd);��0aa0 / � h���a iQ�0a0;ij�i�j 1jra � ra0 jD (14)

andZ(dd);��0aa0 / � Q�a;ijQ�0ya0;kl�i�j�k�l 1jra � ra0 jD : (15)In the above formulas, the d-wave 
omponent of theorder parameter in grain a is des
ribed by the se-
ond-rank tensor Q�a;ij . For example, for a spheri
alFermi surfa
e in whi
h�(d);�a (r;p) = Q�a;ij(r)pipj (withQ�a;ii(r) = 0), we haveQ�a;ij = Z drQ�a;ij(r): (16)It is important to note that Z(sd)ab and Z(dd)ab fallo� faster with the distan
e between the grains thanZ(ss)ab does. Therefore, they 
an be negle
ted at largeinter-grain separations. The leading term Z(ss)ab givenby Eq. (12) has a phase fa
tor that 
an be written asa sum of phase fa
tors of individual grains, whi
h areindependent of the dire
tion of the link ra� rb. There-fore, we arrive at the Mattis model, Eqs. (5) and (6),where ��a is the phase of h��ai in Eq. (13). Indeed, inthis limit, Jab(1) = Jab(�1) � Jab is independent of �aand �b. 2.2.2. Triplet pairingWe now turn to triplet super
ondu
tivity and beginwith the 
ase where spin�orbit 
oupling is negligible.Even in the 
ase where px + ipy super
ondu
tivity o
-
urs in the absen
e of disorder, the order parameter in aparti
ular grain a
quires an admixture of other p-wave
omponents. However, the triplet and singlet 
ompo-nents of the order parameter do not mix. In this 
ase,we obtain the following form of the Josephson 
ouplingfrom Eq. (9):Z(pp);��0aa0 / �A�;�a;i A�0;��a0;j �i�j 1jra � ra0 jD ; (17)where the matrix A�;�a;i des
ribes the p-wave order pa-rameter in grain a. For example, for a spheri
al Fermisurfa
e with �̂a(r;p) = �̂�A�;�a;i (r)pi, it is given byA�;�a;i = Z drA�;�a;i (r): (18)The phase of the Josephson 
oupling in Eq. (17) de-pends on the relative orientation between the spatialstru
ture of the order parameter A�;�a;i (where the in-dex i indi
ates a preferred axis) and the dire
tion ofthe bond between the grains. As a result, the phase ofZ(pp);��0aa0 in Eq. (17) 
annot be represented in the form1269
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h the phases �a and �a0 depend onlyon the grain properties but not on the dire
tion of thelink 
onne
ting them, ra � ra0 . This means that weobtain a Josephson jun
tion array with frustration.However, in the presen
e of spin�orbit intera
tionsin nonuniform super
ondu
tors, the singlet, �, andtriplet, �, 
omponents of the order parameter mix.In this 
ase, at large separations between grains, theJosephson 
oupling is again dominated by the s-wave
omponent of the order parameter and is des
ribed byEq. (12), whi
h again leads us to the Mattis model,Eqs. (5) and (6).3. CORRECTIONS TO THE MATTIS MODELAND THE GLOBAL PHASE DIAGRAMWe have shown that at su�
iently strong disorder,the properties of disordered un
onventional super
on-du
tors at long spatial s
ales 
an be des
ribed by thee�e
tive Hamiltonian in Eq. (5). To the leading orderin inverse powers of the typi
al intergrain distan
e R,Eq. (5) redu
es to the Mattis model in Eq. (7). In thislimit, the random phases of the Josephson 
ouplingsbetween islands 
an be gauged away; as 
an be seenfrom the 
onstru
tion that leads to Eq. (7), the orderedstate 
orresponds to uniform-phase (ferromagneti
) or-dering of the s-wave 
omponents from grain to grain,even when the largest 
omponent of the order param-eter on ea
h grain is un
onventional. Thus, at longdistan
es, the system behaves as an s-wave super
on-du
tor with respe
t to all super
ondu
ting interferen
eexperiments. For example, 
orner SQUID experiments[4℄ would not exhibit trapped �uxes. In the 
ase where,in the absen
e of disorder, there is a px � ipy state,where the disorder is nearly strong enough to quen
hthe super
ondu
tivity, there are no edge 
urrents, andin the presen
e of an external magneti
 �eld, the longdistan
e (topologi
al) vortex stru
ture be
omes that ofa 
onventional s-wave super
ondu
tor.Corre
tions to the Mattis model 
ome from the 
ou-pling between the non-s-wave 
omponents of the orderparameter, and are therefore smaller than the leading
ontributions to J in proportion to a positive power of1=R. However, even when R is large, these 
orre
tions
an be qualitatively signi�
ant: sin
e the s�s 
ontribu-tion to Jaa0(��0) from Eq. (12) is independent of thepseudo-spin variables � and �0, the energy of the sys-tem is 2N -fold degenerate to the leading order in 1=R,where N is the number of grains.The leading 
orre
tion to the Josephson 
ouplingenergies has the form of either Eq. (14) or (17). In

Temperature Disorder
normal metals-wavesuper
ondu
torglasssuper
ondu
tingsuper
ondu
torun
onventionalFig. 2. S
hemati
 pi
ture of the phase diagram of anun
onventional super
ondu
tor as a fun
tion of tem-perature and disorderthe presen
e of these 
orre
tions, the energy dependson the 
on�guration of the pseudo-spins, and there isa level of frustration that 
annot be removed (as in theMattis model) by a gauge transformation. Spe
i�
ally,although in the expression for the Josephson energy,Xab ~Jab(�a�b) 
os(~�a � ~�b + ~��a�bab );the ~�ab are small,~��a�aab = Im ln Z(pp);�a�babZ(ss);�a�bab � 1;they re�e
t intrinsi
 frustration in the 
ouplings be-
ause the sum of the phases around a typi
al 
losedloop, P
 ~�, is generally nonzero. Moreover, both ~Jaband ~�ab depend on �a and �b.Therefore, one generi
 
onsequen
e of the 
orre
-tions to the Mattis model is that they lift the energy de-genera
y of the system with respe
t to the pseudo-spinvariables �. Consequently, we expe
t the subsystem ofpseudo-spins to form a glassy state. Another 
onse-quen
e of the 
orre
tions is that they result in the exis-ten
e of equilibrium 
urrents. In the three-dimensional
ase, the existen
e of 
orre
tions to the Mattis modeldoes not destroy the long-range super
ondu
ting order
hara
terized by the phase ~�. Therefore, results fromthe Mattis model 
on
erning the long-range s-wave-li-ke nature of the super
ondu
ting state are robust tothese 
orre
tions. In two spatial dimensions, the 
or-re
tion terms ne
essarily eliminate long-range phase 
o-heren
e, sin
e the 
orrelation fun
tion of the phases inthe ground state diverges logarithmi
ally at large dis-tan
es. However, as long as ~��a�bab � 1, the length atwhi
h the phase 
hanges by a number of the order ofunity is exponentially large in 
omparison to the inter-grain distan
e.1270
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onventional super
ondu
torsAt the intermediate strength of disorder, when Rbe
omes 
omparable to the size of the super
ondu
tingislands, the e�e
tive energy of the system, Eq. (5),
annot even approximately be redu
ed to the Mattismodel, Eq. (7). The phases ~�ab that 
ause frustrationare then of the order of unity. In this 
ase, the systemis a super
ondu
ting glass [14; 15℄. The global phasediagram of the system is s
hemati
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