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In contrast to conventional s-wave superconductivity, unconventional (e.g., p- or d-wave) superconductivity is
strongly suppressed even by relatively weak disorder. Upon approaching the superconductor-metal transition,
the order parameter amplitude becomes increasingly inhomogeneous, leading to effective granularity and a phase
ordering transition described by the Mattis model of spin glasses. One consequence of this is that at sufficiently
low temperatures, between the clean unconventional superconducting and the diffusive metallic phases, there is
necessarily an intermediate superconducting phase that exhibits s-wave symmetry on macroscopic scales.
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1. INTRODUCTION

Generally, the superconducting order parameter
depends on two coordinates and two spin indices,
Agp(r,r'). A classification of possible superconducting
phases in crystalline materials was given in Refs. [1,2].
The majority of crystalline superconductors with low
transition temperatures have a singlet order parameter
with an s-wave orbital symmetry that does not change
under rotation of the coordinates. In the simplest case,

Ans(r, 1) ~ i(52)apd(r — ') AG) (1)

depends significantly only on a single coordinate, where
&5 is the second Pauli matrix in spin space, A(®)(r) is
a complex-valued function, and the superscript s in-
dicates that it has s-wave symmetry. However, over
the last decades, a number of superconductors have
been discovered in which the order parameter trans-
forms according to a nontrivial representation of the
point group of the underlying crystal. Although such
superconductors are quite common by now, following
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the terminology in Ref. [3], we refer to them as “uncon-
ventional.”

Important examples include the high-temperature
cuprate superconductors that have a singlet d-wave
symmetry [2, 4]: Ags(r,r’) = i(62)apA(r — ¢'),
where A(@(r —r') changes sign under coordinate ro-
tation by m/2. The best-known example of a p-wave
superfluid is superfluid *He. One of the leading can-
didates for p-wave pairing in electronic systems is
SraRuOy [5]. There are numerous pieces of experimen-
tal evidence that the superconducting state of SroRuQOy4
has odd parity, breaks time reversal symmetry, and is
a spin triplet [5710]1). An order parameter consistent
with these experiments is given by the chiral p-wave
state [13], which has the form A,z(p) ~ p,Lip,, where
Ayp(p) is the Fourier transform of A,g(r —r’). An-
derson’s theorem accounts for the fact that supercon-
ductivity in s-wave superconductors is destroyed only
when the disorder is so strong that ppl ~ 1, where pg
is the Fermi momentum and [ is the electronic elastic
mean free path. However, in unconventional supercon-
ductors, A,z(p) depends on the direction of the rela-

1) There are, however, some subset of experimental observa-
tions that are not easily reconciled with the existence of a chiral
p-wave state in SrpRuOy4. See, e.g., Refs. [11] and [12] for a
discussion.
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tive momentum p of electrons in the Cooper pair, and
therefore they are much more sensitive to disorder; even
at the temperature 7 = 0, unconventional supercon-
ductivity is destroyed when [/ is comparable to the zero
temperature coherence length &, in the pure supercon-
ductor, I ~ & > 1/pp. The fate of unconventional su-
perconductivity subject to increasing disorder depends
on the sign of the coupling constant in the s-wave chan-
nel. Tt is straightforward to see that if the interaction
in the s-wave channel is attractive, but weaker than
the attraction in an unconventional channel, then as
a function of increasing disorder, there first occurs a
transition from the unconventional to an s-wave phase
when [ ~ &y, which is followed by a transition to a
nonsuperconducting phase when [ ~ p}l.

In this article, we consider the more interesting and
realistic case where the interaction in the s-channel is
repulsive. In this case, we show that there is necessar-
ily a range of disorder strengths in which, although
locally the pairing remains unconventional, the sys-
tem has a global s-wave symmetry with respect to any
macroscopic superconducting interference experiments.
Therefore, there must be at least two phase transi-
tions as a function of increasing disorder: a d-wave
(or p-wave) to s-wave, followed by an s-wave to nor-
mal metal transition. Qualitatively, the phase diagram
of disordered unconventional superconductors is shown
in Fig. 2 (see below). (An incomplete derivation of
these results, only in the d-wave case, was obtained in
Refs. [14,15].)

The existence of the intermediate s-wave supercon-
ducting phase between the unconventional supercon-
ductor and the normal metal (and of the associated
s-wave to unconventional superconductor transition)
can be understood at a mean-field level, which neglects
both classical and quantum fluctuations of the order
parameter. The electron mean free path is an average
characteristic of disorder. We introduce a local value
of the mean free path [(r) averaged over regions with a
size of the order of {;. When the disorder is sufficiently
strong such that, on average, [ < &, the supercon-
ducting order parameter can be large only in the rare
regions where [(r) > & . In this case, the system can be
visualized as a matrix of superconducting islands that
are coupled through Josephson links in a nonsupercon-
ducting metal. (The superconductivity inside an is-
land can also be enhanced if the pairing interaction is
stronger than average, i.e., if the local value of & is
anomalously small.) At sufficiently large values of dis-
order, the distance between the islands is larger than
both their size and the mean free path.

2. MATTIS MODEL DESCRIPTION OF
DISORDERED UNCONVENTIONAL
SUPERCONDUCTORS

Below, we show that in the vicinity of the super-
conductor-normal-metal transition, the superconduc-
ting phase can be described by the Mattis model.

2.1. An isolated superconducting island

We first consider the mean-field description of an
isolated superconducting island. The order parameter
in an individual island is written as A, (r, '), where the
hat indicates the two-by-two matrix structure in spin
space and we label individual islands with Latin indices
a, b, ... Generally, as a consequence of the random dis-
order, neither the shape of the island nor the texture of
pairing tendencies within it have any particular sym-
metry, and hence the resulting gap function Aa(r,r’)
mixes the symmetries of different bulk phases. Since
there is no translational symmetry, it is convenient to
define A, (F,p) as the Fourier transform of A, (r,r')
with respect to the relative coordinate r — r’ and to
use T = (r +r')/2 as the center-of-mass coordinate.
(Because all coordinates to appear in what follows are
the center-of-mass coordinates, we henceforth drop the
tilde.) In the absence of spin—orbit coupling, a sharp
distinction exists between spin-0 (singlet) and spin-1
(triplet) pairing, although even that distinction is en-
tirely lost in the presence of spin—orbit coupling. The
most general form of the gap function (with a phase
convention that we specify later) expressed as a second-
rank spinor in terms of Pauli matrices is

Au(r,p) = e igy (A1 + A, - 6), (1)

where the r and p dependence of the scalar A, and vec-
tor A, quantities that represent the singlet and triplet
components of the order parameter is implicit.

The energy of a single grain is independent of the
overall phase of the order parameter ¢,. In the ab-
sence of spin—orbit interaction, it is also independent
of the direction A,. An additional discrete degener-
acy can be associated with time-reversal invariance of
the problem. It implies that the state described by a
time-reversed order parameter

A

Aq(r,p) = —i62[Aa(r, —p)]*ica (2)
leads to the same energy of the grain. In the absence
of spontaneous breaking of time reversal symmetry, the
time reversal operation leads to the same physical state

A, = Aa; otherwise, the time-reversed state is physi-
cally different.
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It is important to note that generally (at the present
mean-field level), time reversal symmetry is violated in
droplets of unconventional superconductors of a ran-
dom shape. This occurs even in the case where the bulk
phase of the unconventional superconductor is time-
reversal invariant, such as d-wave superconductors or
the p, and p, phases realized in strained SroRuO4 [16].
For example, d-wave superconducting droplets of a ran-
dom shape embedded into a bulk metal can have, with
a nonvanishing probability, a local geometry analogous
to that of a corner SQUID experiment [4], in which
two sides of a droplet with different signs of the order
parameter are connected by a metallic Josephson link
with an effective negative critical current. An equilib-
rium current then flows if the critical current of the
“negative link” is sufficiently large.

We characterize the degeneracy with respect to time
reversal by a pseudo-spin index &, = +1. In this case,
it is convenient to introduce a pseudospin &, in each
grain to distinguish the two time-reversed states,

2 éa(rap)a ga = +]-7 (3)
A

Afr(r,p) = (=1

and write the general expression for the order parame-
ter in each grain as

¢! Ag (r,p), (4)

where we explicitly separate the U(1) phase of the order
parameter.

2.2. Josephson coupling between islands

Electrons propagating in nonsuperconducting met-
als experience Andreev reflection [17] from the super-
conducting islands. This induces Josephson coupling
between the islands. So long as the separation between
islands is large, the spatial dependence of the order pa-
rameter within each grain, Aé«(r,p), is not affected.
Therefore, the low-energy Hamiltonian of the system
can be expressed in terms of the phases ¢, only. The
energy of this coupling can be expressed in the form

E; = _% Z Jab(§alp) cos[da — b + 0an (0, )], (B)
a#b

where J,;,(£1) > 0 is the Josephson coupling energy
between the islands a and b, and 0,,(&,, &) is a phase
determined by the spatial dependence of the complex
order parameter in the grains, A& (r, p) (which in turn
still depends on which state, £, = +1, is involved).

Our goal is to show that in the limit in which the
distance between the islands is sufficiently large com-
pared to their size, the link phases can be written as

Bab(Ca, &) ~ 05 — 65 (6)

Equations (5) and (6) represent the xy Mattis model,
which is well known in the theory of spin glasses [18].
We can gauge away 6,, reducing Eq. (5) to a conven-
tional form familiar from the s-wave superconductor,
or xy ferromagnet,

1
— €alb _
By=—5Y EG" =
a#b

- —% Z Jab(Eap) cos |:(5a - &b] , (1)
a#b

where ¢, = ¢o + f%e. Therefore, the system is not a
superconducting glass because its ground state has a
hidden symmetry.

Although our conclusions are quite general, for sim-
plicity we consider the situation where the charac-
teristic radius of the grain is of order of the zero-
temperature superconducting coherence length and the
value of the order parameter in the puddles is much
smaller than in pure bulk superconductors, A < Ay.
This situation applies, for example, near the point of a
quantum superconductor—metal transition, where the
typical distance between the superconducting grains is
larger than their size, which is of the order of the zero-
temperature coherence length [19]. In this case, at large
separations between the grains, the Josephson coupling
energy can be written in the form

ES® = 2Re [¢i0— 756 ] (8)
where
78¢ :tr/drdr'd dp' A
o pdp'Ag(r,p) x

x C(r —1';p,p)AST (', p'). (9)

Here, tr denotes the trace over all spin indices and
C’(r — r';p,p’') is the integral over energies of the
Cooperon diagrams illustrated in Fig. 1. The exchange
energies Jsg, and the phase 0,4 (&, ¢') are related to the

modulus and phase of

2786, = Juur (E€") exD [i6aar (£,€')] .

2.2.1. Singlet pairing

We begin by considering the case where the Cooper
pairing occurs in the singlet channel A§ = ig2AS (v, p),
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Fig.1. Diagrammatic representation of the Cooperon In the above formulas, the d-wave component of the

ladder. Solid lines are electron Green's functions,

whereas dashed lines are impurities. C(r — r';p, p)

in Eq. (9) is obtained by integrating this ladder over
energy

which includes s- and d-wave superconductors. In the
presence of disorder, even in the case where the clean
bulk phase is a pure d-wave superconductor, the order
parameter in each grain contains an s-wave component

AL (r,p) = AP (r,p) + AL (r,p),  (10)

where the superscript in the parenthesis stands for the
orbital symmetry, whereas ¢ indicates the Ising variable
that specifies which of the two time-reversed versions
of the gap function is being considered. Substituting
Eq. (10) in Eq. (9) and evaluating the Cooperon, we
obtain three terms corresponding to s—s, s—d, and d—d
Josephson couplings:

788, = 78 gD Z 6D (1)

At distances long compared to p}l but small compared
to the thermal dephasing length, the s—s component is
given by

Z(Sf) §33 v
aa |1'a ey |D

(A§HALY), (12)

where v is the density of states at the Fermi level, D
is dimensionality of the system, r, and r, are the lo-
cations of grains a and a', and (AS) denotes the order
parameter integrated over a single grain,

(A%) = / dr dp AL (r, p). (13)

Strictly speaking, the slow power-law decay of the
Josephson coupling constant in Eq. (12) leads to a log-
arithmic divergence of the ground-state energy. How-
ever, multiple Andreev reflections [17] of diffusing elec-
trons from the grains provide a cutoff of this divergence
at large distances [19]. Since the cutoff length is greater
than the typical distance between the grains, our re-
sults are not affected by the presence of this cutoff.

In the same long-distance limit, the s—d and d—d
contributions are given by

1

— Ty

Z(Sd)’E

aa! <A§*>Qa, ”8 0 v (14)

| D

order parameter in grain a is described by the se-
cond-rank tensor Q For example, for a spherical

Qa z]( )plp.] (Wlth

a,ij’

Fermi surface in which Ag )¢ (r,p) =

Qa Zl( )

0), we have

Q= [ dr s (10

It is important to note that Z(Sd) and Z(dd) fall
off faster with the distance between the grains than
Z C(LZS) does. Therefore, they can be neglected at large

inter-grain separations. The leading term Ziis) given
by Eq. (12) has a phase factor that can be written as
a sum of phase factors of individual grains, which are
independent of the direction of the link r, —r,. There-
fore, we arrive at the Mattis model, Egs. (5) and (6),
where 6¢ is the phase of (A§) in Eq. (13). Indeed, in
this limit, Jup(1) = Jap(—1) = Jap is independent of &,
and &,.

2.2.2. Triplet pairing

We now turn to triplet superconductivity and begin
with the case where spin—orbit coupling is negligible.
Even in the case where p, + ip, superconductivity oc-
curs in the absence of disorder, the order parameter in a
particular grain acquires an admixture of other p-wave
components. However, the triplet and singlet compo-
nents of the order parameter do not mix. In this case,
we obtain the following form of the Josephson coupling
from Eq. (9):

1
Z(PZ[’) §33 OCI/A£ ozAE a*a 8] :
|ty —rar |D

(17)
where the matrix A£ % describes the p-wave order pa-
rameter in grain a. For example, for a spherical Fermi
surface with A, (r,p) = &QASZ?(r)pi, it is given by

ALY = / dr A5G ( (18)

The phase of the Josephson coupling in Eq. (17) de-
pends on the relative orientation between the spatial
structure of the order parameter Agf‘ (where the in-
dex i indicates a preferred axis) and the direction of

the bond between the grains. As a result, the phase of
7(pp) €€’

aa’

in Eq. (17) cannot be represented in the form
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of Eq. (6) in which the phases 6, and 6, depend only
on the grain properties but not on the direction of the
link connecting them, r, — r,s. This means that we
obtain a Josephson junction array with frustration.

However, in the presence of spin—orbit interactions
in nonuniform superconductors, the singlet, A, and
triplet, A, components of the order parameter mix.
In this case, at large separations between grains, the
Josephson coupling is again dominated by the s-wave
component of the order parameter and is described by
Eq. (12), which again leads us to the Mattis model,
Egs. (5) and (6).

3. CORRECTIONS TO THE MATTIS MODEL
AND THE GLOBAL PHASE DIAGRAM

We have shown that at sufficiently strong disorder,
the properties of disordered unconventional supercon-
ductors at long spatial scales can be described by the
effective Hamiltonian in Eq. (5). To the leading order
in inverse powers of the typical intergrain distance R,
Eq. (5) reduces to the Mattis model in Eq. (7). In this
limit, the random phases of the Josephson couplings
between islands can be gauged away; as can be seen
from the construction that leads to Eq. (7), the ordered
state corresponds to uniform-phase (ferromagnetic) or-
dering of the s-wave components from grain to grain,
even when the largest component of the order param-
eter on each grain is unconventional. Thus, at long
distances, the system behaves as an s-wave supercon-
ductor with respect to all superconducting interference
experiments. For example, corner SQUID experiments
[4] would not exhibit trapped fluxes. In the case where,
in the absence of disorder, there is a p, + ip, state,
where the disorder is nearly strong enough to quench
the superconductivity, there are no edge currents, and
in the presence of an external magnetic field, the long
distance (topological) vortex structure becomes that of
a conventional s-wave superconductor.

Corrections to the Mattis model come from the cou-
pling between the non-s-wave components of the order
parameter, and are therefore smaller than the leading
contributions to .J in proportion to a positive power of
1/R. However, even when R is large, these corrections
can be qualitatively significant: since the s—s contribu-
tion to Jua (€€') from Eq. (12) is independent of the
pseudo-spin variables & and £, the energy of the sys-
tem is 2V-fold degenerate to the leading order in 1/R,
where N is the number of grains.

The leading correction to the Josephson coupling
energies has the form of either Eq. (14) or (17). In

Temperature

Y

Disorder

Fig.2. Schematic picture of the phase diagram of an
unconventional superconductor as a function of tem-
perature and disorder

the presence of these corrections, the energy depends
on the configuration of the pseudo-spins, and there is
a level of frustration that cannot be removed (as in the
Mattis model) by a gauge transformation. Specifically,
although in the expression for the Josephson energy,

Z ja,b(é-agb) COS((ga — éb + éngb)7
ab

the éab are small,

- (ng)yfafb
aSa __ a
9ab = Im ln W <K ].,
ab
they reflect intrinsic frustration in the couplings be-
cause the sum of the phases around a typical closed

loop, EO 6, is generally nonzero. Moreover, both Jab

and éab depend on &, and &.

Therefore, one generic consequence of the correc-
tions to the Mattis model is that they lift the energy de-
generacy of the system with respect to the pseudo-spin
variables £. Consequently, we expect the subsystem of
pseudo-spins to form a glassy state. Another conse-
quence of the corrections is that they result in the exis-
tence of equilibrium currents. In the three-dimensional
case, the existence of corrections to the Mattis model
does not destroy the long-range superconducting order
characterized by the phase <;~5 Therefore, results from
the Mattis model concerning the long-range s-wave-li-
ke nature of the superconducting state are robust to
these corrections. In two spatial dimensions, the cor-
rection terms necessarily eliminate long-range phase co-
herence, since the correlation function of the phases in
the ground state diverges logarithmically at large dis-
tances. However, as long as 52‘,‘)51’ < 1, the length at
which the phase changes by a number of the order of
unity is exponentially large in comparison to the inter-
grain distance.
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At the intermediate strength of disorder, when R
becomes comparable to the size of the superconducting
islands, the effective energy of the system, Eq. (5),
cannot even approximately be reduced to the Mattis
model, Eq. (7). The phases 6,5 that cause frustration
are then of the order of unity. In this case, the system
is a superconducting glass [14,15]. The global phase
diagram of the system is schematically shown in Fig. 2.
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