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THEORY OF DISORDERED UNCONVENTIONALSUPERCONDUCTORSA. Keles a, A. V. Andreev a, B. Z. Spivak a*, S. A. Kivelson baDepartment of Physis, University of Washington, Seattle, WA 98195, USAbDepartment of Physis, Stanford University, CA 94305, USAReeived May 27, 2014In ontrast to onventional s-wave superondutivity, unonventional (e. g., p- or d-wave) superondutivity isstrongly suppressed even by relatively weak disorder. Upon approahing the superondutor�metal transition,the order parameter amplitude beomes inreasingly inhomogeneous, leading to e�etive granularity and a phaseordering transition desribed by the Mattis model of spin glasses. One onsequene of this is that at su�ientlylow temperatures, between the lean unonventional superonduting and the di�usive metalli phases, there isneessarily an intermediate superonduting phase that exhibits s-wave symmetry on marosopi sales.This artile is dediated to A. F. Andreev on the oasion of his 75th birthdayDOI: 10.7868/S00444510141201281. INTRODUCTIONGenerally, the superonduting order parameterdepends on two oordinates and two spin indies,���(r; r0). A lassi�ation of possible superondutingphases in rystalline materials was given in Refs. [1; 2℄.The majority of rystalline superondutors with lowtransition temperatures have a singlet order parameterwith an s-wave orbital symmetry that does not hangeunder rotation of the oordinates. In the simplest ase,���(r; r0) � i(�̂2)��Æ(r� r0)�(s)(r)depends signi�antly only on a single oordinate, where�̂2 is the seond Pauli matrix in spin spae, �(s)(r) isa omplex-valued funtion, and the supersript s in-diates that it has s-wave symmetry. However, overthe last deades, a number of superondutors havebeen disovered in whih the order parameter trans-forms aording to a nontrivial representation of thepoint group of the underlying rystal. Although suhsuperondutors are quite ommon by now, following*E-mail: spivak�uw.edu

the terminology in Ref. [3℄, we refer to them as �unon-ventional.�Important examples inlude the high-temperatureuprate superondutors that have a singlet d-wavesymmetry [2, 4℄: ���(r; r0) = i(�̂2)���(d)(r � r0),where �(d)(r � r0) hanges sign under oordinate ro-tation by �=2. The best-known example of a p-wavesuper�uid is super�uid 3He. One of the leading an-didates for p-wave pairing in eletroni systems isSr2RuO4 [5℄. There are numerous piees of experimen-tal evidene that the superonduting state of Sr2RuO4has odd parity, breaks time reversal symmetry, and isa spin triplet [5�10℄1). An order parameter onsistentwith these experiments is given by the hiral p-wavestate [13℄, whih has the form���(p) � px�ipy, where���(p) is the Fourier transform of ���(r � r0). An-derson's theorem aounts for the fat that superon-dutivity in s-wave superondutors is destroyed onlywhen the disorder is so strong that pF l � 1, where pFis the Fermi momentum and l is the eletroni elastimean free path. However, in unonventional superon-dutors, ���(p) depends on the diretion of the rela-1) There are, however, some subset of experimental observa-tions that are not easily reoniled with the existene of a hiralp-wave state in Sr2RuO4. See, e. g., Refs. [11℄ and [12℄ for adisussion.1266



ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 Theory of disordered unonventional superondutorstive momentum p of eletrons in the Cooper pair, andtherefore they are muh more sensitive to disorder; evenat the temperature T = 0, unonventional superon-dutivity is destroyed when l is omparable to the zerotemperature oherene length �0 in the pure superon-dutor, l � �0 � 1=pF . The fate of unonventional su-perondutivity subjet to inreasing disorder dependson the sign of the oupling onstant in the s-wave han-nel. It is straightforward to see that if the interationin the s-wave hannel is attrative, but weaker thanthe attration in an unonventional hannel, then asa funtion of inreasing disorder, there �rst ours atransition from the unonventional to an s-wave phasewhen l � �0, whih is followed by a transition to anonsuperonduting phase when l � p�1F .In this artile, we onsider the more interesting andrealisti ase where the interation in the s-hannel isrepulsive. In this ase, we show that there is neessar-ily a range of disorder strengths in whih, althoughloally the pairing remains unonventional, the sys-tem has a global s-wave symmetry with respet to anymarosopi superonduting interferene experiments.Therefore, there must be at least two phase transi-tions as a funtion of inreasing disorder: a d-wave(or p-wave) to s-wave, followed by an s-wave to nor-mal metal transition. Qualitatively, the phase diagramof disordered unonventional superondutors is shownin Fig. 2 (see below). (An inomplete derivation ofthese results, only in the d-wave ase, was obtained inRefs. [14; 15℄.)The existene of the intermediate s-wave superon-duting phase between the unonventional superon-dutor and the normal metal (and of the assoiateds-wave to unonventional superondutor transition)an be understood at a mean-�eld level, whih negletsboth lassial and quantum �utuations of the orderparameter. The eletron mean free path is an averageharateristi of disorder. We introdue a loal valueof the mean free path �l(r) averaged over regions with asize of the order of �0. When the disorder is su�ientlystrong suh that, on average, �l < �0, the superon-duting order parameter an be large only in the rareregions where �l(r) > �0. In this ase, the system an bevisualized as a matrix of superonduting islands thatare oupled through Josephson links in a nonsuperon-duting metal. (The superondutivity inside an is-land an also be enhaned if the pairing interation isstronger than average, i. e., if the loal value of �0 isanomalously small.) At su�iently large values of dis-order, the distane between the islands is larger thanboth their size and the mean free path.

2. MATTIS MODEL DESCRIPTION OFDISORDERED UNCONVENTIONALSUPERCONDUCTORSBelow, we show that in the viinity of the super-ondutor�normal-metal transition, the superondu-ting phase an be desribed by the Mattis model.2.1. An isolated superonduting islandWe �rst onsider the mean-�eld desription of anisolated superonduting island. The order parameterin an individual island is written as �̂a(r; r0), where thehat indiates the two-by-two matrix struture in spinspae and we label individual islands with Latin indiesa, b, : : : Generally, as a onsequene of the random dis-order, neither the shape of the island nor the texture ofpairing tendenies within it have any partiular sym-metry, and hene the resulting gap funtion �̂a(r; r0)mixes the symmetries of di�erent bulk phases. Sinethere is no translational symmetry, it is onvenient tode�ne �̂a(~r;p) as the Fourier transform of �̂a(r; r0)with respet to the relative oordinate r � r0 and touse ~r = (r + r0)=2 as the enter-of-mass oordinate.(Beause all oordinates to appear in what follows arethe enter-of-mass oordinates, we heneforth drop thetilde.) In the absene of spin�orbit oupling, a sharpdistintion exists between spin-0 (singlet) and spin-1(triplet) pairing, although even that distintion is en-tirely lost in the presene of spin�orbit oupling. Themost general form of the gap funtion (with a phaseonvention that we speify later) expressed as a seond-rank spinor in terms of Pauli matries is�̂a(r;p) = ei�a i�̂2 ��a1̂ +�a � �̂� ; (1)where the r and p dependene of the salar�a and ve-tor�a quantities that represent the singlet and tripletomponents of the order parameter is impliit.The energy of a single grain is independent of theoverall phase of the order parameter �a. In the ab-sene of spin�orbit interation, it is also independentof the diretion �a. An additional disrete degener-ay an be assoiated with time-reversal invariane ofthe problem. It implies that the state desribed by atime-reversed order parameter�̂�a(r;p) � �i�̂2[�̂a(r;�p)℄�i�̂2 (2)leads to the same energy of the grain. In the abseneof spontaneous breaking of time reversal symmetry, thetime reversal operation leads to the same physial state�̂�a = �̂a; otherwise, the time-reversed state is physi-ally di�erent.1267 9*



A. Keles, A. V. Andreev, B. Z. Spivak, S. A. Kivelson ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014It is important to note that generally (at the presentmean-�eld level), time reversal symmetry is violated indroplets of unonventional superondutors of a ran-dom shape. This ours even in the ase where the bulkphase of the unonventional superondutor is time-reversal invariant, suh as d-wave superondutors orthe px and py phases realized in strained Sr2RuO4 [16℄.For example, d-wave superonduting droplets of a ran-dom shape embedded into a bulk metal an have, witha nonvanishing probability, a loal geometry analogousto that of a orner SQUID experiment [4℄, in whihtwo sides of a droplet with di�erent signs of the orderparameter are onneted by a metalli Josephson linkwith an e�etive negative ritial urrent. An equilib-rium urrent then �ows if the ritial urrent of the�negative link� is su�iently large.We haraterize the degeneray with respet to timereversal by a pseudo-spin index �a = �1. In this ase,it is onvenient to introdue a pseudospin �a in eahgrain to distinguish the two time-reversed states,�̂�aa (r;p) = ( �̂a(r;p); �a = +1;�̂�a(r;p); �a = �1; (3)and write the general expression for the order parame-ter in eah grain as ei�a�̂�aa (r;p); (4)where we expliitly separate the U(1) phase of the orderparameter.2.2. Josephson oupling between islandsEletrons propagating in nonsuperonduting met-als experiene Andreev re�etion [17℄ from the super-onduting islands. This indues Josephson ouplingbetween the islands. So long as the separation betweenislands is large, the spatial dependene of the order pa-rameter within eah grain, �̂�aa (r;p), is not a�eted.Therefore, the low-energy Hamiltonian of the systeman be expressed in terms of the phases �a only. Theenergy of this oupling an be expressed in the formEJ = �12Xa6=b Jab(�a�b) os[�a � �b + �ab(�a; �b)℄; (5)where Jab(�1) > 0 is the Josephson oupling energybetween the islands a and b, and �ab(�a; �b) is a phasedetermined by the spatial dependene of the omplexorder parameter in the grains, �̂�aa (r;p) (whih in turnstill depends on whih state, �a = �1, is involved).

Our goal is to show that in the limit in whih thedistane between the islands is su�iently large om-pared to their size, the link phases an be written as�ab(�a; �b) � ��aa � ��bb : (6)Equations (5) and (6) represent the xy Mattis model,whih is well known in the theory of spin glasses [18℄.We an gauge away �a, reduing Eq. (5) to a onven-tional form familiar from the s-wave superondutor,or xy ferromagnet,EJ = �12Xa6=bE�a�bab == �12Xa6=b Jab(�a�b) os h~�a � ~�bi ; (7)where ~�a = �a + ��aa . Therefore, the system is not asuperonduting glass beause its ground state has ahidden symmetry.Although our onlusions are quite general, for sim-pliity we onsider the situation where the hara-teristi radius of the grain is of order of the zero-temperature superonduting oherene length and thevalue of the order parameter in the puddles is muhsmaller than in pure bulk superondutors, � � �0.This situation applies, for example, near the point of aquantum superondutor�metal transition, where thetypial distane between the superonduting grains islarger than their size, whih is of the order of the zero-temperature oherene length [19℄. In this ase, at largeseparations between the grains, the Josephson ouplingenergy an be written in the formE�a�bab = 2Re hei(�a��b)Z�a�bab i ; (8)whereZ��0aa0 = tr Z dr dr0dp dp0�̂�a(r;p)�� Ĉ(r� r0;p;p0)�̂�0ya0 (r0;p0): (9)Here, tr denotes the trae over all spin indies andĈ(r � r0;p;p0) is the integral over energies of theCooperon diagrams illustrated in Fig. 1. The exhangeenergies J��0aa0 and the phase �aa0(�; �0) are related to themodulus and phase of2Z��0aa0 = Jaa0(��0) exp [i�aa0(�; �0)℄ :2.2.1. Singlet pairingWe begin by onsidering the ase where the Cooperpairing ours in the singlet hannel �̂�a = i�̂2��a(r;p),1268



ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 Theory of disordered unonventional superondutors= + + + : : :C�(r� r0;p;p0)Fig. 1. Diagrammati representation of the Cooperonladder. Solid lines are eletron Green's funtions,whereas dashed lines are impurities. Ĉ(r � r0;p;p)in Eq. (9) is obtained by integrating this ladder overenergywhih inludes s- and d-wave superondutors. In thepresene of disorder, even in the ase where the leanbulk phase is a pure d-wave superondutor, the orderparameter in eah grain ontains an s-wave omponent��a(r;p) = �(s);�a (r;p) + �(d);�a (r;p); (10)where the supersript in the parenthesis stands for theorbital symmetry, whereas � indiates the Ising variablethat spei�es whih of the two time-reversed versionsof the gap funtion is being onsidered. SubstitutingEq. (10) in Eq. (9) and evaluating the Cooperon, weobtain three terms orresponding to s�s, s�d, and d�dJosephson ouplings:Z��0aa0 = Z(ss);��0aa0 + Z(dd);��0aa0 + Z(sd);��0aa0 : (11)At distanes long ompared to p�1F but small omparedto the thermal dephasing length, the s�s omponent isgiven by Z(ss);��0aa0 / �jra � ra0 jD h��aih��0�a0 i; (12)where � is the density of states at the Fermi level, Dis dimensionality of the system, ra and ra0 are the lo-ations of grains a and a0, and h��ai denotes the orderparameter integrated over a single grain,h��ai = Z dr dp��a(r;p): (13)Stritly speaking, the slow power-law deay of theJosephson oupling onstant in Eq. (12) leads to a log-arithmi divergene of the ground-state energy. How-ever, multiple Andreev re�etions [17℄ of di�using ele-trons from the grains provide a uto� of this divergeneat large distanes [19℄. Sine the uto� length is greaterthan the typial distane between the grains, our re-sults are not a�eted by the presene of this uto�.In the same long-distane limit, the s�d and d�dontributions are given byZ(sd);��0aa0 / � h���a iQ�0a0;ij�i�j 1jra � ra0 jD (14)

andZ(dd);��0aa0 / � Q�a;ijQ�0ya0;kl�i�j�k�l 1jra � ra0 jD : (15)In the above formulas, the d-wave omponent of theorder parameter in grain a is desribed by the se-ond-rank tensor Q�a;ij . For example, for a spherialFermi surfae in whih�(d);�a (r;p) = Q�a;ij(r)pipj (withQ�a;ii(r) = 0), we haveQ�a;ij = Z drQ�a;ij(r): (16)It is important to note that Z(sd)ab and Z(dd)ab fallo� faster with the distane between the grains thanZ(ss)ab does. Therefore, they an be negleted at largeinter-grain separations. The leading term Z(ss)ab givenby Eq. (12) has a phase fator that an be written asa sum of phase fators of individual grains, whih areindependent of the diretion of the link ra� rb. There-fore, we arrive at the Mattis model, Eqs. (5) and (6),where ��a is the phase of h��ai in Eq. (13). Indeed, inthis limit, Jab(1) = Jab(�1) � Jab is independent of �aand �b. 2.2.2. Triplet pairingWe now turn to triplet superondutivity and beginwith the ase where spin�orbit oupling is negligible.Even in the ase where px + ipy superondutivity o-urs in the absene of disorder, the order parameter in apartiular grain aquires an admixture of other p-waveomponents. However, the triplet and singlet ompo-nents of the order parameter do not mix. In this ase,we obtain the following form of the Josephson ouplingfrom Eq. (9):Z(pp);��0aa0 / �A�;�a;i A�0;��a0;j �i�j 1jra � ra0 jD ; (17)where the matrix A�;�a;i desribes the p-wave order pa-rameter in grain a. For example, for a spherial Fermisurfae with �̂a(r;p) = �̂�A�;�a;i (r)pi, it is given byA�;�a;i = Z drA�;�a;i (r): (18)The phase of the Josephson oupling in Eq. (17) de-pends on the relative orientation between the spatialstruture of the order parameter A�;�a;i (where the in-dex i indiates a preferred axis) and the diretion ofthe bond between the grains. As a result, the phase ofZ(pp);��0aa0 in Eq. (17) annot be represented in the form1269



A. Keles, A. V. Andreev, B. Z. Spivak, S. A. Kivelson ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014of Eq. (6) in whih the phases �a and �a0 depend onlyon the grain properties but not on the diretion of thelink onneting them, ra � ra0 . This means that weobtain a Josephson juntion array with frustration.However, in the presene of spin�orbit interationsin nonuniform superondutors, the singlet, �, andtriplet, �, omponents of the order parameter mix.In this ase, at large separations between grains, theJosephson oupling is again dominated by the s-waveomponent of the order parameter and is desribed byEq. (12), whih again leads us to the Mattis model,Eqs. (5) and (6).3. CORRECTIONS TO THE MATTIS MODELAND THE GLOBAL PHASE DIAGRAMWe have shown that at su�iently strong disorder,the properties of disordered unonventional superon-dutors at long spatial sales an be desribed by thee�etive Hamiltonian in Eq. (5). To the leading orderin inverse powers of the typial intergrain distane R,Eq. (5) redues to the Mattis model in Eq. (7). In thislimit, the random phases of the Josephson ouplingsbetween islands an be gauged away; as an be seenfrom the onstrution that leads to Eq. (7), the orderedstate orresponds to uniform-phase (ferromagneti) or-dering of the s-wave omponents from grain to grain,even when the largest omponent of the order param-eter on eah grain is unonventional. Thus, at longdistanes, the system behaves as an s-wave superon-dutor with respet to all superonduting interfereneexperiments. For example, orner SQUID experiments[4℄ would not exhibit trapped �uxes. In the ase where,in the absene of disorder, there is a px � ipy state,where the disorder is nearly strong enough to quenhthe superondutivity, there are no edge urrents, andin the presene of an external magneti �eld, the longdistane (topologial) vortex struture beomes that ofa onventional s-wave superondutor.Corretions to the Mattis model ome from the ou-pling between the non-s-wave omponents of the orderparameter, and are therefore smaller than the leadingontributions to J in proportion to a positive power of1=R. However, even when R is large, these orretionsan be qualitatively signi�ant: sine the s�s ontribu-tion to Jaa0(��0) from Eq. (12) is independent of thepseudo-spin variables � and �0, the energy of the sys-tem is 2N -fold degenerate to the leading order in 1=R,where N is the number of grains.The leading orretion to the Josephson ouplingenergies has the form of either Eq. (14) or (17). In

Temperature Disorder
normal metals-wavesuperondutorglasssuperondutingsuperondutorunonventionalFig. 2. Shemati piture of the phase diagram of anunonventional superondutor as a funtion of tem-perature and disorderthe presene of these orretions, the energy dependson the on�guration of the pseudo-spins, and there isa level of frustration that annot be removed (as in theMattis model) by a gauge transformation. Spei�ally,although in the expression for the Josephson energy,Xab ~Jab(�a�b) os(~�a � ~�b + ~��a�bab );the ~�ab are small,~��a�aab = Im ln Z(pp);�a�babZ(ss);�a�bab � 1;they re�et intrinsi frustration in the ouplings be-ause the sum of the phases around a typial losedloop, P ~�, is generally nonzero. Moreover, both ~Jaband ~�ab depend on �a and �b.Therefore, one generi onsequene of the orre-tions to the Mattis model is that they lift the energy de-generay of the system with respet to the pseudo-spinvariables �. Consequently, we expet the subsystem ofpseudo-spins to form a glassy state. Another onse-quene of the orretions is that they result in the exis-tene of equilibrium urrents. In the three-dimensionalase, the existene of orretions to the Mattis modeldoes not destroy the long-range superonduting orderharaterized by the phase ~�. Therefore, results fromthe Mattis model onerning the long-range s-wave-li-ke nature of the superonduting state are robust tothese orretions. In two spatial dimensions, the or-retion terms neessarily eliminate long-range phase o-herene, sine the orrelation funtion of the phases inthe ground state diverges logarithmially at large dis-tanes. However, as long as ~��a�bab � 1, the length atwhih the phase hanges by a number of the order ofunity is exponentially large in omparison to the inter-grain distane.1270
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