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1. INTRODUCTION

This article provides a brief review of the influ-
ence of Andreev reflection on the behavior of super-
fluid ®He. Since, as we see below, the dispersion curve
of the quasiparticle/quasihole excitations depends on
the relative motions of the fluid, any mechanical dis-
turbance of the liquid gives rise to a disordered effec-
tive gap for the excitations which are no longer free to
move through the liquid unconstrained. In this land-
scape of varying gaps, excitations are constantly being
subjected to Andreev processes to the extent that the
whole mechanical behavior of the normal fluid of excita-
tions is completely dominated by such processes. This
is the system where the Andreev process indeed comes
into its own. However, this behavior is not a drawback.
On the contrary, we are able to exploit these processes
which allow us to undertake a range of experimental
investigations which are otherwise experimentally in-
accessible.

2. THE ANALOGY BETWEEN ANDREEV
REFLECTION AT A BOUNDARY
SEPARATING DIFFERENT
SUPERCONDUCTORS, AND IN A REGION
SEPARATING STATIONARY AND MOVING
SUPERFLUID 2He

The original Andreev reflection process was pro-
posed by Aleksandr Fedorovich for describing the be-
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havior of quasiparticles in superfluids in regions where
the energy gap is changing spatially, as for example
at a superconducting—normal interface or at an inter-
face between two dissimilar superconductors with dif-
ferent energy gaps [1]. Of course, the unique aspect
of this process is the “flavor” change made by excita-
tions as they approach a region where the gap rises
above the total energy of the excitation. In this situ-
ation an approaching excitation finds itself arriving at
a minimum in the dispersion curve at which its group
velocity falls to zero and then it retraces its trajectory
with almost no change in its momentum but with the
opposite group velocity. Thus an incoming quasipar-
ticle is retro-reflected as a quasihole and an incoming
quasihole will be reflected as a quasiparticle.

From this new understanding of the process, a whole
spectrum of unique phenomena can be recognized,
quasiparticle—quasihole bound states and many more.
However, that is the picture we recognize from static
systems to which the concept was originally applied.
(The rigid metallic lattices of superconducting/normal
interfaces are clearly static.)

It is the purpose of this paper to recapitulate those
aspects of this behavior which we have studied in non-
static contexts, i.e., in superfluids. Here the phe-
nomenon, while operating in a similar way, has a much
richer and more complex behavior. In a moving BCS
system the effective energy gaps are not static but gov-
erned by the flow of the fluid adding a whole new spec-
trum of properties with often very counter-intuitive ef-
fects.
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Superfluid 3He has a complex and anisotropic order
parameter, but for the purposes of the present treat-
ment we will consider only the B phase which has
an energy gap in low magnetic fields with the same
magnitude around the Fermi surface. Therefore, the
straightforward ideas of Andreev reflection developed
for simple superconductors can be transferred to su-
perfluid 3He-B directly. It is true that, while the mag-
nitude of the B-phase gap is isotropic, the pairing is in
fact anisotropic since the directional properties of the
Cooper pairs vary around the Fermi sphere. However,
for the arguments used here this does not really come
into play until we start applying magnetic fields.

To begin, let us look at the dispersion curve of the
excitations in superfluid *He (with energy gap A) as
shown in Fig. 1A. For simplicity the curve only covers
the single z-dimension and is drawn for the rest frame
of the liquid. We note that there are four classes of
excitations. On the right-hand side of the figure quasi-
particles move in the positive x direction and quasi-
holes move in the —z direction, both with momenta
very close to the Fermi momentum value, pr. On the
left-hand side of the curve there are quasiholes moving
in the z direction and quasiparticles moving in the —z
direction, both with momenta close to —ppg.

Let us assume a neighboring region of superfluid
with a larger (static) gap, A’, with the dispersion curve
as shown in Fig. 1B. If we then imagine a low-energy
quasiparticle from region A traveling in the z direction
towards region B, then as the excitation moves into
the region of increasing energy gap, it decelerates as
its group velocity decreases (with the decreasing slope
of the dispersion curve) and finally reaches the curve
minimum, having slowed to zero velocity. It can then
penetrate no further into the region of increasing gap
but will retrace its trajectory with increasing velocity
in the —z direction, but with more or less the same to-
tal momentum as it had originally. Hence, it now has
its group velocity and momentum oppositely directed
and it has become a quasihole. We can use similar ar-
guments for an incoming quasihole. This is the classical
Andreev scenario.

The new aspect, which we have to take into account
in the superfluid, is the fact that we can set various
parts of the liquid into relative motion. Since the dis-
persion curve is tied to the rest frame of the liquid,
then for comparing excitation energies we have to ap-
ply the correct Galilean transformation to make the
various curves consistent. This reduces to the classi-
cal argument that if we observe liquid approaching us
with a (small) velocity v then a fermion in that lig-
uid approaching us with velocity w in that rest frame

will appear to us to have a velocity of v + w and thus
the corresponding kinetic energy will be m(v + w)?/2
rather than the mw?/2 in its own liquid rest frame.
Near the Fermi energy, the fermions have a velocity
+vp. Thus in our rest frame, we will see the energy
of the dispersion curve skewed by the transformation
E' — E+vpp. The curve for superfluid at rest is shown
in Fig. 2A. The equivalent curve for liquid moving to
the right with velocity v is shown in Fig. 2B. A quasi-
particle on the right-hand side of Fig. 2A moving in the
x direction could not penetrate into the moving liquid
of Fig. 2B but would be Andreev-reflected and emerge
traveling in the —z direction but as a quasihole. Unlike
in Fig. 1 the behavior of quasiparticles and quasiholes
is not symmetrical. A quasihole on the left-hand side
of Fig. 2A traveling in the = direction would be able to
penetrate into the moving region. Similar arguments
can be used for excitations traveling from the moving
to the stationary regions.

3. THE EFFECT OF THE ANDREEV
REFLECTION OF QUASIPARTICLES AND
QUASIHOLES ON THE DAMPING OF A
MOVING OBJECT IN SUPERFLUID 3He-B

The above section concludes all the introduction to
Andreev reflection in the superfluid in relative motion
that we need initially to understand the basic ideas
of the dynamics of the excitation gas in the superfluid.
Throughout this work we assume that we are in the low-
temperature limit 7' <« T,.. Here the mean free path of
the excitations is invariably much greater than any rea-
sonable experimental dimension and we can consider
the excitation motion to be entirely ballistic.

The first topic we discuss is the mechanical damp-
ing of an object moving in the superfluid, since this
serves as a good introduction to the dynamics and also
provides us with some important experimental tools for
probing the superfluid.

Let us take again a one-dimensional toy model of
a moving object where we consider the bulk liquid to
be stationary but the liquid near the moving object to
be at rest with respect to it. The scenario is shown
in Fig. 3. The important aspect of this process is the
fact that the flow field associated with the motion of
the wire provides a sort of Maxwell demon which leads
to different responses to the moving object from quasi-
particles and quasiholes. From the figure it is apparent
that quasiparticles approaching the leading side of the
object will be able reach the surface but quasiholes ap-
proaching from the front cannot reach the region of liq-
uid moving with the wire and will be Andreev-reflected,
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Fig.1. The dispersion curves for two superconductors (or superfluids) with different energy gaps. A quasiparticle or quasihole
in region A moving right would not be able to penetrate into the superconductor (superfluid) of region B but would undergo
Andreev reflection and retrace its incoming trajectory
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Fig.2. A) The dispersion curve for excitations in superfluid *He-B at rest. B) The dispersion curve for the superfluid when

moving with velocity v in the x direction skewed by the Galilean transformation term E' — E +vpr. A quasiparticle on the

right-hand side of the curve in region A moving to the right would not be able to penetrate into the moving superfluid of

region B, but would undergo Andreev reflection and retrace its incoming trajectory. Conversely, a quasihole on the left-hand
side of region A moving to the right is free to enter region B

and thus cannot exchange momentum with the wire.
That means that particle-hole symmetry is broken and
only quasiparticles can reach the leading boundary of
the object to be normally reflected transferring the mo-
mentum of 2pp to the object, and thereby damping the
motion. Conversely on the trailing side, quasiparticles
cannot reach the object and only quasiholes can reach
the surface to be normally reflected but also transfer-
ring 2pp of momentum to the object and also damping
the motion. In other words, the quasiparticles hitting
the front side of the object slow it down, but also the
quasiholes hitting the rear side slow it down. This has
the effect of providing an enormous damping force on
the moving object. The energies of the excitations are
very low in the ballistic regime and have a vanishing
density being well below the superfluid transition tem-

perature but each collision exchanges a momentum of
the order of the Fermi momentum which is very large.
In short, the damping force on a moving object is orders
of magnitude greater than it would be for a classical gas
of particles with the same effective mass, density, and
temperature.

Using this simple one-dimensional picture, and as-
suming that the moving object presents an area a nor-
mal to the motion, we can find the damping force
by simply integrating over those excitations which can
reach the surface of the object and exchange 2pp, using
the arguments of Ref. [1]. The integral takes the form
(with the usual notation)

A+4pr v E
F=- 8prag(E) exp <_k_T) vy dE.
A
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Since the group velocity vy is 0E/Op and the density of
states is g(E) = (2/h)0p/0E a convenient cancellation
occurs and the integral reduces to

T E
— apF -
F= / 5 exp( kT> dE.
A
This yields
_ 16aprkT A Prv
F=— (‘ﬁ) 1o (<57)]

which gives a force of the form

(5]

in the low-velocity limit, where prpv < ET'.

This force is very nonlinear in v. However, at low
velocities when ppv < kT the damping becomes lin-
ear in v and proportional to the gap Boltzmann fac-
tor exp(—A/kT) [2]. Since the latter is a very rapidly
changing function of temperature, the damping on a
moving object in superfluid *He-B provides an incred-
ibly sensitive thermometer measuring the temperature
of the liquid directly. It is at first sight paradoxi-
cal that we can determine the temperature of a su-
perfluid by measuring the mechanical damping effect
of the normal fluid, despite the fact that the nor-
mal fluid density is vanishingly small. This all arises
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Fig.4. The Landau critical velocity condition, when

the velocity of the moving liquid becomes large enough

that one minimum in the dispersion curve falls to zero

energy (and therefore excitations at this point on the

dispersion curve can be freely created by the object),
see text

from the Andreev-reflection Maxwell demon completely
overwhelming particle-hole symmetry.

This serendipitous behavior immediately allows us
to make many different types of measurement in the su-
perfluid in the “pure” quantum regime (p,, ~ 0) because
we have a very sensitive thermometer in the liquid.

At this point we should note that if a moving body
in the liquid is traveling fast enough that v = pp/A,
then one minimum in the dispersion curve in the rest
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frame of the moving object decreases to zero energy, as
shown in Fig. 4. At this velocity, in the frame of the
moving body, the energy of quasiparticle and quasihole
excitations at the minimum becomes zero. This means
that a moving body which scatters excitations elasti-
cally in its own rest frame can thus freely create excita-
tions at the dispersion curve minimum as their energies
are zero. This is the Landau critical velocity where the
superfluidity breaks down and Cooper pairs in the fluid
are broken by the motion. As seen in the Fig. 4, at this
critical velocity quasiparticles are then emitted in the
direction of motion of the scattering body and quasi-
holes are emitted in the reverse direction.

Therefore, a moving object can detect quasiparti-
cle and quasihole excitations from their contribution
to the damping of the motion but, furthermore, when
the object moves fast enough it can also create these
excitations thus becoming an excitation source. The
importance of this, as we shall see later, is that we
now have the basic elements for producing an excita-
tion spectrometer: a potential source and a potential
detector.

4. VIBRATING WIRE RESONATORS AND
QUARTZ “TUNING-FORK” RESONATORS

To measure the drag on a moving object in practice,
we have used the vibrating wire resonator as shown in
Fig. 5. This consists of a thin superconducting wire
bowed into an approximate semicircle of a few mm
across. We normally begin with filamentary supercon-
ducting wire and over the active region etch off the
outer metallic matrix and cut the exposed filaments,
leaving just a single strand. It is possible, with care,
to make resonators with filaments down to micron di-
ameters in this way. Such a device has a mechani-
cal resonance moving normal to the semicircle plane of
from 100 to 1000 Hz depending on the wire used. To
detect the very small damping at the lowest temper-
atures, the wires need to be of the smallest diameter
possible to make the inertia of the wire small in com-
parison to the damping. A vertical magnetic field is
applied and the wire’s mechanical resonance is excited
from the Lorentz force on a resonant current applied
to the loop. If the wire is superconducting there is no
resistive voltage developed across the wire and thus a
measure of the oscillating voltage across the wire gives
a direct measure of the velocity. The frequency can
then be scanned across the mechanical resonance and
the damping (width at half height) measured.

The damping measured in this way for a rather
thicker wire (diameter about 0.125 mm) is shown in
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Fig.6. The damping of a vibrating wire resonator (the
width of the Lorentzian line shape at half height) in
superfluid *He-B at zero pressure plotted against the
temperature as measured by a platinum NMR ther-
mometer [3]. Note that below about 0.3 mK where the
system enters the ballistic limit (i.e., where the mean
free paths of the excitations exceeds the diameter of
the wire) the damping follows the gap Boltzmann fac-
tor exp(—A/kT). The deviation at low temperature
occurs when the liquid damping becomes so low that
we begin to see the small internal damping of the wire
material itself
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Fig.7. A quartz tuning-fork resonator. The active re-
gion near the tips of the arms is only a fraction of a
millimetre in size

Fig. 6 [3]. The simple treatment above only applies in
the ballistic limit where the excitation mean free paths
are large compared to the wire dimension (cross-section
diameter). For the wire used for this data, this occurs
below 0.3 mK. Below this we see that the damping
closely follows the gap Boltzmann factor exp(—A/kT).
At the lowest temperatures we start seeing deviations
from the effect of the nuisance damping of the wire it-
self. Thinner wires of a few microns in diameter can be
followed to much lower temperatures.

The attraction of such resonators is that the ge-
ometry is simple and the wire can be approximated
to a straight cylinder moving in the superfluid and
is amenable to simulation. Unfortunately these de-
vices turn out to be too large for our current needs
(as discussed below) and we have moved to using sim-
ple quartz tuning-fork resonators, as shown in Fig. 7.
These have much smaller active regions and are readi-
ly available (and producible). The geometry is much

more complicated but the response turns out to be es-
sentially similar to that of the vibrating wires [4]. The
disadvantage of the relatively large mass of the moving
legs of the resonator is compensated by the more accu-
rate measurement which comes with the much higher
frequency of the mechanical resonance.

5. MAKING A BOLOMETER: THE
QUASIPARTICLE BLACK-BODY
RADIATOR

Before we discuss some of the more sophisticated ex-
periments which we have made by exploiting the An-
dreev reflection properties of the superfluid, we need
to introduce one more device, the quasiparticle black-
body radiator, developed by Shaun Fisher while a grad-
uate student [5]. This is precisely what it says, a classic
black-body radiator, but one for quasiparticles rather
than photons. It consists of a small container (of di-
mensions a few mm) containing two vibrating wire res-
onators. One measures the excitation density inside
the container (as described above), in other words the
temperature, and the second can be excited above the
Landau critical velocity to break Cooper pairs to cre-
ate a quasiparticle gas. This vibrating wire resonator is
thus a heater, but one which heats the liquid directly.
When this vibrating wire resonator is pair breaking,
the damping on the wire clearly increases which we can
measure electrically and thus calibrate what power is
being generated in the liquid in the box. The box has
a small orifice leading to the outside and is immersed
in bulk superfluid. The device has two modes. The
heater wire resonator can be excited thereby creating a
thermal beam of excitations (of known power and tem-
perature) leaving the box by the orifice. This we can
think of as “generator” mode. We can also use the de-
vice passively to measure energy deposited inside the
box from the increase in the temperature inside. This is
“detector” mode. Such a black-body radiator is shown
in Fig. 8.

In detector mode the energy sensitivity of these de-
vices is remarkable. A typical calibration is shown
in Fig. 9, where we see that the response is linear
over many orders of magnitude and the sensitivity ap-
proaches the femtowatt level. These devices make very
good low-energy particle detectors [6].

This is the final tool we need to make a whole range
of experiments in superfluid *He. The first we shall de-
scribe (only qualitatively) is the most direct measure-
ment of Andreev reflection which we known of [7]. It
illustrates a number of characteristics of Andreev re-
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measure the excitation density (the temperature) and
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Fig.9. The power sensitivity of a typical black-body
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flection which we exploit in the measurement. We use
a black-body radiator as shown in Fig. 8 but with a
moving paddle placed in front of the radiator orifice.
This is shown in Fig. 10.

The box is operated in generator mode with the
heater wire inside producing a beam of excitations
which is emitted through the orifice into the bulk sur-

Orifice

Oscillating
paddle

Fig.10. A black-body radiator with a moving paddle

placed in front of the orifice. When the paddle is in mo-

tion, the velocity gradient of the associated flow field

causes the Andreev reflection of a fraction of the exci-

tations in the emitted beam, reflecting them back into

the box because of the retro-reflection properties of the
process (see text)

rounding superfluid. The excitations scatter off the
paddle and other boundaries and are spread through-
out the bulk surrounding liquid. At equilibrium this
gives rise to an elevated temperature inside the radia-
tor such that the energy emitted from the box in the
beam just balances the heating applied to the heater
wire. The flat paddle in front of the orifice is in fact a
slightly deformed vibrating wire resonator and can be
set in motion in the same way. To make the demon-
stration we now oscillate the paddle. This means that
the flat paddle surface is moving backward and forward
in the emitted beam of quasiparticles and quasiholes.
Something remarkable now happens. When the pad-
dle was stationary, excitations in the beam hitting the
paddle surface were normally scattered and spread all
over the bulk liquid. As soon as the paddle is moving,
half the excitations are Andreev-reflected by the mov-
ing boundary layer of liquid. (This happens in exactly
the same way as the reflection of excitations from a
moving wire as shown in Fig. 3.)

The great difference is that now when we have An-
dreev rather than normal reflection, the scattered exci-
tations are accurately retro-reflected and retrace their
trajectories, and are returned into the radiator box.
This accurate retro-reflection aspect of Andreev reflec-

1216



MKITD, vom 146, BEIT. 6 (12), 2014

Superfluid 3He, a two-fluid system ...

tion we exploit in several experiments. In this case, the
Andreev reflection leads to a large fraction of the emit-
ted excitations being returned into the radiator and
thus the excitation density/temperature inside the ra-
diator increases further. This is a new mechano-caloric
effect in that as soon as Andreev reflection is intro-
duced into the scenario, the temperature in the box
depends on the distribution of liquid velocities out in
the bulk liquid remote from the box. This is the best
demonstration of the retro-reflection aspect of Andreev
reflection of which we are aware.

6. USING ANDREEV REFLECTION TO
VISUALIZE VORTICES

Not only are moving objects in the superfluid asso-
ciated with flow fields. Mass vortices in the superfluid
also carry their own circulation. The Andreev reflec-
tion of excitation beams by vortices in superfluid *He-B
gives us a most powerful tool for visualising the vortex
distribution in the superfluid. If we imagine placing a
vortex in a beam of quasiparticle/quasihole excitations,
the flow fields around the vortex core will Andreev re-
flect excitations in a similar way to that caused by the
backflow around a moving object. The scenario is il-
lustrated in Fig. 11. Since there is in any case a flow
round a vortex we can picture the situation as that in
Fig. 3 except that the vortex provides the local motion
so we can therefore just leave out the wire. Thus on
one side of the vortex the picture will be that of Fig. 3
and on the other side, it will be similar but with the
local velocity reversed. In other words, since the flow
is in the opposite direction on the two opposite sides of
the vortex, quasiparticles and quasiholes are differently
Andreev-reflected on the two sides, but the net effect is
that a large fraction of the excitations is retro-reflected.
This means that a vortex tangle throws shadows when
illuminated by a beam of excitations. Since the flow
fields extend a considerable way out from the vortex
cores this “optical” obstacle is significantly large and
allows us to visualize a tangle of vortices, for which
we have almost no other experimental tools. The de-
tection can be done by observing the transmitted part
of the beam, or by observing that part of the beam
retro-reflected.

But first we need some vortices to image. Very hap-
pily for us, a vibrating wire resonator can also be used
to create vortices, probably by exciting existing vortex
loops pinned to the wire surface, but the precise mech-
anism is not completely understood. However, when
the moving wire reaches the critical velocity it starts
breaking pairs by the Landau process but a small frac-

6 ZKDOT®, Bem. 6 (12)

Fig.11. The effective “potential” presented by a vortex
flow field to quasihole excitations moving as shown. On
one side of the vortex, quasiholes are Andreev-reflected
while on the other side they can travel through the flow
field freely. The converse applies to quasiparticles. The
extent of the vortex flow field which is capable of doing
this is of macroscopic size and thus a tangle of vortices
throws very significant “shadows” when illuminated by
a quasiparticle/quasihole beam

tion of the dissipated energy (say, one part in 10%) goes
into creating vortices [8]. Thus, by running a vibrating
wire resonator above its critical velocity, we are able to
create a tangle of vorticity at will.

The first experiment we discuss is one where we ob-
serve such a tangle of vortices by the Andreev-reflected
component of an illuminating beam [9]. We use the
more or less identical setup to that shown in Fig. 10
above except that here we replace the moving paddle
by the flow field of a tangle of vorticity created by a
vibrating wire resonator. The experimental setup is
shown in Fig. 12. In Fig. 12a we see a schematic of the
black-body radiator containing the thermometer and
heater wires. The radiator is emitting a beam of ex-
citations which are incident on a stationary vibrating
wire resonator in front of the orifice. No Andreev re-
flection takes place and the emitted beam is dispersed
into the bulk superfluid. In Fig. 12b we have excited
the vibrating wire resonator to create a vortex tangle,
which is Andreev-reflecting a fraction of the beam back
into the box, thereby raising the excitation density in-
side and allowing us to calculate the fraction reflected.

A typical result is shown in Fig. 13. Here we show
the fraction of the beam reflected as a function of the
maximum velocity of the vortex-creating vibrating wire
resonator in front of the orifice. We see that there is
no reflection before the critical velocity for vortex cre-
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Fig.12. A schematic picture of the experiment to de-
tect the density of a tangle of vortices in superfluid
3He. A vibrating wire resonator is placed in the beam
of excitations emitted by a black-body radiator. When
the vibrating wire resonator is excited to high enough
velocity to create a vortex tangle, the flow fields asso-
ciated with the vortices retro-reflect a fraction of the

excitations back into the radiator allowing us to calcu-
late the vortex line density in the tangle

ation (v.) is reached. At this point the Andreev process
starts and more and more of the beam is reflected back
into the box as the vorticity level increases. We can
readily calculate the cross section for reflection for a
vortex line and knowing the rough size of the tangle
(a few millimetres across) we can deduce the vortex
line density. At the lowest levels of vorticity which we
can detect near v, the vortex spacing is of the order
of 0.1 mm. That is a very tenuous tangle if only a
few millimetres across. That means we should be able
to detect individual vortices if we choose the correct
geometry.

7. USING SUPERFLUID 3He TO SIMULATE
BRANE ANNIHILATION: TABLETOP
COSMOLOGY

Our exploitation of Andreev reflection in the su-
perfluid can take us in many directions. In the fol-
lowing case it takes us into cosmology [10]. The in-
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Fig.13. The fraction of the beam reflected back into
the radiator box as shown in Fig. 12 as a function of
the velocity of the vibrating wire resonator in front of
the orifice. When the vibrating wire resonator reaches
the critical velocity for the creation of vorticity (v in
the figure), the vorticity produced then begins to reflect
excitations back into the container, raising its temper-
ature (see text)

ternal structure of the >He condensate is very similar
to that of the Universe. At the superfluid transition,
in the most general formulation, the condensate has to
choose a phase ¢, in other words, an angle or direction
in 2-space. In symmetry terms this means breaking
U(1) symmetry. Since the Cooper pairs have both a
nuclear spin of 1 and an orbital angular momentum
of 1, the two momenta each have to choose a direc-
tion in 3-space, equivalent to breaking SO(3) symme-
try. Thus the total symmetries broken in forming the
superfluid state are SO(3)F x SO(3)° x U(1), the first
two factors representing the orientations of the orbital
and spin directions. It is believed that the Universe
underwent several transitions soon after the Big Bang
which resulted in the differentiation of the strong force
first and then the separation of the weak and electro-
magnetic forces, resulting in the breaking of the sym-
metries SU(3) x SU(2) x U(1). These are clearly not
equivalent to those in the superfluid, but they are sim-
ilar enough that there has been much interest over the
last two decades in examining cosmological analogies
in superfluid *He.

One analogy to which we have drawn attention in
this context is the possibility of using the phase in-
terface between the two phases of *He, the A phase
and the B phase, as a model for a cosmological brane.
The two common phases of 2He can exist down to zero
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temperature in the appropriate magnetic fields. At the
lowest temperatures, where the normal fluid fraction is
negligible, both phases are made up of a coherent con-
densate (the superfluid fraction) with only a vanishing
number of excitations above this “vacuum” (the normal
fluid fraction). If we apply a magnetic field gradient to
the superfluid which is large enough at the high end
to stabilize the A phase at approximately zero tem-
perature, then we can create an A-B phase boundary
between the two phases, B in the low-field region and
A in the high-field region. Since this is a 2D boundary
between two coherent condensates, it is itself a coher-
ent 2D object. Its internal structure is not simple as
the order parameter has to undergo a complex pirou-
ette to transit smoothly from the A-phase symmetry
to the B-phase symmetry. Nevertheless this is perhaps
the most coherent 2D structure to which we currently
have experimental access, and it is this structure which
will serve as our analogue cosmological brane.

To understand the significance of that, in brief, it is
possible that our Universe is a 3D brane embedded in a
surrounding 4D (or higher) matrix. Such a possibility
can solve a number of problems concerned with theo-
ries which require many dimensions, while we are only
sensitive to three. It has also been suggested that brane
collisions and annihilations in the early Universe may
have triggered or brought to an end epochs of inflation.
One consequence is the possibility that such an anni-
hilation can leave topological defects in the structure
of space—time. These structures are protected topolog-
ically and thus may survive until our current era. That
is all easy to say, but since such events are so remote
from us, both in time and in intuition, any simulation
of the process can only help by assisting the insight of
those working in the field.

Without going into details, with a profiled magnetic
field we can stabilize a thin slice of A phase in a matrix
of B phase. The slice is bounded by an A-B inter-
face and a B—A interface. These are our two branes
(or brane and antibrane). If we suddenly reduce the
field, the slice of A phase will vanish with the “annihi-
lation” of the two “branes”. We then look for defects
in our metric which is the “texture” of the superfluid
which describes the map of the directions of the S- and
L-vectors in the coherent condensate. If, after annihi-
lating the two branes together, we are left with topo-
logical defects in the texture, then we should be able to
detect them. A schematic of the experiment is shown
in Fig. 14.

We confine the superfluid in a cylinder and measure
the impedance of the column to the flow of quasipar-
ticle/quasihole excitations along the axis. We run a

Resonators
near top
of cell

Resonators at
base of cell

Fig.14. The experimental arrangement used to investi-

gate “brane” annihilation. We measure the impedance

to an excitation flow of a column of superfluid *He be-

fore and after we “annihilate” a thin layer of A-phase
liquid

heater wire at the bottom of the cell to provide a source
of excitations and by measuring the excitation density
at the top and bottom of the column we can determine
the excitation gradient along the axis and thus the ex-
citation flux. We then apply the profiled field to create
the A-phase slab in the middle of the cell.

The one extra piece of information we need to know
is that in the B phase an applied magnetic field distorts
the energy gap which is no longer isotropic but flat-
tened along the direction of the L-vector. Thus if the
normally smooth texture is disturbed by defects, then
in a magnetic field the confused directions of the L-vec-
tor associated with the defect cause a rough mountain
terrain of effective energy gaps and excitations will have
difficulty penetrating but will be reflected or localized
by Andreev processes.

To make the measurement we raise the field to just
below that necessary to stabilise the A-phase layer and
measure the impedance of the column of superfluid to
the flow of excitations. We then increase the field by
just the small amount needed to create the A-phase
layer. If we measure the impedance again, we will find
it larger because of the extra barrier presented by the
two phase boundaries which cross the column. How-
ever, the important part comes next. We suddenly drop
the field just enough to lose the A-phase layer, that is,
back to the starting value, and look at the impedance
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Fig.15. The vortex video camera. The arrangement is

similar to that of Fig. 12. We have a black-body radi-

ator emitting an excitation beam into a region where

we can generate a vortex tangle with a vibrating wire.

However in this case we detect the transmitted rather

than reflected beam, by a 5 x5 array of mini black-body
radiator detectors

again. If the impedance is the same as that we started
with, then nothing has happened, but if it is higher,
then we are seeing the added effect of defects generated
by the annihilation. In the event we see a fairly large
difference. Thus we do see that defects are produced
and we are now working to identify what geometrical
form these defects have. In any case, we have provided
some ideas for the cosmologists to think about (and
fortunately we did not trigger any further inflation).

8. A VORTEX VIDEO CAMERA OPERATING
AT ABOUT 100 pK?

Finally, returning to our experience of imaging vor-
tices as described in Sec. 6, we noted then that at low
vortex densities, we are sensitive to individual vortices.
The “camera” described in Sec. 6 is not very impres-
sive as it only has essentially a single pixel. However,
by using quartz tuning-fork resonators which are small
enough, we have been able to make a 5 x 5 array of

black-body detectors which provide a coarse-resolution
video camera to image the evolution of a vortex tangle
in real time and in space. The dynamics of vortices
are of considerable current interest but our means to
interact with them are limited and a video of this form
would be very valuable. A schematic of the experiment
is shown in Fig. 15. The arrangement is an extension
and conceptually very similar to that of Fig. 12. We
have a black-body radiator which acts as a source. Fac-
ing the beam orifice, we have a vibrating wire resonator
to generate the vorticity which we will image. Then
we have the 5 x 5 array of mini black-body radiators
which then detect those parts of the beam which have
not been reflected by the vortices in the tangle. We
recall that this whole device is predicated on the fact
that the Andreev process will remove a large fraction
of the excitations from the beam to throw the shadows
which we detect.

This is a video camera working at about 100 uK
in superfluid *He. At present we have such a device
running and we are trying to understand how to
interpret the data produced. Nevertheless it does
operate as envisaged and is another illustration of how
dominant Andreev reflection is in this system.

It is a pleasure to write this short review of the
influence of Andreev reflection on the properties of su-
perfluid *He and the wide range of experiments which
these processes allow us to make. We are very con-
scious that without the contribution of Aleksandr Fe-
dorovich in formulating the original ideas we would not
have been able to achieve a fraction of what we have
managed to do in this field.

We are happy to acknowledge that the work de-
scribed above is the result of the many combined ef-
forts of the many members of the Lancaster microkelvin
group, too numerous to list here individually, but with-
out which this work would not have been possible.
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