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ANDREEV BOUND STATES.SOME QUASICLASSICAL REFLECTIONSY. Lin *, A. J. LeggettDept. of Physis, University of Illinois at Urbana-Champaign61801, Urbana, USAReeived June 18, 2014We disuss a very simple and essentially exatly solvable model problem whih illustrates some nie featuresof Andreev bound states, namely, the trapping of a single Bogoliubov quasipartile in a neutral s-wave BCSsuper�uid by a wide and shallow Zeeman trap. In the quasilassial limit, the ground state is a doublet witha splitting whih is proportional to the exponentially small amplitude for �normal� re�etion by the edges ofthe trap. We omment brie�y on a prima faie paradox onerning the ontinuity equation and onjeture aresolution to it. Contribution for the JETP speial issue in honor of A. F. Andreev's 75th birthdayDOI: 10.7868/S00444510141200491. INTRODUCTIONThis year, 2014, marks not only the 75th birth-day of Sasha Andreev but also the 50th anniversaryof what is probably his most famous single piee ofwork [1℄, that on the re�etion of an eletron at anormal�superonduting boundary by onversion intoa hole. Over the last half-entury, the phenomenonof �Andreev re�etion� has of ourse emerged as oneof the key notions in mesosopi physis, with applia-tions whih range far beyond the original ontext of thethermal ondutivity of type-I superondutors in themixed state. In this paper, we brie�y disuss a �toy�problem whih we feel illustrates some features of theidea in a partiularly simple and intuitive way. Theproblem is indeed so simple that we suspet that, evenif it has not been expliitly solved in the published liter-ature in onnetion with a spei� experimental setup,it must have been set more than one as a student exer-ise; nevertheless, in the present ontext of elebrationof Sasha's work, we �nd it is worth a brief ommentary.As a matter of history, our interest in this problem wasmotivated by a desire to understand whether resultsobtained by the standard mean-�eld method for somerather subtle questions onerning Berry's phase an berepliated by a stritly partile-number-onserving for-*E-mail: yiriolin�illinois.edu

malism, an issue whih to our knowledge has reeivedlittle disussion in the existing literature [2℄. However,we do not attempt to address this issue here, and henethe level of this paper is essentially pedagogial.Before we start, one general remark: in the originalpaper [1℄ and in muh of the subsequent work on it,the phenomenon of Andreev re�etion ours as a on-sequene of a variation in spae of the superondutingorder parameter (�gap�). However, it is atually a muhmore general phenomenon, whih rudely speaking o-urs in a dense Fermi system whenever quasipartiles ofa given energy are allowed in one region of oordinatespae and forbidden in another, and the system is denseon the separatrix surfae. This is easiest to see in thequasilassial limit, by whih we mean that all physi-al quantities (potential, density, order parameter, : : : )are slowly varying on the sale of the mean partile sep-aration. We onsider a quasipartile with an (initial)momentum k propagating from the �allowed� region to-wards the �forbidden� region. Sine it annot enter thelatter, it must reverse its veloity. The most obviousway to do so is to reverse the momentum k (�normal�re�etion). But it annot do this gradually (in manysmall steps) beause this would involve going throughstates of the Fermi sea whih are already oupied; andit annot do it (with any appreiable probability) inone shot, beause this requires using a q � 2kF Fourieromponent of the potential (et.) and by our de�nitionof the quasilassial limit any suh omponents are ex-1183



Y. Lin, A. J. Leggett ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014ponentially small. Hene the only option is Andreevre�etion (or some analog of it in nonsuperondutingsystems, f. Ref. [3℄). Of ourse, if we introdue abruptspatial variations in the physial parameters, then nor-mal re�etion is no longer neessarily exluded and thesituation is more ompliated (f. Ref. [4℄). We makethe above onsiderations more quantitative in Se. 3and the Appendix.2. DEFINITION OF THE PROBLEMWe onsider a system of 2N neutral fermions, ini-tially in zero magneti �eld and at T = 0, onstrainedto move in an annular ontainer of irumferene Land transverse dimensions d; for notational onvenieneonly, we replae this geometry by a retangular tube oflength L in the z-diretion and impose periodi bound-ary onditions in all three dimensions. (As we see inwhat follows, the imposition of suh boundary ondi-tions in the transverse diretions is mainly a matterof onveniene, but that in the longitudinal diretionis ruial to our argument.) We take the fermions tointerat via a short-range, spin-independent, weakly at-trative potential.We assume that the ground state 	2N;0 is well ap-proximated by the partile-onserving version of thestandard BCS state, i. e., apart from normalization,	2N;0 = �Ĉy�N jvai; Ĉy �Xk kayk"ay�k#; (2:1)where jvai denotes the vauum state and the oe�-ients k are given byk � �kuk ; uk�k = 1p2 �1� "kEk� ; (2:2)where "k � ~2(k2 � k2F ) and Ek � ("2k + j�j2)1=2,with kF being the Fermi wave vetor and � the(isotropi) BCS energy gap, whih is given by theusual self-onsistent gap equation and is assumed tobe � EF � ~2k2F =2m. The only low-energy (E < 2�)exitations of this system are the long-wavelength den-sity �utuations (Anderson�Bogoliubov modes), whihin the present ontext are of no interest to us. If we nowonsider the ground state and low exited states of the(2N + 1)-partile system, these orrespond to �singlefermion� (Bogoliubov quasipartile) exitations withthe wave vetor k (momentum ~k), spin �1=2, and en-ergyEk. The operator whih, ating on the 2N -partileground state, reates suh a Bogoliubov quasipartilewhile leaving the system in a (2N + 1)-partile numbereigenstate is given by

�yk� = ukayk� + ��ka�k;�� ~Cy; (2:3)where ~Cy is the operator whih, ating on the 2N -par-tile ground state, reates the (2N+2)-partile groundstate, i. e., apart from normalization, it is just the Ĉyin Eq. (2.1). Although in other ontexts it may be es-sential to remember the presene of the operator ~Cy,it does not play a signi�ant role in the arguments inthis paper, and we mostly do not write it expliitlyin what follows, simply assuming impliitly that it isalways added when neessary to preserve partile num-ber onservation. We all a Bogoliubov exitation with"k > 0 a �quasipartile� and one with "k < 0 a �quasi-hole�.We now add a weak magneti �eld B(z) that is afuntion only of z and whih is oupled to the spin viathe Zeeman e�et (only: we reall that the system isneutral!). It is onvenient to take B(z) to be smooth,uniformly positive, and symmetri around z = 0 (themiddle of the tube) and to have some harateristiextension in spae R � L and harateristi mag-nitude B0 whih we speify below. Thus, if Ĥ0 isthe original Hamiltonian of the system inluding (spin-independent) interations, the omplete Hamiltonian isnowĤ = Ĥ0 +Xi �iV (zi); V (z) � ��B(z); (2:4)where � is the magneti moment of the partiles and �iis the projetion of the spin of the ith partile on theaxis of B. We now ask: What are the wave funtionsand energies of the ground state and low-lying energyeigenstates of the (2N + 1)-partile system?We an immediately say a few things. First, theground state must ertainly have a positive value ofthe total spin S � Pi �i. Seond, it must be possi-ble to hoose it to be invariant under re�etion in theplane z = 0 (or equally under time reversal of the or-bital oordinates alone: we note that we have assumedthat Ĥ0 does not ontain any spin�orbit interations).Third, the qualitative behavior is intuitively obviousin the two limits of both B0 and R large and bothvery small: in the former ase, a substantial slab ofthe system beomes normal, while in the latter, the(2N + 1)-partile ground state and low exited statesorrespond to spin-up single-fermion exitations whihextend far beyond the region of the �trap� (the regionjzj . R). In this paper, we are not interested in eitherof these limits but rather in a partiular ase, whereintuitively speaking, in the (2N + 1)-partile groundstate, the potential V (z) e�iently �traps� a single Bo-goliubov quasipartile. Moreover, we are interested in1184



ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 Andreev bound states. Some quasilassial re�etionsthe �Ginzburg�Landau limit� in whih all the relevantquantities vary slowly in spae not merely over a dis-tane k�1F but also over ��1, where � � ~vF =� is theCooper-pair radius. What onstraints do those require-ments plae on B0 and R?It is obvious that to be in the Ginzburg�Landaulimit, we need R � �, and the requirement that theZeeman oupling should not destroy superondutiv-ity then enfores the ondition �B0 . �; we shall bemore onservative and require �B0 � V0 � �. Whilewe should expet (in view of the 1D nature of the po-tential) a weakly bound state to exist for any B0, theondition that it be well loalized within the range ofthe potential, i. e., that the extra kineti energy derivedfrom the on�nement be not too lose to the binding en-ergy, requires, as we see below, that ~vF =R . V0 � �,whih fortunately is already guaranteed by the ondi-tion R � �. Thus the neessary onditions on theparameters B0 and R are� � R� L; V0 � �: (2:5)We note that we still have freedom to adjust the ratio� � (V0=�)(R=�) (2:6)whih essentially determines the (order of magnitudeof) the number of bound states in the well, in the range� 1�1.With these onditions, B(z), or equivalentlyV (z) � ��B(z), an be just about any smoothfuntion: when we need a spei� example we use theonvenient formV (z) = �V0 seh2(z=R): (2:7)The Zeeman term in (2.4), with a potential V (z)satisfying (2.5), is possibly the �minimal� nontrivialperturbation to the original uniform BCS problem, andas we see below allows us to derive essentially exatresults for the quasipartile spetrum within the stan-dard mean-�eld approah. By ontrast, the problemde�ned by omission of the �i in (2.4), i. e., that of aweak spin-independent potential, is more ompliatedin that in general it leads to nonzero deformation of theondensate; we do not treat it here.3. GROUND STATE AND LOW EXCITEDSTATES OF THE (2N + 1)-PARTICLESYSTEMBefore embarking expliitly on this topi, we brie�ydisuss the ground state of the 2N -partile system. In

the absene of the Zeeman perturbation, this is (by hy-pothesis) just the simple BCS state (2.1), and it is easyto see that irrespetive of the value of � in Eq. (2.6),the e�et of the perturbation is at most of the order(�B0=�)2 � 1. Atually, sine for a ompletely uni-form �eld B the e�et is rigorously zero up to a ritialvalue B = �=21=2�, there is a strong argument thatit is also rigorously zero in our problem; in any ase, itis negligible within our approximations. Thus we takethe 2N -partile ground state desribed by Hamiltonian(2.4) as the simple uniform BCS state.We now turn to the (2N + 1)-partile system anddisuss it from three di�erent points of view. Unlessexpliitly otherwise stated, we always assume that thestates we are disussing have S = +1=2. (States withS = �1=2 would ertainly be unbound, and those withjSj > 1=2 require a minimum exitation energy lose to2�.) Moreover, we always assume that any states wedisuss are uniform in the transverse (x; y) diretions,and thus do not write these variables expliitly.3.1. Quasilassial approahFor the purposes of this subsetion, we assume thatthe quantity � de�ned in Eq. (2.6) is large omparedto unity, suh that it is possible to form a quasipartilewave paket with spread in wave vetor k and positionz respetively given by �k and �z, so as to simultane-ously satisfy �k ��z � 1 and on�ne the paket withinthe well. Then following the proedure in Ref. [5℄, wede�ne the loal quasipartile energy ~E(k; z) by the sim-ple presription~E(k; z) = E0(k) + V (z);E0(k) � ("2k + j�j2)1=2: (3.1)The quasilassial equations of motion are thendzdt = � ~E�k [k(t); z(t)℄ = vF "[k(t)℄E0[k(t)℄ � v(t); (3:2a)dkdt = �1~ dVdz [z(t)℄; (3.2b)where vF = d"=dkjk=kF = ~kF =m. We see that v(t)is in the positive (negative) diretion for k(t) > kF(k(t) < kF ). From Eq. (3.2), it follows immediatelythat the quantity ~E(k; z) de�ned in Eq. (3.1) is a on-stant of motion:~E (k(t); z(t)) = onst � ~E (3:3)and hene the wave vetor k(t) is given, in the limitj"kj � �F whih is of most interest to us, by the ex-pression4 ÆÝÒÔ, âûï. 6 (12) 1185



Y. Lin, A. J. Leggett ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014k(t) == � kF � 1~vF �� ~E�V [z(t)℄�2�j�j2�1=2! : (3.4)The motion desribed by Eq. (3.2) ould hardly besimpler. We suppose that we start with a wave paketwhih has (approximately) z(0) = 0 and k(0) > kF .For t > 0, this paket moves rightwards, gradually de-reasing k(t) aording to Eq. (3.2b) and orrespon-dingly v(t) aording to (3.2a), until it reahes the pointz(E) de�ned by W (z) = ~E ��; (3:5)at whih k(t) = kF . At this point, aording toEq. (3.2a), its veloity vanishes and as k(t) passesthrough kF , it onverts itself into a leftward-travelinghole, "k < 0. At the left-hand turning point, at whihEq. (3.5) is again satis�ed, the inverse proess takesplae: the left-moving quasihole is onverted bak intoa right-moving quasipartile. In the limit V0 � �(�shallow� well), the period of the yli motion isT = 2 zZ�z dzv(z) == 2vF zZ�z � ~E � V (z)� dz�� ~E � V (z)�2 � j�j2�1=2 �� (2�)1=2vF zZ�z dz(� (Æ + V (z)))1=2 ; (3.6)where Æ � �� ~E(> 0), and the last approximate equal-ity holds for Æ � �. Comparing expression (3.6) withthe standard expression for the period of a single par-tile of mass m moving in the potential V (z) with thetotal energy � in the absene of the Fermi sea, namely,T � (2m)1=2 zZ�z dz(� � V (z))1=2 ; (3:7)it is tempting to de�ne an �e�etive mass� m� bym� � �=v2F (� (�=EF )m) : (3:8)However, it should be remembered that this is not theratio of momentum to veloity (whih atually hangessign over the ourse of the yle).An important point to note in this quasilassial ap-proah is that in view of the invariane of the Hamil-tonian under time reversal of the orbital oordinates

alone (irrespetive of whether the potential V (z) issymmetri), any yli motion of the type desribedabove has a time-reversed partner, in whih a left-moving quasipartile onverts (at the left-hand turningpoint) into a right-moving quasihole. (Formally, this isahieved by the substitution k(t)! �k(t).)3.2. Ground state in the quasilassialapproximationFor the simplest (2N + 1)-partile energy eigen-states, inluding the ground state, we write the stan-dard mean-�eld ansatz	2N+1 == Z dz �u(z) ̂y"(z) + ��(z) ̂#(z) ~Cy�	2N;0; (3.9)where  ̂y"(z) ( ̂#(z)) is the standard Fermi reation (an-nihilation) operator for a spin-up (spin-down) partile,and the �partile� omponent u(z) and the �hole� om-ponent v(z) of the Bogoliubov quasipartile wave fun-tion obey the standard Bogoliubov�de Gennes (BdG)equations. We need to remember that the Zeeman en-ergy of a spin-down hole is the same as that of a spin-uppartile (unlike the ase of a spin-independent poten-tial), and that the reation of an extra Cooper pair (the~Cy in Eq. (3.9)) osts an energy 2�, where within theusual BCS approximation we an identify the hemialpotential � with �F . Thus the orret form of the BdGequations for S = +1=2 is�� ~22m d2dz2 + V (z)�u(z) + �v(z) == (�F +�+E)u(z); (3.10a)�u(z) +� ~22m d2dz2 + 2�F + V (z)�u(z) == (�F +�+E) v(z); (3.10b)where for subsequent onveniene (in this subsetiononly) we have taken the zero of energy E at �F + �,the minimum exitation energy needed to add an extrafermion in the absene of the Zeeman potential. Mak-ing the standard substitution [1℄u(z) = exp(ikF z)f(z);v(z) = exp(ikF z)g(z); (3.11)disarding the terms in d2=dz2(f(z); g(z)) (we returnto this point below), and ombining equations (3.10a)and (3.10b), we obtain the single equation1186



ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 Andreev bound states. Some quasilassial re�etions(~2v2F )d2fdz2 + n(E +�� V (z))2 ��2o f(z) ++ i~vF dV (z)dz f(z) = 0: (3.12)In the ase of interest, V0 � �, not only the onditionjV (z)j � � but also, for any bound state, jEj � �,must be ful�lled, as a result of whih Eq. (3.12) simpli-�es to the linear eigenvalue equation~22m� d2dz2 f+(E�V (z)) f(z)+i� dVdz f(z) = 0; (3:13)where, as in Se. 1, we de�ne m� � �=v2F and also aquantity � � ~vF =�, whih up to a numerial fatoris the Cooper pair radius (or the Pippard oherenelength). The equation for g(z) is the same exept thatthe sign of the last term is reversed. We note that if wehad hosen to take out a fator exp(�ikF z) rather thanexp(+ikF z) in Eq. (3.11), the only e�et would havebeen to hange the sign of the last term in Eq. (3.13)and the orresponding equation for g(z).If we temporarily neglet the last term in Eq. (3.13),the resulting equation is exatly the standard time-independent Shrödinger equation (TISE), and more-over, in the ase of a bound state, must satisfy thestandard boundary ondition f(z) ! 0 for jzj ! 1.Consequently, we an apply all the standard textbooklore for the solution of the TISE, and the original om-ponents u(z) and v(z) of the BdG spinor are given (upto normalization) byu(z) = exp(ikF z) Sh(z); (3.14a)v(z) = exp(ikF z)�i� ddz + �+E � V (z)� ���  Sh(z) � u(z); (3.14b)where  Sh(z) is the solution of the Shrödinger equa-tion for a partile of the massm� � �=v2F in the poten-tial V (z), and the approximate equality in Eq. (3.14b)holds in the limit of interest V0 � � and � � R.It is interesting at this point to estimate the orderof magnitude of the energy splittings �E and the spa-tial extent �z of the low-lying bound states. Aordingto Eq. (3.8), these are respetively � (EF =�)1=2 and(EF =�)1=4 times the values they would take for a freepartile in the potential V (z). Expliitly,�E � (~2V0=m�R2)1=2 � (�=R)(V0�)1=2; (3.15a)�z � (~R)1=2(m�V0)�1=4 �� R(��2=V0R2)1=4: (3.15b)

From (3.15a), we see that the last term in Eq. (3.13)is of the order (V0=�)1=2 relative to �E, and hene at�rst glane it an be treated perturbatively and has nomajor qualitative e�et. We also note that the termsin d2=dz2(f; g) whih we omitted in deriving Eq. (3.12)are of the order (kF�z)�1 � 1 relative to those kept.However, a very simple argument su�es to showthat the many-body wave funtion given by inserting(3.14a)�(3.14b) in (3.9) annot be even approximatelythe (2N + 1)-partile ground state (or more generallythat funtions orresponding to (3.14) annot be evenapproximate energy eigenstates). For were it so, thenby the ontinuity equation the divergene of the par-tile urrent j(r) would neessarily be zero. However,j(r) is manifestly nonzero in the region of the Zeemantrap, while far from the latter, both omponents of theBdG wave funtion vanish and all that is left is theCooper pairs, whih beause of the quantization ondi-tion arry no urrent. Hene, states orresponding tothe forms (3.14) of u(z) and v(z) an never be energyeigenstates.Unsurprisingly, the immediate resolution of the dif-�ulty lies in the reognition that sine the �orbitaltime-reversal operator� T̂orb (de�ned by T̂orb�̂iT̂�1orb == �̂i, T̂orbx̂iT̂�1orb = x̂i, and T̂orbp̂iT̂�1orb = �p̂i) om-mutes with the Hamiltonian in (2.4), and states of theform (3.13) are not eigenstates of T̂orb, and eah stateof this form is aompanied by a time-reversed partnerthat is exatly degenerate with it in the approxima-tions made below Eq. (3.15). Thus, even if the mixingof time-reversal states is exponentially small (as we seebelow), it is nevertheless neessary to take it fully intoaount.If we return to our original BdG equations (3.10)and let 	R;L denote the 2-omponent spinors (u; v)orresponding to the hoie exp(�ikF z) in (3.11), thenthe assoiated mean-�eld (Nambu) Hamiltonian HBdGinludes not only the terms diagonal in the (R;L) ba-sis, whih we have dealt with and whih lead to so-lutions (3.14), but also (Hermitian) o�-diagonal termsh	RjHBdGj	Li = h	LjHBdGj	Ri�. Physially, theseterms orrespond to the re�etion of a Bogoliubovquasipartile by the edges of the Zeeman potential ina �normal� kF ! �kF proess rather than an Andreevone; this point omes out rather more learly in the for-mulation in Se. 3.3. However, we should expet theseo�-diagonal terms to be of the order of the quantityK0 � Z exp(2ikF z)V (z)jf(z)j2dz: (3:16)Using the estimate (3.15b) for the range of f(z) andthe assumed smoothness of V (z), we �nd1187 4*



Y. Lin, A. J. Leggett ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014jK0j � exp(��);� � kFR(��2=V0R2)1=4 � 1: (3.17)In view of the exat degeneray of the original statesof 	R and 	L, the e�et of the exponentially small o�-diagonal term K0 is to make the true (2N +1)-partileenergy eigenstates the linear ombinations	� = 2�1=2(	L �	R) (3:18)with an energy splitting 2jK0j. States (3.18) are eigen-states of the orbital time reversal operator T̂orb, as theyshould be.It should be noted, however, that this maneuverdoes not totally remove the paradox raised above (seeSe. 4).3.3. An alternative approah beyond thequasilassial approximationIn this subsetion, we disuss the Andreev boundstates in momentum spae, where the e�et of the ex-ternal Zeeman potential on the formation of the quasi-partile bound states is partiularly manifest, espe-ially onerning normal re�etion proesses that gov-ern the energy splitting of the ground state doublet(see details below). In this approah, we do not as-sume the quasilassial approximation as in the abovetwo subsetions, and the resulting equation of motionfor an Andreev state ontains spatial variations in alllength sales. We then disuss physial features of thebound solutions to the equation of motion. We startby expanding the (2N + 1)-partile energy eigenstatesin terms of plane-wave BdG quasipartile states 2N+1 =Xk Ck�yk" 2N;0; (3:19)where �yk" are BdG quasipartile reation operatorswith the momentum k and spin +1=2 (we restrit our-selves to spin +1=2 exitations), and the Ck (not tobe onfused with the k in Eq. (2.1)) are omplexoe�ients. In the absene of the external Zeeman�eld, eah plane-wave BdG quasipartile generates a(2N + 1)-partile energy eigenstate in a homogeneoussuperonduting system. The lowest-energy eigenstatehas a quasipartile momentum at the Fermi momen-tum. In the presene of the Zeeman �eld, we an formloalized wave pakets inside the trap to take advan-tage of the Zeeman energy. Beause a loalized wavepaket is omposed of plane-wave quasipartile stateswith di�erent momenta, there is an assoiated energyspread whih we all the �kineti energy� for onve-niene. Therefore, the problem looks like the standard

single-partile Shrödinger-like problem, and the en-ergy ground state is ahieved by minimizing the sum ofkineti and potential (Zeeman) energies.We now make the argument more quantitative bywriting the Zeeman energy in terms of plane-wavequasipartile operators. In the seond-quantized form,the Zeeman Hamiltonian is given byHZ = �Xk;k0 Vk�k0 ��yk0"�k" � �yk0#�k#� : (3:20)We then expand eletron operators in terms of BdGquasipartile operators and rewrite (3.20) in terms ofBdG quasipartiles:HZ = �Xk;k0 Vk�k0 �(uk0�yk0" � ��k0��k0#) �� (uk�k" � �k�y�k#)�(���k0��k0" + u�k0�yk0#)�� (��k�y�k" + u�k�k#)� : (3.21)The relevant terms for bound states areHZ;eff = �Xk;k0 Vk�k2 (uk0uk�yk0"�k" ++ ���k0��k�y�k"��k0"): (3.22)Terms in (3.21) involving two quasipartile annihila-tors annihilate (2N + 1)-partile states and those re-ating two quasipartiles generate states with the energyhigher by the energy gap than the relevant energy rangewe are interested in. Therefore, the only relevant termsare those that satter plane-wave quasipartile statesfrom one momentum to another, just as the usual po-tential well satters a single partile.Equation (3.22) together with the BCS Hamiltonianyields the total HamiltonianH =Xk Ek�yk"�k" ��Xk;k0 Vk�k0 (uk0uk + �k0��k)�yk0"�k"; (3.23)where we have only inluded spin-up quasipartiles asspin-down quasipartiles are not bound by the Zeeman�eld and are irrelevant to the disussion. Now the prob-lem redues to �nding Ck in Eq. (3.19) to diagonalizethe Hamiltonian (3.23). This is very muh like theShrödinger problem for a single partile in a poten-tial well, with two exeptions. First, the kineti energyis Ek = p"2k +�2 instead of "k = ~2k2=2m � �, andhene the minimum kineti energy is ahieved at �pF ,instead of at zero. This has important onsequenes on1188



ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 Andreev bound states. Some quasilassial re�etionsthe energy spetrum, whih we disuss shortly. Seond,the potential ontains oherene fators and is not thestandard external potential in that it depends on k andk0 separately. Given that the Zeeman �eld is wide om-pared to the Cooper pair radius, the di�erene betweenk and k0 for whih the Fourier transform of the Zeeman�eld is appreiable is small suh that j"k � "k0 j is smallompared to the gap �, and we an therefore approx-imate the oherene fators by 1. We �nally arrive atthe equation of motion for Andreev bound statesEkCk �Xk0 Vk�k0Ck0 = ECk : (3:24)By expanding Ek around k = �kF to the lead-ing order and extrating a phase fator exp(�ikF z),we reover Eq. (3.13) without the last spatial gradientterm. If we take the expetation energy of the (2N+1)-partile state (3.19), we obtain the kineti energyPk Ek jCkj2 and the potential energy �Vk�k0CkC�k0 . Itis lear that we an save potential energy by inlud-ing Ck from both around kF and �kF . The energysplitting is however exponentially small sine Vk�k0 de-ays exponentially as exp(�kF�z), whih is onsistentwith the onlusion in the last subsetion. It is inter-esting to note that we an apply the same analysis tothe standard Andreev setup, where it is the gap thatis varying in spae. Basially, all we need to do is toFourier transform the gap funtion to the momentumspae and write the mean-�eld partile�partile inter-ations in terms of plane-wave BdG quasipartiles, andthe rest of the analysis follows. We see that the gapplays the similar role as ordinary potential in trappingthe Andreev bound states. In partiular, the energysplitting is exponentially small for the low bound statesin a slowly varying gap.4. PROBLEM CONCERNING THECONTINUITY EQUATIONWe �rst return to the onsiderations raised inSe. 3.2 onerning the ontinuity equation1). We �rstnote that in the onventional (partile-number-non-onserving) approah to the BdG equations, there is,at least prima faie, no paradox even in the limit ofomplete neglet of normal re�etion proesses, sinethe lak of partile number onservation in that ap-proah permits the ontinuity equation to be violated.1) The onsiderations in this setion should be regarded asrather preliminary and possibly subjet to revision, partiularlyin view of the possible onnetion to papers [6; 7℄ whose relevanewe appreiated only at a very late stage in the preparation of thismanusript.

In our partile-number-onserving approah, however,that loophole is losed and, moreover, the �resolution�given in Se. 3.2 is not truly satisfatory, sine overtimesales muh shorter than the exponentially longlifetime against normal re�etion the system, even ifit is in fat, e. g., in state (3.14), should not �know�that it is not in an energy eigenstate, and thus, for theexpetation value in the state (3.14) we should havehdiv j(r)i = �(�=�t)h�(r)i = 0.We believe, therefore, that the following onlusionis inesapable: in an aurate desription of an Andreevbound state, any motion of the Bogoliubov quasiparti-le must inevitably be aompanied by a deformationof the ondensate, whih is suh as to guarantee thatthe divergene of the total urrent be zero. Sine thislatter ondition, while neessary for the resultant stateto be an energy eigenstate, is not su�ient, it doesnot by itself su�e to identify the appropriate defor-mation. However, it is energetially advantageous forthe system to have zero urrent sine in order for thekineti energy ost in the ondensate due to the defor-mation to be �nite, the urrent has to go to zero inthe thermodynami limit. In the 3D thermodynamilimit (both L; d ! 1), the energy neessary to formthe deformation tends to zero as 1=d2, simply beausethe quasipartile probability density itself has this de-pendene. However, in the �1D thermodynami limit�(L ! 1 and d ! onst), the energy tends to a on-stant. But the energy saving of the quasipartile dueto the �ow of the ondensate (the �v �p� term) is of thesame order of magnitude as that of the energy ost andis likely to anel the latter. Hene, the expetationenergy of the system with a deformed ondensate is aslow as the state without the deformation. Thus we areinlined to believe that the appropriate deformation ofthe ondensate when the Bogoliubov quasipartile isin the approximate energy eigenstate (3.14) onsists inmultiplying the 2N -partile ground state (2.1) by thefuntion exp (�iPi f(zi)), wheref(z) = kFL2N Z j Sh(z)j2dz: (4:1)If this is orret (and indeed more generally), then thetrue states of the ground state doublet involve a smallbut nonzero entanglement between the states of theBogoliubov quasipartile and that of the ondensate.However, we have not at the time of writing estab-lished that the onjeture represented by Eq. (4.1) infat onstitutes the ground state of the (2N+1)-partilemany-body problem in some well-de�ned �post-BdG�approximation.1189



Y. Lin, A. J. Leggett ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014This material is based on work supported bythe National Siene Foundation under AwardNo.NSF-DMR-0906921. It is a pleasure to dediatethis paper to Sasha Andreev and to wish him manymore happy and fruitful years of researh in physis.APPENDIXWe disuss the ase where the external Zeeman po-tential has the shape of a square well. In this sit-uation, the standard quasilassial approah for theslowly varying potential is not appliable. We dis-uss the problem in the standard textbook approahby mathing boundary onditions for the wave fun-tions at the trap edges. We note that in this appendix,as in Ses. 3.1 and 3.3 but di�erently from Se. 3.2,the zero of quasipartile energy is the onventional one(the hemial potential �).The BdG equation an be written as� p22m � ��u+�� = (E + V )u;�� p22m � �� � +�u = (E + V )�; (A.1)where the potential V is onstant in the trap and zerooutside. The trap extends from z = �W=2 to z =W=2.We use the momentum operator p here in the BdGHamiltonian to emphasize that a solution is superpo-sition of plane waves, eah of whih satis�es the BdGequation either inside or outside the trap. To maththe boundary onditions at the trap edges, we need tosuperpose these plane-wave states to obtain true eigen-states. It is onvenient to de�ne ratio of u and � by�u = �E +
�o = F�o ;�u = �E + V +
�i = F�i ; (A.2)where the subsripts o and i respetively refer tothe outside and inside of the Zeeman trap, with
�o = �ip�2 �E2 and 
�i = �p(E + V )2 ��2. Wenote that 
�o is pure imaginary and this is the fatorwhih gives rise to the exponential deay of the boundsolutions outside the trap. Stritly speaking, there areeight boundary onditions, four of them oming fromontinuity onditions for u and v at the two trap edges,the other half oming from the ontinuity onditions forthe �rst derivatives of u and v. Upon Andreev re�e-tion, the momentum hange is of the order of �=EFompared to the Fermi momentum, and therefore themomenta of the partile and hole plane-wave solutions

di�er only by the order�=EF , relative to the Fermi mo-mentum. If we ignore this small di�erene, the plane-wave solutions for wave vetors in opposite diretionsbeome separate. We only need to math the ontinuityonditions for u and v (with wave vetors in one dire-tion) and the ontinuity onditions for the �rst deriva-tives are automatially satis�ed (this point is disussedin [8℄). Within this approximation, the solutions withmomentum in two opposite diretions are degenerate,as is the ase for the general gradually varying poten-tial disussed in the main text. We onsider a solutioninside the trap of the formui =u+i eip+i z + u�i eip�i z;�i =F+i u+i eip+i z + F�i u�i eip�i z; (A.3)where p�i = pF +
�i =~vF . Similarly, the solution out-side the trap is given byuo = u+o eip+o z�(z) + u�o eip�o z�(�z);�o = F+o u+o eip+o z�(z) + F�o u�o eip�o z�(�z); (A.4)where p�0 = pF +
�o =~vF , and �(z) = 1 for z > 0 and�(z) = 0 for z < 0.Now by mathing the boundary onditions atz =W=2 and z = �W=2, we obtain the following equa-tions at z =W=2:u+o eip+o W=2 = u+i eip+i W=2 + u�i eip�i W=2;F+o u+o eip+o W=2 = F+i u+i eip+i W=2 ++ F�i u�i eip�i W=2: (A.5)Similarly, the equations at z = �W=2 areu�o e�ip�o W = u+i e�ip+i W=2 + u�i e�ip�i W=2;F�o u�o e�ip�o W=2 = F+i u+i e�ip+i W=2 ++ F�i u�i e�ip�i W=2: (A.6)Combining Eq. (A.6) with Eq. (A.5), we obtain theequationF�i � F�oF�o � F+i = F�i � F+oF+o � F+i ei(p�i �p+i )W : (A.7)It an be written astg�1 p�2 �E2V �p(E + V )2 ��2 !�� tg�1 p�2 �E2V +p(E + V )2 ��2 ! == �p(E + V )2 ��2~vF W + n�; (A.8)where n is a positive integer.1190



ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 Andreev bound states. Some quasilassial re�etionsWe an �nd simple solutions of (A.8), in the widetrap limit, i. e., satisfying the ondition(E + V )2 ��2 � V 2: (A.9)This ondition is equivalent toE + V �� � ~2v2F�W 2 � V 2� ;�W � L� ; (A.10)where L� = ~vF =V is the length sale assoiated withthe trap strength.Under this ondition, we an expand Eq. (A.8) tothe �rst order in p(E + V )2 ��2=V , with the result11 + �2 �E2V 2 = �WV2~vF ++ n�2r(E + V )2 ��2V 2 : (A.11)We now onsider low-energy bound states suh that(E + V � �)=V � 1 and (� � E)=V � 1. Sine theLHS of Eq. (A.11) is muh smaller than 1 and the ab-solute values of both terms in the RHS of Eq. (A.11)are muh greater than 1, we an set the LHS to zero.Hene, we arrive at the solutionE =s�n�~vFW �2 +�2 � V �� �� V + n2~2�2m�W 2 ; (A.12)where m� is the e�etive mass introdued in Eq. (3.8).This solution is onsistent with the intuitive argu-ment. For low bound states, all Zeeman energy V issaved sine low bound wave funtions are ompletely lo-alized inside the trap, i. e., its range outside the trapis negligible, hene the term �V in Eq. (A.12). Theterm (n�~vF =W )2 in the above equation is simply thekineti energy of the quasipartile sine its momentumÆp = p� pF is quantized by the trap as 2n~�=(2W ).It is interesting to ompare this result with the spe-trum for a quasipartile trapped between two super-ondutors in an SNS juntion [9℄. There, we have asquare-well form of the gap. Inside the well, the quasi-partile is in the superposition of a normal partile anda normal hole, and the e�etive quantization length istwie the trap width W due to Andreev re�etion, andhene the spetrum isE = 2n�~vF2W : (A.13)

Our result (A.12) is onsistent with the standard pi-ture that due to the Andreev re�etion, the quantiza-tion length is twie the trap width.We have so far negleted the mixture of plane-wavesolutions with wave vetors in opposite diretions. Inorder to see the energy splitting between these time-reversal states, we need to inlude wave vetors inboth diretions and math boundary onditions forboth wave funtions and their gradients. The alu-lation is muh more ompliated and the eigenvalueequations are rather lengthy and are not listed here;we merely note (a) that negleting terms of the orderp(~2=m�W 2)=V relative to the leading term in theeigenvalue equations, we reover the result in (A.12),and (b) that the term whih leads to the splitting ofthe doublets is of the order 1=kFW relative to the levelseparation in (A.12), indiating that the e�et of nor-mal re�etion falls o� only as an inverse power law inthe �semilassial� parameter kFW , not exponentiallyas in the ase of the �smooth� well disussed in the maintext. This is, of ourse, what we would expet in thelight of existing results suh as those in Ref. [4℄.REFERENCES1. A. F. Andreev, Zh. Eksp. Teor. Fiz. 46, 1823 (1964).2. A. J. Leggett and Yiruo Lin, in: In Memory of AkiraTonomura, ed. by Kazuo Fujikawa and YoshimasaA. Ono, World Sienti�, Singapore (2014), p. 74.3. B. Wang, J. Peng, D. Y. Xing, and J. Wang, Phys.Rev. Lett. 95, 086608 (2005).4. G. E. Blonder, M. Tinkham, and T. M. Klapwijk,Phys. Rev. B 25, 4515 (1982).5. N. A. Greaves and A. J. Leggett, J. Phys. C: Sol. StatePhys. 16, 4383 (1983).6. J. Sanhez-Canizares and F. Sols, J. Phys.: Condens.Matter 8, L207 (1996).7. J. Sanhez-Canizares and F. Sols, Physia B 252, 304(1998).8. J. Demers and A. Gri�n, Can. J. Phys. 49, 285 (1971).9. I. O. Kulik, JETP 30, 944 (1970).1191


