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We discuss a very simple and essentially exactly solvable model problem which illustrates some nice features
of Andreev bound states, namely, the trapping of a single Bogoliubov quasiparticle in a neutral s-wave BCS
superfluid by a wide and shallow Zeeman trap. In the quasiclassical limit, the ground state is a doublet with
a splitting which is proportional to the exponentially small amplitude for “normal” reflection by the edges of
the trap. We comment briefly on a prima facie paradox concerning the continuity equation and conjecture a

resolution to it.
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1. INTRODUCTION

This year, 2014, marks not only the 75th birth-
day of Sasha Andreev but also the 50th anniversary
of what is probably his most famous single piece of
work [1], that on the reflection of an electron at a
normal-superconducting boundary by conversion into
a hole. Over the last half-century, the phenomenon
of “Andreev reflection” has of course emerged as one
of the key notions in mesoscopic physics, with applica-
tions which range far beyond the original context of the
thermal conductivity of type-I superconductors in the
mixed state. In this paper, we briefly discuss a “toy”
problem which we feel illustrates some features of the
idea in a particularly simple and intuitive way. The
problem is indeed so simple that we suspect that, even
if it has not been explicitly solved in the published liter-
ature in connection with a specific experimental setup,
it must have been set more than once as a student exer-
cise; nevertheless, in the present context of celebration
of Sasha’s work, we find it is worth a brief commentary.
As a matter of history, our interest in this problem was
motivated by a desire to understand whether results
obtained by the standard mean-field method for some
rather subtle questions concerning Berry’s phase can be
replicated by a strictly particle-number-conserving for-
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malism, an issue which to our knowledge has received
little discussion in the existing literature [2]. However,
we do not attempt to address this issue here, and hence
the level of this paper is essentially pedagogical.

Before we start, one general remark: in the original
paper [1] and in much of the subsequent work on it,
the phenomenon of Andreev reflection occurs as a con-
sequence of a variation in space of the superconducting
order parameter (“gap”). However, it is actually a much
more general phenomenon, which crudely speaking oc-
curs in a dense Fermi system whenever quasiparticles of
a given energy are allowed in one region of coordinate
space and forbidden in another, and the system is dense
on the separatrix surface. This is easiest to see in the
quasiclassical limit, by which we mean that all physi-
cal quantities (potential, density, order parameter, ...)
are slowly varying on the scale of the mean particle sep-
aration. We consider a quasiparticle with an (initial)
momentum k propagating from the “allowed” region to-
wards the “forbidden” region. Since it cannot enter the
latter, it must reverse its velocity. The most obvious
way to do so is to reverse the momentum k (“normal”
reflection). But it cannot do this gradually (in many
small steps) because this would involve going through
states of the Fermi sea which are already occupied; and
it cannot do it (with any appreciable probability) in
one shot, because this requires using a g ~ 2kr Fourier
component of the potential (etc.) and by our definition
of the quasiclassical limit any such components are ex-
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ponentially small. Hence the only option is Andreev
reflection (or some analog of it in nonsuperconducting
systems, cf. Ref. [3]). Of course, if we introduce abrupt
spatial variations in the physical parameters, then nor-
mal reflection is no longer necessarily excluded and the
situation is more complicated (cf. Ref. [4]). We make
the above considerations more quantitative in Sec. 3
and the Appendix.

2. DEFINITION OF THE PROBLEM

We consider a system of 2N neutral fermions, ini-
tially in zero magnetic field and at T = 0, constrained
to move in an annular container of circumference L
and transverse dimensions d; for notational convenience
only, we replace this geometry by a rectangular tube of
length L in the z-direction and impose periodic bound-
ary conditions in all three dimensions. (As we see in
what follows, the imposition of such boundary condi-
tions in the transverse directions is mainly a matter
of convenience, but that in the longitudinal direction
is crucial to our argument.) We take the fermions to
interact via a short-range, spin-independent, weakly at-
tractive potential.

We assume that the ground state Wy o is well ap-
proximated by the particle-conserving version of the
standard BCS state, i.e., apart from normalization,

AN N
Tonpo = (C’T) |vac), ct= chaLTaf_ki, (2.1)
k

where |vac) denotes the vacuum state and the coeffi-
cients ¢, are given by

14 U 1 Ek
cr = —, =— (1+ =),
‘ Uk Vg \/5( Ek)

where ¢, = h2(k* — k) and B = (2 + |AP})Y/2,
with kp being the Fermi wave vector and A the
(isotropic) BCS energy gap, which is given by the
usual self-consistent gap equation and is assumed to
be < Er = h?k%/2m. The only low-energy (E < 2A)
excitations of this system are the long-wavelength den-
sity fluctuations (Anderson—Bogoliubov modes), which
in the present context are of no interest to us. If we now
consider the ground state and low excited states of the
(2N + 1)-particle system, these correspond to “single
fermion” (Bogoliubov quasiparticle) excitations with
the wave vector k (momentum k), spin +1/2, and en-
ergy E. The operator which, acting on the 2 N-particle
ground state, creates such a Bogoliubov quasiparticle
while leaving the system in a (2N + 1)-particle number
eigenstate is given by

(2.2)

T ]

Qp, = Upay, + al/ka,k’,,,CN’T, (2.3)

where CT is the operator which, acting on the 2N-par-
ticle ground state, creates the (2N + 2)-particle ground
state, i.e., apart from normalization, it is just the el
in Eq. (2.1). Although in other contexts it may be es-
sential to remember the presence of the operator C'1,
it does not play a significant role in the arguments in
this paper, and we mostly do not write it explicitly
in what follows, simply assuming implicitly that it is
always added when necessary to preserve particle num-
ber conservation. We call a Bogoliubov excitation with
er > 0 a “quasiparticle” and one with ¢, < 0 a “quasi-
hole”.

We now add a weak magnetic field B(z) that is a
function only of z and which is coupled to the spin via
the Zeeman effect (only: we recall that the system is
neutral!). It is convenient to take B(z) to be smooth,
uniformly positive, and symmetric around z = 0 (the
middle of the tube) and to have some characteristic
extension in space R <« L and characteristic mag-
nitude By which we specify below. Thus, if Hy is
the original Hamiltonian of the system including (spin-
independent) interactions, the complete Hamiltonian is
now

H=H, + Z oiV(z), V(z)=—-uB(z), (24)

where 1 is the magnetic moment of the particles and o;
is the projection of the spin of the ith particle on the
axis of B. We now ask: What are the wave functions
and energies of the ground state and low-lying energy
eigenstates of the (2N + 1)-particle system?

We can immediately say a few things. First, the
ground state must certainly have a positive value of
the total spin S = ), ;. Second, it must be possi-
ble to choose it to be invariant under reflection in the
plane z = 0 (or equally under time reversal of the or-
bital coordinates alone: we note that we have assumed
that Ho does not contain any spin—orbit interactions).
Third, the qualitative behavior is intuitively obvious
in the two limits of both By and R large and both
very small: in the former case, a substantial slab of
the system becomes normal, while in the latter, the
(2N + 1)-particle ground state and low excited states
correspond to spin-up single-fermion excitations which
extend far beyond the region of the “trap” (the region
|z| < R). In this paper, we are not interested in either
of these limits but rather in a particular case, where
intuitively speaking, in the (2N + 1)-particle ground
state, the potential V' (z) efficiently “traps” a single Bo-
goliubov quasiparticle. Moreover, we are interested in
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the “Ginzburg-Landau limit” in which all the relevant
quantities vary slowly in space not merely over a dis-
tance k' but also over {71, where { ~ hwp/A is the
Cooper-pair radius. What constraints do those require-
ments place on By and R?

It is obvious that to be in the Ginzburg-Landau
limit, we need R > &, and the requirement that the
Zeeman coupling should not destroy superconductiv-
ity then enforces the condition By < A; we shall be
more conservative and require uBy = Vo < A. While
we should expect (in view of the 1D nature of the po-
tential) a weakly bound state to exist for any By, the
condition that it be well localized within the range of
the potential, i. e., that the extra kinetic energy derived
from the confinement be not too close to the binding en-
ergy, requires, as we see below, that fivp /R < Vo < A,
which fortunately is already guaranteed by the condi-
tion R > ¢ Thus the necessary conditions on the
parameters By and R are

EXR<LL, Vy<A. (2.5)

We note that we still have freedom to adjust the ratio

a = (Vo/A)(R/E) (2.6)

which essentially determines the (order of magnitude
of) the number of bound states in the well, in the range
~ 1-00.

With these conditions, B(z), or equivalently
V(2) = —uB(z), can be just about any smooth
function: when we need a specific example we use the
convenient form

V(z) = —=Vpsech?(z/R). (2.7)

The Zeeman term in (2.4), with a potential V' (z)
satisfying (2.5), is possibly the “minimal” nontrivial
perturbation to the original uniform BCS problem, and
as we see below allows us to derive essentially exact
results for the quasiparticle spectrum within the stan-
dard mean-field approach. By contrast, the problem
defined by omission of the o; in (2.4), i.e., that of a
weak spin-independent potential, is more complicated
in that in general it leads to nonzero deformation of the
condensate; we do not treat it here.

3. GROUND STATE AND LOW EXCITED
STATES OF THE (2N + 1)-PARTICLE
SYSTEM

Before embarking explicitly on this topic, we briefly
discuss the ground state of the 2/N-particle system. In

4 ZKST®, Bom. 6 (12)

the absence of the Zeeman perturbation, this is (by hy-
pothesis) just the simple BCS state (2.1), and it is easy
to see that irrespective of the value of « in Eq. (2.6),
the effect of the perturbation is at most of the order
(uBo/A)? < 1. Actually, since for a completely uni-
form field B the effect is rigorously zero up to a critical
value B, = A/2Y?p, there is a strong argument that
it is also rigorously zero in our problem; in any case, it
is negligible within our approximations. Thus we take
the 2N-particle ground state described by Hamiltonian
(2.4) as the simple uniform BCS state.

We now turn to the (2N + 1)-particle system and
discuss it from three different points of view. Unless
explicitly otherwise stated, we always assume that the
states we are discussing have S = +1/2. (States with
S = —1/2 would certainly be unbound, and those with
|S] > 1/2 require a minimum excitation energy close to
2A.) Moreover, we always assume that any states we
discuss are uniform in the transverse (x,y) directions,
and thus do not write these variables explicitly.

3.1. Quasiclassical approach

For the purposes of this subsection, we assume that
the quantity « defined in Eq. (2.6) is large compared
to unity, such that it is possible to form a quasiparticle
wave packet with spread in wave vector k and position
z respectively given by Ak and Az, so as to simultane-
ously satisfy Ak-Az > 1 and confine the packet within
the well. Then following the procedure in Ref. [5], we
define the local quasiparticle energy E(k, z) by the sim-
ple prescription

E(k z) = Ep(k) + V(2),

’ 3.1
Eo(k) = (e} + |A])'2, o
The quasiclassical equations of motion are then
dz OE e[k(t)]
dk 1dV
7 (1), (3.2b)

where vp = de/dk|p—k, = hkp/m. We see that v(t)
is in the positive (negative) direction for k(t) > kp
(k(t) < kp). From Eq. (3.2), it follows immediately
that the quantity E(k,z) defined in Eq. (3.1) is a con-
stant of motion:

E (k(t), 2(t)) = const = F (3.3)

and hence the wave vector k(t) is given, in the limit
lex] < ep which is of most interest to us, by the ex-
pression
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k(t) =

- (kp + % <<E—V[z(t)])2 _|A|2)1/2> . (34)

The motion described by Eq. (3.2) could hardly be
simpler. We suppose that we start with a wave packet
which has (approximately) z(0) = 0 and k(0) > kp.
For t > 0, this packet moves rightwards, gradually de-
creasing k(t) according to Eq. (3.2b) and correspon-
dingly v(t) according to (3.2a), until it reaches the point
2c(E) defined by

W(z) =FE - A, (3.5)

at which k(t) = kp. At this point, according to
Eq. (3.2a), its velocity vanishes and as k(t) passes
through kp, it converts itself into a leftward-traveling
hole, g, < 0. At the left-hand turning point, at which
Eq. (3.5) is again satisfied, the inverse process takes
place: the left-moving quasihole is converted back into
a right-moving quasiparticle. In the limit V5 < A
(“shallow” well), the period of the cyclic motion is

z

:Zci /’z (E - V(z)) dz

UF_ZC ((E B V(z))2 B |A|2>1/2
A dz
T owr /<—<6+V<z>>>”2’

—Ze

~

(3.6)

where § = A— E(> 0), and the last approximate equal-
ity holds for 6 < A. Comparing expression (3.6) with
the standard expression for the period of a single par-
ticle of mass m moving in the potential V(z) with the
total energy 7 in the absence of the Fermi sea, namely,

Ze

— m1/2 dZ
T = (2m) /7@_”@)%,

—Ze

(3.7)

it is tempting to define an “effective mass” m* by

m* = AJvy (~ (A/Ep)m). (3.8)

However, it should be remembered that this is not the
ratio of momentum to velocity (which actually changes
sign over the course of the cycle).

An important point to note in this quasiclassical ap-
proach is that in view of the invariance of the Hamil-
tonian under time reversal of the orbital coordinates

alone (irrespective of whether the potential V(z) is
symmetric), any cyclic motion of the type described
above has a time-reversed partner, in which a left-
moving quasiparticle converts (at the left-hand turning
point) into a right-moving quasihole. (Formally, this is
achieved by the substitution k(t) — —k(t).)

3.2. Ground state in the quasiclassical
approximation

For the simplest (2N + 1)-particle energy eigen-
states, including the ground state, we write the stan-
dard mean-field ansatz

Uonyi1 =
- / dz (u(2)9}(2) + 0" ()94 (=)0 ) oo, (3.9)

where zﬁl(z) (i) 1(2)) is the standard Fermi creation (an-
nihilation) operator for a spin-up (spin-down) particle,
and the “particle” component u(z) and the “hole” com-
ponent v(z) of the Bogoliubov quasiparticle wave func-
tion obey the standard Bogoliubov—de Gennes (BdG)
equations. We need to remember that the Zeeman en-
ergy of a spin-down hole is the same as that of a spin-up
particle (unlike the case of a spin-independent poten-
tial), and that the creation of an extra Cooper pair (the
Ctin Eq. (3.9)) costs an energy 2u, where within the
usual BCS approximation we can identify the chemical
potential p with ep. Thus the correct form of the BdG
equations for S = +1/2is

" 2m d2?

{ U +V(z)}u(z) + Av(z) =

=(er+ A+ E)u(z), (3.10a)
Aule) + {5+ 2er 4 V() buce) =
=(er + A+ E)v(z), (3.10b)

where for subsequent convenience (in this subsection
only) we have taken the zero of energy E at ep + A,
the minimum excitation energy needed to add an extra
fermion in the absence of the Zeeman potential. Mak-
ing the standard substitution [1]

u(z) = exp(ikrz) f(2),

‘ (3.11)
v(2) = exp(ikrz)g(2),

discarding the terms in d?/dz2(f(z),g(z)) (we return
to this point below), and combining equations (3.10a)
and (3.10b), we obtain the single equation
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(h%%)% +{E+a-V(E) -a2} )+
—l—ihvpd‘;iz) F(2)=0. (3.12)

In the case of interest, Vo < A, not only the condition
[V(2)] < A but also, for any bound state, |E| < A,
must be fulfilled, as a result of which Eq. (3.12) simpli-
fies to the linear eigenvalue equation

> d?

AV
5 73 I+ BV () f(z)+ig— f(2) =0, (3.13)

where, as in Sec. 1, we define m* = A/v% and also a
quantity ¢ = hop/A, which up to a numerical factor
is the Cooper pair radius (or the Pippard coherence
length). The equation for g(z) is the same except that
the sign of the last term is reversed. We note that if we
had chosen to take out a factor exp(—ikpz) rather than
exp(+ikpz) in Eq. (3.11), the only effect would have
been to change the sign of the last term in Eq. (3.13)
and the corresponding equation for g(z).

If we temporarily neglect the last term in Eq. (3.13),
the resulting equation is exactly the standard time-
independent Schrodinger equation (TISE), and more-
over, in the case of a bound state, must satisfy the
standard boundary condition f(z) — 0 for |z| — oo.
Consequently, we can apply all the standard textbook
lore for the solution of the TISE, and the original com-
ponents u(z) and v(z) of the BAG spinor are given (up
to normalization) by

u(z) = exp(ikpz)sen(z), (3.14a)

v(z) = exp(ikpz) {ngiz + MET_V(Z)} X

X ¢Sch(z) ~ U(Z), (314b)

where g0, (2) is the solution of the Schrodinger equa-
tion for a particle of the mass m* = A /v% in the poten-
tial V'(z), and the approximate equality in Eq. (3.14b)
holds in the limit of interest V5 < A and £ < R.

It is interesting at this point to estimate the order
of magnitude of the energy splittings AE and the spa-
tial extent Az of the low-lying bound states. According
to Eq. (3.8), these are respectively ~ (Er/A)'/? and
(Ep/A)'/* times the values they would take for a free
particle in the potential V' (z). Explicitly,

AE ~ (B°Vp/m*R*)'/> ~ (¢/R)(WA)' /2, (3.15a)
Az ~ (RR)Y2(m* V)~V ~
~ R(AE/VoR*)Y*. (3.15b)

From (3.15a), we see that the last term in Eq. (3.13)
is of the order (V5/A)'/? relative to AE, and hence at
first glance it can be treated perturbatively and has no
major qualitative effect. We also note that the terms
in d?/dz*(f, g) which we omitted in deriving Eq. (3.12)
are of the order (kpAz)~! < 1 relative to those kept.

However, a very simple argument suffices to show
that the many-body wave function given by inserting
(3.14a)—(3.14b) in (3.9) cannot be even approximately
the (2N + 1)-particle ground state (or more generally
that functions corresponding to (3.14) cannot be even
approximate energy eigenstates). For were it so, then
by the continuity equation the divergence of the par-
ticle current j(r) would necessarily be zero. However,
j(r) is manifestly nonzero in the region of the Zeeman
trap, while far from the latter, both components of the
BdG wave function vanish and all that is left is the
Cooper pairs, which because of the quantization condi-
tion carry no current. Hence, states corresponding to
the forms (3.14) of u(z) and v(2) can never be energy
eigenstates.

Unsurprisingly, the immediate resolution of the dif-
ficulty lies in the recognition that since the “orbital
time-reversal operator” Tm«b (defined by f’orb&if’(;,l) =
= 65, Tomdi T, = &, and ToppiT,,, = —pi) com-
mutes with the Hamiltonian in (2.4), and states of the
form (3.13) are not eigenstates of Torb, and each state
of this form is accompanied by a time-reversed partner
that is exactly degenerate with it in the approxima-
tions made below Eq. (3.15). Thus, even if the mixing
of time-reversal states is exponentially small (as we see
below), it is nevertheless necessary to take it fully into
account.

If we return to our original BdG equations (3.10)
and let g 7 denote the 2-component spinors (u,v)
corresponding to the choice exp(+ikpz) in (3.11), then
the associated mean-field (Nambu) Hamiltonian Hp g
includes not only the terms diagonal in the (R, L) ba-
sis, which we have dealt with and which lead to so-
lutions (3.14), but also (Hermitian) off-diagonal terms
<‘IJR|HBdg|‘I/L> = <‘I’L|HBdG \IJR>*. Physically, these
terms correspond to the reflection of a Bogoliubov
quasiparticle by the edges of the Zeeman potential in
a “‘normal” kr — —kp process rather than an Andreev
one; this point comes out rather more clearly in the for-
mulation in Sec. 3.3. However, we should expect these
off-diagonal terms to be of the order of the quantity

K, = /exp(Zisz)V(z)|f(z)|2dz. (3.16)

Using the estimate (3.15b) for the range of f(z) and
the assumed smoothness of V' (z), we find
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|K’0| ~ eXp(_C)a

¢ ~ kpR(AE JVaR) VA > 1. (8.17)

In view of the exact degeneracy of the original states
of U and ¥y, the effect of the exponentially small off-
diagonal term Ky is to make the true (2N + 1)-particle
energy eigenstates the linear combinations

U =270, + Tp) (3.18)

with an energy splitting 2| Ky|. States (3.18) are eigen-
states of the orbital time reversal operator Tm«b, as they
should be.

It should be noted, however, that this maneuver
does not totally remove the paradox raised above (see

Sec. 4).

3.3. An alternative approach beyond the
quasiclassical approximation

In this subsection, we discuss the Andreev bound
states in momentum space, where the effect of the ex-
ternal Zeeman potential on the formation of the quasi-
particle bound states is particularly manifest, espe-
cially concerning normal reflection processes that gov-
ern the energy splitting of the ground state doublet
(see details below). In this approach, we do not as-
sume the quasiclassical approximation as in the above
two subsections, and the resulting equation of motion
for an Andreev state contains spatial variations in all
length scales. We then discuss physical features of the
bound solutions to the equation of motion. We start
by expanding the (2N + 1)-particle energy eigenstates
in terms of plane-wave BdG quasiparticle states

Yany1 = Z C’kaLTsz,g, (3.19)
k

where aLT are BdG quasiparticle creation operators
with the momentum % and spin +1/2 (we restrict our-
selves to spin +1/2 excitations), and the Cj (not to
be confused with the ¢; in Eq. (2.1)) are complex
coefficients. In the absence of the external Zeeman
field, each plane-wave BdG quasiparticle generates a
(2N + 1)-particle energy eigenstate in a homogeneous
superconducting system. The lowest-energy eigenstate
has a quasiparticle momentum at the Fermi momen-
tum. In the presence of the Zeeman field, we can form
localized wave packets inside the trap to take advan-
tage of the Zeeman energy. Because a localized wave
packet is composed of plane-wave quasiparticle states
with different momenta, there is an associated energy
spread which we call the “kinetic energy” for conve-
nience. Therefore, the problem looks like the standard

single-particle Schrodinger-like problem, and the en-
ergy ground state is achieved by minimizing the sum of
kinetic and potential (Zeeman) energies.

We now make the argument more quantitative by
writing the Zeeman energy in terms of plane-wave
quasiparticle operators. In the second-quantized form,
the Zeeman Hamiltonian is given by

Hy; = — ZVk—k’ (aszakT - O‘Lwaki) - (3.20)
k&'

We then expand electron operators in terms of BdG
quasiparticle operators and rewrite (3.20) in terms of
BdG quasiparticles:

HZ = — Z kak’ ((UkraL,T — u,:,a,kzi) X
k,k’

X (Upogr — l/katki)—(l/ik,a,k% + u,k/az,i) X
x (v_ral, +u,kak¢)) . (3.21)

The relevant terms for bound states are

HZ,eff = Z Vie—k2 (Uk’UkCYLITOékT +
N

+ zxik,zx_katkTa_k/T). (3.22)

Terms in (3.21) involving two quasiparticle annihila-
tors annihilate (2N + 1)-particle states and those cre-
ating two quasiparticles generate states with the energy
higher by the energy gap than the relevant energy range
we are interested in. Therefore, the only relevant terms
are those that scatter plane-wave quasiparticle states
from one momentum to another, just as the usual po-
tential well scatters a single particle.

Equation (3.22) together with the BCS Hamiltonian
yields the total Hamiltonian

H = ZEkaLTakT —
k

- Z Vie_rr (ukruk + ukrz/,:)aL,Tosz, (323)
k, k'

where we have only included spin-up quasiparticles as
spin-down quasiparticles are not bound by the Zeeman
field and are irrelevant to the discussion. Now the prob-
lem reduces to finding C}, in Eq. (3.19) to diagonalize
the Hamiltonian (3.23). This is very much like the
Schrédinger problem for a single particle in a poten-
tial well, with two exceptions. First, the kinetic energy
is By = \/e2 + A? instead of ¢, = h?k*/2m — p, and
hence the minimum kinetic energy is achieved at £pp,
instead of at zero. This has important consequences on
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the energy spectrum, which we discuss shortly. Second,
the potential contains coherence factors and is not the
standard external potential in that it depends on & and
k' separately. Given that the Zeeman field is wide com-
pared to the Cooper pair radius, the difference between
k and k' for which the Fourier transform of the Zeeman
field is appreciable is small such that |ej, — x| is small
compared to the gap A, and we can therefore approx-
imate the coherence factors by 1. We finally arrive at
the equation of motion for Andreev bound states

Ekck - Z Vk—k’ Ckr = ECk. (3.24)

1%

By expanding FEj around k = Lkr to the lead-
ing order and extracting a phase factor exp(+ikpz),
we recover Eq. (3.13) without the last spatial gradient
term. If we take the expectation energy of the (2N +1)-
particle state (3.19), we obtain the kinetic energy
Yok E;|Ck]? and the potential energy —Vi_x C,C},. Tt
is clear that we can save potential energy by includ-
ing C} from both around kp and —kp. The energy
splitting is however exponentially small since Vj,_j/ de-
cays exponentially as exp(—krAz), which is consistent
with the conclusion in the last subsection. It is inter-
esting to note that we can apply the same analysis to
the standard Andreev setup, where it is the gap that
is varying in space. Basically, all we need to do is to
Fourier transform the gap function to the momentum
space and write the mean-field particle-particle inter-
actions in terms of plane-wave BdG quasiparticles, and
the rest of the analysis follows. We see that the gap
plays the similar role as ordinary potential in trapping
the Andreev bound states. In particular, the energy
splitting is exponentially small for the low bound states
in a slowly varying gap.

4. PROBLEM CONCERNING THE
CONTINUITY EQUATION

We first return to the considerations raised in
Sec. 3.2 concerning the continuity equation!). We first
note that in the conventional (particle-number-non-
conserving) approach to the BAG equations, there is,
at least prima facie, no paradox even in the limit of
complete neglect of normal reflection processes, since
the lack of particle number conservation in that ap-
proach permits the continuity equation to be violated.

1) The considerations in this section should be regarded as
rather preliminary and possibly subject to revision, particularly
in view of the possible connection to papers [6, 7] whose relevance
we appreciated only at a very late stage in the preparation of this
manuscript.

In our particle-number-conserving approach, however,
that loophole is closed and, moreover, the “resolution”
given in Sec. 3.2 is not truly satisfactory, since over
timescales much shorter than the exponentially long
lifetime against normal reflection the system, even if
it is in fact, e.g., in state (3.14), should not “know”
that it is not in an energy eigenstate, and thus, for the
expectation value in the state (3.14) we should have
(divj(r)) = =(9/09t)(p(r)) = 0.

We believe, therefore, that the following conclusion
is inescapable: in an accurate description of an Andreev
bound state, any motion of the Bogoliubov quasiparti-
cle must inevitably be accompanied by a deformation
of the condensate, which is such as to guarantee that
the divergence of the total current be zero. Since this
latter condition, while necessary for the resultant state
to be an energy eigenstate, is not sufficient, it does
not by itself suffice to identify the appropriate defor-
mation. However, it is energetically advantageous for
the system to have zero current since in order for the
kinetic energy cost in the condensate due to the defor-
mation to be finite, the current has to go to zero in
the thermodynamic limit. In the 3D thermodynamic
limit (both L,d — o), the energy necessary to form
the deformation tends to zero as 1/d?, simply because
the quasiparticle probability density itself has this de-
pendence. However, in the “1D thermodynamic limit”
(L — oo and d — const), the energy tends to a con-
stant. But the energy saving of the quasiparticle due
to the flow of the condensate (the “v-p” term) is of the
same order of magnitude as that of the energy cost and
is likely to cancel the latter. Hence, the expectation
energy of the system with a deformed condensate is as
low as the state without the deformation. Thus we are
inclined to believe that the appropriate deformation of
the condensate when the Bogoliubov quasiparticle is
in the approximate energy eigenstate (3.14) consists in
multiplying the 2N-particle ground state (2.1) by the
function exp (=i >, f(2;)), where

1) =52 [ Wosnle) P

If this is correct (and indeed more generally), then the
true states of the ground state doublet involve a small
but nonzero entanglement between the states of the
Bogoliubov quasiparticle and that of the condensate.
However, we have not at the time of writing estab-
lished that the conjecture represented by Eq. (4.1) in
fact constitutes the ground state of the (2N +1)-particle
many-body problem in some well-defined “post-BdG”
approximation.

(4.1)
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APPENDIX

We discuss the case where the external Zeeman po-
tential has the shape of a square well. In this sit-
uation, the standard quasiclassical approach for the
slowly varying potential is not applicable. We dis-
cuss the problem in the standard textbook approach
by matching boundary conditions for the wave func-
tions at the trap edges. We note that in this appendix,
as in Secs. 3.1 and 3.3 but differently from Sec. 3.2,
the zero of quasiparticle energy is the conventional one
(the chemical potential ).

The BdG equation can be written as

P2
<%— )u-I-Al/:(E-I-V)u,

p?

_ <% _
where the potential V' is constant in the trap and zero
outside. The trap extends from z = —W/2 to z = W/2.
We use the momentum operator p here in the BdG
Hamiltonian to emphasize that a solution is superpo-
sition of plane waves, each of which satisfies the BdG
equation either inside or outside the trap. To match
the boundary conditions at the trap edges, we need to

superpose these plane-wave states to obtain true eigen-
states. It is convenient to define ratio of u and v by

(A.1)
)I/+Au: (E+ V),

K:L:Fi

u  E4+QF o

' I (A.2)
Z-__ =  _p*

v E4+V+QF

where the subscripts o and ¢ respectively refer to
the outside and inside of the Zeeman trap, with
QF = +ivVAZ —FEZand Qf = £/(E+ V)2 — A2, We
note that QF is pure imaginary and this is the factor
which gives rise to the exponential decay of the bound
solutions outside the trap. Strictly speaking, there are
eight boundary conditions, four of them coming from
continuity conditions for v and v at the two trap edges,
the other half coming from the continuity conditions for
the first derivatives of v and v. Upon Andreev reflec-
tion, the momentum change is of the order of A/Ep
compared to the Fermi momentum, and therefore the
momenta of the particle and hole plane-wave solutions

differ only by the order A/E, relative to the Fermi mo-
mentum. If we ignore this small difference, the plane-
wave solutions for wave vectors in opposite directions
become separate. We only need to match the continuity
conditions for u and v (with wave vectors in one direc-
tion) and the continuity conditions for the first deriva-
tives are automatically satisfied (this point is discussed
in [8]). Within this approximation, the solutions with
momentum in two opposite directions are degenerate,
as is the case for the general gradually varying poten-
tial discussed in the main text. We consider a solution

inside the trap of the form
. ip'-"z — ip; z
Uy =u; e T fu, e v,
itz | e — iprz
Vi :Fi+ui+e’pi F+Fu; e f

(A.3)

where pzi =pr + Qf /hop. Similarly, the solution out-
side the trap is given by

Up = ujeip:z@(z) +u; e *0(—2),

.4 - (A"4)
v, = Fful e *0(z) + Fu, e *0(-z),

where pt = pp 4+ QF /hvp, and O(z) = 1 for z > 0 and
©(z) =0 for z < 0.

Now by matching the boundary conditions at
z =W/2 and z = —W/2, we obtain the following equa-
tions at z = W/2:

uo+eip§rW/2 _ u:reip;rW/Z s w2
Fjujeip:rwm _ Fi+uj-eip;"W/2 n (A.5)
+ Fi_ui_eipi_ w/z.
Similarly, the equations at z = —WW/2 are
uge e W = uj-efip?'Wﬂ n ui_e,ipi— Wiz,
Fruje #oW/2 = Fi+u;refip?'W/2 n (A.6)

+ Ffu;e_"pif Wiz,
Combining Eq. (A.6) with Eq. (A.5), we obtain the
equation

F, - F, F[ —F; Hw

— o i(py —p;
Fy —F"  Ff-Ff

(A7)

It can be written as

tg1< VA? - E? )_
N Ry
—tg1< N >:
N CEa O
(E+ V)2 — A2

= — w
Top + nm,

(A.8)

where n is a positive integer.
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We can find simple solutions of (A.8), in the wide
trap limit, i.e., satisfying the condition

(E+V)? - A2 < V2 (A.9)
This condition is equivalent to
h2U2 V2
E4+V-A~ Lt <« —
v A S A (A.10)
AW <« Ly,

where L, = hvp/V is the length scale associated with
the trap strength.
Under this condition, we can expand Eq. (A.8) to

the first order in /(E + V)2 — A2/V, with the result

1 __wv
A’ —E>  2hp
nr (A.11)
(E+V)> - A?
2 T

We now consider low-energy bound states such that
(E+V —-A)/V «1and (A—-E)/V ~ 1. Since the
LHS of Eq. (A.11) is much smaller than 1 and the ab-
solute values of both terms in the RHS of Eq. (A.11)
are much greater than 1, we can set the LHS to zero.
Hence, we arrive at the solution

nthvp 2
E = — A2 -V~
( i ) A

~A-V+

n?h2n?
m*w2’
where m* is the effective mass introduced in Eq. (3.8).

This solution is consistent with the intuitive argu-
ment. For low bound states, all Zeeman energy V is
saved since low bound wave functions are completely lo-
calized inside the trap, i.e., its range outside the trap
is negligible, hence the term —V in Eq. (A.12). The
term (nwhvp /W)? in the above equation is simply the
kinetic energy of the quasiparticle since its momentum
dp = p — pr is quantized by the trap as 2nhin/(2W).

It is interesting to compare this result with the spec-
trum for a quasiparticle trapped between two super-
conductors in an SNS junction [9]. There, we have a
square-well form of the gap. Inside the well, the quasi-
particle is in the superposition of a normal particle and
a normal hole, and the effective quantization length is
twice the trap width W due to Andreev reflection, and
hence the spectrum is

(A.12)

2nmhup

E =
2w

(A.13)

Our result (A.12) is consistent with the standard pic-
ture that due to the Andreev reflection, the quantiza-
tion length is twice the trap width.

We have so far neglected the mixture of plane-wave
solutions with wave vectors in opposite directions. In
order to see the energy splitting between these time-
reversal states, we need to include wave vectors in
both directions and match boundary conditions for
both wave functions and their gradients. The calcu-
lation is much more complicated and the eigenvalue
equations are rather lengthy and are not listed here;
we merely note (a) that neglecting terms of the order
V(B2 /m*W?2)/V relative to the leading term in the
eigenvalue equations, we recover the result in (A.12),
and (b) that the term which leads to the splitting of
the doublets is of the order 1/krpW relative to the level
separation in (A.12), indicating that the effect of nor-
mal reflection falls off only as an inverse power law in
the “semiclassical” parameter krW, not exponentially
as in the case of the “smooth” well discussed in the main
text. This is, of course, what we would expect in the
light of existing results such as those in Ref. [4].
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