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ANDREEV BOUND STATES.SOME QUASICLASSICAL REFLECTIONSY. Lin *, A. J. LeggettDept. of Physi
s, University of Illinois at Urbana-Champaign61801, Urbana, USARe
eived June 18, 2014We dis
uss a very simple and essentially exa
tly solvable model problem whi
h illustrates some ni
e featuresof Andreev bound states, namely, the trapping of a single Bogoliubov quasiparti
le in a neutral s-wave BCSsuper�uid by a wide and shallow Zeeman trap. In the quasi
lassi
al limit, the ground state is a doublet witha splitting whi
h is proportional to the exponentially small amplitude for �normal� re�e
tion by the edges ofthe trap. We 
omment brie�y on a prima fa
ie paradox 
on
erning the 
ontinuity equation and 
onje
ture aresolution to it. Contribution for the JETP spe
ial issue in honor of A. F. Andreev's 75th birthdayDOI: 10.7868/S00444510141200491. INTRODUCTIONThis year, 2014, marks not only the 75th birth-day of Sasha Andreev but also the 50th anniversaryof what is probably his most famous single pie
e ofwork [1℄, that on the re�e
tion of an ele
tron at anormal�super
ondu
ting boundary by 
onversion intoa hole. Over the last half-
entury, the phenomenonof �Andreev re�e
tion� has of 
ourse emerged as oneof the key notions in mesos
opi
 physi
s, with appli
a-tions whi
h range far beyond the original 
ontext of thethermal 
ondu
tivity of type-I super
ondu
tors in themixed state. In this paper, we brie�y dis
uss a �toy�problem whi
h we feel illustrates some features of theidea in a parti
ularly simple and intuitive way. Theproblem is indeed so simple that we suspe
t that, evenif it has not been expli
itly solved in the published liter-ature in 
onne
tion with a spe
i�
 experimental setup,it must have been set more than on
e as a student exer-
ise; nevertheless, in the present 
ontext of 
elebrationof Sasha's work, we �nd it is worth a brief 
ommentary.As a matter of history, our interest in this problem wasmotivated by a desire to understand whether resultsobtained by the standard mean-�eld method for somerather subtle questions 
on
erning Berry's phase 
an berepli
ated by a stri
tly parti
le-number-
onserving for-*E-mail: yiriolin�illinois.edu

malism, an issue whi
h to our knowledge has re
eivedlittle dis
ussion in the existing literature [2℄. However,we do not attempt to address this issue here, and hen
ethe level of this paper is essentially pedagogi
al.Before we start, one general remark: in the originalpaper [1℄ and in mu
h of the subsequent work on it,the phenomenon of Andreev re�e
tion o

urs as a 
on-sequen
e of a variation in spa
e of the super
ondu
tingorder parameter (�gap�). However, it is a
tually a mu
hmore general phenomenon, whi
h 
rudely speaking o
-
urs in a dense Fermi system whenever quasiparti
les ofa given energy are allowed in one region of 
oordinatespa
e and forbidden in another, and the system is denseon the separatrix surfa
e. This is easiest to see in thequasi
lassi
al limit, by whi
h we mean that all physi-
al quantities (potential, density, order parameter, : : : )are slowly varying on the s
ale of the mean parti
le sep-aration. We 
onsider a quasiparti
le with an (initial)momentum k propagating from the �allowed� region to-wards the �forbidden� region. Sin
e it 
annot enter thelatter, it must reverse its velo
ity. The most obviousway to do so is to reverse the momentum k (�normal�re�e
tion). But it 
annot do this gradually (in manysmall steps) be
ause this would involve going throughstates of the Fermi sea whi
h are already o

upied; andit 
annot do it (with any appre
iable probability) inone shot, be
ause this requires using a q � 2kF Fourier
omponent of the potential (et
.) and by our de�nitionof the quasi
lassi
al limit any su
h 
omponents are ex-1183
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e the only option is Andreevre�e
tion (or some analog of it in nonsuper
ondu
tingsystems, 
f. Ref. [3℄). Of 
ourse, if we introdu
e abruptspatial variations in the physi
al parameters, then nor-mal re�e
tion is no longer ne
essarily ex
luded and thesituation is more 
ompli
ated (
f. Ref. [4℄). We makethe above 
onsiderations more quantitative in Se
. 3and the Appendix.2. DEFINITION OF THE PROBLEMWe 
onsider a system of 2N neutral fermions, ini-tially in zero magneti
 �eld and at T = 0, 
onstrainedto move in an annular 
ontainer of 
ir
umferen
e Land transverse dimensions d; for notational 
onvenien
eonly, we repla
e this geometry by a re
tangular tube oflength L in the z-dire
tion and impose periodi
 bound-ary 
onditions in all three dimensions. (As we see inwhat follows, the imposition of su
h boundary 
ondi-tions in the transverse dire
tions is mainly a matterof 
onvenien
e, but that in the longitudinal dire
tionis 
ru
ial to our argument.) We take the fermions tointera
t via a short-range, spin-independent, weakly at-tra
tive potential.We assume that the ground state 	2N;0 is well ap-proximated by the parti
le-
onserving version of thestandard BCS state, i. e., apart from normalization,	2N;0 = �Ĉy�N jva
i; Ĉy �Xk 
kayk"ay�k#; (2:1)where jva
i denotes the va
uum state and the 
oe�-
ients 
k are given by
k � �kuk ; uk�k = 1p2 �1� "kEk� ; (2:2)where "k � ~2(k2 � k2F ) and Ek � ("2k + j�j2)1=2,with kF being the Fermi wave ve
tor and � the(isotropi
) BCS energy gap, whi
h is given by theusual self-
onsistent gap equation and is assumed tobe � EF � ~2k2F =2m. The only low-energy (E < 2�)ex
itations of this system are the long-wavelength den-sity �u
tuations (Anderson�Bogoliubov modes), whi
hin the present 
ontext are of no interest to us. If we now
onsider the ground state and low ex
ited states of the(2N + 1)-parti
le system, these 
orrespond to �singlefermion� (Bogoliubov quasiparti
le) ex
itations withthe wave ve
tor k (momentum ~k), spin �1=2, and en-ergyEk. The operator whi
h, a
ting on the 2N -parti
leground state, 
reates su
h a Bogoliubov quasiparti
lewhile leaving the system in a (2N + 1)-parti
le numbereigenstate is given by

�yk� = ukayk� + ��ka�k;�� ~Cy; (2:3)where ~Cy is the operator whi
h, a
ting on the 2N -par-ti
le ground state, 
reates the (2N+2)-parti
le groundstate, i. e., apart from normalization, it is just the Ĉyin Eq. (2.1). Although in other 
ontexts it may be es-sential to remember the presen
e of the operator ~Cy,it does not play a signi�
ant role in the arguments inthis paper, and we mostly do not write it expli
itlyin what follows, simply assuming impli
itly that it isalways added when ne
essary to preserve parti
le num-ber 
onservation. We 
all a Bogoliubov ex
itation with"k > 0 a �quasiparti
le� and one with "k < 0 a �quasi-hole�.We now add a weak magneti
 �eld B(z) that is afun
tion only of z and whi
h is 
oupled to the spin viathe Zeeman e�e
t (only: we re
all that the system isneutral!). It is 
onvenient to take B(z) to be smooth,uniformly positive, and symmetri
 around z = 0 (themiddle of the tube) and to have some 
hara
teristi
extension in spa
e R � L and 
hara
teristi
 mag-nitude B0 whi
h we spe
ify below. Thus, if Ĥ0 isthe original Hamiltonian of the system in
luding (spin-independent) intera
tions, the 
omplete Hamiltonian isnowĤ = Ĥ0 +Xi �iV (zi); V (z) � ��B(z); (2:4)where � is the magneti
 moment of the parti
les and �iis the proje
tion of the spin of the ith parti
le on theaxis of B. We now ask: What are the wave fun
tionsand energies of the ground state and low-lying energyeigenstates of the (2N + 1)-parti
le system?We 
an immediately say a few things. First, theground state must 
ertainly have a positive value ofthe total spin S � Pi �i. Se
ond, it must be possi-ble to 
hoose it to be invariant under re�e
tion in theplane z = 0 (or equally under time reversal of the or-bital 
oordinates alone: we note that we have assumedthat Ĥ0 does not 
ontain any spin�orbit intera
tions).Third, the qualitative behavior is intuitively obviousin the two limits of both B0 and R large and bothvery small: in the former 
ase, a substantial slab ofthe system be
omes normal, while in the latter, the(2N + 1)-parti
le ground state and low ex
ited states
orrespond to spin-up single-fermion ex
itations whi
hextend far beyond the region of the �trap� (the regionjzj . R). In this paper, we are not interested in eitherof these limits but rather in a parti
ular 
ase, whereintuitively speaking, in the (2N + 1)-parti
le groundstate, the potential V (z) e�
iently �traps� a single Bo-goliubov quasiparti
le. Moreover, we are interested in1184
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lassi
al re�e
tionsthe �Ginzburg�Landau limit� in whi
h all the relevantquantities vary slowly in spa
e not merely over a dis-tan
e k�1F but also over ��1, where � � ~vF =� is theCooper-pair radius. What 
onstraints do those require-ments pla
e on B0 and R?It is obvious that to be in the Ginzburg�Landaulimit, we need R � �, and the requirement that theZeeman 
oupling should not destroy super
ondu
tiv-ity then enfor
es the 
ondition �B0 . �; we shall bemore 
onservative and require �B0 � V0 � �. Whilewe should expe
t (in view of the 1D nature of the po-tential) a weakly bound state to exist for any B0, the
ondition that it be well lo
alized within the range ofthe potential, i. e., that the extra kineti
 energy derivedfrom the 
on�nement be not too 
lose to the binding en-ergy, requires, as we see below, that ~vF =R . V0 � �,whi
h fortunately is already guaranteed by the 
ondi-tion R � �. Thus the ne
essary 
onditions on theparameters B0 and R are� � R� L; V0 � �: (2:5)We note that we still have freedom to adjust the ratio� � (V0=�)(R=�) (2:6)whi
h essentially determines the (order of magnitudeof) the number of bound states in the well, in the range� 1�1.With these 
onditions, B(z), or equivalentlyV (z) � ��B(z), 
an be just about any smoothfun
tion: when we need a spe
i�
 example we use the
onvenient formV (z) = �V0 se
h2(z=R): (2:7)The Zeeman term in (2.4), with a potential V (z)satisfying (2.5), is possibly the �minimal� nontrivialperturbation to the original uniform BCS problem, andas we see below allows us to derive essentially exa
tresults for the quasiparti
le spe
trum within the stan-dard mean-�eld approa
h. By 
ontrast, the problemde�ned by omission of the �i in (2.4), i. e., that of aweak spin-independent potential, is more 
ompli
atedin that in general it leads to nonzero deformation of the
ondensate; we do not treat it here.3. GROUND STATE AND LOW EXCITEDSTATES OF THE (2N + 1)-PARTICLESYSTEMBefore embarking expli
itly on this topi
, we brie�ydis
uss the ground state of the 2N -parti
le system. In

the absen
e of the Zeeman perturbation, this is (by hy-pothesis) just the simple BCS state (2.1), and it is easyto see that irrespe
tive of the value of � in Eq. (2.6),the e�e
t of the perturbation is at most of the order(�B0=�)2 � 1. A
tually, sin
e for a 
ompletely uni-form �eld B the e�e
t is rigorously zero up to a 
riti
alvalue B
 = �=21=2�, there is a strong argument thatit is also rigorously zero in our problem; in any 
ase, itis negligible within our approximations. Thus we takethe 2N -parti
le ground state des
ribed by Hamiltonian(2.4) as the simple uniform BCS state.We now turn to the (2N + 1)-parti
le system anddis
uss it from three di�erent points of view. Unlessexpli
itly otherwise stated, we always assume that thestates we are dis
ussing have S = +1=2. (States withS = �1=2 would 
ertainly be unbound, and those withjSj > 1=2 require a minimum ex
itation energy 
lose to2�.) Moreover, we always assume that any states wedis
uss are uniform in the transverse (x; y) dire
tions,and thus do not write these variables expli
itly.3.1. Quasi
lassi
al approa
hFor the purposes of this subse
tion, we assume thatthe quantity � de�ned in Eq. (2.6) is large 
omparedto unity, su
h that it is possible to form a quasiparti
lewave pa
ket with spread in wave ve
tor k and positionz respe
tively given by �k and �z, so as to simultane-ously satisfy �k ��z � 1 and 
on�ne the pa
ket withinthe well. Then following the pro
edure in Ref. [5℄, wede�ne the lo
al quasiparti
le energy ~E(k; z) by the sim-ple pres
ription~E(k; z) = E0(k) + V (z);E0(k) � ("2k + j�j2)1=2: (3.1)The quasi
lassi
al equations of motion are thendzdt = � ~E�k [k(t); z(t)℄ = vF "[k(t)℄E0[k(t)℄ � v(t); (3:2a)dkdt = �1~ dVdz [z(t)℄; (3.2b)where vF = d"=dkjk=kF = ~kF =m. We see that v(t)is in the positive (negative) dire
tion for k(t) > kF(k(t) < kF ). From Eq. (3.2), it follows immediatelythat the quantity ~E(k; z) de�ned in Eq. (3.1) is a 
on-stant of motion:~E (k(t); z(t)) = 
onst � ~E (3:3)and hen
e the wave ve
tor k(t) is given, in the limitj"kj � �F whi
h is of most interest to us, by the ex-pression4 ÆÝÒÔ, âûï. 6 (12) 1185



Y. Lin, A. J. Leggett ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014k(t) == � kF � 1~vF �� ~E�V [z(t)℄�2�j�j2�1=2! : (3.4)The motion des
ribed by Eq. (3.2) 
ould hardly besimpler. We suppose that we start with a wave pa
ketwhi
h has (approximately) z(0) = 0 and k(0) > kF .For t > 0, this pa
ket moves rightwards, gradually de-
reasing k(t) a

ording to Eq. (3.2b) and 
orrespon-dingly v(t) a

ording to (3.2a), until it rea
hes the pointz
(E) de�ned by W (z
) = ~E ��; (3:5)at whi
h k(t) = kF . At this point, a

ording toEq. (3.2a), its velo
ity vanishes and as k(t) passesthrough kF , it 
onverts itself into a leftward-travelinghole, "k < 0. At the left-hand turning point, at whi
hEq. (3.5) is again satis�ed, the inverse pro
ess takespla
e: the left-moving quasihole is 
onverted ba
k intoa right-moving quasiparti
le. In the limit V0 � �(�shallow� well), the period of the 
y
li
 motion isT = 2 z
Z�z
 dzv(z) == 2vF z
Z�z
 � ~E � V (z)� dz�� ~E � V (z)�2 � j�j2�1=2 �� (2�)1=2vF z
Z�z
 dz(� (Æ + V (z)))1=2 ; (3.6)where Æ � �� ~E(> 0), and the last approximate equal-ity holds for Æ � �. Comparing expression (3.6) withthe standard expression for the period of a single par-ti
le of mass m moving in the potential V (z) with thetotal energy � in the absen
e of the Fermi sea, namely,T � (2m)1=2 z
Z�z
 dz(� � V (z))1=2 ; (3:7)it is tempting to de�ne an �e�e
tive mass� m� bym� � �=v2F (� (�=EF )m) : (3:8)However, it should be remembered that this is not theratio of momentum to velo
ity (whi
h a
tually 
hangessign over the 
ourse of the 
y
le).An important point to note in this quasi
lassi
al ap-proa
h is that in view of the invarian
e of the Hamil-tonian under time reversal of the orbital 
oordinates

alone (irrespe
tive of whether the potential V (z) issymmetri
), any 
y
li
 motion of the type des
ribedabove has a time-reversed partner, in whi
h a left-moving quasiparti
le 
onverts (at the left-hand turningpoint) into a right-moving quasihole. (Formally, this isa
hieved by the substitution k(t)! �k(t).)3.2. Ground state in the quasi
lassi
alapproximationFor the simplest (2N + 1)-parti
le energy eigen-states, in
luding the ground state, we write the stan-dard mean-�eld ansatz	2N+1 == Z dz �u(z) ̂y"(z) + ��(z) ̂#(z) ~Cy�	2N;0; (3.9)where  ̂y"(z) ( ̂#(z)) is the standard Fermi 
reation (an-nihilation) operator for a spin-up (spin-down) parti
le,and the �parti
le� 
omponent u(z) and the �hole� 
om-ponent v(z) of the Bogoliubov quasiparti
le wave fun
-tion obey the standard Bogoliubov�de Gennes (BdG)equations. We need to remember that the Zeeman en-ergy of a spin-down hole is the same as that of a spin-upparti
le (unlike the 
ase of a spin-independent poten-tial), and that the 
reation of an extra Cooper pair (the~Cy in Eq. (3.9)) 
osts an energy 2�, where within theusual BCS approximation we 
an identify the 
hemi
alpotential � with �F . Thus the 
orre
t form of the BdGequations for S = +1=2 is�� ~22m d2dz2 + V (z)�u(z) + �v(z) == (�F +�+E)u(z); (3.10a)�u(z) +� ~22m d2dz2 + 2�F + V (z)�u(z) == (�F +�+E) v(z); (3.10b)where for subsequent 
onvenien
e (in this subse
tiononly) we have taken the zero of energy E at �F + �,the minimum ex
itation energy needed to add an extrafermion in the absen
e of the Zeeman potential. Mak-ing the standard substitution [1℄u(z) = exp(ikF z)f(z);v(z) = exp(ikF z)g(z); (3.11)dis
arding the terms in d2=dz2(f(z); g(z)) (we returnto this point below), and 
ombining equations (3.10a)and (3.10b), we obtain the single equation1186
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lassi
al re�e
tions(~2v2F )d2fdz2 + n(E +�� V (z))2 ��2o f(z) ++ i~vF dV (z)dz f(z) = 0: (3.12)In the 
ase of interest, V0 � �, not only the 
onditionjV (z)j � � but also, for any bound state, jEj � �,must be ful�lled, as a result of whi
h Eq. (3.12) simpli-�es to the linear eigenvalue equation~22m� d2dz2 f+(E�V (z)) f(z)+i� dVdz f(z) = 0; (3:13)where, as in Se
. 1, we de�ne m� � �=v2F and also aquantity � � ~vF =�, whi
h up to a numeri
al fa
toris the Cooper pair radius (or the Pippard 
oheren
elength). The equation for g(z) is the same ex
ept thatthe sign of the last term is reversed. We note that if wehad 
hosen to take out a fa
tor exp(�ikF z) rather thanexp(+ikF z) in Eq. (3.11), the only e�e
t would havebeen to 
hange the sign of the last term in Eq. (3.13)and the 
orresponding equation for g(z).If we temporarily negle
t the last term in Eq. (3.13),the resulting equation is exa
tly the standard time-independent S
hrödinger equation (TISE), and more-over, in the 
ase of a bound state, must satisfy thestandard boundary 
ondition f(z) ! 0 for jzj ! 1.Consequently, we 
an apply all the standard textbooklore for the solution of the TISE, and the original 
om-ponents u(z) and v(z) of the BdG spinor are given (upto normalization) byu(z) = exp(ikF z) S
h(z); (3.14a)v(z) = exp(ikF z)�i� ddz + �+E � V (z)� ���  S
h(z) � u(z); (3.14b)where  S
h(z) is the solution of the S
hrödinger equa-tion for a parti
le of the massm� � �=v2F in the poten-tial V (z), and the approximate equality in Eq. (3.14b)holds in the limit of interest V0 � � and � � R.It is interesting at this point to estimate the orderof magnitude of the energy splittings �E and the spa-tial extent �z of the low-lying bound states. A

ordingto Eq. (3.8), these are respe
tively � (EF =�)1=2 and(EF =�)1=4 times the values they would take for a freeparti
le in the potential V (z). Expli
itly,�E � (~2V0=m�R2)1=2 � (�=R)(V0�)1=2; (3.15a)�z � (~R)1=2(m�V0)�1=4 �� R(��2=V0R2)1=4: (3.15b)

From (3.15a), we see that the last term in Eq. (3.13)is of the order (V0=�)1=2 relative to �E, and hen
e at�rst glan
e it 
an be treated perturbatively and has nomajor qualitative e�e
t. We also note that the termsin d2=dz2(f; g) whi
h we omitted in deriving Eq. (3.12)are of the order (kF�z)�1 � 1 relative to those kept.However, a very simple argument su�
es to showthat the many-body wave fun
tion given by inserting(3.14a)�(3.14b) in (3.9) 
annot be even approximatelythe (2N + 1)-parti
le ground state (or more generallythat fun
tions 
orresponding to (3.14) 
annot be evenapproximate energy eigenstates). For were it so, thenby the 
ontinuity equation the divergen
e of the par-ti
le 
urrent j(r) would ne
essarily be zero. However,j(r) is manifestly nonzero in the region of the Zeemantrap, while far from the latter, both 
omponents of theBdG wave fun
tion vanish and all that is left is theCooper pairs, whi
h be
ause of the quantization 
ondi-tion 
arry no 
urrent. Hen
e, states 
orresponding tothe forms (3.14) of u(z) and v(z) 
an never be energyeigenstates.Unsurprisingly, the immediate resolution of the dif-�
ulty lies in the re
ognition that sin
e the �orbitaltime-reversal operator� T̂orb (de�ned by T̂orb�̂iT̂�1orb == �̂i, T̂orbx̂iT̂�1orb = x̂i, and T̂orbp̂iT̂�1orb = �p̂i) 
om-mutes with the Hamiltonian in (2.4), and states of theform (3.13) are not eigenstates of T̂orb, and ea
h stateof this form is a

ompanied by a time-reversed partnerthat is exa
tly degenerate with it in the approxima-tions made below Eq. (3.15). Thus, even if the mixingof time-reversal states is exponentially small (as we seebelow), it is nevertheless ne
essary to take it fully intoa

ount.If we return to our original BdG equations (3.10)and let 	R;L denote the 2-
omponent spinors (u; v)
orresponding to the 
hoi
e exp(�ikF z) in (3.11), thenthe asso
iated mean-�eld (Nambu) Hamiltonian HBdGin
ludes not only the terms diagonal in the (R;L) ba-sis, whi
h we have dealt with and whi
h lead to so-lutions (3.14), but also (Hermitian) o�-diagonal termsh	RjHBdGj	Li = h	LjHBdGj	Ri�. Physi
ally, theseterms 
orrespond to the re�e
tion of a Bogoliubovquasiparti
le by the edges of the Zeeman potential ina �normal� kF ! �kF pro
ess rather than an Andreevone; this point 
omes out rather more 
learly in the for-mulation in Se
. 3.3. However, we should expe
t theseo�-diagonal terms to be of the order of the quantityK0 � Z exp(2ikF z)V (z)jf(z)j2dz: (3:16)Using the estimate (3.15b) for the range of f(z) andthe assumed smoothness of V (z), we �nd1187 4*



Y. Lin, A. J. Leggett ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014jK0j � exp(��);� � kFR(��2=V0R2)1=4 � 1: (3.17)In view of the exa
t degenera
y of the original statesof 	R and 	L, the e�e
t of the exponentially small o�-diagonal term K0 is to make the true (2N +1)-parti
leenergy eigenstates the linear 
ombinations	� = 2�1=2(	L �	R) (3:18)with an energy splitting 2jK0j. States (3.18) are eigen-states of the orbital time reversal operator T̂orb, as theyshould be.It should be noted, however, that this maneuverdoes not totally remove the paradox raised above (seeSe
. 4).3.3. An alternative approa
h beyond thequasi
lassi
al approximationIn this subse
tion, we dis
uss the Andreev boundstates in momentum spa
e, where the e�e
t of the ex-ternal Zeeman potential on the formation of the quasi-parti
le bound states is parti
ularly manifest, espe-
ially 
on
erning normal re�e
tion pro
esses that gov-ern the energy splitting of the ground state doublet(see details below). In this approa
h, we do not as-sume the quasi
lassi
al approximation as in the abovetwo subse
tions, and the resulting equation of motionfor an Andreev state 
ontains spatial variations in alllength s
ales. We then dis
uss physi
al features of thebound solutions to the equation of motion. We startby expanding the (2N + 1)-parti
le energy eigenstatesin terms of plane-wave BdG quasiparti
le states 2N+1 =Xk Ck�yk" 2N;0; (3:19)where �yk" are BdG quasiparti
le 
reation operatorswith the momentum k and spin +1=2 (we restri
t our-selves to spin +1=2 ex
itations), and the Ck (not tobe 
onfused with the 
k in Eq. (2.1)) are 
omplex
oe�
ients. In the absen
e of the external Zeeman�eld, ea
h plane-wave BdG quasiparti
le generates a(2N + 1)-parti
le energy eigenstate in a homogeneoussuper
ondu
ting system. The lowest-energy eigenstatehas a quasiparti
le momentum at the Fermi momen-tum. In the presen
e of the Zeeman �eld, we 
an formlo
alized wave pa
kets inside the trap to take advan-tage of the Zeeman energy. Be
ause a lo
alized wavepa
ket is 
omposed of plane-wave quasiparti
le stateswith di�erent momenta, there is an asso
iated energyspread whi
h we 
all the �kineti
 energy� for 
onve-nien
e. Therefore, the problem looks like the standard

single-parti
le S
hrödinger-like problem, and the en-ergy ground state is a
hieved by minimizing the sum ofkineti
 and potential (Zeeman) energies.We now make the argument more quantitative bywriting the Zeeman energy in terms of plane-wavequasiparti
le operators. In the se
ond-quantized form,the Zeeman Hamiltonian is given byHZ = �Xk;k0 Vk�k0 ��yk0"�k" � �yk0#�k#� : (3:20)We then expand ele
tron operators in terms of BdGquasiparti
le operators and rewrite (3.20) in terms ofBdG quasiparti
les:HZ = �Xk;k0 Vk�k0 �(uk0�yk0" � ��k0��k0#) �� (uk�k" � �k�y�k#)�(���k0��k0" + u�k0�yk0#)�� (��k�y�k" + u�k�k#)� : (3.21)The relevant terms for bound states areHZ;eff = �Xk;k0 Vk�k2 (uk0uk�yk0"�k" ++ ���k0��k�y�k"��k0"): (3.22)Terms in (3.21) involving two quasiparti
le annihila-tors annihilate (2N + 1)-parti
le states and those 
re-ating two quasiparti
les generate states with the energyhigher by the energy gap than the relevant energy rangewe are interested in. Therefore, the only relevant termsare those that s
atter plane-wave quasiparti
le statesfrom one momentum to another, just as the usual po-tential well s
atters a single parti
le.Equation (3.22) together with the BCS Hamiltonianyields the total HamiltonianH =Xk Ek�yk"�k" ��Xk;k0 Vk�k0 (uk0uk + �k0��k)�yk0"�k"; (3.23)where we have only in
luded spin-up quasiparti
les asspin-down quasiparti
les are not bound by the Zeeman�eld and are irrelevant to the dis
ussion. Now the prob-lem redu
es to �nding Ck in Eq. (3.19) to diagonalizethe Hamiltonian (3.23). This is very mu
h like theS
hrödinger problem for a single parti
le in a poten-tial well, with two ex
eptions. First, the kineti
 energyis Ek = p"2k +�2 instead of "k = ~2k2=2m � �, andhen
e the minimum kineti
 energy is a
hieved at �pF ,instead of at zero. This has important 
onsequen
es on1188
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al re�e
tionsthe energy spe
trum, whi
h we dis
uss shortly. Se
ond,the potential 
ontains 
oheren
e fa
tors and is not thestandard external potential in that it depends on k andk0 separately. Given that the Zeeman �eld is wide 
om-pared to the Cooper pair radius, the di�eren
e betweenk and k0 for whi
h the Fourier transform of the Zeeman�eld is appre
iable is small su
h that j"k � "k0 j is small
ompared to the gap �, and we 
an therefore approx-imate the 
oheren
e fa
tors by 1. We �nally arrive atthe equation of motion for Andreev bound statesEkCk �Xk0 Vk�k0Ck0 = ECk : (3:24)By expanding Ek around k = �kF to the lead-ing order and extra
ting a phase fa
tor exp(�ikF z),we re
over Eq. (3.13) without the last spatial gradientterm. If we take the expe
tation energy of the (2N+1)-parti
le state (3.19), we obtain the kineti
 energyPk Ek jCkj2 and the potential energy �Vk�k0CkC�k0 . Itis 
lear that we 
an save potential energy by in
lud-ing Ck from both around kF and �kF . The energysplitting is however exponentially small sin
e Vk�k0 de-
ays exponentially as exp(�kF�z), whi
h is 
onsistentwith the 
on
lusion in the last subse
tion. It is inter-esting to note that we 
an apply the same analysis tothe standard Andreev setup, where it is the gap thatis varying in spa
e. Basi
ally, all we need to do is toFourier transform the gap fun
tion to the momentumspa
e and write the mean-�eld parti
le�parti
le inter-a
tions in terms of plane-wave BdG quasiparti
les, andthe rest of the analysis follows. We see that the gapplays the similar role as ordinary potential in trappingthe Andreev bound states. In parti
ular, the energysplitting is exponentially small for the low bound statesin a slowly varying gap.4. PROBLEM CONCERNING THECONTINUITY EQUATIONWe �rst return to the 
onsiderations raised inSe
. 3.2 
on
erning the 
ontinuity equation1). We �rstnote that in the 
onventional (parti
le-number-non-
onserving) approa
h to the BdG equations, there is,at least prima fa
ie, no paradox even in the limit of
omplete negle
t of normal re�e
tion pro
esses, sin
ethe la
k of parti
le number 
onservation in that ap-proa
h permits the 
ontinuity equation to be violated.1) The 
onsiderations in this se
tion should be regarded asrather preliminary and possibly subje
t to revision, parti
ularlyin view of the possible 
onne
tion to papers [6; 7℄ whose relevan
ewe appre
iated only at a very late stage in the preparation of thismanus
ript.

In our parti
le-number-
onserving approa
h, however,that loophole is 
losed and, moreover, the �resolution�given in Se
. 3.2 is not truly satisfa
tory, sin
e overtimes
ales mu
h shorter than the exponentially longlifetime against normal re�e
tion the system, even ifit is in fa
t, e. g., in state (3.14), should not �know�that it is not in an energy eigenstate, and thus, for theexpe
tation value in the state (3.14) we should havehdiv j(r)i = �(�=�t)h�(r)i = 0.We believe, therefore, that the following 
on
lusionis ines
apable: in an a

urate des
ription of an Andreevbound state, any motion of the Bogoliubov quasiparti-
le must inevitably be a

ompanied by a deformationof the 
ondensate, whi
h is su
h as to guarantee thatthe divergen
e of the total 
urrent be zero. Sin
e thislatter 
ondition, while ne
essary for the resultant stateto be an energy eigenstate, is not su�
ient, it doesnot by itself su�
e to identify the appropriate defor-mation. However, it is energeti
ally advantageous forthe system to have zero 
urrent sin
e in order for thekineti
 energy 
ost in the 
ondensate due to the defor-mation to be �nite, the 
urrent has to go to zero inthe thermodynami
 limit. In the 3D thermodynami
limit (both L; d ! 1), the energy ne
essary to formthe deformation tends to zero as 1=d2, simply be
ausethe quasiparti
le probability density itself has this de-penden
e. However, in the �1D thermodynami
 limit�(L ! 1 and d ! 
onst), the energy tends to a 
on-stant. But the energy saving of the quasiparti
le dueto the �ow of the 
ondensate (the �v �p� term) is of thesame order of magnitude as that of the energy 
ost andis likely to 
an
el the latter. Hen
e, the expe
tationenergy of the system with a deformed 
ondensate is aslow as the state without the deformation. Thus we arein
lined to believe that the appropriate deformation ofthe 
ondensate when the Bogoliubov quasiparti
le isin the approximate energy eigenstate (3.14) 
onsists inmultiplying the 2N -parti
le ground state (2.1) by thefun
tion exp (�iPi f(zi)), wheref(z) = kFL2N Z j S
h(z)j2dz: (4:1)If this is 
orre
t (and indeed more generally), then thetrue states of the ground state doublet involve a smallbut nonzero entanglement between the states of theBogoliubov quasiparti
le and that of the 
ondensate.However, we have not at the time of writing estab-lished that the 
onje
ture represented by Eq. (4.1) infa
t 
onstitutes the ground state of the (2N+1)-parti
lemany-body problem in some well-de�ned �post-BdG�approximation.1189
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s.APPENDIXWe dis
uss the 
ase where the external Zeeman po-tential has the shape of a square well. In this sit-uation, the standard quasi
lassi
al approa
h for theslowly varying potential is not appli
able. We dis-
uss the problem in the standard textbook approa
hby mat
hing boundary 
onditions for the wave fun
-tions at the trap edges. We note that in this appendix,as in Se
s. 3.1 and 3.3 but di�erently from Se
. 3.2,the zero of quasiparti
le energy is the 
onventional one(the 
hemi
al potential �).The BdG equation 
an be written as� p22m � ��u+�� = (E + V )u;�� p22m � �� � +�u = (E + V )�; (A.1)where the potential V is 
onstant in the trap and zerooutside. The trap extends from z = �W=2 to z =W=2.We use the momentum operator p here in the BdGHamiltonian to emphasize that a solution is superpo-sition of plane waves, ea
h of whi
h satis�es the BdGequation either inside or outside the trap. To mat
hthe boundary 
onditions at the trap edges, we need tosuperpose these plane-wave states to obtain true eigen-states. It is 
onvenient to de�ne ratio of u and � by�u = �E +
�o = F�o ;�u = �E + V +
�i = F�i ; (A.2)where the subs
ripts o and i respe
tively refer tothe outside and inside of the Zeeman trap, with
�o = �ip�2 �E2 and 
�i = �p(E + V )2 ��2. Wenote that 
�o is pure imaginary and this is the fa
torwhi
h gives rise to the exponential de
ay of the boundsolutions outside the trap. Stri
tly speaking, there areeight boundary 
onditions, four of them 
oming from
ontinuity 
onditions for u and v at the two trap edges,the other half 
oming from the 
ontinuity 
onditions forthe �rst derivatives of u and v. Upon Andreev re�e
-tion, the momentum 
hange is of the order of �=EF
ompared to the Fermi momentum, and therefore themomenta of the parti
le and hole plane-wave solutions

di�er only by the order�=EF , relative to the Fermi mo-mentum. If we ignore this small di�eren
e, the plane-wave solutions for wave ve
tors in opposite dire
tionsbe
ome separate. We only need to mat
h the 
ontinuity
onditions for u and v (with wave ve
tors in one dire
-tion) and the 
ontinuity 
onditions for the �rst deriva-tives are automati
ally satis�ed (this point is dis
ussedin [8℄). Within this approximation, the solutions withmomentum in two opposite dire
tions are degenerate,as is the 
ase for the general gradually varying poten-tial dis
ussed in the main text. We 
onsider a solutioninside the trap of the formui =u+i eip+i z + u�i eip�i z;�i =F+i u+i eip+i z + F�i u�i eip�i z; (A.3)where p�i = pF +
�i =~vF . Similarly, the solution out-side the trap is given byuo = u+o eip+o z�(z) + u�o eip�o z�(�z);�o = F+o u+o eip+o z�(z) + F�o u�o eip�o z�(�z); (A.4)where p�0 = pF +
�o =~vF , and �(z) = 1 for z > 0 and�(z) = 0 for z < 0.Now by mat
hing the boundary 
onditions atz =W=2 and z = �W=2, we obtain the following equa-tions at z =W=2:u+o eip+o W=2 = u+i eip+i W=2 + u�i eip�i W=2;F+o u+o eip+o W=2 = F+i u+i eip+i W=2 ++ F�i u�i eip�i W=2: (A.5)Similarly, the equations at z = �W=2 areu�o e�ip�o W = u+i e�ip+i W=2 + u�i e�ip�i W=2;F�o u�o e�ip�o W=2 = F+i u+i e�ip+i W=2 ++ F�i u�i e�ip�i W=2: (A.6)Combining Eq. (A.6) with Eq. (A.5), we obtain theequationF�i � F�oF�o � F+i = F�i � F+oF+o � F+i ei(p�i �p+i )W : (A.7)It 
an be written astg�1 p�2 �E2V �p(E + V )2 ��2 !�� tg�1 p�2 �E2V +p(E + V )2 ��2 ! == �p(E + V )2 ��2~vF W + n�; (A.8)where n is a positive integer.1190
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al re�e
tionsWe 
an �nd simple solutions of (A.8), in the widetrap limit, i. e., satisfying the 
ondition(E + V )2 ��2 � V 2: (A.9)This 
ondition is equivalent toE + V �� � ~2v2F�W 2 � V 2� ;�W � L� ; (A.10)where L� = ~vF =V is the length s
ale asso
iated withthe trap strength.Under this 
ondition, we 
an expand Eq. (A.8) tothe �rst order in p(E + V )2 ��2=V , with the result11 + �2 �E2V 2 = �WV2~vF ++ n�2r(E + V )2 ��2V 2 : (A.11)We now 
onsider low-energy bound states su
h that(E + V � �)=V � 1 and (� � E)=V � 1. Sin
e theLHS of Eq. (A.11) is mu
h smaller than 1 and the ab-solute values of both terms in the RHS of Eq. (A.11)are mu
h greater than 1, we 
an set the LHS to zero.Hen
e, we arrive at the solutionE =s�n�~vFW �2 +�2 � V �� �� V + n2~2�2m�W 2 ; (A.12)where m� is the e�e
tive mass introdu
ed in Eq. (3.8).This solution is 
onsistent with the intuitive argu-ment. For low bound states, all Zeeman energy V issaved sin
e low bound wave fun
tions are 
ompletely lo-
alized inside the trap, i. e., its range outside the trapis negligible, hen
e the term �V in Eq. (A.12). Theterm (n�~vF =W )2 in the above equation is simply thekineti
 energy of the quasiparti
le sin
e its momentumÆp = p� pF is quantized by the trap as 2n~�=(2W ).It is interesting to 
ompare this result with the spe
-trum for a quasiparti
le trapped between two super-
ondu
tors in an SNS jun
tion [9℄. There, we have asquare-well form of the gap. Inside the well, the quasi-parti
le is in the superposition of a normal parti
le anda normal hole, and the e�e
tive quantization length istwi
e the trap width W due to Andreev re�e
tion, andhen
e the spe
trum isE = 2n�~vF2W : (A.13)

Our result (A.12) is 
onsistent with the standard pi
-ture that due to the Andreev re�e
tion, the quantiza-tion length is twi
e the trap width.We have so far negle
ted the mixture of plane-wavesolutions with wave ve
tors in opposite dire
tions. Inorder to see the energy splitting between these time-reversal states, we need to in
lude wave ve
tors inboth dire
tions and mat
h boundary 
onditions forboth wave fun
tions and their gradients. The 
al
u-lation is mu
h more 
ompli
ated and the eigenvalueequations are rather lengthy and are not listed here;we merely note (a) that negle
ting terms of the orderp(~2=m�W 2)=V relative to the leading term in theeigenvalue equations, we re
over the result in (A.12),and (b) that the term whi
h leads to the splitting ofthe doublets is of the order 1=kFW relative to the levelseparation in (A.12), indi
ating that the e�e
t of nor-mal re�e
tion falls o� only as an inverse power law inthe �semi
lassi
al� parameter kFW , not exponentiallyas in the 
ase of the �smooth� well dis
ussed in the maintext. This is, of 
ourse, what we would expe
t in thelight of existing results su
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