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A few-channel superconducting constriction provides a set of discrete Andreev bound states that may be pop-
ulated with quasiparticles. Motivated by recent experimental research, we study the processes in an a.c. driven
constriction whereby a quasiparticle is promoted to the delocalized states outside the superconducting gap and
flies away. We distinguish two processes of this kind. In the process of ionization, a quasiparticle present in
the Andreev bound state is transferred to the delocalized states leaving the constriction. The refill process
involves two quasiparticles: one flies away while another one appears in the Andreev bound state. We notice an
interesting asymmetry of these processes. The electron-like quasiparticles are predominantly emitted to one side
of the constriction while the hole-like ones are emitted to the other side. This produces a charge imbalance of
accumulated quasiparticles, that is opposite on opposite sides of the junction. The imbalance may be detected

with a tunnel contact to a normal metal lead.
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1. INTRODUCTION

Superconducting mesoscopic structures are among
the most promising candidates to realize quantum com-
putation devices in the solid state [1]. Apart from ex-
trinsic sources of decoherence that might get in the
way, quasiparticle poisoning constitutes one of the ma-
jor obstacles inherent to superconductors [2]. In a
Cooper pair box, the presence of quasiparticles leads
to a coupling of even and odd charge modes, providing
a channel of decoherence for the charge qubit [3,4].
In addition, quasiparticle excitations can break the
fermion parity required for the protection of a Majo-
rana state [5—7]. Naively, the superconducting gap A
should ensure an exponentially suppressed quasiparti-
cle population at sufficiently low temperature. How-
ever, various experiments indicate that a long-lived,
non-equilibrium quasiparticle population persists in the
superconductor, harming the desired operation of su-
perconducting devices [8-13].

*E-mail: Y.V.Nazarov@tudelft.nl

This makes it important to develop the means of an
active control of the quasiparticle population in bound
states associated with a nano-device. Thus motivated,
we theoretically investigate the control of the popula-
tion of quasiparticles in the Andreev bound states at
a superconducting constriction by means of pulses of
microwave irradiation. We concentrate on the generic
case of a few-channel superconducting constriction with
highly transparent channels. Such constrictions are
made on the basis of atomic break junctions [14]. The
simplicity of their theoretical description enabled de-
tailed theoretical research [15-17]. In the presence of a
phase difference at the constriction, an Andreev bound
state is formed in each channel [18,19]. In a recent ex-
periment, the population of such a single bound state
has been detected by its effect on the supercurrent in
the constriction. The spectroscopy of Andreev states
has also been successfully performed [20,21] in this
setup.

In this work, we investigate the processes that
switch the Andreev bound state population. We as-
sume low temperatures that permit to neglect the pop-
ulation of delocalized quasiparticle states. Let us con-
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sider a quasiparticle with energy F4 < A, A being the
superconducting gap edge in the leads. If we mod-
ulate the superconducting phase with the frequency
hQ > A — E 4, we can transfer this quasiparticle to the
states of the delocalized spectrum. This is an ioniza-
tion process. Suppose we start with no quasiparticle in
the constriction and wish to fill the bound state. This
can be achieved by the absorption of a quantum of the
high-frequency phase modulation, provided the quan-
tum energy exceeds E4 + A. In the course of such a
refill process, one quasiparticle emerges in the Andreev
level while another one is promoted to the delocalized
states and leaves the constriction.

We will utilize a master equation approach to de-
scribe the corresponding transitions. As usual, this
works if the transition rates in energy units are much
smaller than the energies involved. In our situation,
the energy scale is A while the transition rates due to
the modulation with amplitude d¢ can be estimated
as A(0¢)2. Therefore, the master equation approach
is justified if |d¢| < 1, that is, in the limit of small
modulations.

We compute the rates of the ionization and refill
processes in the lowest order in the phase modulation
amplitude and shortly explain how to control the pop-
ulation by applying the a.c. pulses that initiate the
process.

We find an interesting asymmetry of the quasiparti-
cles emitted in the course of these processes. The quasi-
particles fly with equal probability to both leads. How-
ever, more electron-like quasiparticles leave to one of
the leads while more hole-like ones leave to the opposite
one. This results in a net charge transfer per process
and in principle can be regarded as a non-equilibrium
addition to the supercurrent in the constriction. Sim-
ilar to the supercurrent, the effect changes sign upon
changing the sign of the superconducting phase.

The effect leads to charge imbalance [22, 23] of the
non-equilibrium quasiparticles that are accumulated in
the leads on the spatial scale set by the inelastic relax-
ation of the quasiparticles [24]. This charge imbalance
can be measured with a normal-metal voltage probe
attached to the superconductor: the method proposed
in [24] and widely applied in recent years [25, 26].

This paper is organized as follows. We formulate
the model in Sec. 2 and we give results for the rates in
Sec. 3. Section 4 is dedicated to the estimations of the
charge imbalance effect in the voltage-probe setup.
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Fig.1. 1d model of the superconducting constriction

2. MODEL

We model the superconducting weak link with a 1d
quantum Hamiltonian corresponding to a single trans-
port channel, z being the coordinate (see also Fig. 1).
The constriction of the length L is modelled by a scat-
tering potential V(z). In addition, a finite vector po-
tential A(z) on a local support provides a phase bias
between the left and right contact, ¢ = 2e [ dz A(z), e
being the elementary charge. We focus on the regime
where the excitation energy is much smaller than the
Fermi energy, £ < Ep, such that the spectrum can
be linearised. The pseudo spin |L, R) thus signifies a
left /right moving electron with the Fermi wave vector
Fkp, where o, = |L)(L| — |R)(R|. In the linearized
regime, the current density operator is represented as
j = —vpo,. The Bogoliubov-de Gennes Hamiltonian
is then given as (h = 1)

H = [—ivpdyo,+V (x)o,| To—evp A(z)o,+A1,, (1)

where the Pauli matrices 7; represent the Nambu space.
The potential V' provides the reflection, as o, =
= |L)(R| + |R)(L|. Both V and A are real functions
and have a finite support in the interval z € [0, L].

Let us first deal with a stationary phase ¢. We
diagonalize the Hamiltonian, Eq. (1), in the limit of
a short constriction, E,A < wvp/L. There is one
Andreev bound state solution |p4(x)), with a subgap

eigenenergy Fa4 = Ay/1 —Tysin?(¢/2), Tp being the
normal state transmission coefficient characterizing the
transport channel under consideration. The Andreev
bound state is responsible for the supercurrent in the
constriction. Since the levels are spin-degenerate, the
Andreev level can host n = 0,1,2 quasiparticles, the
supercurrent being I (1 — n), where Iy = —2edyE4.
In addition, there are the extended scattering eigen-
states |pQ%') with eigenenergies E > A. They have the
BCS density of states v(E) = 0(E—A)E/V E? — A2y,
where v is the density of states in the normal metal.
The indices @ = L, R and n = e, h indicate the scatter-
ing state with an n-like quasiparticle outgoing to the
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contact a. The outgoing scattering states correspond
to the solution of the advanced propagator. This set of
states is related to the incoming scattering states (re-
tarded propagator) via the scattering matrix 53;7’7’ =
= (pQ" |oty). Our scattering matrix coincides with
the one found in Ref. [17].

To describe an a.c. driven system, we assume ¢(t) =
= ¢ + 0¢sin(Qt) and treat the phase modulation am-
plitude as a perturbation. We compute the rates of
various processes in the lowest order when they are
proportional to (§¢)2.

In addition, the constriction may be subject to
quantum phase fluctuations, i.e., the phase modu-
lation becomes an operator, 6¢(t) — ¢, whose dy-
namics is determined by the electromagnetic environ-
ment of the junction. The phase noise spectrum is
S(w) = [dt e (56 (0) 5T (£))eny, Where the expec-
tation value is with respect to the environment degrees
of freedom. If the environment is in thermal equi-
librium, the noise can be related to the impedance
Z(w) felt by the constriction via the fluctuation dis-
sipation theorem, S(w) = 47GgZ(w)/w, where w > 0,
Gg = €?/mh. The rates of the inelastic processes are
readily computed with this.

3. THE TRANSITION RATES AND
MANIPULATION

To compute the rates, we apply Fermi’s Golden rule.
The advantage of the model and the gauge in use is that
the matrix elements of the perturbation only depend on
the wave functions () at the origin. For instance, the
rate of ionization from the bound state A to delocalized
quasiparticle states n with energy E = E4 + Q) reads

Lt =Tasn = g (0670 (E) [(eaO)lilenO) . (2)

The rate of the refill process whereby the quasiparticles
occur in the state A and n reads

P = Tosn = 5 (56)7(B) | (2n(O1il2aO)F . (3)

with |$4(0)) = i1,0,|¢n(0))* and the energy of the
emitted quasiparticle F = Q — F4.

For the moment, let us assume that all the extended
quasiparticle states are empty. In this regime, the only
“natural” process changing the population of the An-
dreev level is the annihilation of two quasiparticles in
the same Andreev bound state. The corresponding rate
reads

D =T =S QEa) [(palilea)l.  (4)

I/(A(5¢)*/16)
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Fig.2. lonization and refill rates for Tp = 0.5 and ¢ =

= m, when E4 = 0.7A. The ionization rate appears

at the threshold © ~ 0.3A, while the threshold for the
refill is ~ 1.7A

Substituting the wave functions into Eqs. (2), (3),
and (4), we arrive at the following expressions:

X

I, = T°(156¢)29(Q +E4— A)i‘/A;;EE‘
EAQ + A?[cos(¢) + 1]

XV +Eq)? - A2 (Q+E )2 -FE% 5)
FR _ TO(166¢)29(Q _ EA _ A)ivA;'IZE‘i X
EAQ — A%[cos(¢) + 1]
X /(= Ex)?2 — A2 GRS (6)
FA:@<1_%>X
2
X<A2—Eg—4[% ) (7)

We see that the ionization and refill rates at 7o ~ 1
are of the order of (6¢)?A and, at sufficiently large
phase modulation amplitudes, are restricted by A only.
Thus the population of the Andreev bound state can be
changed quickly. As to the annihilation rate, it may be
estimated as T'y ~ ((¢?)),A, ({(¢#?)), = ZGg being the
quantum fluctuation of the phase. For typical electro-
magnetic environments, Z is of the order of the vacuum
impedance and ((¢?)), ~ 1073 . This implies that at
sufficiently large a.c. modulations, (§¢)% > ((¢?)),,
the annihilation rate can be neglected in comparison
with the a.c.-induced rates.
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Fig.3. Transitions causing changes in the Andreev

bound state occupation

We illustrate the frequency dependence of the ion-
ization and refill rates in Fig. 2. In the limit of large
frequency, both rates saturate at the same value. We
stress, however, that the practical frequencies for the
manipulation of the Andreev bound state are most
likely restricted by 2A: higher frequencies would cause
massive generation of quasiparticle pairs at the con-
striction and in the bulk of the superconductor.

Let us determine the distribution of the bound state
populations under constant driving. The processes
causing transitions between n = 0, 1,2 are summarized
in Fig. 3. The master equation for the probabilities P,
n =0,1,2, reads

POZ—QFRP0+FIP1+FAP27 (8)
Py = —([; +TR)Py + 2Tz Py + 2I'1 Py, (9)
P2:—(FA-|-2F[)P2 +IrP. (10)

The factors 2 in this equation are due to the double
spin degeneracy of the single quasiparticle state. In
stationary state, the probabilities are given by

T4(Tr +Tg) +2I%

Py = . (11
O T T(Cs + 20 +40g) 4+ Cr(2Cg + 3T 4) (11)
T R(T 4 + 2T
P1: R( At I) ) (12)
F[(FA+2F[+4FR)+FR(2FR+3FA)
or?,
P, (13)

T T,(T4+ 20 +4Tg) + Tr(2Tx + 30 A)

In the absence of a refill rate, Tp = 0, 'y # 0, the
Andreev bound state is always emptied by the ioniza-
tion processes. Therefore the a.c. phase modulation
can be used for “purification” of the localized quasi-
particle states in nanodevices. We stress that the op-

posite situation, 'y = 0, ' # 0, is not achievable
since the phase modulation responsible for refill pro-
cesses also produces ionization. In this case, the con-
stant a.c. modulation will cause a random distribution
of the population.

4. CHARGE IMBALANCE

An effect which, to the best of our knowledge, has
been overlooked so far is that the evacuation of quasi-
particles from Andreev bound state is asymmetric with
respect to electron- and hole-like states and can thus
create charge imbalance of the quasiparticles in the
leads.

Namely, we find that the rate at which an outgo-
ing electron-like quasiparticle is created is not equal to
the one for outgoing hole-like quasiparticle in the same
lead, T'ye # Tap for both refill and ionization processes,
a = R,I. In the limit of a short constriction where we
can neglect the energy dependence of the transmission
coefficients, there is a symmetry between the leads: Ty,
(Tqr) in one lead equals Ty, (Tae) in the opposite lead,
so that the total number of quasiparticles emitted to
each lead is the same on average.

As a consequence of the rate asymmetry, each quasi-
particle excitation process is accompanied by an aver-
age charge transfer in the constriction,

_ VEP =A% Ty — Tan

Qa(E) B T..+Lop

(14)

where the prefactor accounts for the energy-dependent
quasiparticle charge at energy FE.

Evaluating the rates, the concrete expressions are
obtained as

_ _28EA (Q+ E4)? — A2
=" A’ F?
B (1+ 575) )
OFE4 + A2 (1 +cos¢)’
_,0Ea [(Q-EBap -
" =34 A? - F3

Ea (1- o5 )
X . (16)
QFE4 — A2 (1 + cos ¢)

In Fig. 4, q; as a function of ¢ is plotted for several
parameters. The plot for ¢g would look similar. We
see immediately that ¢,(¢) = —qa(—9), like the su-
percurrent. Indeed we see from the formulas that the
charge transfer is proportional to the supercurrent car-
ried by the Andreev bound state ~ 0yE4. Inverting
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Fig.4.

The parameters are Tp = 0.5 and Q/A = {1/3,1,20}

(dashed, dotted, solid), and To = 1, Q/A = 1 (thick
solid)

The charge transfer ¢; as a function of ¢.

the stationary phase bias therefore inverts the charge
transfer.

Contrary to the supercurrent, the charge transfer
exhibits a discontinuity at ¢ = 0. The explanation
of this rather counter-intuitive feature is that the wave
function of the Andreev bound state is not a continuous
function of ¢ at ¢ = 0 since the state merges with the
delocalized spectrum at this point. The charge trans-
fers ¢, are 2w-periodic and have a node at ¢ = 7, where
thus the charge asymmetry vanishes.

The maximum charge transfer for a given ¢ is
reached in the limit of a fully transparent constriction,
see also the thick solid curve in Fig. 4. In this particular
limit, the a.c. drive actually produces only a quasipar-
ticle of one kind, namely, e-like (h-like) for 0 < ¢ < 7
(=7 < ¢ < 0). In the opposite tunneling limit, Tp < 1,
the charge transfer vanishes as ¢, ~ /Tp. Likewise the
charge transfer vanishes close to the threshold driv-
ing frequency, where 60 = Q@ — A+ F4 < A for
a=100=0-A—-Es < A for @« = R), obey-
ing the power law ¢, ~ /0Q2/A in this limit. Far
away from the threshold, 2 > A, the charge transfer
saturates at q;,r — F20,E4/\/A%? — E%. For large
driving frequencies, the maximal polarization value is
|¢a|maz = /To. Considering the thin curves in Fig. 4,
where the driving frequency is varied, we observe that
for large frequencies, Q > A, the maximal value is
at small stationary phase bias. For lower frequencies,
Q2 < A, the polarization on the other hand may increase
for 7 > ¢ > /2, where the bound state is deeper in
the gap, before it drops to zero at ¢ = 7.

Under conditions of constant irradiation, the net
charge transfer per unit time is computed from the mas-
ter equation and reads

e-like S| N

h-like

Fig.5. Build-up of charge imbalance due to charge

asymmetry of the quasiparticles emitted from the con-

striction. The charge imbalance is measured with a

N-S tunnel junction voltage probe attached to the
lead, V5, being the output signal

q':q]F](Pl—|—2P2)+qRFR(2P0+P1). (17)

We see that the refill process is crucial for the net ef-
fect: otherwise the Andreev bound state will always be
empty.

In principle, the charge transfer gives rise to an ad-
ditional dissipative current I; = eq =~ el that is seen
on the background of a generally much bigger super-
current, Iy ~ eA. Although it is possible to observe
such a current, in the following we will concentrate on
a more interesting manifestation of the effect.

If the thermalization of the quasiparticle distribu-
tion in the leads near the constriction is not immediate,
the charge asymmetry gives rise to a build up of a net
quasiparticle charge density p, also known as charge
imbalance. The imbalance may be measured by a volt-
age probe connected to a lead at some distance from
the constriction.

The idea of the measurement as introduced in
Ref. [24] is depicted in Fig. 5. An unequal population of
e-like and h-like quasiparticles gives rise to a current I
at the N—S tunnel junction that is proportional to the
charge imbalance p near the junction. Applying a volt-
age eVour = un — ps between the normal metal and
superconducting contacts produces a counter-current
Iy . The voltage V,,+ at which the net tunnel current
in the probe vanishes, Ig + Iy = 0, is a signal of the
charge imbalance.

In the case of low temperatures, T' < A , this mea-
surement is extremely sensitive. This is because Iy is
formed by the normal-metal excitations with energies
> A. At low temperatures the number of these excita-
tions is exponentially small and therefore a large V¢
is required to compensate Ig. In the linear regime, the
signal voltage reads
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P
D)
Co

eVour =T (18)
co = voV2rTAexp(A/T) being the (exponentially
small) equilibrium quasiparticle density. Owing to this,
even at moderately low 7" = 0.05A in aluminium, a
charge imbalance of 0.001 elementary charges per cubic
micrometer produces already a signal ~ 0.17/e. The
above relation is valid if eV,,; < T, at larger imbal-
ances the signal saturates at T'ln(p/co).

To estimate p, we note that potential scatter-
ing does not lead to the relaxation of charge imbal-
ance. This relaxation should involve inelastic processes
and/or scattering on magnetic impurities. The charge
imbalance lifetime 7¢g is therefore long and quasipar-
ticles diffuse far away from the constriction. The net
charge transfer ¢, quasiparticle diffusion and relaxation
are combined into a diffusion-relaxation equation for
the charge-imbalance density p(r),

p—DV?p+p/Tq = ¢(r). (19)

The charge imbalance is thus spread over the length
scale Lo ~ \/TgD. We assume the NS voltage probe
to be placed within this scale. The created quasipar-
ticles are spread over V, the volume of the lead at the
scale L,

-
p= QV ~ qD—V'

Let us note that the normal-state resistance of the
piece at the scale Lg can be estimated as Rél =
= e’y DV/ LZQ. This allows to represent the estimation
in a compact form, independent on peculiarities of the
geometry and disorder in the leads. Namely,

p ~ (RoGo)vod. (21)

Combining estimations for V,,: and p, and estimating
G~ T, we find

14
eVout ~ (RQGQ)C—EF ~

~ F(RQGQ)\/%QXP [A/T]. (22)

To get a rough estimate of achievable values, we take
Ro ~10hm, '~ 103A ~ 1 peV, T ~ 0.05A. With-
out the exponential factor, the value of V,,; would be in
the nano-volt range. However, the exponential factor
yields nine orders of magnitude. Since such an estima-
tion greatly exceeds 7', the signal voltage in this case
is already saturated at the value ~ T' ~ 10 uV and is
easy to measure.

5. CONCLUSIONS

We have investigated the processes of quasiparticle
emission in a superconducting constriction subject to
an a.c. phase modulation. We derived the rates involv-
ing the dynamics of the Andreev bound state occupa-
tion, and based on this, we proposed efficient schemes
to control the occupation. In addition, we found an
asymmetry of the rates of electron- and hole-like quasi-
particle emission. We demonstrated that this asymme-
try may lead to a measurable charge imbalance of the
quasiparticles accumulated near the constriction.

The experiments can be performed on the same
setup as in [20,21] where high-frequency irradiation
can be applied to the constriction and the Andreev
state populations can be detected by measuring the
supercurrent. The setup can be easily modified to
measure the charge imbalance effect predicted. In this
case, the additional normal-metal electrodes should be
brought in contact with the superconducting leads at
sub-micron distance from the constriction. We look
forward to experimental confirmation of our findings.

Our results can be generalized to multi-channel su-
perconducting constriction that can be fabricated much
easier than the break junctions. Such a generalization
is especially straightforward in case of a short junction,
that is, shorter than the superconducting correlation
length. In this case, the junction can be regarded as
a collection of independent transport channels, and all
the quantities discussed are thus contributed by each
channel. This is the subject of our ongoing research.

We gladly appreciate the contributions of Prof.
Alexander Fyodorovich Andreev to theoretical physics
and superconductivity that provided us with a fasci-
nating research field and many useful insights. One of
the authors (Yu.N) is grateful for personal help and
advice on many occasions since the first acquaintance
in 1978. We wish Prof. Andreev a merry forthcoming
jubilee and many fruitful years.
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Foundation in Grenoble, in the frame of its Chair of
Excellence program.

REFERENCES

1. M. H. Devoret and R. J. Schoelkopf, Science 339, 1169
(2013).

2. G. Catelani, R. J. Schoelkopf, M. H. Devoret, and
L. I. Glazman, Phys. Rev. B 84, 064517 (2011).

1181



R.-P. Riwar, M. Houzet, J. S. Meyer, Y. V. Nazarov

MIT®, Tom 146, Bo. 6 (12), 2014

10.

11.

12.

13.

14.

R. Lutchyn, L. Glazman, and A. Larkin, Phys. Rev. B
72, 014517 (2005).

R. M. Lutchyn, L. I. Glazman, and A. I. Larkin, Phys.
Rev. B 74, 064515 (2006).

L. Fu and C. L. Kane, Phys. Rev. B 79, 161408 (2009).

B. van Heck, F. Hassler, A. R. Akhmerov, and
C. W. J. Beenakker, Phys. Rev. B 84, 180502 (2011).

D. Rainis and D. Loss, Phys. Rev. B 85, 174533 (2012).

J. M. Martinis, M. Ansmann, and J. Aumentado, Phys.
Rev. Lett. 103, 097002 (2009).

M. Lenander, H. Wang, R. C. Bialczak, E. Lucero,
M. Mariantoni, M. Neeley, A. D. O’Connell, D. Sank,
M. Weides, J. Wenner et al., Phys. Rev. B 84, (024501
(2011).

S. Rajauria, L. M. A. Pascal, P. Gandit, F. W. J. Hek-
king, B. Pannetier, and H. Courtois, Phys. Rev. B 85,
020505 (2012).

D. Risté, C. C. Bultink, M. J. Tiggelman, R. N. Schou-
ten, K. W. Lehnert, and L. DiCarlo, Nat. Comm. 4,
1913 (2013).

J. Wenner, Y. Yin, E. Lucero, R. Barends, Y. Chen,
B. Chiaro, J. Kelly, M. Lenander, M. Mariantoni,
A. Megrant et al., Phys. Rev. Lett. 110, 150502 (2013).

E. M. Levenson-Falk, F. Kos, R. Vijay, L. I. Glazman,
and I. Siddiqi, Phys. Rev. Lett. 112, 047002 (2014).

N. Agrait, A. L. Yeyati, and J. M. van Ruitenbeek,
Phys. Rep. 377, 81 (2003).

15

16

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

1182

. P. Virtanen, T. T. Heikkild, F. S. Bergeret, and
J. C. Cuevas, Phys. Rev. Lett. 104, 247003 (2010).

. F. Kos, S. E. Nigg, and L. I. Glazman, Phys. Rev.
B 87, 174521 (2013).

D. G. Olivares, A. L. Yeyati, L. Bretheau, C. O. Girit,
H. Pothier, and C. Urbina, Phys. Rev. B 89, 104504
(2014).

A. Andreev, Sov. Phys. JETP 19, 1228 (1964).

Y. V. Nazarov and Y. Blanter, Quantum Transport:
Introduction to Nanoscience, Cambridge Univ. Press
(2009).

L. Bretheau, C. O. Girit, H. Pothier, D. Esteve, and
C. Urbina, Nature 499, 312 (2013).

L. Bretheau, ¢. O. Girit, C. Urbina, D. Esteve, and
H. Pothier, Phys. Rev. X 3, 041034 (2013).

D. N. Langenberg and A. I. Larkin, Nonequilibrium
Superconductivity, North-Holland (1986).

M. Tinkham and J. Clarke, Phys. Rev. Lett. 28, 1366
(1972).

M. Tinkham, Phys. Rev. B 6, 1747 (1972).

F. Hiibler, J. C. Lemyre, D. Beckmann, and H. V. Léh-
neysen, Phys. Rev. B 81, 184524 (2010).

T. E. Golikova, M. J. Wolf, D. Beckmann, I. E. Batov,
I. V. Bobkova, A. M. Bobkov, and V. V. Ryazanov,
Phys. Rev. B 89, 104507 (2014).



