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X-SHAPED AND Y -SHAPED ANDREEV RESONANCE PROFILESIN A SUPERCONDUCTING QUANTUM DOTShuo Mi, D. I. Pikulin, M. Mariani, C. W. J. Beenakker *Instituut-Lorentz, Universiteit Leiden, P.O. Box 95062300, RA Leiden, The NetherlandsReeived May 20, 2014The quasi-bound states of a superonduting quantum dot that is weakly oupled to a normal metal appearas resonanes in the Andreev re�etion probability, measured via the di�erential ondutane. We study theevolution of these Andreev resonanes when an external parameter (suh as the magneti �eld or gate voltage)is varied, using a random-matrix model for the N �N sattering matrix. We ontrast the two ensembles withbroken time-reversal symmetry, in the presene or absene of spinrotation symmetry (lass C or D). The polesof the sattering matrix in the omplex plane, enoding the enter and width of the resonane, are repelledfrom the imaginary axis in lass C. In lass D, in ontrast, a number / pN of the poles has zero real part. Theorresponding Andreev resonanes are pinned to the middle of the gap and produe a zero-bias ondutanepeak that does not split over a range of parameter values (Y -shaped pro�le), unlike the usual ondutanepeaks that merge and then immediately split (X-shaped pro�le).Contribution for the JETP speial issue in honor of A. F. Andreev's 75th birthdayDOI: 10.7868/S00444510141200251. INTRODUCTIONHalf a entury has passed sine Alexander Andreevreported the urious retro-re�etion of eletrons at theinterfae between a normal metal and a superondu-tor [1℄. One reason why Andreev re�etion is still verymuh a topi of ative researh is the reent interest inMajorana zero modes [2℄: nondegenerate bound statesat the Fermi level (E = 0) onsisting of a oherent su-perposition of eletrons and holes, oupled via Andreevre�etion. These are observed in the di�erential on-dutane as a resonant peak around zero bias voltage Vthat does not split upon variation of a magneti �eldB [3�6℄. In the (B; V ) plane, the ondutane peakstrae out an unusual Y -shaped pro�le, distint fromthe more ommon X-shaped pro�le of peaks that meetand immediately split again (see Fig. 1).It is tempting to think that the absene of a split-ting of the zero-bias ondutane peak demonstratesthat the quasi-bound state is nondegenerate, and heneMajorana. This is mistaken. As shown in a om-puter simulation [7℄, the Y -shaped ondutane pro-*E-mail: beenakker�lorentz.leidenuniv.nl

�le is generi for superondutors with broken spin-rotation and broken time-reversal symmetry, irrespe-tive of the presene or absene of Majorana zero modes.The theoretial analysis in Ref. [7℄ foused on theensemble-averaged ondutane peak, in the ontext ofthe weak antiloalization e�et [8�11℄. Here, we ana-lyze the sample-spei� ondutane pro�le, by relatingthe X-shape and Y -shape to di�erent on�gurations ofpoles of the sattering matrix in the omplex energyplane [12℄. 2. ANDREEV BILLIARD2.1. Sattering resonanesWe study the Andreev billiard geometry shown inFig. 2: a semiondutor quantum dot strongly oupledto a superondutor and weakly oupled to a normalmetal. In the presene of time-reversal symmetry, anexitation gap is indued in the quantum dot by theproximity e�et [13℄. We assume that the gap is losedby a su�iently strong magneti �eld. Quasi-boundstates an then appear near the Fermi level (E = 0),desribed by the HamiltonianH =X�;� j�iH��h�j+X�;a �j�iW�ahaj+jaiW ��ah�j�: (1)1165
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Fig. 1. Left panel: Magneti �eld B-dependene of peaks in the di�erential ondutane G = dI=dV . The peak positionstrae out an X-shaped or Y -shaped pro�le in the (B; V ) plane. Right panel: Loation of the poles of the sattering matrixS(") in the omplex energy plane " = E � i. The arrows indiate how the poles move with inreasing magneti �eldThe bound states in the losed quantum dot are eigen-values of the M �M Hermitian matrix H = Hy. TheM � N matrix W ouples the basis states j�i in thequantum dot to the normal metal, via N propagatingmodes jai through a point ontat. In priniple, weshould take the limit M !1, but in pratie M � Nsu�es.The amplitudes of inoming and outgoing modes inthe point ontat at an energy E (relative to the Fermilevel) are related by theN�N sattering matrix [14, 15℄S(E) = 1 + 2�iW y �H � i�WW y �E��1W: (2)This is a unitary matrix, S(E)Sy(E) = 1.A sattering resonane orresponds to a pole" = E � i of the sattering matrix in the omplex en-ergy plane, whih is an eigenvalue of the non-Hermitianmatrix Heff = H � i�WW y: (3)The positive de�niteness of WW y ensures that thepoles all lie in the lower half of the omplex plane, � 0, as required by ausality. Partile�hole sym-metry implies that " and �"� are both eigenvalues ofHeff , and hene the poles are symmetrially arrangedaround the imaginary axis.The di�erential ondutane G(V ) = dI=dV of thequantum dot, measured by grounding the superondu-
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Point ontat
Quantum dotSuperondutormetalNormalFig. 2. Shemati illustration of an Andreev billiardtor and applying a bias voltage to the normal metal, isobtained from the sattering matrix via [7℄G(V ) = e2h �N2 � 12 TrS(eV )�zSy(eV )�z� ; (4)in the eletron�hole basis, and viaG(V ) = e2h �N2 � 12 TrS(eV )�ySy(eV )�y� ; (5)in the Majorana basis. The Pauli matries �y and �zat on the eletron�hole degree of freedom. The twobases are related by the unitary transformationS 7! USUy; U =r12  1 1i �i! : (6)1166



ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014 X-shaped and Y -shaped Andreev resonane pro�les : : :2.2. Gaussian ensemblesFor a random-matrix desription, we assume thatthe sattering in the quantum dot is haoti, and thatthis applies to normal sattering from the eletrostatipotential as well as to Andreev sattering from the pairpotential. In the large-M limit, we an then take aGaussian distribution for H ,P (H) / exp�� M TrH2� : (7)By taking the matrix elements of H to be real, om-plex, or quaternion numbers (in an appropriate basis),one obtains the Wigner�Dyson ensembles of nonsuper-onduting haoti billiards [16�19℄. Partile�hole sym-metry then plays no role, beause normal satteringdoes not ouple eletrons and holes.Altland and Zirnbauer introdued the partile�holesymmetri ensembles appropriate for an Andreev bil-liard [20℄. The two ensembles without time-reversalsymmetry are obtained by taking the matrix elementsof i�H (instead of H itself) to be real or quaternion.When iH is real, there is only partile�hole symme-try (lass D), while when iH is quaternion, there ispartile�hole and spin-rotation symmetry (lass C).Both the Wigner�Dyson (WD) and the Altland�Zirnbauer (AZ) ensembles are haraterized by a pa-rameter � 2 f1; 2; 4g that desribes the strength of thelevel repulsion fator in the probability distribution ofdistint eigenvalues Ei ofH : a fatorQi<j jEi�Ej j� inthe WD ensembles and a fatorQ0i<j jE2i �E2j j� in theAZ ensembles. (The prime indiates that the produtinludes only the positive eigenvalues.)In the WD ensembles, the parameter � also ountsthe number of degrees of freedom of the matrix ele-ments of H : � = 1, 2, 4 when H is real, omplex,or quaternion, respetively. In the AZ ensembles, thisonnetion is lost: � = 2 in the lass C ensemble (iHreal) as well as in the lass D ensemble (iH quaternion).The oe�ient  an be related to the average spa-ing Æ0 of distint eigenvalues of H in the bulk of thespetrum, = ��28Æ20 �(2 in the WD ensembles;1 in the AZ ensembles. (8)The oe�ient in Eq. (8) for the AZ ensembles is twieas small as it is in the WD ensembles with the same �,on aount of the �E symmetry of the spetrum (seeAppendix A).Beause the distribution of H is basis independent,we an without loss of generality hoose a basis suhthat the oupling matrix W is diagonal,

Wmn = wnÆmn; 1 � m �M; 1 � n � N: (9)The oupling strength wn is related to the tunnel prob-ability �n 2 (0; 1) of mode n into the quantum dotby [14, 15℄jwnj2 = MÆ0�2�n �2� �n � 2p1� �n � : (10)2.3. Class C and D ensemblesWe summarize the properties of the � = 2 AZ en-sembles, symmetry lass C and D, that we need for ourstudy of the Andreev resonanes. (See Appendix Bfor the orresponding � = 1; 4 formulas in symmetrylasses CI and DIII.) Similar formulas an be found inRef. [21℄.When Andreev sattering operates together withspin-orbit oupling, we an ombine eletron and holedegrees of freedom from the same spin band into areal basis of Majorana fermions. (This hange of ba-sis amounts to the unitary transformation in Eq. (6).)In the Majorana basis, the onstraint of partile�holesymmetry is given simply byH = �H�; (11)and we an therefore take H = iA with A a real an-tisymmetri matrix. In the Gaussian ensemble, theupper-diagonal matrix elements Anm (n < m) all haveidential and independent distributions,P (fAnmg) / MY1=n<m exp���2A2nm2MÆ20 � (12)(see Eqs. (7) and (8)). This is the � = 2 lass-D en-semble, without spin-rotation symmetry.The � = 2 lass-C ensemble applies in the abseneof spin-orbit oupling, when spin-rotation symmetry ispreserved. Andreev re�etion from a spin-singlet super-ondutor ouples only eletrons and holes from di�er-ent spin bands, whih annot be ombined into a realbasis state. It is then more onvenient to stay in theeletron�hole basis and to eliminate the spin degreeof freedom by onsidering a single spin band for theeletron and the opposite spin band for the hole. (Thematrix dimensionalityM and the mean level spaing Æ0then refer to a single spin.) In this basis, the partile�hole symmetry requires thatH = ��yH��y; (13)where the Pauli matrix �y operates on the eletron andhole degrees of freedom.1167



Shuo Mi, D. I. Pikulin, M. Mariani, C. W. J. Beenakker ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014Constraint (13) implies that H = iQ with Q aquaternion anti-Hermitian matrix. Its matrix elementsare of the formQnm = anm�0 + ibnm�x + inm�y + idnm�z ;n;m = 1; 2; : : : ;M=2; (14)with real oe�ients a; b; ; d (to ensure that Qnm == �yQ�nm�y). The anti-Hermitiity of Q requires theo�-diagonal elements to be related by anm = �amnand xnm = xmn for x 2 fb; ; dg. On the diagonal,ann = 0. In the Gaussian ensemble, the independentmatrix elements have the distributionP (fQnmg) / M=2Yn=1 exp�� �22MÆ20 (b2nn+2nn+d2nn)��� M=2Y1=n<m exp�� �2MÆ20 (a2nm+b2nm+2nm+d2nm)� : (15)3. ANDREEV RESONANCES3.1. Aumulation on the imaginary axisIn Fig. 3, we show the loation of the poles of thesattering matrix in the omplex energy plane, for the� = 2 AZ ensembles with and without spin-rotationsymmetry (lass C and D, respetively). The � == 2 WD ensemble (lass A, omplex H) is inludedfor omparison. The poles are eigenvalues " of thenon-Hermitian e�etive Hamiltonian (1), with H dis-tributed aording to the Gaussian distribution (7), (8),� = 2, and the oupling matrix W given by Eqs. (9),(10). For simpliity, we took idential tunnel probabil-ities �n � � for eah of the N modes onneting thequantum dot to the normal metal.The numberM of basis states in the quantum dot istaken muh larger than N , to reah the random-matrixregime. In lass C, this number is neessarily even,as demanded by the partile�hole symmetry relation(13). The symmetry relation (11) in lass D imposesno suh onstraint, and when M is odd, there is an un-paired Majorana zero mode in the spetrum [21℄1). Thelass-D superondutor with a Majorana zero mode is1) Sine Majorana zero modes always appear in pairs, thehange from M even to M odd neessarily involves some exter-nal system that an absorb one of the two modes. For example,this ould be a nanowire oupled at one end to the quantum dot,suh that the Majorana zero mode inside the quantum dot ispaired with the zero mode at the other end of the wire. At thetransition from M odd to even, the two Majorana modes mergebeause the gap in the nanowire loses.

alled topologially nontrivial, while a lass-C or lass-D superondutor without a zero mode is alled topo-logially trivial [22�24℄. For a more diret omparisonof lass C and lass D, we take M even in both ases,and hene both superondutors are topologially tri-vial.In the absene of partile�hole symmetry (lass A),the poles " = E � i of the sattering matrix have thedensity [25℄�(E; ) = N4�2 ; min <  < max; (16)min = N�Æ0=4�; max = min=(1� �); (17)for jEj � MÆ0 and asymptotially in the limitN;M=N !1. For jEj & Æ0, all three � = 2 ensemblesA, C, D have a similar density of poles, but for smallerjEj, the densities are strikingly di�erent, see Fig. 2. Inlass C, the poles are repelled from the imaginary axis,but in lass D, they aumulate on that axis.As pointed out in Ref. [12℄, a nondegenerate pole" = �i on the imaginary axis has a ertain stability:it annot aquire a nonzero real part E without break-ing the " $ �"� symmetry imposed by partile�holeonjugation. To see why this stability is not operativein lass C, we note that on the imaginary axis,  is areal eigenvalue of the matrix
 = �Q+ �WW y in lass C; (18)
 = �A+ �WW y in lass D: (19)In both lasses, the matrix 
 ommutes with an anti-unitary operator, C
 = 
C, with C = i�yK in lass Cand C = K in lass D. (The operator K performs a om-plex onjugation.) In lass C, this operator C squaresto �1, so a real eigenvalue  of 
 has a Kramers degen-eray2) and hene nondegenerate poles " = �i on theimaginary axis are forbidden. In lass D, in ontrast,the operator C squares to +1, Kramers degeneray isinoperative, and nondegenerate poles are allowed andin fat generi. 3.2. Square-root lawAs we explain in Appendix C, for ballisti oupling(� = 1), the statistis of poles on the imaginary axis anbe mapped onto the statistis of the real eigenvalues ofanM�M random orthogonal matrix with N rows and2) The usual Kramers degeneray refers to the eigenvalues ofa Hermitian matrix that ommutes with an anti-unitary opera-tor squaring to �1. Here the matrix is not Hermitian, but thedegeneray still applies to real eigenvalues.1168
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Y -shaped ondutane pro�le of two peaks that mergeand stik together for a range of parameter values �distint from the X-shaped pro�le that ours withouta hange in NY .There is a variety of methods to distinguish thepole transition from the topologial phase transi-tion [7℄: sine NY � �3=2pN for � � 1, one way tosuppress the pole transitions is to ouple the metalto the superondutor via a small number of modesN with a small transmission probability �. Thepole transitions are a sample-spei� e�et, while thetopologial phase transition is expeted to be lesssensitive to mirosopi details of the disorder. We donot therefore expet the pole transitions to reproduein the same sample upon thermal yling. If we anmeasure from both ends of a nanowire, we mightsearh for orrelations between the ondutane peaksat the two ends. The Majorana zero modes ome inpairs, one at eah end, and hene there should be aorrelation in the ondutane peaks measured at thetwo ends, whih we would not expet to be there forthe peaks due to the pole transition.This researh was supported by the Foundationfor Fundamental Researh on Matter (FOM), theNetherlands Organization for Sienti� Researh(NWO/OCW), an ERC Synergy Grant, and the ChinaSholarship Counil.APPENDIX AFator-of-two di�erene in the onstrution ofGaussian ensembles with or withoutpartile�hole symmetryAs we disussed in Se. 2.2, in the Gaussian ensem-bles of random-matrix theory, the Hermitian M �Mmatrix H has the distributionP (H) / exp�� M TrH2� ; (A.1a) = ��28Æ20 �8><>:2 in the WD ensembles;1 in the AZ ensembles;1 in the hiral ensembles: (A.1b)In eah ensemble, Æ0 refers to the average spaing ofdistint eigenvalues of H in the bulk of the spetrum.For � = 4, the eigenvalues have a twofold Kramers de-generay, so there are only M0 = M=2 distint eigen-values, while for � = 1; 2, all the M0 = M eigenvaluesare distint (disregarding spin degeneray).We have experiened that the fator-of-two di�er-ene in the oe�ient between the WD and AZ ensem-1171 3*



Shuo Mi, D. I. Pikulin, M. Mariani, C. W. J. Beenakker ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014bles is a soure of onfusion. Here, we hope to resolvethis onfusion by pointing to its origin, whih is the�E symmetry of the spetrum in the AZ ensembles(and also in the hiral ensembles, whih we inlude forompleteness). The alulation of the oe�ient  is abit lengthy, with fators of two appearing at di�erentplaes before the �nal fator remains, but we have notfound a muh shorter and onvining argument for thedi�erene.The eigenvalue distribution in the WD ensemblesis [16�18℄P (E1; E2; : : : ; EM0) // M0Y1=i<j jEi �Ej j� M0Yk=1 e� M0E2k ; (A.2)where the indies i; j; k range over the M0 distinteigenvalues.In the AZ ensembles, an eigenvalue at +E has apartner at �E, whih is a distint eigenvalue if E 6= 0.For the average level spaing in the bulk of the spe-trum, the existene of a level pinned at E = 0 is irrel-evant, and we therefore assume that there are no suhzero modes. (This requires M0 even.) The eigenvaluedistribution then has the form [20; 21℄P (E1; E2; : : : ; EM0=2) / M0=2Y1=i<j jE2i �E2j j� ��M0=2Yk=1 jEkj� exp�� 2M0E2k� ; (A.3)where the indies i; j; k now range only over the M0=2distint positive eigenvalues. There is a new exponent� 2 f0; 1; 2g that governs the repulsion between eigen-values related by the �E symmetry. This fator jEkj�only a�ets the �rst few levels around E = 0, and wean therefore ignore it for a alulation of the averagelevel spaing in the bulk of the spetrum, e�etivelysetting �! 0.The two distributions (A.2) and (A.3) an be writ-ten in the same form with the help of the mirosopilevel density �(E) = M0Xn=1 Æ(E �En); (A.4)de�ned for eah set of M0 distint energy levels. Atthe mean-�eld level, su�ient for a alulation of thedensity of states in the large-M limit, we an assumethat �(E) is a smooth funtion of E (Coulomb gasmodel [16℄).

The eigenvalue distribution has the form of a Gibbsdistribution P / exp(��U), with the energy funtionalUWD = �12 1Z�1 dE 1Z�1 dE0 �(E)�(E0) ln jE�E0j++ �M0 1Z�1 dE E2�(E) (A.5)for the WD ensembles andUAZ = �12 1Z0 dE 1Z0 dE0 �(E)�(E0) ln jE2�E02j++ 2�M0 1Z0 dE E2�(E) == �14 1Z�1 dE 1Z1 dE0 �(E)�(E0) ln jE �E0j++ �M0 1Z�1 dE E2�(E); (A.6)for the AZ ensembles (at � = 0). In the seond equal-ity, we used the �E symmetry �(E) = �(�E).The mean-�eld density of states ��(E) minimizes Uwith the normalization onstraint1Z�1 dE ��(E) =M0: (A.7)The normalization onstraint is the same in the WDand AZ ensembles, but the minimization ondition isdi�erent:ÆUWDÆ�(E) = 0) � 1Z�1 dE0 ��WD(E0) ln jE �E0j++ �M0E2 = onst; (A.8)ÆUAZÆ�(E) = 0) �12 1Z�1 dE0 ��AZ(E0) ln jE �E0j++ �M0E2 = onst: (A.9)The �E symmetry does not introdue an additionalonstraint on ��AZ(E), sine Eq. (A.9) automatiallyprodues an even density.1172
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E=Æ0Fig. 8. Curves 1, 2: average density of states in the four AZ ensembles, alulated numerially for Hamiltonians of dimensionM �M = 60 � 60 in lasses C, CI, and D and M �M = 120� 120 in lass DIII (when eah level has a twofold Kramersdegeneray; � and Æ0 refer to distint levels). Curve 1 shows the full semiirle, urve 2 shows the region around E = 0(horizontally enlarged by a fator of 20). These are all results for a topologially trivial superondutor, without a zero mode(� = 0). Curves 3 (labeled � = 1) show the e�et of a zero mode in lass D (M = 61) and lass DIII (M = 122). Thedelta-funtion peak from the zero mode itself is not plottedThe solution of this integral equation gives the fa-miliar semi-irular density of states [16℄��WD(E) = 2��M0r�M20 �E2; (A.10)��AZ(E) = 4��M0r �2M20 �E2: (A.11)The mean level spaing near E = 0 is Æ0 = 1=��(0),leading toÆ0 = 8>><>>: 12�p�= in the WD ensembles;12�p�=2 in the AZ ensembles; (A.12)whih amounts to Eq. (A.1b). We note that the addi-tional fator-of-two arises solely from the�E symmetryof the spetrum, and it is therefore irrelevant whether

this is a onsequene of partile�hole symmetry or ofhiral symmetry.To hek that we have not missed a fator of two,in Fig. 8, we show the numerial result of averagingover a large number of random Hamiltonians in eahof the four AZ ensembles. The semi-irular density ofstates (A.11) applies away from the band enter, withthe expeted limit �� Æ0 ! 1 near E = 0.In Fig. 8, we also see the anomalies at band en-ter that we ignored in our alulation. Without a zeromode (� = 0), the density of states vanishes as jEj�with � = 2 in lass C and � = 1 in lass CI andDIII [20℄. In lass D, we have � = 0, whih meansthat the �E pairs of energy levels do not repel at theband enter. The density of states then has a quadratipeak at E = 0. The delta-funtion peak of a zero modehas also an e�et on the smooth part of the density ofstates, whih for � = 1 vanishes as jEj�+� , as E2 inlass D, and as jEj5 in lass DIII [21℄.1173



Shuo Mi, D. I. Pikulin, M. Mariani, C. W. J. Beenakker ÆÝÒÔ, òîì 146, âûï. 6 (12), 2014APPENDIX BAltland�Zirnbauer ensembles withtime-reversal symmetryFor ompleteness and referene, we reord the � == 1; 4 ounterparts of the � = 2 formulas (12) and(15). These are the AZ symmetry lasses CI (� = 1,time-reversal with spin-rotation symmetry) and DIII(� = 4, time-reversal without spin-rotation symmetry)[20℄. The time-reversal symmetry onditions on theHamiltonian matrix areH = H� for � = 1;H = �yH��y for � = 4: (B.1)The Pauli matrix �y ats on the spin degree of freedom:the Pauli matries �i we used previously ated on theeletron-hole degree of freedom.A ompat representation an be given if we use theeletron�hole basis for � = 1 and the Majorana basisfor � = 4. The matrix elements of the Hamiltonian anthen be represented by Pauli matries:Hnm = anm�x + bnm�z for � = 1;Hnm = inm�x + idnm�z for � = 4; (B.2)with real oe�ients a; b; ; d. We note that iH for� = 1 is quaternion, and hene this lass CI ensembleis a subset of the lass C ensemble. Similarly, beauseiH is real for � = 4, this lass DIII ensemble is a subsetof lass D.The Hermitiity of H requires that the o�-diagonalelements are related by anm = amn, bnm = bmn, nm == �mn, and dnm = �dmn. On the diagonal, nn == dnn = 0. The indies n;m range from 1 to M=2,for an M �M matrix H . (The dimensionality is ne-essarily even to aomodate the Pauli matries.) For� = 4, there is a twofold Kramers degeneray of theenergy levels, and therefore only M=2 eigenvalues of Hare distint. For � = 1, all M eigenvalues are distint(the spin degeneray that exists in lass C, CI is notinluded in M). The mean level spaing Æ0 refers tothe distint eigenvalues.Combining Eq. (B.2) with Eqs. (7) and (8) givesthe probability distribution of the independent matrixelements in the Gaussian ensemble:P (fHnmg) / M=2Yn=1 exp�� �24MÆ20 (a2nn + b2nn)��� M=2Y1=n<m exp�� �22MÆ20 (a2nm + b2nm)� (B.3)

for � = 1, lass CI, andP (fHnmg) / M=2Y1=n<m�� exp�� 2�2MÆ20 (2nm + d2nm)� (B.4)for � = 4, lass DIII.APPENDIX CMapping of the pole statistis problem ontothe eigenvalue statistis problem of trunatedorthogonal matriesWe show how the result in Eq. (20) for the densitypro�le of imaginary poles of the sattering matrix fol-lows from the known distribution of real eigenvalues oftrunated orthogonal matries [26℄, in the ase � = 1of ballisti oupling.Following Refs. [32; 33℄, we onstrut the N � Nenergy-dependent unitary sattering matrix S(E) interms of anM�M energy-independent orthogonal ma-trix O,S(E) = PO(e�2�iE=MÆ0 +RO)�1PT : (C.1)The retangular N �M matrix P has elements Pnm == Ænm and R = 1 � PTP . The M � M Hermitianmatrix H is related to O via a Cayley transform,O = �H=MÆ0 + i�H=MÆ0 � i , H = iMÆ0� O + 1O � 1 : (C.2)Equation (C.2) with O uniformly distributed aordingto the Haar measure in SO(N) produes the Gaussiandistribution (7) for H , in the low-energy range jEj .. NÆ0 �MÆ0. Furthermore, in this low-energy range,sattering matrix (C.1) is related to H by Eq. (2) withthe ballisti oupling matrix W = PT (MÆ0=�2)1=2.A pole " = �i of S(") on the imaginary axis or-responds to a real eigenvaluex = e�2�=MÆ0 (C.3)of the (M �N)� (M �N) matrix ~O = ROR obtainedfrom the orthogonal matrix O by deleting the �rst Nrows and olumns. For M � 1, the x-dependent den-sity ~�0(x) is given by [26℄~�0(x) = 1B(N=2; 1=2) 11� x2 ; x2 < 1�N=M; (C.4)with B(a; b) being the beta funtion.1174
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