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A new S3 flavor model based on the SU(3)c ® SU(3)z ® U(1) x gauge symmetry responsible for fermion masses
and mixings different from our previous work [14,17] is constructed. The new feature is a two-dimensional
representation of a Higgs anti-sextet under S3, which is responsible for neutrino masses and mixings. The neu-
trinos acquire small masses from only an anti-sextet of SU(3), which is in a doublet under S3. If the difference
of components of the anti-sextet is regarded as a small perturbation, S5 is equivalently broken into identity, the
corresponding neutrino mass mixing matrix acquires the most general form, and the model can fit the latest
data on neutrino oscillations. This way of symmetry breaking helps us reduce a content in the Higgs sector, to
only one anti-sextet instead of two as in our previous work [14]. Our results show that the neutrino masses are
naturally small and a small deviation from the tri-bimaximal neutrino mixing form can be realized. The Higgs
potential of the model as well as the minimization conditions and gauge boson masses and mixings are also

considered.
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1. INTRODUCTION

The experiments on neutrino oscillations have indi-
cated that the neutrinos have small masses and mix-
ings [14], and therefore the standard model of fun-
damental particles and interactions must be extended.
Among this direction, there have been various models
proposed, such as [5, 6] and others. An alternative is to
extend the electroweak symmetry SU(2); @ U(1)y to
SU(3)7, ® U(1)x, in which to complete the fundamen-
tal representations of SU(3);, with the standard-model
doublets so as to obtain the neutral fermions. This pro-
posal, which has nice features and has been extensively
studied over the last two decades, is called 3-3-1 mod-
els [7-9], with the number of fermion families having
been proved to be three [7,10].

The parameters of neutrino oscillations such as the
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squared mass differences and mixing angles are now
very constrained. The data in Ref. [4] imply that

sin?(2012) = 0.857+0.024  (t12 ~ 0.6717),
%(2013) = 0.098 + 0.013 (513 ~ 0.1585),
sin®(2623) > 0.95,

Am3, = (7.50 £ 0.20) - 107° eV?,

Am3, = (2.327002) - 1072 V2.

sin

(1)

These large neutrino mixing angles are completely dif-
ferent from the quark mixing ones defined by the
Cabibbo-Kobayashi-Maskawa (CKM) matrix. There-
fore, it is very important to find a natural model that
leads to these mixing patterns of quarks and leptons
with good accuracy. Small non-Abelian discrete sym-
metries are considered to be the most attractive choice
for the flavor sector [11-13]. The simplest explanation
for these conclusions is probably due to an S3 flavor
symmetry, which is the smallest non-Abelian discrete
group [14, 15]. In fact, there is an approximately maxi-
mal mixing of two flavors y and 7 as given above, which
can be connected by the 2 irreducible representation of
Ss. Besides the 2, the S3 group can provide two in-
equivalent singlet representations 1 and 1’, which play
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a crucial role in reproducing consistent, fermion masses
and mixings [14]. The Ss models have been studied
extensively over the last decade [13]. In [14], we pro-
posed two 3-3—1 models, with either neutral fermions
or right-handed neutrinos, based on the S3 flavor sym-
metry, in which a large number of Higgs triplets was
required. In this paper, we propose a new Sz flavor
symmetry in the 3-3-1 model with neutral fermions,
in which the number of Higgs triplets required is less
and the Higgs potential of the model is therefore much
simpler than the previous ones.

The motivation for extending the above application
to the 3-3-1 models with the neutral fermions Npg is
mentioned in [14,16,17]. In this paper, we investigate
simpler choices for Higgs multiplets of S3 in which the
unique anti-sextet responsible for the neutrino mass
and mixing lying in 2 under S5 and the difference be-
tween two VEV components of the anti-sextet play the
role of perturbation. It is also noted that the numbers
of fermion families in the 3-3-1 models originate from
the anomaly-free gauge symmetry and naturally meet
our criteria on the dimensions of flavor group represen-
tations such as Ss3, unlike the others in the literature,
mostly imposed by hand [11-13].

The rest of this work is as follows. In Sec. 2, we
present the necessary elements of the 3-3—1 model with
neutral fermions Nr under the S3 symmetry and in-
troduce the necessary Higgs fields responsible for the
charged-lepton and quark masses. Section 3 is devoted
to the neutrino mass and mixing. In Sec. 4, we consider
the Higgs potential and minimization conditions. We
summarize our results and make conclusions in Sec. 6.

2. THE MODEL

The fermion content of the model is similar to that
in [14]: the fermions in the model transform under the
respective [SU(3),U(1)x,U(1)z,S;5] symmetries as

Uiz = (g, e, Nig) "~ [3,-1/3,2/3,1],
llR ~ [17_1717117

wOKL = (UOlLalOélmN(iR)T ~ [37 _1/372/372]7
laR ~ [17_17172]7

Qir = (wir,dir,Ur)" ~[3,1/3,-1/3,1],
Uir ~ [1v2/370vl]7 dir ~ [17 —1/3,0,1],
Ur ~[1,2/3,-1,1],

QaL - (daLa —UaL, DaL)T ~ [3*7071/372]7
UqR ~ [172/37072]7 daR ~ [17 _1/37072]7

DaR ~ [17_1/37172]7
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where o = 2,3 is a family index of the last two lepton
and quark families, which are defined as the compo-
nents of the 2 representations. We note that the 2 for
quarks satisfies the requirement of anomaly cancella-
tion, where the last two left-quark families are in 3*
and the first one as well as the leptons are in 3. All the
L charges of the model multiplets are listed in square
brackets. In what follows, we consider possibilities for
generating the fermion masses. The scalar multiplets
needed for this purpose are to be introduced according-
ly.

To generate masses for the charged leptons, we in-
troduce two SU(3), scalar triplets ¢ and ¢’ respectively
lying in 1 and 1’ under S3, with the VEVs (¢) = (0v 0)7
and (¢') = (0v'0)T [14]. From the invariant Yukawa
couplings for the charged leptons, we obtain m, = hyv,
my, = hv — h'v', m; = hv + h'v', and the mixing ma-
trices of the left- and right-handed charged leptons are
diagonal, U;;, = Ujr = 1. The charged leptons {; » 3 are
therefore by themselves the physical mass eigenstates
and the lepton mixing matrix depends on only that of
the neutrinos, which is studied in the next section.

In similarity to the charged lepton sector, to gen-
erate the quark masses, we additionally introduce the
three scalar Higgs triplets x, 1, and n respectively lying
in 1, 1, and 1’ under S3. Quark masses can be derived
from the invariant Yukawa interactions for quarks, as-
suming that the VEVs of 5, ', and y are u = (n?),
u' = (9", and w = (x3) and the other VEVs (n3),
(n'9), and () vanish due to the lepton parity conser-
vation. The exotic quarks therefore acquire the masses
my = fiw and mp, , = fw. The masses of ordinary

up-quarks and down-quarks are

my, = hi'u, me=h"+h"v', my=h"—h"",

mg = hlv, my = h%u+n%" my=hdu— "%

The unitary matrices that couple the left-handed
quarks uy, and dy to those in the mass bases are unit,
ones. The CKM quark mixing matrix at the tree level is
then Ucrm = UJLUUL = 1. The lepton parity break-
ing due to the odd VEVs (n9), (n'9), (x?), or a violation
of £ and/or S3 symmetry in terms of Yukawa interac-
tions would disturb the tree-level matrix, resulting in
a mixing between the SM and exotic quarks and/or
possibly providing the desirable quark mixing pattern
Qir.xuir, Qrx*dr, Q11 xur, with a mixing between
SM and exotic quarks. To obtain a realistic pattern of
the SM quark mixing, we should add radiative correc-
tions or use the effective six-dimensional operators (see
Ref. [18] for the details). However, we leave this prob-
lem for the future work. A detailed study of charged
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lepton and quark masses can be found in Ref. [14]. In
this paper, we consider a new representation for the
anti-sextet responsible for neutrino masses and mixings
that are different from those in Ref. [14].

3. NEUTRINO MASSES AND MIXING

The neutrino masses arise from the couplings
of ¥ var, Y5 i and ¥§, a1 to scalars, where
V¢ a1, transforms as 3* @ 6 under SU(3);, and as
191’ @2 under Ss; &sz/JlL transforms as 3* @ 6 under
SU(3), and as 1 under Ss, and 9§, 1, transforms as
3* @6 under SU(3);, and as 2 under Ss. For the known
scalar triplets (¢, ¢', x,n,7n'), the available interactions

are only (¢S ¢¥ar)@ and (Y5 Yar)@, but are explicitly
suppressed because of the L£-symmetry. We therefore
propose a new SU(3)z anti-sextet coupling to ¥¢ i, re-
sponsible for the neutrino masses lying in either 1, 1,
or 2 under S3. To obtain a realistic neutrino spectrum
with the minimal Higgs content, we introduce the Higgs
anti-sextet
st 31+2 573
si=| s s3 Sy

0 + 0
S13  S23  S33

~[6%,2/3,-4/3,2),
i=1,2,

where numerical subscripts on the component scalars
are the SU(3);, indices, whereas i = 1,2 is that of Ss.
The VEV of s is set as ((s1), (s2)) under Ss, with

i U
<Sl> - 0 0 9 L= 17 2 (3)
(o Az

Following the potential minimization conditions, we
have several VEV alignments. The first one is that
(s1) = (s2); then Sz is broken into Z, consisting of
the identity element and one transposition (out of the
three) of S3. The second one is that (s1) # 0 = (s2)
or (s1) = 0 # (sa2); then S3 is broken to Z3 as in the
case of the charged lepton sector. The third one is that
(s1) # (s2); then S3 is broken to the identity. In our
previous work [14], we have argued that both breakings
S3 — Zs and S3 — Z3 must take place, and hence, to
obtain a realistic neutrino spectrum, we additionally
introduced a triplet (p) and an anti-sextet (s) that lie
in 1’ and 2 under S3. With these alignments, the num-
ber of Higgs multiplets required is eight. In this work,
we propose that both the first and the third direction
take place. The Yukawa interactions are

3 ZKOT®, Bein. 6

- L, = g(zﬁfm)gwm + %(wéLS)z%L +Hec =
= gﬁL(%LSz +31,81) +

+ %wgﬂﬁu& + ¢ sns2) + Hee,  (4)

where the Yukawa coupling x is that of lepton-flavor-
changing interactions. The mass Lagrangian for the
neutrinos is given by

1
_ Egzass _ 51-()\2175111/2L + U277!1:LN2CR +
+ voN1rUar + Ao N1 pNSR) +
. B ~
+§l‘(/\1 PirvsL Pl N +viNirvsp +A1 NirNaj)+
’ B _
+59()\117§LI/2L+Ul17§LN§R+U1N2RV2L+A1N2RN2CR)+
2 B _
+5y (e var+0aP5, Nsp+0aNapvar +A2 Nar Ny )+
+He., (5)

and also by

mass 1 —C I/L
_ﬁy = §XLMVXL —l—H.C.7 XL = ( > R

Ng
M, = My Mg ,
Mp Mg
where v = (vi,v9,v3)7 and N = (Ny, No, N3)T. The
mass matrices are then obtained by

(6)

0 ar,r,p br,R,D
Mprp=| arrp crL.RD 0 , (1)
br.r,D 0 dr.r,D
with
x x x x
—_)\SE_)‘a = SVUs = 702,
=3 9% DT U =502
x x
=—As = =y,
“R=y 952
x x x
by = 5)\1, bp = 51 br = §A1, (8)
cp =y, cp=yvi, cr=yA,
dr, =y s =yXo, dp = yvs = yus,
dr = yAs = yAs.

In general, three active neutrinos therefore gain masses
via a combination of type-I and type-II seesaw mecha-
nisms, derived from (6) and (7) as

Megp = My, — MHMp' Mp =

A By By
=| B ¢, D |, (9
Bs D
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where

_(arbp — apbr)’

A
b%CR + aRdR ’
By = br [aRchD + arbrcr — aD(bRcD + bDCR)] + aR(aLaR — a2D)dR
bher + akdr '
B, = —bhbrer + bpbker + aparbrdp + a%brdr — agbp(ardp + apdr)
bher + akdr ’ (10)
- bi(crer — ch) + (aker + a2DcR —2apagcp)dr
bher + akdr ’
—2bpbrcrdp + bRCRdL + bDCRdR + a%%(deR — d2D)
02 = B} )
bRCR + aRdR
D— (arcp — apcr)(brdp — deR)
- bher + akdr
The neutrino mass matrix in (9) is similar to the one  where
in Ref. [14] but the broken symmetry directions are 1
different. Indeed, in this model, there are two broken mL=35 (O V2 +8B 2) =
symmetry directions as follows. +/92 + 2502
1. If S5 is broken to Z» (the subgroup Z5 is unbro- = < ) YT VYR e
ken), then we have A = D =0, B; = By and Cy = (. 1
2. If S3 — {identity} (or, equivalently, me = 5 (C C? + 832) = (13)
Z> — {identity}), then we have A # 0, D # 0, 5
By # Bs, and (7 # Cs, but A and D are close to = < ) Z VI 7 y?+ 22 )
zero, and By, Bs, C1, Cy are kept close to each other 2
in pairs. In this case, the disparity between (s1) and —C= < A, ) y
(s2) is very small and can be regarded as a small per- A )77
turbation. o ) ) ) and the neutrino mixing matrix takes the form
We next divide our considerations into two cases to
fit the data: the first case is where only S3 is broken Up =
to Zy, and the second case is a combination of both V2
S3 — Zs and Z> — {identity}. \/ 212 - \/ =5
. . _ 1 1 4 1
3.1. Experimental constraints under S;3 — Z» = JIEP +2 \/7 2 | a9
In the case S3 — Z>, \{ = Xy = A4, v1 = vy = vy, 1 1 1
A1:AQEAS,WehaVG‘A:DZO,Bl:BQEB, \/m 7\/7 E
Ci1 =Cy =C, and M.y in (9) reduces to
s VC? +8B?
0 B B 2B ‘
Mey=| B C 0 |, (11)  We note that m;ms = —2B2. This matrix can be pa-
B 0 C rameterized by three Euler’s angles, which implies
with 913 = 07 023 = 71'/47 tg 012 = (15)

v\ @ v2

We can diagonalize the matrix M.z in (11) as

UTMefo = diag(my,ms, ms),

K]

This case coincides with the data because sin?(26;3) <
< 0.15 and sin?(263) > 0.92 [3]. For the remaining
constraints, taking the central values from the data [3],

sin®(20;2) ~ 0.87, s?, = 0.32,
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Ami, =7.59-107° eV?
we have a solution
my = 0.0280284 eV, mo = 0.0293347 eV, (16)
m3 = 0.0573631 eV,
and B = —0.0202757i eV, C' = 0.0573631 eV, K =
= 1.44667, and |z/y| = 0.707087. Tt follows that
tg 12 = 0.977565 (612 ~ 44.35°), and the neutrino mix-

ing matrix form is very close to that of the bi-maximal
mixing pattern mentioned in Ref. [19]:

Am3, =2.43-107°% eV?,

Ay # Ay = A and, consequently, A ~ 0, D; = 0,
By =~ By, and C; ~ (5, and the general neutrino mass
matrix in (9) can be rewritten in the form

0 B B L pL P2
Megp=| B C 0 |+| pm @« r2 |, (18)
B 0 C P2 T2 G2

where B and C' are given by (12), to match the case
Sy — Z as in (11). The last matrix in (18) is a devia-
tion from the contribution due to the disparity of (s)

0.715083 —0.69904 0 and (s2), namely,
1
i 0.494296  0.50564 v p =B, —B, By—B=p, Ci—-C=q. .
1 Co—-C=¢q, mn=A4A, mrn=D.
0.494296  0.50564 7
With A, D and By 2, C4 » defined in (10), it corresponds
11 0 to Sz — {identity}. Substituting (10) and (12) in (19)
V2 V2 with the help of (8), we obtain
1 1 1 (17) 5 s
“l 2 2 & S L ek L)
1 1 1 AV + A3 4y
2 2 2 S .y U R
BTV i
Now, it is natural to choose \s and v2Z/A; in eV, and
suppose that Ay > v2/A;. We assume that \;—vZ/A; =
= 0.1, we have & = —0.573631 and y = 0.399403:. (Asvy — Ayu,)2y
It was assumed in recent analyses that fi3 # 0, 2 == A3 £ A3 -
but is small, as in Ref. [4]. If this is correct, then AZAZ 2
that case will fail. But the direction of the breakings =—— 1% - (ﬂ _ ﬁ) y, (21)
S3 — {identity} can improve this. AT +AT A A
3.2. Experimenta.l con.straints under _A(Agvy — Ayvg)2a B
S3 — {identity} P = oA, (AT +A%)
If both S3 — Z5 and Z» — {identity} directions AL A2A2 v v\
are realized, then Ay # Ao = A, v1 # vy = vg, and | = A_s AT + A3 A_1 - A_s bR (22)
Dy = (A1 = Xs)As (A3 + A3) — A2A07 — 2A30105 + (A3 + A1AZ + A3) T (23)
? Ag(A3 4+ A3)02 2’
O = AN 4D = A3Af 20300+ (A A2 ADR
Q= AL (AF 1 A%) =M s)Y
C(ATA? +283005)y | (AT AT+ ADly
As(AT +A2) As(AT +A)
A2 Ay Ay A2
OF 425500y (T4 3433 ) o
= (Al - )‘s)y - /i2 z A2 - ) (24)
AL+ A, A+ SA,
1+ A2 1+ A
995 3*
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A1(Asv1 - A1vs)2y
2= 3 A3
As(A] +AD)
Ay AZA2 (Ul US)2
=L s (L) gy (25
N, A3+ AT A, a,) Y B

Indeed, if S3 — Z5, then the deviations p;, ¢;, and r;
(¢ = 1,2) vanish, and therefore the mass matrix M, s
in (9) reduces to its first term coinciding with (11).
The first term in (18) provides a bi-maximal mixing
pattern with #13 = 0, as shown in Sec. 3.1. The others,
proportional to p;, g;, 7; due to the contribution of the
disparity of (s;) and (s2), take the role of perturbation
for such a deviation of #,3. Hence, in this work we con-
sider the disparity of the (s;) and (s2) contributions
as a small perturbation and truncate the theory at the
first order.

In Ref. [20], we considered the case of Sy — K4
breaking corresponding to S35 — {identity} in this pa-
per, with Ay # A4, but v; = vy and Ay = A;. Then

X
5 q1,

rL ="Te 2y

=P1=q¢ = P2 =

=N\

with € = Ay — A\ being a small parameter that plays
the role of a perturbation. In this paper, we consider
the more general case, in which all elements of (s;) and
(s2) are different from each other.

If ([s1 — s2]) < (51) ~ (52) and = ~ §= < 1, then
we can evaluate ry, ro, p1, @2 <K 1 Whlcﬁ are of the
second order in the perturbation and are therefore ig-
nored. The remaining parameters p> and ¢; are easily
obtained as

—Xs)y = €y

x
b2 = aEa q1 = ay, (26)
where
2
v1 + 2A2 V1V
o = )\1 — As — A2 +
Ay A2A
(ﬂ + & A_§> v2
As A A2)
+ A2 . (27
A+ A2A
The matrix M. in (18) thus reduces to
0 B B 0 0 /2
Mep=| B C 0 |+« 0 y O =
B 0 C z/2 0 0
= MYy +aM®. (28)
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Evaluating o shows that it is a small parameter,
which can be regarded as a small perturbation. Within
the perturbation theory up to the first order of «, the
physical neutrino masses are obtained as

Kz +
mllz)\l—m1 +04<A,323+(12J>7
by aK(Ky — 2x) 29
m2—>\2 =My m, ( )
m'3:)\3:m3-|-04%,

where m 5 3 are the mass values as in the case S3 — Z»
given by (16). For the corresponding perturbed eigen-
states, we set

U—U' =U+AU,

where U is defined by (14), and
AU AU
AU AUs,
AUz AUsy

AUlS
AUZS ’
AU33

AU = (30)

where

K% -2 2K
AUll = —« ( ) vt Y

2(K2 + 2)3/2(my
Kz —2y
IR 1 2m1 — m3)
K[(K? - 2)z + 2Ky]
4(K? + 2)3/2(my
Kz -2y
YA+ 2(m1 — m3)
KKK2—%x+2Km
4(K2 +2)3/2(my —may)’
K[(K? - 2)z + 2Ky]
\/_(K2 + 2)3/2(m1
Ky+zx
2\/_ 2 VK2 +2(may — ms3)
a (K% —2)z + 2Ky
- 2\f 2 (K2 +2)32(my —
Ay+x

_m2)’

AUQl = — +

+a )
—my)

AUz =

_|_

AU = —a )
— ma)

AUsy =

(31)

m2)7

AU. -
827 2\/_ 2 VEK? +2(ma —m3)
o (K? —2)z + 2Ky
2\/5 (1(2 + 2)3/2(777,1 — m2) ’
a K(Kx — 2y)
AUyz = — - -
T 2v2 (K2 4 2)(my — ma)
_a Ky+a
\/E (IX’2 + 2)(M2 — m3) ’
a Kx -2y
AUsz = AUszz = — _ +
” BT 2y2 (K2 +2)(my — ms)
a K(Ky+ x)

TV (K21 2)(ms — ma)’
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In this case, the lepton mixing matrix U’ can still be
parameterized in terms of three new Euler’s angles t‘)l],
which are also a perturbation from the #;; in case 1,
defined by

Sy = —Uly = AU = ——2_,
13 13 13 2\/53
t112 = _U{2 =
Uh

- [4aBQO:c +aC? (C + \/m) a/:
+ch(o+m) (2C - ay) +
+ 883 <4C+4\/m—ay)] x
x{\/i[6434+203(c+\/m) -
_ch(c+m)x+
+2B2 (1202 n SCm) n
+ a0y +ay/C7 1 587|}

. _Uss _ 4B? + a(Bx — Cy)
23 Uss  4B%2 —a(Bz —Cy)’

It is easily shown that our model is consistent be-
cause the five experimental constraints on the mixing
angles and squared mass differences of neutrinos can
be respectively fitted with two Yukawa coupling pa-
rameters z, y of the anti-sextet scalar s, if the VEVs
are previously given. Indeed, taking the data in (1),
we obtain o ~ 0.0692, x ~ 0.0728, y ~ —0.1562, and
B ~ —0.0241, C' = 0.022, K = 1.943, and t}; = 0.9045
(04, ~ 42.13°, sin?(264;) = 0.98999 satisfying the
condition sin?(26%,) > 0.95 as in (1)). The neutrino
masses are explicitly given as m/| &~ —0.02737 eV, m}, ~
~ —0.02870 eV, and m% ~ —0.05607 €V, which are in
a normal ordering. The neutrino mixing matrix then
takes the form

0.8251 —0.5657 —0.1585
U= 03302 0.6781 —0.6716 | . (32)
0.4697 0.4888  0.7426

4. SCALAR POTENTIAL

To be complete, we write the scalar potentials of
both the models mentioned. It is also noted that

(Tr A)(Te B) = Tr (ATr B)

and

V(X—) XI, Y — Y’, .. ) = V(X,Y, . -)|X:X’,Y:Y’,...-

The general potential invariant under any subgroup
takes the form

‘/total - ‘/tri + Vsezt + V:‘,ri*sezta (33)

where V;,; comes from only contributions of SU(3)y,
triplets given as a sum of the following terms:

V(x) = mx"x + X (') (34)
V(g)=V(x—=9¢), V(¢)=V(x—d), (35)
Vi =Vix—=mn), V@)=V -—=17),

V(g v) = A (0T 0)(xTx) + AX (6T ) (xT9).
V(e'x)=V(e—=d",x), Viun) =V(x,0—=mn),
Vien)=Vi,o—=1n),
V(6,6) = V(g x = &) + 257 (61 0) (s1¢) +
+ A2 (0'10)(¢'10),
Vig,n) =V(e,x =n), Vien')=V(e,x =),
V(e',n) =V(e—= ¢, x =n),
V(e'n')=V(e—=d¢,x—=n),
V(') = V(6 = n,x =)+ A7 () (nt ') +

+ AT (') ('),

Vigormmy = Hixon + pyxo'n' +
+ A1 (8T ) (™) + AT (81 (' Tn) +
+ A3 (@ ) (') + AL (6T ) (n'e) + Hee.  (36)

The Vieqt is given by only V(s):

V(s) = pg Tr(s's) + AT Tr[(ss)1(s7s)1] +
+ 23 Te[(sTs) 1 (sTs) 1] + A3 Te[(s7s)2(sTs)a] +
+X§ Tr(s's)y Te(s"s); + A3 Tr(s's)p Tr(s™s)p +

+ X8 Tr(sTs)s Tr(sts)y.  (37)

Next, Vipi—sert s a sum of all the terms connecting both
the sectors:

V(g,s) = AP*(60) Tr(sts)L + A3°[(67s1) (s0)]1,
V(¢',s) =V(ep—=¢,s), V(x,s)=V(e—x,s),
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V(n,s)=V(e—=n,s), V(,s)=V(o—=1ns),

Vixogrny = ()\I1¢T¢I + >\1277T77,) TI"(STS)L +
+ )\’3[(¢Ts’f)(3¢’)]1 + Aﬁ;[(n*s*)(sn')]; +He.

To provide the Majorana masses for the neutri-
nos, the lepton number must be broken. This can be
achieved via the scalar potential violating U(1)., but
the other symmetries must be conserved. The L vio-
lating potential is given by

V= [\ Tr(sTs)1 + Xonfx + Xsnn + Xan' T’ +
+ s+ X' T + AT +
+ 28T + Mg ¢’ + Mog'Tgln"x +
+ P Tr(sts) + Aoy + Misn'n +
A an T+ M X e T+ Mot o+ Xis g T+
+ X100 + Xa0d ol Ty + X1 (nT0) (67 X) +
+ A2 (1)1 (0 TX) 1 + Xas (' T8)1r (6 TX)1r +
+ X2a (T8 1(6TX)1 + Aas (n'sT)a(s)2 +
+ Xos (T2 (sx)2 + Hee  (38)

We have not pointed it out, but there must addi-
tionally exist the terms in V explicitly violating only
the S3 symmetry or both the S3 and L-charge. In what
follows, most of them are omitted, and only the terms
of interest to us are provided.

We now consider the potential V;,;. The flavons Y,
¢, ¢', n, 0’ with their VEVs aligned in the same di-
rection (all of them being singlets) are an automatic
solution of the minimization conditions for V;.;. To
explicitly see this, in the system of equations for mini-
mization, we set v* = v, v'* =0/, u* = u, v'* =/, and
vy = vy. Then the potential minimization conditions
for triplets reduces to

a%ri
Ow
+ A% 4 )\i“p’v'Q) w— ppuv — phu'v' =0,  (39)

= 4)\Xw? 42 (,ui FATZ N 2 4

8‘/;57”1'
ov

+ (AP A8 A2 4 A0 WA v +

= 4)\%® 42 [ui + 02 4 )\fml u'? +

+ (A} + M)un'v' — ppwu =0, (40)

8‘/;57”1'
o'
+ (AP A2 A7 A0 )0 WY

=4X%0'% 42 [,ui, F A2 4 AT 4

+ M+ X uu'v — phwu’ =0, (41)
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8‘/;57”1'
ou

12 [p?, F O AT NI NI Y2 AP 4

= 4\u? +
+ )\flnv'2+w2)\¥x] u+ (A A ov' —pwo = 0, (42)

a%ri _
ou'

AN 42 [uff NN O VLENED VLAY, L
+ /\Z”’)u2 + /\f”’v%\‘f’"’l}m + w2/\717’X] u +

+ (M + A uvr' — plwv’ =0, (43)
It is easy to see that the derivatives of V;,; with respect
to the variables u, v/, v, v' shown in (40), (41), (42),
and (43) are symmetric with respect to one another.
System of equations (39)—(43) always has the solution
(u, v, u', v'") as expected, even though it is complicated.
We also note that the above alignment is only one of
the conditions to be imposed to have the desirable re-
sults. We have evaluated that Eqs. (40)—(43) have the
same structure of solutions. Consequently, to have a
simple solution, we can assume that v = v’ = v = v'.
In this case, Egs. (40)—(43) reduce to a single equation,
and system of equations (39)—(43) becomes

a%ri
Ow
+20[p2 + (20" + 201 %)0%] — 2p10? =0, (44)

=4\ +

8‘/;57”1'
ov

£ 2 (A AT TN AT N ]+

=20 [2w2(>\i"’ +AX?) + 2y + pj) +

AP AT A ALY 20 2N ) 0? -
— 2mw] =0. (45)

This system has the solution

u=u'=v'=v=j:\/

[6975)
2(aZ = BAY)

w(p? + MXw?)
= 20N+ A

w =
Q
3-22/3(a2 — BAY) (T + VT2 + 407 )

, (0 VIP A )/
6-21/3(a? — fAx)

i3+
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where

' = 54aBu (N i + a’pd — BAN L) —
— 108 X1 By(a® — XX3),  (46)

Q= 6(a® — BAN) (20 + uf — B3) — 90’ pt,  (47)

a= A"+ 2\, (48)

B= A+ AT+ AT A% LA L 2(AT 4 A?), (49)
D VAR LA TP VLN
PULASD VDL NPV LS

We next consider the potentials Ve, and Vipi—sert-
By imposing the conditions

* * * *
Al :A17 AQ :AQ, Ul :U17 U2 :U27
* *
AT =Ay, A=A, (50)
v =0, V=0, v =uuF =,
* *
VY = Uy, Uy =,

we obtain a system of equations of the potential mini-
mization for anti-sextets:

M
o

+ Ay + Mpuu' + (/\" f 4+ /\" f 4+ /\" "2 + N’ +
AP0 AT AN A As + 2(300 4 S+
+ A3+ 4N v1va] + 2A0(A — A5 4+ AS)vive +
+ 201 (A7 + A3)v3 + 201 [AFAS + A3 (20 + A5+
+ 205+ A8 + (A = A5+ A5+ 225)v3] ), (5L)

=2{X AW+ p2 + (A" + A7 +AT)u? +

oVi
Ny

+ Ny + MN)uu' + (/\" o4 /\" o4 /\" ' 4+ Nov' +
F AL £ AL ANSA A, +
23A] + A3+ A3 + 4\ )viwe] +
+ 20105 = A3 4 ADv1vs + 205 (A 4+ A)o? +
42X [AGAT + AT (2A] + A5 + 275 + AF) +
+ (A = A5+ A5+ 22807}, (52)

=2{A AP w? 4+ p2 + (A + AT + AT )u?

oV, s s
a—vi =2{vs [2A]" + \X° +

A )w® + 202 +
+ (22T + AT+ AP + (25 + Nuu' +
AT AT AT 4200 42X oo +
F2A02 4200 Ay + Ao (N] — A5 +A)) +
+ 2(AM A2 + A1 A2)(BA] + A3 + A5 +40))] +
+ 2 [200A0(A] +A5) + (A3 + A3)(A] — 5 +
+ ASH2X0)] 01 HAA]HASHAN 20 ) viv3 . (53)

3—2 =2{v [(2AF" + A3° + A )w? + 2 +
+ AT+ A+ AT + (24 + Mud +
AT AT T U+ 208707 4 20 00’ +
+ 20702 £ 2\ Ay + MaAr)(A] — A5+ A +
+ 2(Atde + At Ag)(BAT + A5 + A5 +4A])] +
+2[20A0 00 +23) + (OF +ADO] - A5 +
+ A3H2A)] w2 HA A FATHAN H 225t (54)

o
0N,
AP w4 yun! +)\’17’su'2+/\'1vv'+/\fsv2+)\flsv'2 +

+ AN A +2(3A] + A5 + A5+ 4N vive] +
+ 20 (A5 = A5 + A v1vn + 20 (A + A5)v? +
+ 201 [AGAS + AZ(2X] 4+ A5 + 22X + AF) +
+ (A = A5+ A5 +2X8)v3]},  (55)

=2 {As [\ + A" + A )w? + 2+

oV

A )W 4+ 2 +

+ AT u? + Nyuu' + /\717’Su'2 +
A AP 4 A2
+ AN A +2(3A] + A5 + A5 + 4N vive] +
+ 20 (A5 = A5 + A vivn + 20 (A + A)vd +
+ 205 [AGAT + AT(2M] 4+ A5 + 22X + AF) +
+ (Af = A5+ A5 +2X8)07] ), (56)
where

Vi = Vieat + Viriseat-

It is easy to see that Eqs. (51)—(56) take the same form
pairwise. This system of equations yields the relations

)\1 = K,/\Q, A1 = K,AQ, (57)

U1 = RU2,
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with x is a constant. This means that there are several
alignments for VEVs. In this paper, to obtain the de-
sired results, we impose the two directions for breaking
S3 — Zy and Zs — {identity} as mentioned, in which
k = 1 and k # 1 but approaches to the unit. In the
case where Kk = 1 or Ay = Ay = Ag, U1 = vy = vs,
and Ay = Ay = Ay, system of equations (51)—(56) re-
duces to a system for the potential minimal consisting
of three equations:

As [Auw + 12 + 24,02 + 2(4, + Bo)X2 + A, +
+ 4(A, + By)v] 4+ 2B, A0 =0,  (58)

2(Ay + By) +2u2 + Ay + AL +
+ 4B AN +4(A; + By)(A + 0 +A3) =0, (59)

As [Ay + By + 12 + 24,02 + 2(A; + Bs)AZ +
+ Al 4+ 4(As + Bs)v] + 2BAsvl =0,  (60)

where

A, = 2P0 B, = (A + A )w?,

As =20+ A, Bs =2\ + )],
N O VD VNS VNS L SIS LD L LN E | L
+ AT AT A AT,

AL = (N 4+ Xy + A2 4 A0 AT AT )2,

System of equations (58)—(60) always has the solution
(Xs, vs, Ag) as expected, even though it is complicated.
We also note that the above alignment is only one of the
conditions to be imposed to have the desired results.

5. GAUGE BOSONS

The covariant derivative of the triplet is given by
A A
Dy = O — ig 5 Wia z'gXX?gBu =8, —iP,, (61)

where \g = /2/3diag(1,1,1) and \,(a = 1,2,...,8)
are Gell-Mann matrices that satisfy the relations
Tr Ao Ap = 204y and TrAgAg = 2, and X is the U(1) x-
charge of Higgs triplets.

We can rewrite P, in a convenient form as follows:

w, 2
W, 2
’ AW Wt Y [P, Vot L ®
2 2
V2X'0 VoYt —ﬁWug + t\/;XBu
where we set (D, (5] o [ AT+ A W 4
. . Siflir = 1g | AiWpuz T —=Wpus
W't = Wi —iWe X0 — Wya —iWys " 8 V3
T TR
_ Wﬁ—’iW7 _ % 63 +\/j—t/\'B + 2’1)'X’0* N
Y’uzi“\/5 LW =W (63) 337" '

+ _ —\ %
Yl,u - (Ylu) ’
and t = gx/g. We note that Wy and W; are respec-
tively purely real and imaginary parts of X° and X°*.
The covariant derivative for the anti-sextet with a VEV
part is [21, 22]
Dulss) = DLWt (s:) + (s WeATY —
u\2ev/ — 2 wta\7t T pnta
—inggXBu<Si>. (64)

Covariant derivative (64) acting on the anti-sextet
VEVs is given by

i
[D,(s:)]12 = % AW 40"

g V;
[Dy(si)]is = 5 (UiWus - ﬁWw +
2 2 \/_ 10 \/— 10%
+ 3 gtUiBu +V2NXT +HV2NXT

[Dy(si)l21 = [Dyu(si)liz,
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[Du‘<5i>]22 =0,
[Dusi)]es = —= (W'} + MY'S) |
[Dyu(si)ls1 = [Dyu(si)lis,
[D,(si)]32 = [Du(si)]23,

[Du(si)]zs = ig <— %Aiwﬂg +

21 0
+ \/; St By + ﬁviX’u> .

The masses of gauge bosons in this model are defined
as

Lt = (Du(0))H(D*M(8)+(Dy(¢) " (D"(¢'))+
+ (D () (D () + (D ()™ (D () +
+ (Du(' )T (D*(')) + Te[(Dy(s1)) " (D" (s1))] +
+ Tr[(Dyu(s2)) " (D" (s2))].  (65)
Substituting the Higgs VEVs of the model in (65) yields
2
v
LGP = 537 [S1PWAHW ) +816° (W + W) +
+ (=99Wy3 + 3\/§9Wu8 + 2\/69)(3#)2] +
v/2
+ 351 [8192(W,‘j’1 +W2y) +81g> (Wi + Wir) +
+ (—QgWﬂg + 3\/§gWNg + Qﬁngu)2] +
2
w
+ 1o (2T OV + W) + 2162 (Wi + W) +
+ 3602 W2 + 12v2 g, Wis B, + Qgg(BZ] +
2
u
+ 257 [B192 W3 + W) + 816 (W2 + W) +
+ (—99W,3 — 3V3gW,s + \/EQXBU)Z] +
L [SL(W2, + W2) + 8162 (W2, + W) +
394 g ul ) g pd u
+ (—99W,3 — 3vV/3gW,s + \/f_)'gXBu)Q] +

2
+ % [2(A1v1 + Asts) (3W“3W“4 +3W Wi —

— W Wor = 5V3W,Wys ) +
+3(07 03 AT+ W2 +3 (] +03 +AT+A3) W2, +
+3(vi 403 + 2A7 + 203) W5 +
+ 3407 4+ 403 + AT+ A5+ AT+ A3+ 200\ +
+ 20, 00)W2, 43 (407 + 403 + A + A3 + AT+ A5 —
— 201 A1 — 285 00) Wiy + 3(0] 4+ 03 + AT + AW, +

+ 307 +v3 + AT+ AW +
+2V3(—vf — 03 + 2] + 203 W3 Wys +
+ (02 403 + 207+ 2)3 + 8A7 + BAD W2 +
+18(Av1+A202) W s Wia +6 (A v1 +Aov2) W e Wi —
— 6(Av1 + Aova)WyaWyr +

+ 2\/3()\1’01 + /\2U2)Wu4Wu8] +

2
+ 2—7t2g2(Xf’ + A3+ AT+ A3+ 207 + 203)B; —

2 /2
- g\/;tg2()\% + A3 + 0] +v3)W,3B, —

4

2
B 5\/;92 (A1 + A)vr + (A2 + A2)va] Wu By, —

22
—T\/_tg2(A%+/\§—v%—v%—ZAf—QA%)WﬂgBH. (66)

We can split £LGZ. . in (66) as

GB W, CGB NGB
[’mass = [’mgss + [’mzx + ‘mec ) (67)
where £V is the Lagrangian part of the imaginary

part Ws. This boson is decoupled, with its mass given
by

2
LV = gZ (w? +u® +u'? + 8vf + 8v3 +2A] +
+ 223 + 207 + 203 — 4A N — 4Ao M) W
Hence,

2
M%Vsz%( P’ 4+ u? + 8uf + 8v3 +2)7 +

+ 203 4+ 207 + 2A2 —4A N —4A00) . (68)

In the limit Ay, A2, vy, v2 — 0, we have

2
M‘%Vs:%( 4w’ +u? + 207 +243). (69)

Next,
g2
LEGB = T [0* + 0" +u® +u"? +
+ 2007 + 05 + A+ A3)] (W2 + W) +
2

+gZ [0? + 0% +w® +2(v] +v3 + AT + A3)] x

><(W36+W37)+92(A1U1+/\1U1+A202+)\202) X
X (Wi Wy = WiaWyr)  (70)

is the Lagrangian part of the charged gauge bosons W
and Y, which can be rewritten in matrix form as

2
cGaB _ Y Sy 2 +yr1+\T
;C — Z(WI;U'YI;U' )MWY (WIUYI;U') )

mix

where
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My =2
wy ( 2(A1U1 + )\11.)1 + A2U2 + A2U2)

The matrix M3,y in (71) can be diagonalized as

U3 My Uz = diag(Myy, M),
where
2
M, = gz {2(A%+A§+2v%+2v§+A%+A§) +
+ W+ u? +u? 207 +0'?) —\/f},
) (72)
ME = gz {2(A§+A§+2v%+2v§+A%+A§) +
+ W+ u? +u? 4207 +v'2)+\/f},
with

[ =4\ +4A7 + (20 —2A2 — 0 +u® +u'?)? —
— AT (2A7 =203 + 275 + w? —u® —u'? — 4o]) —
—4A3 (203 —2AZ — WP+ u +u'? — 4d) +
+ 32A1 (A2 + A)vivz + 16(Ns + As)?03 +
+ 32X\ v1 (A1 + Agvo + Asve).  (73)

In our model, the following limits are often used:

2 2 2 12 02 12
AT 2y V7 5 KU, 07, 07,07, (74)

v Cw? ~ AT, (75)

With the help of (74), T' in (73) becomes

[~ 2A2 + 203 +w? —u? —u/? +
n 16A1 Asvivo + 8A203
207 +2A2 + w? —u? —wu'?’
It then follows that

2
g g
M3, ~ 5 (u® +u'? + 0 +0'?) - EAM‘%V’ (77)
with
2 2
Ay = 4(2A1 Avve + AZ05) (78)

W 2A2 4 2A2 w2 —u? — w2

The corresponding eigenstates are arranged into the
charged gauge boson mixing matrix

R 1
o | VRERT CVRZ+1 |
> 1 R -
VRZ+1 VR24+1

[ cosf —sind
- sinf  cos@ '

0 + 0" + 0 +u'? +2(0] + 03 + A7 +A3)

2(A1U1 + A1 4+ Asvs + )\27}2) > (71)

v+ 02 +w? +2(v? +v3 + A2 + A2)

where
N2 —2A2 4203 —2A3 —w? +ul+u'?—/T
4()\1+A1)Q)1 +4()\2+A2)Q)2
The physical charged gauge bosons is defined as
w, =w',
Y, =-W'
The mixing angle # is given by

R =

cosf +Y', sinf,

. ,_
" sinf +Y u cosf.

1
tgf = ==
o 4()\1 + Al)Ul + 4(A2 + Ag)vz
T2 2A242X22A2—w2Hu4u2—T
- 4A1 U1 +4A2U2 Vi
TN 2AI WP 2(A2HAZ) T A,
We note that in the limit v; » — 0, the mixing angle
# tends to zero,

_2/\2—l—2A2 +w? —u?—u?,

i=1,2. (79)

and we have

2
MI%V: % (u2+u'2+v2+v'2),
(80)

2
M = % (2A7 4 2A3 + w? + 0% +0'?).
There is a mixing among the neutral gauge bosons W3,

Ws, B, and Wy. The mass Lagrangian in this case has
the form

NGB _ (
miz 894
— 54V3g*W,sW,s — 3676 ggx W3 B, +
2
324
+ 24g% B2 — 54V/3¢* W3 W —

— 36V6.ggxW,sB, + 362 ggXWugBu) n

81g°W s + 2Tg°Wis + 249% B, —

+ 36v2 ggXWugBu) (81g2W33 +27¢°W2 +

2
+ 1= (279" W2 + 364" W3 +
+12V2 99, W8 B, + 2g§(33) +

2
T34 (

+ 54302 W5 W5 —18V/6 ggXWugB“—18\/§WﬂgBu) +

81g°W 2, +81g° W5 +27g° W s +6g% B, +

/2
21772 2 2
+557 (B16°W7, + 81972, +
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+27g° W2 + 69% B2 + 54V30° W3 W5 —
— 18VB ggx Wis By — 18V2W,s By, ) +

2
+ £ 200101 + Ao) (3W,is Wit = 5v/3W,a Wias ) +

+ 3(vf +v3 4+ 2M\] + 203,

+ 340l + 403 + N2 FAZ AT A2 2000 +
+20000) W2, +2V/3(—0l —v3+2X3+2)2) u3Wu8+
+ (] + 05 + 207 4+ 2)] + 8AT + BAHW g +
+ 18(A vy + Aov2)WysWa +
+ 2\/§(A1U1 + /\202)Wu4Wu8] +

2
+ 2—7752 G (AT + X3 + AT + A3 + 207 +203)B; —

2 /2
- g\/;tg2()\% + A3 +vf +v3)W,3B, —

ME, = 4(Avr + Asvs) + 12(Av1 + Aovs),
2
M3, = 3 (V2 + 0" + 4w® +u® +u? +

+ 207 4 203 +4A7 + 473 + 16AF + 16A3) ,

2¢/2t
M3 === f (207 + 20" + 20w —u? —u/? —
- 4A§ —4)3 + 407 + 4v3 + 8AT + 8A3)
4
M224 = ﬁ [)\11)1 + Aavg — 5(A1U1 + AQQ}Q)] R (83)
442
Mz, = > (40” + 40" + w? + 0 +u'? +
+ 4N] +4X3 + 4AT 4+ 4A3 + 8v7 + 8v3)
16
M§4 = —E\/7 ()\11)1 + Aqvg + Aavs + A2U2)

M7, = 2(w? + u® +u'? 4+ 8vf + 8v3 +2)\7 +
+2X3 + 2A7 4+ 2A3 + 4A1 0 + 4A00,).

4 /2
B 5\/;92 [(A1 4+ Ao + (Ag + Ag)vo] Wi By, —
The matrix M? in (82) with the elements in (83) has
_ Qﬁth(A%+/\§—v%—v%—2A%—2A§)WM8BM. (81) one exact eigenvalue, which is identified with the pho-
9 ton mass,
In the basis (Wy3, Wys, By, Wya), LNGB can be M2 =0. (84)
rewritten in matrix form: K
1
'C%z(;B §VTM2V7 The corresponding eigenvector of M,f is
where - A =
V5= (Wus, Wy, By, Wa), : T
MMM B <\/4\t/2§t18 _\/4t2t B \/ft;/ilS 0) &
el | a0 oM | @ + HIS Vi
T o Mo 0
M}, M3, M3 M2, We note that in the limit A\ 2,v12 — 0, M7, =
with = M3, = M}, = 0 and Wy does not mix with Wj,,
M3E = 2002 +u? +u'? 4207 203 +4X2 +4)03), Ws,, and B,. In the general case Ai2,vi2 # 0,
2/3 the mass matrix in (82) contains one exact eigenvalue
M3, = - (V2 + 0" —u® —u'? + 207 + n (84) with the corresponding eigenstate defined
83).
+ 207 — 42 —4)2), n (85)
5 I3 The diagonalization of the mass matrix M? in (82)
M3, = —g\/;t (207 + 20" +u? +u'? +40] + is done in two steps. In the first step, the basis (W3,

+ 43 + 4o} + 403)

UnagB =

Wys, By, Wy,) is transformed into the basis (A, Z,,
Z,, Wy,) by the matrix

—Ccw 0 0
_swiw _ @ 0

V3 3 . ’ (86)
swi/l— 3 ﬁ 0
0 0 1
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The eigenstates are defined as
AM = swWs, +

t
+ cw (——WW&L +

by
1-—++B
V3 3 )
Zu:_CW[[Su‘I'

tw [t
+ Sw <—7§W8H + 1- ?WBH> N
t%/V tw
7, = \/1—?Wgu+ﬁ3u.

To obtain (86) and (87), we used the continuation of
the SU(3); gauge coupling constant ¢ to the sponta-
neous symmetry breaking point, where

t = ?’\/_ﬂ (88)

V3 —4sh,

In this basis, the mass matrix M? in (82) becomes

(87)

M"? =UfogM?Unge =

0 0 0 0

— 9_2 0 MI%Q MI%3 MI%4 (89)
Tl o ar ary arg, |
0 M3, M3, M7,
where
4(2t249)
M'%, = T (WP Hu?+0*+0 2 +4A] +
2
+ A3 +207+203) = —— (WP HuZ+0? +
Cw
+ 0" +4N] + 403 + 207 + 203) ,
. 4 V2249

28738 2+ 18
x [(2 = 9)(AN] + 43 + u® + u'?) +
+ 22+ 9)(v® + "% + 20] + 203)] =
2

== [(1=2c3y ) (W +u/?+403 +473) +
w
+ v® + 0% + 0] 4+ v3] Vo,
212+ 9
M'3, = —4V2 X
> v2 2 +18

X (A1U1 + 3/\1’01 + A2’U2 + 3/\2’02) =

4
= —— (A1v1 + A2v2 + 3)\11)1 + 3)\21)2) y
cw
4

MI2 —
337 27(124-18)

[4A](£2—9)%+4A3 (2 +18)% +

+ 81 (4A3+16A5+4w’ +u’+u'? +

+ v +0" 2207 +203) +

+18¢% (8A3+2w’—u® —

— u? + 207 + 20" + 0] + 403) +
FAN 2 (2 —18)+t* (4N +w +uP+u'? +
+ 40” + 40" + 807 + 8v3)] =

= 32(AT + A)cjyao +

2
+8w20%va0+% (V240" 420 +203 ) g+

2
+ T(Qc%,v —1)%(u® +u'Hag +
Cw
8(20%4/ —1)? 2 2
+ C%/V ()‘1 + AQ)aoa (90)

e _ 42
3 3v3 V218

+ (42 + 45)(Ayo1 + Asn)] = —

[(4t2—9) ()\1’01 -|-)\2’U2) +

4
va

Cw

1
X |:1,‘0(A1U1 + A2’U2) + <2 — —> X

@
X ()\11)1 + /\21}2)] N
M3, =220 +A1)? + 2000 + M) + 0 +
+u? +u'? + 87 +8v3] =2 (v +u'? +
+ w? + 207 +2X3 + 247 + 2A2 +
+ AN Ay + 4NN + 8’1)% + 81}%) .
In the approximation A} 5,07 5 < A7, ~ w?, we have
2
M2, = - (u? + % + 02 +0'?),
w
2
M3, = = [(1-2c3y ) (u®+u"?)+v*+0"?] Vao,
w
4
MI§4 = - (A1v1 + AQUQ) s
cw

M2, = 32(A3 + A2)clyao + 8wchyap +

2
+ T(U2 + ,012)0//0 + (91)
Cw
2 2 2/ 2 )
+ =52y — 1)7(w” + u")ao,
Cw
4o/
MI§4 = — 0\/_ (A1U1+A2’U2),
cw
M3, =2 (u” +u'? +w® +2A7 +
+ 2A3 + AN Ay + 4D0As)
with
sw =sinfw, cw =coslw, tw =tgblw, (92)

zo=4chy +1, ap=(4ch, — 1)L
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Neutrino mass and mixing in the 3—3—1 model ...

From (89), there exist mixings between Z,,, Z, and
Wya. It is noteworthy that in the limit vy » = 0, the
elements M'3, and M'3, vanish, and there is no mixing
between Wy and Z,,, Z,,.

In the second step, three remaining neutral gauge
bosons gain masses via the seesaw mechanism:

2
g 1) — 1)
M3 = 5[0, - (T (M) M) (93)

where

Moff — MI%3
M3,

12 12

MI2 _ M 33 M 34
2x2 — 2 2 ’
M's, My,

Combining (93) and (94) yields

92
M% = Z (MI§2 +
(M'§4)2M’§3—QM'gsM'gz;M’§4+(M’§3)2M'34) _
(MI§4)2 - M’§3M11214
92 (U2 +UI2 +U2 +UI2) 92 A
2¢2, 2¢3, Mz

4A2Z (40%[/563—3305614-334) +x1 [332561—4A2Zx0]
zo(zs + dchyas) — 4023
B 4A% (40%‘,503 — 2zo11 + x4) + 2229
B vo(wg + e xs) — AAL 2D

, (95)

with
z1 = (1= 2¢)(u? +u'?) +0? +0'%
Ty = 201 (20 4+ A1) 4+ 2A5(20s + As) + w? + u? + u'?,
z3 = 4A7 +4A5 + w? +u® +u'?,
g = (1 -4 (u? +u'?) + 0% + 02,
Ay = Ajvg + Ay,

The p parameter in our model is given by

MG,
= =149 rees 96
r MZ cos? Ow o (96)
where
_ dwz s
Otree = R dwz = 22, (AMg - AM&V) - (97)

Using approximations (74) and (75), we have
|

AM% — AM‘%V ~ 8(A1'U1 +A2'U2) X

Arv

(4A% +4A%+w2 ) (40%[/ — ].)C%V (A1 U1 +A2 ’Ug)

x {_QA%“—QA%_'_UJQ +2(4C%}V — 1) [(2A342A%+w?) (4A3 + 4A% + w?)cfy, — (4, + 1)2(Arvr + Asv2)?] } - (98)

We assume relations (57) and ve = v, w = Ay = Ag;
then

N (K2 +1)(4k>+5)c3, A svs -
D[(Rk1+22k2 4 15)cly AZ— (K24 1)2 (4%, +1)°02]

S(k? + 1)v2 | 8(K* + 1)2(4k* + 5)ch 02

2k2 4+ 3 2(2k2 + 3)(4k> + 5)cty
C8(R+ vy 8(R+1)%0)
2k2 +3 2(2k2 + 3)cy,

8(k + 102 (K2 +1
= ~1
2% +3 \ 2, » (99

8(k? + 1)v2 [k?+1

1) . (100)
2k2 + 3 2c2,

From (97) and (100), we have

201 SR+ 102 (k2 +1
g 1 8+ 1, < ha —1). (101)
22, M2 2k% +3
The experimental value of the p parameter and My
are given in Ref. [4]:

p = 1.00045:5554

Otree = 5
2cyy

(5757“68 = 0‘0004—1—8:8882)7

s, = 0.23116 + 0.00012, (102)
My = 80.358 £ 0.015 GeV.
Hence,
0 < Otree < 0.0007. (103)

From (102) and (103), we can deduce the relations be-
tween v, ¢, and k. Indeed,
C%/V vV 5tree vV 2k2 + 3MZ
gV 12\ /k2 ¥ 1203,
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Figure 1 gives the relation between v, and ¢,k with
g = 05 and k£ € (0.9,1.1), for |vs] € (0,8) GeV.
Conditions (74) and (75) are then satisfied. Figu-
re 2 gives the relation between g and dgpee, vs with
k =1 and d¢ree € (0,0.0007), vs € (0,8) GeV, for
lg] € (0,2) GeV. Conditions (74) and (75) are then sat-
isfied. Figure 3 gives the relation between k and g, v
with d¢ree = 0.0005 and ¢ € (0.4,0.6), vs € (0,8) GeV,
for k € (1,3) GeV (k is a real number, Fig. 3a) or
k =ik, k1 € (—1.2,-1.05) GeV (k is a purely com-
plex number, Fig. 3b). Conditions (74) and (75) are
then satisfied. From Fig. 3, we see that many values
of k that are different from close to unity still can fit
the recent experimental data [4]. This means that the
difference of (s1) and (s1) as mentioned in this wor