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An analytic approach to the theory of the optical defect modes in photonic liquid crystals in the case of an active
defect layer is developed. The analytic study is facilitated by the choice of the problem parameters related to the
dielectric properties of the studied structures. The chosen models allow eliminating polarization mixing at the
external surfaces of the studied structures. The dispersion equations determining the relation of the defect mode
(DM) frequency to the dielectric characteristics of an isotropic, birefringent and absorbing (amplifying) defect
layer and its thickness are obtained. Analytic expressions for the transmission and reflection coefficients of the
defect mode structure (DMS) (photonic liquid crystal-active defect layer—photonic liquid crystal) are presented
and analyzed. The effect of anomalously strong light absorption at the defect mode frequency for an absorbing
defect layer is discussed. It is shown that in a distributed feedback lasing at the DMS with an amplifying defect
layer, adjusting the lasing frequency to the DM frequency results in a significant decrease in the lasing threshold
and the threshold gain decreases as the defect layer thickness increases. It is found that generally speaking the
layer birefringence and dielectric jumps at the interfaces of the defect layer and photonic liquid crystal reduce
the DM lifetime in comparison with the DMS with an isotropic defect layer without dielectric jumps at the
interfaces. Correspondingly, generally speaking, the effect of anomalously strong light absorption at the defect
mode frequency and the decrease in the lasing threshold are not so pronounced as in the case of the DMS with
an isotropic defect layer without dielectric jumps at the interfaces. The case of a DMS with a low defect layer
birefringence and sufficiently large dielectric jumps are studied in detail. The options of effectively influencing
the DM parameters by changing the defect layer dielectric properties, and the birefringence in particular, are

discussed.
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1. INTRODUCTION

The field of mirrorless distributed feedback (DFB)
lasing in photonic structures consisting of many layers
of chiral liquid crystals was recently attracting much
attention, mainly due to the possibilities of reaching a
low lasing threshold for DFB lasing [1-8]. For definite-
ness, we study photonic liquid crystals with the exam-
ple of the best known type of photonic liquid crystals,
cholesteric liquid crystals (CLC). The related theory is
mostly based on numerical calculations [9], whose re-
sults are not always interpreted in the framework of
a clear physical picture. Several recent papers [10-15]
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showed that an analytic theoretical approach to the
problem (sometimes limited by the introduced appro-
ximations) allows creating a clear physical picture of
linear optics and lasing in the relevant structures. In
particular, the physics and the role of localized optical
modes (edge and defect modes) in the structures un-
der consideration was clearly demonstrated. The most
promising results in DFB lasing relate to defect modes
(DM) [12,13]. The defect modes existing at a structure
defect as a localized electromagnetic eigenstate with its
frequency in the forbidden band gap were investigated
initially in the three-dimensionally periodic dielectric
structures [16]. The corresponding defect modes in chi-
ral liquid crystals and, more generally, in spiral media
are very similar to the defect modes in one-dimensional

scalar periodic structures. They reveal abnormal re-
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flection and transmission inside the forbidden band
gap [1,2] and allow DFB lasing at a low lasing thresh-
old [3]. The qualitative difference from scalar periodic
media consists in the polarization properties. The de-
fect mode in chiral liquid crystals is associated with a
circular polarization of an electromagnetic field eigen-
state with the chirality sense coinciding with the one
of the chiral liquid crystal helix. There are two main
types of defects in chiral liquid crystals studied up to
now. One is a plane layer of some substance differing
from the CLC, dividing a perfect cholesteric structure
into two parts, and being perpendicular to the helical
axis of the cholesteric structure [1]. The other defect
type is a jump of the cholesteric helix phase at some
plane perpendicular to the helical axis (without inser-
tion of any substance at the location of this plane) [2].
Recently, many new types of defect layers were stud-
ied [17-23], for example, a CLC layer with the pitch dif-
fering from the pitch of two layers sandwiched between
these layers [8]. It is evident that there are many ver-
sions of the dielectric properties of the defect layer, but
the consideration below is limited by the first type of
defect, a layer inserted into a chiral liquid crystal. Our
focus is on the active defect layer (absorbing, amplify-
ing or changing light polarization). The reason for that
is connected with both experimental research on the
DFB lasing in CLCs where dyes are placed in a defect
layer [24] and the general idea that the unusual prop-
erties of the DM manifest themselves most clearly just
at the middle of the defect structure, i.e., at the defect
layer, where the DM field intensity reaches its maxi-
mum. We therefore assume that there is no absorption
in the CLC layers of the DMS, and absorption, amplifi-
cation or changes of light polarization occur only in the
defect layer. The analytic approach to studying a DMS
with an active defect layer is very similar to the previ-
ously performed DM studies [12,13], and we therefore
present the final results of the present investigation,
referring the reader to [12,13] for the investigation de-
tails.

In this paper, an analytic solution for the defect
mode associated with an insertion of an active defect
layer into the perfect cholesteric structure is presented
for light propagating along the helical axis and some
limit cases simplifying the problem are considered.

2. DEFECT MODE AT AN AMPLIFYING
(ABSORBING) DEFECT LAYER

To consider the DM associated with an insertion of
an isotropic layer into a perfect cholesteric structure,

907

CLC L
d
CLC L
Fig.1. Schematic of the CLC defect mode structure

with an isotropic active defect layer of thickness d

we have to solve the Maxwell equations and a boundary
value problem for the electromagnetic wave propagat-
ing along the cholesteric helix for the layered structure
depicted in Fig. 1. This investigation was performed
in [12,13] under the assumption that the CLC layers
can be absorbing or amplifying in Fig. 1. It is possible
to use the results in [12,13] in the present case of an
amplifying (absorbing) isotropic defect layer and non-
absorbing CLC layers introducing only some physically
clear changes in the formulas obtained in [12,13]. The
assumptions in [12, 13], that the average dielectric con-
stant, of CLC g¢ coincides with the dielectric constant
of the defect layer and the external medium, and hence
polarization conversion at the interfaces is absent and
only light of diffracting circular polarization has to be
taken into account, are retained in this section. The
main conventions and notation of papers [12,13] are
also preserved in this section. As is known [9], much
information on the DM is available from spectral prop-
erties of the defect mode structure (DMS) transmission
T(d, L) and reflection R(d, L) coefficients.

Formulas for the optical properties of the struc-
ture depicted at Fig. 1 can be obtained using the ex-
pressions for the amplitude transmission 7'(L) and re-
flection R(L) coefficient for a single cholesteric layer
(see also [25,26]). The transmission |T'(d, L)|* and re-
flection |R(d, L)|? intensity coefficients (of light of the
diffracting circular polarization) for the whole structure
can be presented in the form

T.Tyexp(ikd(1+ig)) 2

1 — exp(2ikd(1+ig))R4R,,

T(4, ) = \ W

R T.T, exp(2ikd(1+ig)) |? @)
1 —exp(2ikd(1+ig))RgRy |
where R.(T.), Ry(Ty.), and Ry4(T4) are the respective

amplitude reflection (transmission) coefficients of the
individual CLC layer (see Fig. 1) for light incident at

|R(d, L)|* = ‘Re +
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the outer top layer surface, at the inner top CLC layer
surface from the inserted defect layer, and at the in-
ner bottom CLC layer surface from the inserted defect
layer. It is assumed in the deriving Eqgs. (1) and (2) that
the external beam is incident at the structure (Fig. 1)
from above only. The factor 1 + ig is related to the
defect layer only and corresponds to the dielectric con-
stant of the defect layer having the form e¢(1 + 2ig)
with a small g that is positive for an absorbing defect
layer and negative for an amplifying one.

For completeness, we also present expressions for
the amplitude transmission T'(L) and reflection R(L)
coefficients for a single nonabsorbing cholesteric layer
of thickness L for light of diffracting circular polariza-
tion [25, 26]:

R(L) = idsin(qL) {Z—; cos(qL) +

i) () 1 sman}

-
2K

q

K

(3)

-
2K

q

2 2 -1

+1 [( ) + (R) — 1] sin(qL)} ,

where k = ws[l)/Q/c, 7 = 47 /p, p is the cholesteric pitch,
go = (5” +e1)/2,0 = (SH —SJ_)/(SH +¢e,) is the dielec-
tric anisotropy, and ¢ and ¢ are the local principal
values of the liquid crystal dielectric tensor [25-29],

=k {1 + (1/2r)% - I:(T/h:)2 + 52]1/2}1/2 .4

The defect mode frequency wp is determined by the
dispersion equation

exp (2ikd(1 +ig)) sin®(qL) — w X
X [;—g cos(qL)+i <<i)2 N (%)2 _1) sin(qL)r =
=0. (5)

For a finite thickness L of CLC layers, the DM fre-
quency wp is a complex quantity, which can be found
by solving Eq. (5) numerically. For very small values of
the parameter g, the reflection and transmission spec-
tra of an DMS with an active defect layer are simi-
lar to the spectra studied in [12,13] (see Fig. 2). In
particular, positions of dips in reflection and spikes in
transmission inside the stop-band just correspond to
Rewp, and this observation is very useful for numeri-
cally solving the dispersion equation. The DM lifetime
is reduced for absorbing defect layers compared to a
nonabsorbing defect layer [12,13].
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Fig.2. Reflection |R(d, L)|* versus the frequency for a
nonabsorbing defect and CLC layers (g = 0) at d/p =
= 0.1 (a), 0.25 (b); I = 200, I = LT = 27N, where
N is the director half-turn number at the CLC layer
thickness L. Here and on figures below, § = 0.05, the

director half-turn number at the CLC layer thickness is
N = 33, frequency v = §[2(w — wpg)/dwp — 1]

2.1. Absorbing defect layer

As in the case of investigated DMS with absorbing
CLC layers [12,13], the effect of anomalously strong
absorption also occurs in DMS with absorbing de-
fect layer. The effect reveals itself at the DM fre-
quency and reaches its maximum (the maximum of
1 —|T(d,L)]? — |R(d,L)|?) for certain value of g that
can be found using expressions (1) and (2) for |T'(d, L)|?
and |R(d, L)|?. Figure 3 demonstrates the existence of
the anomalously strong absorption effect at the DM
frequency. As follows from Fig. 3, the maximum values
of the anomalous absorption [25,30] (the maximum of
1—|T(d, L)]?—|R(d, L)|?) at two differing values of d/p
are reached for g = 0.04978 and ¢ = 0.00008891 (taken
with the opposite sign, these are approximate values of
g for the lasing threshold gain for the same DMSs).

In the case of thick CLC layers (|¢|L > 1) in the
DMS, the g value ensuring absorption maximum can
be found analytically:
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Fig.3. Total absorption 1 — |T'(d,L)|* — |R(d, L)|* versus the frequency for an absorbing defect layer and nonabsorbing
CLC layers at g = 0.04978 (a), 0.08 (b) for d/p = 0.1; at g = 0.00008801 (c), 0.0008891 (d) for d/p = 22.25

L | 2x?
gt = 1 meXP(_%ﬂL) X

(2 [(T/m)2+52]1/2)_1 o)

N TS+ P

(6)

For the defect mode frequency wp in the middle of the
stop-band, the maximal absorption corresponds to

20 L
gt—sﬂ_dexp( 27r5p). (7)

As the calculations and formulas (6) and (7) show,
the gain g corresponding to the maximal absorption is
approximately inversely proportional to the defect layer
thickness d.

2.2. Amplifying defect layer

In the case of a DMS with an amplifying defect layer
(g < 0), the reflection and transmission coefficients di-
verge at some value of |g|. The corresponding values

d-mode absorption
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Fig.4. Total absorption 1 — |T(d, L)|> — |R(d, L)|?

versus the frequency for an amplifying defect layer

and nonabsorbing CLC layers at ¢ = —0.0065957 for
d/p=0.25

of g are the gain lasing thresholds. They can be found
from dispersion equation (5) solved for g or numeri-
cally using expressions (1) and (2) for |T'(d, L)|* and
|R(d,L)|?, or can be found approximately by plotting
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for an amplifying defect layer and nonabsorbing CLC

layers at ¢ = —0.001000 for d/p 2.25 (a) and
g = —0.00008891 for d/p = 22.25 (b)
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Fig.6. Reflection |R(d, L)|* versus the frequency for
an amplifying defect layer and nonabsorbing CLC layers
at g = —0.04978 for d/p = 0.1

|T(d,L)|* and |R(d, L)|* as functions of g. The third
option is illustrated by Figs. 4—6, where “almost diver-
gent” values of |T'(d, L)|?, |R(d, L)|?, or the absorption
1—|T(d,L)|?> — |R(d, L)|? are shown. The used values
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of g in Figs. 4-6 are close to the threshold ones en-
suring a divergence of |T'(d, L)|* and |R(d,L)|*>. The
calculation results show that the minimal threshold |g|
corresponds to the location of wp just in the middle of
the stop-band and |g| is almost inversely proportional
to the defect layer thickness. Figures 4 and 5 actually
correspond to the defect mode frequency wp located
close to the middle point of the stop-band and demon-
strate a decrease in the lasing threshold gain with an
increase in the defect layer thickness. Figure 6 corre-
sponds to the defect mode frequency wp located close
to the stop-band edge and demonstrates an increase in
the lasing threshold gain as the defect mode frequency
wp approaches the stop band edge.

The analytic approach for thick CLC layers (|q|L >
> 1) results in similar predictions, namely, the gain
threshold value is given by (6) with the negative sign
of the right-hand side. For thick CLC layers with wp
in the middle of the stop-band, the threshold gain is
given by the expression

Hence, as formula (8) shows, the thinner the amplifying
defect layer is, the higher threshold gain g.

The same result, as was mentioned above, is also
valid for the absorption enhancement (formulas (6) and
(7)). The thinner the absorbing defect layer is, the
higher the g value ensuring maximal absorption.

An important result relating to DFB lasing at the
DMS with an amplifying (absorbing) defect layer can
be formulated as follows. The lasing threshold gain in a
defect layer decreases as the amplifying layer thickness
increases, being almost inversely proportional to the
thickness. A similar result holds for the anomalously
strong absorption phenomenon, where the value of g in
the defect layer ensuring maximal absorption is almost
inversely proportional to the defect layer thickness. We
note that the revealed decrease in the lasing threshold
gain with increasing the amplifying defect layer thick-
ness cannot be regarded directly as the corresponding
reduction in the lasing energy threshold of a pumping
wave pulse. The situation depends on the specifics of
pumping arrangement. This question requires a more
thorough separate consideration. For example, if we as-
sume that the pumping is arranged such that the gain
g times the defect layer thickness d is proportional to
the pumping pulse energy, then the threshold pumping
pulse energy is almost independent of the defect layer
thickness because of the almost inverse proportionality
of the threshold gain to the defect layer thickness found
above.
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3. DEFECT MODE AT BIREFRINGENT
DEFECT LAYER

The main attention in this section is paid to a bire-
fringent defect layer and, in particular, to the case of
low birefringence. As was already mentioned above, the
reason for that is connected with both the experimen-
tal researches of DFB lasing in CLCs where the defect
layer is birefringent [24] and the general idea that the
unusual properties of the DM manifest themselves most
clearly just at the middle of the defect structure, i.e.,
at the defect layer, where the DM field intensity reaches
its maximum. We also assume from the beginning that
there is no absorption in the CLC and the birefringent
defect layer. The analytic approach in studying of a
DMS with a birefringent defect layer is very similar to
the previously performed DM studies for an isotropic
defect layer [12,13], and we therefore present the final
results, referring the reader to [12,13] for the details.

3.1. Nonabsorbing CLC layers

In this section, an analytic solution for the DM as-
sociated with an insertion of a birefringent defect layer
in the perfect cholesteric structure is presented for light
propagating along the helical axes and some limit cases
simplifying the problem are considered. To consider the
DM associated with the insertion of a birefringent layer
in the perfect cholesteric structure, we have to solve
the Maxwell equations and a boundary value prob-
lem for the electromagnetic wave propagating along
the cholesteric helix for the layered structure with a
birefringent defect layer depicted at Fig. 1. This in-
vestigation was already performed in [12, 13] under the
assumption that the defect layer in Fig. 1 is isotropic.
We can therefore use the results in [12, 13] for our case
of a birefringent defect layer and nonabsorbing and am-
plifying (absorbing) CLC layers (keeping the notation
of papers [12,13] here), introducing only some physi-
cally clear changes in the formulas obtained in [12,13].
The assumption in [12,13] that the polarization con-
version is absent and only light of diffracting circular
polarization has to be taken into account (due to the
assumption that the average CLC dielectric constant
go coincides with the dielectric constant of the defect
layer and the external medium) is not valid here. In
fact, due to the birefringence of the defect layer, light
polarization changes in the course of its propagation in
the defect layer from one of its surfaces to the other,
and hence, generally speaking, the polarization of light
after crossing the defect layer differs from the polar-
ization at the first defect layer surface. This is why
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the polarization component differing from the diffract-
ing polarization occurs to be present in the DMS in
general and the correspondingly polarized light leaks
from the DMS. The evident consequence of this leak-
age is a reduction in the DM lifetime in the case of a
birefringent defect layer.

Formulas for the optical properties of the structure
with a birefringent defect layer depicted at Fig. 1 can
be obtained using the expressions for the amplitude
transmission T'(L) and reflection R(L) coefficient for a
single cholesteric layer in the presence of dielectric in-
terfaces (see [25,26]). If we neglect multiple scattering
of nondiffracting polarization light, the transmission
|T(d, L)|* and reflection |R(d, L)|? intensity coefficients
(of light with the diffracting circular polarization) for
the whole structure can be presented in the form

7(d, L) =

|R(d, L)]”

TerM(kv d? An)(o-e i U:d)
1—-M?(k,d,An)(o, -0},;)? RqeR,

, (9)

R + RdTeTuM2(kada An)|(06 i U:d)|2
71— M2(k,d,An) (o, - 0F;)>RaRy,

, (10)

where the meaning of Re(T.), Ry(Ty), and Ry(Ty) is
the same as in (1) and (2), and o, o, and .4 are the
polarization vectors of light exiting the CLC layer in-
ner surface, of light reflected at the inner bottom CLC
layer surface at the incidence from the inserted defect
layer, and of light whose some polarization vector o4
transforms to the polarization vector o, at crossing the
birefringent defect layer of thickness d; An is the dif-
ference of two refractive indices in the birefringent de-
fect layer and M (k,d, An) is the phase factor related
to the light single propagation in a birefringent defect
layer. It is assumed in deriving Eqs. (9) and (10) that
the external beam is incident at the structure (Fig. 1)
from above only. In the presence of dielectric inter-
faces, there is light polarization conversion at the inner
surfaces of CLC layers in DMS at reflection and trans-
mission of light through a CLC layer and the light field
inside CLC layers cannot be presented as a superpo-
sition of only two diffracting eigenmodes of the CLC
(generally speaking, two nondiffracting eigenmodes are
also present). The corresponding polarization vector
inside the defect layer (after light crosses the interface
between the CLC and defect layers), o., can be found
(see [25,26]), and the polarization vector o.q can be
easily calculated if d and An are known. The same can
be said about finding the polarization of light exciting
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diffracting eigenmodes in a CLC layer in its incidence
at the external CLC layer surface in the DMS. The
corresponding polarization in the presence of dielectric
interfaces is called a diffracting polarization here. Po-
larization orthogonal to the diffracting polarization is
here called the nondiffracting polarization. Light of a
nondiffracting polarization being incident at a DMS ex-
cites only nondifracting CLC eigenmodes in CLC layers
of the DMS. The polarization vectors o., o, and oeq
can be presented in the form

o; = (cosaze, + e sin aje,), (11)

where e, and e, are the unit vectors along the z and
y axis, and a; and S; are the parameters determining
the polarization. For example, o; = /4 and f;
= 7 /2(—m/2) corresponds to right (left) circular polar-
ization.

In the general case for a DMS with a birefringent
defect layer, the transmitted and reflected beams do
not correspond to the diffracting circular polarization,
and therefore there is reflection and transmission of the
nondiffracting polarization light even for incident light
of diffracting polarization. Neglecting multiple scat-
tering of nondiffracting polarization light, we obtain
the reflection R(d, L)~ and transmission T'(d, L)~ co-
efficients of light of nondiffracting circular polarization
(for incident light of diffracting circular polarization),

1 *

2
"Oed

|T'(d, L) T.T,{M(k,d,An)(o. ) +

+ (o 0) (0 00y (0, 0. )M (k, d, An) x

_112
X [1 — ]\4'2(167617 An)(a'r : U;d)2RdRu] ! 9 (12)

|R(d, L) |* =
= |{R;+RdTETM_M2(k,d, An)(oe - ol,) (o) - Ujd*

}

where R is the reflection coefficients of the CLC layer
for light of nondiffracting circular polarization taking
dielectric interfaces at the incidence of diffracting po-
larization light into account and 7~ is the transmis-
sion coefficient of the CLC layer for light of nondiffrac-
ting circular polarization taking dielectric interfaces at
the incidence of nondiffracting polarization light into
account, and Ujd is the polarization vector orthogo-
nal to .q. We note that the amplitude transmis-
sion coefficients T, and T, are approximately equal
to explikLn_/ng], where n_ is the refractive index of
light of the nondiffracting circular polarization in CLC
layer.

) X

1

2
x [1 = M2(k,d, An)(a, - 07;)* RyR,] , (13)
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Calculations of the reflection and transmission coef-
ficients according to (9), (10), (12), and (13) can be per-
formed analytically in the general case, but are rather
cumbersome. This is why we study the case of low
birefringence in detail below and present expressions
for |T'(d, L)|* and |R(d, L)|* taking only the polariza-
tion transformation in the defect layer into account and
neglecting transformations of polarizations at the inter-
faces and small deviations of the diffracting and non-
diffracting polarizations from the circular ones, which
allows simple analytic calculations.

With these simplifications and under the assump-
tion that the refractive indices of the DMS external me-
dia coincide with the average CLC refractive index, the
refractive indices of the defect layer can be expressed
by the formulas

Nmaz = No + An/2,  Npin = ng — An/2, (14)
where ng coincides with the average CLC refractive in-
dex and An is small. The phase factor M (k,d, An) is

given by

M (k,d, An) = explikd] cos(Ap/2), (15)
where the phase difference of two beam components
with different eigenpolarization at the defect layer
thickness is Ay = Ankd/ng, k = wng/c = ws(l)/Q/c.

Finally, in the case of low birefringence, inserting
(15) into (9) and (10), we obtain explicit expressions
for the reflection and transmission coefficients of light
with a circular diffracting polarization for the incident
beam with a circular diffracting polarization:

2

T.Ty explikd] cos(Ap/2)
T(d,L)|* = 1
IT(d, L) ‘1 — exp[2ikd] cos?(A¢/2)R4R,, | (16)
|R(d, L)* =
. 2 2
_|g R.T.T, e'xp[2zkd] cos®(Ap/2) (17)
1 — exp[2ikd] cos?(Ap/2)Rq Ry

If Ap/2m is an integer, Eqs. (16) and (17) are iden-
tical to the corresponding equations for the DMS with
an isotropic defect layer [12, 13] and there is no conver-
sion of the diffracting polarization into a nondiffracting
one, but if Ay/27 is not an integer, this conversion oc-
curs and, consequently, light leaks from the DMS and,
in particular, the DM lifetime is less than in the case of
the corresponding DMS with an isotropic defect layer.
This dependence of the DM properties on the phase
shift between eigenwaves at their crossing the defect
layer opens up the way to control the DM properties.
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The simplest such possibility is related to variations of
the defect layer thickness.

The polarization conversion results in adding the
nondiffracting components to the transmitted and re-
flected beams. For low birefringence, which corre-
sponds to the condition An/ng < 4, the amplitude
transmission and reflection coefficient for nondiffract-
ing polarization light (for the incident light of diffract-
ing polarization) are given by

tkILn_
no
explikd] sin(Ap/2)

T(d,L)” =T.exp

X

1
1z exp[2ikd] cos?(A¢/2)R4R,,’ (18)
R(d,L)" = %RuTe exp Zki”* x
0
" exp[2ikd] sin(Agp) (19)
1 — exp[2ikd] cos?(Ankd/2no)Ra Ry’

where n_ is the refractive index of light of nondiffract-
ing circular polarization in the CLC layer.

The calculations results for the transmission
|T'(d, L)|? coefficient of light of diffracting polarization
in the case of low birefringence are presented at Fig. 7
for various values of the birefringent phase factor Agp
related to the light single propagation in a birefringent
defect layer. Figure 7 shows that at low values of the
phase shift between eigenwaves at their crossing the
defect layer (Ag < m/2), the shape of the transmission
curve is very similar to that for a DMS with an
isotropic defect layer (for Ay equal to an integer
multiple of 27 or zero, it coincides with the shape of
the corresponding curve for an isotropic defect layer).
But as Ay approaches m/2 (see Fig. Te—g), the increase
in transmission at the defect mode frequency, typical
for an isotropic defect layer, gradually disappears and
does not appear at all at Ap = 7/2 (Fig. 7g). This
may be regarded, in particular, as a hint that the DM
lifetime decreases with increasing the shift between
eigenwaves at their crossing the defect layer and that
the DM does not exist at all at some value of the shift.

With the partial conversion of the circular non-
diffracting incident polarization into the diffracting one
taken into account, the picture of transmission spectra
does not change radically. In Fig. 8, the transmission
spectra for the total light intensity crossing the DMS
(for the sum of intensities for both circular polariza-
tions) calculated using Eqs. (18) and (19) show a gen-
eral decrease in transmission at the DM frequency wp
as Ay increases, but it is much more slow than for the
diffracting polarization and only at Ag close to /2

10 ZKDBT®, seim. 5

does the transmission practically vanish (which demon-
strates the conversion of polarizations at the birefrin-
gent layer).

It is well known [9] that the position of the edge
mode frequency in the stop-band is determined by
the frequency of the transmission (reflection) coeffi-
cient maximum (minimum), and therefore the per-
formed calculation of the transmission spectra (Figs. 7
and 8) determine the real component of the DM fre-
quency. But because the DM is a quasistationary
mode, the imaginary component of the DM frequency
is not zero [12,13]. A direct way to find the imaginary
component of the DM frequency is to solve the disper-
sion equation. The dispersion equation in the case of a
birefringent defect layer can be found similarly to the
case of an isotropic defect layer [12,13] and if multi-
ple scattering of light of nondiffracting polarization is
neglected, it can be represented as

M2(k, d, An) sin® (g L) — SPETE) {Tq

5 ) cos(qL) +

+i ((i)2 + (%)2 - 1) sin(qL)] gy (20)

In the general case, the solution of Eq. (20) has to
be found numerically, and a detailed discussion of this
in the case of an isotropic defect layer can be found
in [12,13]. Some simplification of (20) occurs in the
case of low birefringence, when the phase factor in (20)
is given by (15).

3.2. Amplifying and absorbing CLC layers

As the experiment [3] and the theory [12, 13] show,
unusual optical properties of the DMS at the DM fre-
quency wp (abnormally strong absorption for an ab-
sorbing CLC and abnormally strong amplification for
an amplifying CLC [12,13,25,30]) can be effectively
used for enhancing DFB lasing. It is quite natural to
study how the birefringent defect layer influences the
abnormally strong amplification and abnormally strong
absorption effects. For studying this, we assume, as was
done in [12,13], that the average dielectric constant of
the CLC has an imaginary addition, i.e., ¢ = go(14i7),
where positive v corresponds to absorbing and negative
v to amplifying media. (We note that in real situa-
tions, |y| < 1.) As was mentioned above, the value
of v can be found from solution of dispersion equation
(20). Another option (see [12,13]) is to study reflec-
tion and transmission coefficients (9), (10), (16), (17)
as functions of v close to R(d,L) and T'(d,L) at the
DM frequency.
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Fig. 7. The calculated diffracting polarization intensity transmission coefficient |T'(d, L)|? for a low-birefringent defect layer

versus the frequency for a diffracting incident polarization at the birefringent phase shift at the defect layer thickness

Ap = /20 (a), /16 (b), 7/12 (c), 7/8 (d), 7/6 (e), «/4 (f), ©/2 (g), and Ay = 0 (h) (Fig. 7h corresponds to the
isotropic defect layer) for a nonabsorbing CLC at d/p = 0.25

For an amplifying CLC, the value of 4 correspond-
ing to a divergence of the DMS reflection and transmis-
sion coefficients just determines the solution of disper-
sion equation (20) and also determines the threshold
DFB lasing gain in the DMS (see [12,13]). Therefore
the threshold value of v can be found by calculating the
DMS reflection and transmission coefficients at various

914

~ and finding its value at the points where the DMS
reflection and transmission coefficients diverge.

This procedure, performed here for a birefringent
defect layer at various values of the birefringent phase
factor Ay related to the light single propagation in a
birefringent defect layer, allows tracing the threshold
lasing gain () dependence on the birefringent phase
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Fig.8. The calculated total intensity transmission co-
efficient for a low-birefringent defect layer versus the
frequency for diffracting incident polarization at the
birefringent phase shift at the defect layer thickness
Ap = /20 (a), w/16 (b), ©/12 (¢), ©/8 (d), /6
(e), /4 (f). and /2 (g), for a nonabsorbing CLC at

d/p =025

factor Ap. Figure 9, presenting the values of the DMS
transmission coefficient close to their divergence points,
demonstrates increase in the threshold DFB lasing gain
(|v]) with an increase in the birefringent phase factor
Ay and even the disappearance of the divergence at the
DM frequency at Ap = 7/2. This is in good agreement
with the transmission spectra calculated in Figs. 7 and
8. In particular, at Ap = 7/2, there are no traces of
the typical DM peculiarities in transmission spectra.

For absorbing CLC layers in the DMS, the abnor-
mally strong absorption effect reveals itself at the value
of 4 ensuring a maximum of the total absorption in the
DMS (see [12,13]). For a finite thickness L of CLC lay-
ers, the DM frequency wp is a complex quantity, which
can be found by a numerical solution of Eq. (20). As
in the case of absorbing and amplifying defect layers,
the positions of dips in reflection and spikes in trans-
mission inside the stop-band just correspond to Rewp,
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Fig.9. The calculated intensity transmission coefficients of a low-birefringent defect layer for an amplifying CLC layers

versus the frequency close to their divergence points as a function of + for diffracting incident polarization at the bire-

fringent phase shift at the defect layer thickness Ay = 7/20 (a), /16 (b), ©/12 (c), ©/8 (d), 7/6 (e), ©/4 (f), and

/2 (g); ¥ = —0.00075 (a), —0.00085 (b), —0.00100 (c), —0.00150 (d), —0.002355 (), —0.003555 (), —0.004500 (g),
and Ay =0, v = —0.000675 (h) corresponding to an isotropic defect layer; d/p = 2.25

and this observation turns out to be useful for numeri-
cally solving the dispersion equation for a birefringent,
defect layer and absorbing CLC layers.

We note that the results obtained here for the DMS
with a birefringent defect layer open up new options
for varying the DM characteristics. An important re-

916

sult related to DFB lasing at the DMS with a bire-
fringent, defect layer can be formulated as follows. The
lasing threshold gain increases with an increase in the
optical path difference of two eigenwaves at the defect
layer thickness. A similar result relates to the effect
of anomalously strong absorption, where the value of
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maximal absorption is dependent on the optical path
difference at the defect layer thickness.

4. DEFECT STRUCTURE WITH A DIELECRIC
JUMP

An isotropic defect layer with the dielectric constant
differing from the average dielectric constant ¢ of CLC
layers can also be effectively related to the case of an
active defect layer. The reason for this is the polar-
ization conversion at the defect layer surfaces, which
makes this case similar to the case of a birefringent
defect layer. If the dielectric constant of the medium
external to the DMS is different from the average di-
electric constant ¢y of CLC layers, polarization conver-
sion also occurs at the external DMS surfaces, but, as
we see below, the polarization conversion at the exter-
nal DMS surfaces does not affect the DM properties so
strong as the polarization conversion at the defect layer
surfaces does. There are no principal difficulties in ob-
taining the DM dispersion equation from the boundary
conditions in the general case of dielectric jumps at all
interfaces of the DMS. But the DM dispersion equation
is rather complicated in the general case (a system of
12 linear equations). Therefore, we first demonstrate
the role of dielectric jumps for a localized mode in the
simplest case of an edge mode (EM), which is related
to a CLC layer with dielectric jumps at its surfaces.

4.1. Dielectric jumps at a single CLC layer

In accordance with the foregoing, we study the
transmission and reflection of light by a CLC layer
surrounded by a medium with the dielectric constant
differing from the average CLC dielectric constant &g
for light propagation along the helical axis (see the
schematic of the boundary value problem in Fig. 10).
Following the approach in [25,26, 31], from the bound-
ary conditions, we obtain the system of equations for

Ee
_—
3
€1 E" Et €2
_ —_—
E

Fig.10. Schematic of the CLC edge mode structure
with dielectric jumps at the interfaces

the amplitudes Ef of eigenwaves in the layer excited
by an external wave incident at the layer:

4 4
K

Z<1+ ! )Ejzwj,
KRe,1

j=1

4 -+

K’
Zexp(inL) 1-—L ) Ef =0,
j=1 Re,2
(21)

4 Ar—
g1+ | Ef =2E],
= Re,1 J

4 e
p— N +
ij exp(iK; L) (1 - > Ef =0,

j=1 e,2

where the incident, reflected, and transmitted waves
and the wave inside the CLC are written as follows:

E° = exp[i(ke,1z —wt)] (Efny + ETn_),
E" = exp [—i(ke, 1z — wt)] (Efn_ + E ny),
E' = exp[i(kepz —wt)] (Efny + E;n_),

E = exp(—iwt) x
4
X ZE;_ (exp(iK’;‘z)nJr +& eXp(iIX’j_Z)n,) ,
j=1

with ni being the left and right circular polarization
vectors (see Eq. (11)); we here use the labeling of CLC
eigenwaves proposed in [25,26, 31] (the subscripts “1”
and “4” correspond to nondiffracting eigenwaves prop-
agating in the opposite directions and the subscripts
“2” and “3” correspond to diffracting eigenwaves).

The wave vectors inside the CLC layer are

Kf=7/2+q, Kf=1/2—q,

g+ = Fu{l + (7-/2&)2 + [(T/E)g +52]1/2}1/27

K;'zT/2—|—q, IX';=7/2—q,

and ¢ is determined by Eq. (4),

1/2
NG We
K;:K;‘—T, Ke,l = ! , k= —9
c c
Wy/E2 )
Re2 = ——, gz - o 5 .
c (K [k —7/K)* =1

The amplitudes of reflected and transmitted waves are
expressed in terms of E;C
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1 K
+ — . _ 7 +
Bl =534 (1 Kel)Ej,
j=1 ’

K=
X (1 + —]> E].
Re,2

It is convenient to introduce the parameters r; =
= 5(1)/2 6}/2 = k/key and ry = 6(1)/2 séﬂ = k/kes,
reducing the ratios Kf/km in Egs. (21) and (22) to
the ril(f /k. For the sake of generality, the case of
different dielectric constants of the media surrounding
the CLC layer is shown in Fig. 10 and, accordingly,
Eqs. (21) and (22) relate to the case of different media
at the sides of the CLC layer.

Examples of calculations performed with (21) and
(22), which demonstrate the influence of dielectric
jumps at the layer surfaces on the transmission and
reflection coefficients, are presented in [32]. Here, we
do not discuss the transmission and reflection of light
by a layer but concentrate on the influence of dielec-
tric jumps at the layer surfaces on the EM properties.
The EMs are determined by the homogeneous system
corresponding to system (21) and the EM dispersion
equation for the EM frequency follows from the solv-
ability condition for this homogeneous system [33]. It
is known [33] that the real part of the EM frequency
approximately coincides with the frequency positions
of reflection coefficient minima, and hence the solution
of the homogeneous system at the frequency of the re-
flection coefficient minimum gives the amplitudes of all
four eigenwaves in the layer composing the EM in the
case where the dielectric constants of the media sur-
rounding the CLC layer are different from £9. We recall
that the EM in the absence of dielectric constant jumps
at the interfaces is composed only from two diffracting
eigenwaves [33]. Because of a sufficiently cumbersome
form of the homogeneous system solution, we first use
the consecutive approximation approach in solving the
system. If the layer thickness is sufficiently large, the
known solution [33] in the absence of dielectric constant
jumps can be used as the zeroth approximation. In this

approximation, the homogeneous system under consid-
eration reduces to a system of two equations for the am-
plitudes of two nondiffracting eigenwaves F;” and E; .
The solution of the homogeneous system thus found
at the EM frequency shows that the amplitude of two
nondiffracting eigenwaves in the solution for the EM
decrease inversely proportionally to the layer thickness
L. This result shows that if the CLC layer thickness
is large enough, the influence of the dielectric constant
jumps at the layer surfaces is small and in the limit
of an infinitely thick CLC layer, the EM properties
are the same as in the absence of dielectric constant
jumps. In Fig. 11a, the calculated variations of the
EM lifetime versus the layer thickness L are presented
in the case where dielectric jumps are absent and for
two values of the dielectric jump (in Fig. 115, a small
part of the curve in Fig. 11a is presented in an enlarged
scale). The calculations of the EM lifetime versus the
layer thickness L presented in Fig. 11 confirm the above
statement showing that as L increases, the EM lifetime
(Imw), with decaying oscillations, approaches the value
corresponding to the absence of dielectric jumps.

4.2. Dielectric jumps at the defect layer

We return to the case of a DMS with an isotropic
defect layer and with the dielectric constant differing
from the average dielectric constant ¢ of CLC layers.
In the general case of dielectric jumps at all interfaces
in the DMS (see Fig. 1), we have to determine 12 am-
plitudes of eigenwaves propagating in the DMS (four
amplitudes in each CLC layer and four amplitudes for
waves propagating in the isotropic defect layer in both
directions for the opposite circular polarizations). To
simplify the problem, we assume that there are no di-
electric jumps at the external DMS surfaces. As we
have seen, the dielectric jumps at external DMS sur-
faces for thick CLC layers do not significantly affect
the polarization conversion. We therefore take the di-
electric jumps into account only at the interfaces with
defect layer. Taking the form of the DM solution in
the absence of dielectric jumps into account [12,13],
we have to determine only eight amplitudes of eigen-
waves propagating in the DMS (two amplitudes in each
CLC layer and four amplitudes for waves propagating
in the isotropic defect layer).

If we accept the labeling of eigenwaves in the CLC
proposed in [25,26,31] and specify them by super-
scripts “u” and “d” for the upper and bottom CLC lay-
ers in Fig. 1, then the corresponding system includes
EY, EY, E¢, and E¢, the amplitudes of eigenwaves in
the CLC, and C’;% and C’Li, the amplitudes of right (left)
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Fig.11. a) The calculated EM lifetime versus the CLC

layer thickness normalized by the CLC layer flight time

83/2L/C for several values of the dielectric jump at the
CLC layer surface, b) magnified part of Fig. 11a

polarized waves in the defect layer with two (%) possi-
ble propagation directions. We assume for definiteness
that the diffracting circular polarization is the right-
hand one. If we accept the following ordering E3, E},
Ck, Cp, Cf, Cp, E{, E¢ of the amplitudes in the
equations obtained from the boundary conditions, then
the elements of the matrix a; of the corresponding sys-
tem of equations are as follows:

a;p =0 for 1=5,6,7,8 and k=1,2;

ai, =0 for i=1,2,3,4 and k=T7,8;
ayy = exp(iKS L) —exp(iKi L),
a2 = exp(iK; L),

k= 4,5;

arz = exp(ikqgL ),

aip, =0 for ayg = exp(—ikqL_);
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as = Gexp(iKy L_) — (gexp(iky L_),

azy = Crexp(—iK; L_), as, =0 for k=3,6;

asy = exp(—ikqL_), as5 = exp(ikqL_);
az1 = —Kexp(iKFL_) — Ki exp(iKy L_),

azs = — K exp(iK;L_),

k=4,5;

a1 = K5 Gexp(iKy L_) — (3K exp(iK5 L_),

ass = —kqgexp(ikqL_),
azr =0 for ass = kqexp(—ikqsL_);
agy = —Cu Ky exp(—iK, L_),

as, =0 for k= 3,6;
Aqq4 = —k‘d exp(—ide,), 45 = kd exp(ide,);

ass = exp(ikqLy), as, =0 for k=45

ase = exp(—ikqLy), asr=exp(iK;"L),

asg = exp(iKLy) —rzsexp(iKi Ly);
agr =0 for k =3,6;

agy = exp(—ikqLy), agr = Crexp(ikqLy),

ags = Coexp(iKy Ly) — raaCsexp(iKy Ly),

ary = —kqexp(ikqLy), a7y =0 for k=45
ary = KFexp(iK{ Ly),
s = — I3 exp(iK L) + raad explify Lo

agr =0 for k=3,6; asy = —kqexp(—ikqsLy),

ags = kgexp(ikqLy), asr = (K| exp(—iK| L),

agg = I(;Cz exp(iK;L+) — 7‘32(31(; exp(iK;L+),

where 135 = ((2/(3) exp(4igL).

The dispersion equation for the DM frequency wp
and, in particular, the DM lifetime (Imwp) for a DMS
with dielectric jumps only at the interfaces with the
defect layer is determined by the equation following
from the zero value condition for the determinant of the
above matrix. The corresponding equation requires a
numerical approach for its solution. However, a simple
estimate of the DM lifetime can be obtained.

As is known, the DM lifetime for a DMS with
no dielectric jumps at the interfaces is determined by
the leakage of energy through the external DMS sur-
faces [13] and the lifetime increases with the CLC layer
thickness increase, being infinite for an infinite CLC
layer thickness. The changes in the DM lifetime for a
DMS with dielectric jumps at the interfaces compared
to the case without jumps are mainly connected with
the conversion of the diffracting polarization into the
nondiffracting one and free escaping of light with non-
diffracting polarization from the DMS. If the CLC layer
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thickness is large enough, this mechanism is prevailing
over the leakage of light with the diffracting polariza-
tion through the external DMS surfaces. This is why
if the CLC layer thickness in the DMS is sufficiently
large, the DM lifetime is mainly determined by the
polarization conversion at the interfaces with the de-
fect layer. Hence, for estimating the DM lifetime for
a DMS with dielectric jumps at the interfaces, we can
use the formula for the DM lifetime due to the leak-
age of energy through the external DMS surfaces in
the case of no dielectric jumps at the interfaces (for-
mula (22) in [13]), with the amplitude of the wave with
converted polarization at the defect layer surface in-
serted into it instead of the diffracting wave amplitude
leaking through the DMS external surface. The ampli-
tude of the wave with the converted polarization can
be approximately found if, in the solving the homo-
geneous system, we assume that the field in the CLC
layers is the same as for the DMS without dielectric
jumps. This means that the amplitudes EJ, C;, Cgr,
and Eg are the same as for the EM in a DMS without
dielectric jumps and E{ = E} = 0; however, O} and
C; have to be found. We easily find the values of C}-
and C] using expressions for the EM field from [13].
The next step is to express the nonzero E{ and EY,
which determine the field of nondiffracting circular po-
larization escaping from the DMS through the external
surfaces, in terms of the known EY, C%, Cr, EY and
the found C] and C; . A rather crude estimate can
be obtained without finding E{ and E}, by calculat-
ing the direct polarization conversion at the interface
with the defect layer for light of diffracting polariza-
tion (for the DM field at the DMS without dielectric
jumps). For such an estimate of polarization conver-
sion, we can apply the formulas for polarization con-
version at the interface of the CLC and an isotropic
medium presented in [25,26,31]. The reflection coef-
ficient of light of diffracting circular polarization into
light of nondiffracting circular polarization at a semi-
infinite CLC layer R™~ and the transmission coefficient
of light of nondiffracting circular polarization for an in-
cident light of diffracting circular polarization 77~ in
the zeroth order in 4 are given by

(1—r)2 o _ (- r)?

+— _
i (142 (14+r)t "’

(23)

/2 and eq4 is the defect layer dielec-

where r = (g4/¢0)
tric constant.
Because circular polarization conversion at the in-
terface of CLC and the isotropic medium is propor-
tional to the square of the small parameter § even

in the absence of dielectric jumps [25,26,31], polar-

920

ization conversion at the interfaces should be taken
into account if the dielectric jump is sufficiently large
(|r = 1| > 6). Therefore, the accuracy of expressions
(23) under these conditions is sufficient for estimating
the influence of dielectric jumps on the DM lifetime in
this case. The results of the corresponding analysis are
as follows. The DM lifetime for a DMS with dielec-
tric jumps at the interfaces increases with an increase
in the CLC layer thickness to the value for which the
leakage of energy through the external surfaces and the
leakage due to the conversion of diffracting polarization
light into light of nondiffracting polarization become
approximately equal. At a further increase in the CLC
layer thickness, the DM lifetime is determined almost
exclusively by the polarization conversion at the defect
layer surfaces and becomes practically independent of
the CLC layer thickness L or, more correctly, becomes a
very slowly increasing function of L. If, following [13],
we represent the DM lifetime for the DMS with di-
electric jumps at the interfaces 74, as the ratio of the
optical field energy in the DMS to the energy flow of
light of converted polarization through the defect layer
surfaces, then the relation of 74, to the DM lifetime 74
for a DMS without dielectric jumps at the interfaces
can be estimated as

- _ﬁ |E(wp, 2, t)|?dz _
T ) 2w =2 En 2/ + )t

7.d|E'out|2
2r(1—r)?|EY.12/(1+ 1)t

(24)

where 7 is defined in (23) and all other quantities in
(24) are related to the DM at the DMS without di-
electric jumps: E(wp, z,t) is the EM field in the CLC
layer, Eg,. is the DM field at the defect layer surface
of light propagating toward the CLC layer as a func-
tion of the coordinate z along the layer normal and the
time ¢, E°% is the EM field of light propagating out-
ward the CLC layer at the external CLC layer surface,
wp is the DM frequency, and the integration over z is
carried out over the thickness L of CLC layer. Equa-
tion (24) shows that the DM lifetime for a DMS with
thick CLC layers and dielectric jumps at the interfaces
T4r, in contrast to the lifetime 74 of a DM in the DMS
without dielectric jumps at the interfaces, does not in-
crease exponentially with L. The exponential increase
of 74 is compensated in Eq. (24) by the exponential
increase of |EY |? (see [13]). For the restoration of the
T4 €xponential increase with L, the sharp jumps of the
dielectric constant should be substituted by a smooth
variation of the dielectric constant at defect layer sur-
faces. We note that sharp jumps at the interfaces have
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a negative effect on the possibility of lowering the las-
ing threshold, and therefore smoothing the dielectric
jumps opens up options for lowering the lasing thresh-
old compared with the case of the DMS with jump-like
variations of the dielectric parameters.

In general, the localized optical modes in chiral lig-
uid crystals theoretically studied in this section for a
structure with jumps of the dielectric properties at their
interfaces reveal a significant influence of the dielectric
jumps on the EM and especially DM properties, in par-
ticular, its lifetime. The studied effects pave the way
to optimizing the DM parameters by means of a proper
choice of the defect layer dielectric properties.

5. CONCLUSION

As we have seen, isotropic defect layers with dielec-
tric properties differing from those of the CLC layers
in the DMS can be effectively regarded as active defect
layers. Our analytic description of the defect modes at
active defect layers (amplifying (absorbing), birefrin-
gent, and with dielectric jumps) allows revealing a clear
physical picture of these modes, which is applicable to
the defect modes in general (see [34]). For example,
a lower lasing threshold and stronger absorption (un-
der the conditions of the anomalously strong absorp-
tion effect) at the defect mode frequency at the middle
of stop-band, compared to the defect mode frequency
close to the stop-band edge, are the features of any
periodic media. The obtained results demonstrate nu-
merous possibilities to influence the DM properties by
varying the defect layer dielectric characteristics. For
a special choice of the parameters in the experiment,
the obtained formulas can be directly applied to the
experiment. Some results allow obtaining a qualita-
tive explanation of the observed effects. This relates,
for example, to the experimentally observed [3] circular
polarization sense of the wave emitted from the defect
structure above the lasing threshold, which is oppo-
site to the polarization sense responsible for the defect
mode existence. An obvious explanation of the “las-
ing” at the opposite (nondiffracting) circular polariza-
tion is as follows. Due to the polarization conversion
of the generated wave into a wave of the opposite cir-
cular polarization, the converted wave of a nondiffract-
ing polarization freely escapes from the structure. As
was mentioned above, this polarization conversion phe-
nomenon due to both birefringence and dielectric jumps
also makes a contribution to the frequency width of the
defect mode. However, in the general case, a quanti-
tative description of the measurements reqiures taking
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all possible “active properties” of the defect layer into
account using the above formulas.

We note that the obtained results for the DM at
the DMS consisting of CLC layers are qualitatively ap-
plicable to the corresponding localized electromagnetic
modes in any periodic media and can be regarded as a
useful guide in the studies of localized modes with an
active defect layer in general.
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