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Highly anisotropic “nematically ordered” aerogel induces global uniaxial anisotropy in superfluid *He. The
anisotropy lowers symmetry of *He in the aerogel from spherical to axial. As a result, instead of one transition
temperature in a state with an orbital moment [ = 1 there are two, corresponding to projections /. = 0 and
. = +1. This splitting has a pronounced effect on the phase diagram of superfluid *He and on the structures of
the appearing phases. Possible phase diagrams, obtained phenomenologically on the basis of Landau expansion
of the thermodynamic potential in the vicinity of the transition temperature are presented here. The order
parameters corresponding to each phase and their temperature dependences are found.
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1. INTRODUCTION

At a triplet Cooper pairing, the transition temper-
ature T, is degenerate with respect to three projec-
tions of spin. In superfluid 3He, where Cooper pairs
are formed in a state with the orbital angular momen-
tum [ = 1, there is additional degeneracy with re-
spect to three projections of the orbital angular mo-
mentum. A proper superposition of all components is
represented by an order parameter, which is a 3 x 3
matrix of complex amplitudes A,;. The spin projec-
tions are labeled here by the index p and the orbital
ones, by j. The concrete form of the order param-
eter is determined by minimizing the corresponding
thermodynamic potential with respect to A,;. In the
case of superfluid *He, depending on pressure, the sta-
ble minima correspond to order parameters describ-
ing the Anderson—Brinkman—Morel (ABM) or Ballian—
Werthammer (BW) phases [1]. In both cases, the form
of the order parameter does not change with tempera-
ture, and only the overall amplitude A increases upon
cooling. This is eventually a manifestation of the men-
tioned degeneracy.

Lowering the spherical symmetry of liquid *He by
external fields or oriented impurities can split the tran-
sition to the superfluid state and partly separate ele-
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ments that under cooling evolve together into the cor-
responding order parameter. For example, the degen-
eracy of T, over spin projections is lifted by a magnetic
field H,. Its principal effect is described by the Zeeman
term in the free energy

oy ~ H,H,Auj

vjs
which has to be added to the expansion of the free en-
ergy in powers of A,;. As a result, the transition tem-
perature T, is split into two, such that the transition
temperature for s, = £1 is higher than that for s, = 0,
and in the magnetic field, the ABM phase, which does
not include the s, = 0 component, is formed first.
Similarly, the degeneracy of T, with respect to the
orbital projections is lifted by global orbital anisotropy.
Such anisotropy can be induced by a deformed aero-
gel immersed in superfluid 3He [2]. Aoyama and
Tkeda [3] theoretically studied the effect of uniaxial
global anisotropy on the phase diagram of superfluid
3He. Their argument was based on a model in which
global anisotropy is induced by the averaged effect of
anisotropic scattering of quasiparticles by oriented im-
purities. They predicted, in particular, that a uniaxial
stretch of aerogel just below the transition tempera-
ture would stabilize the polar phase, which on cooling
to lower temperatures undergoes a continuous transi-
tion to the distorted ABM phase and eventually the
BW phase is formed via a first-order transition. These
predictions were tested in experiments with the “ne-
matically ordered” aerogel [4], which can be regarded
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as being infinitely stretched. The phase diagram found
experimentally confirms the predicted sequence of the
phase transitions, but other, even qualitative features
of the two phase diagrams are different.

In this paper, possible phase diagrams of superfluid
3He in a stretched aerogel are considered phenomeno-
logically. It is shown that depending on the values of
phenomenological parameters characterizing this sys-
tem, different routes of development of the order pa-
rameter upon cooling from the transition temperature
are possible. The orbital anisotropy is formally de-
scribed by an additional term in the thermodynamic

potential
ul>

(bn ~ Kj[AujA
where xj; is areal symmetric tensor, which can be taken
traceless. It is assumed to be uniform (i.e., indepen-
dent of the coordinate). Random local anisotropy is
neglected. This approximation is well justified in the
present context, when only structures of order param-
eters of possible phases are considered. On the other
hand, random anisotropy can strongly affect the orien-
tation of order parameters of the distorted ABM and of
the axi-planar phases, giving rise to a randomly nonuni-
form Larkin-Imry-Ma (LIM) state. In the case of a
stretched aerogel, it is a two-dimensional LIM state,
as discussed in Refs. [5, 6]. In comparing with exper-
iment, in particular, with NMR data, a corresponding
averaging over orientations of the order parameter has
to be made.

With the global anisotropy taken into account, the
standard expansion of the thermodynamic potential in
powers of A,; is

Oy = Oy + Negr[(7050 + kj1) Apj Ay +
5B A A AL AT, + B A A ATy
+ BaAuj Avj Ay Ay + BaAuj Ay A Ay +
+ Bs A A Au ALl (1)

Here,

is the dimensionless temperature, 7, is the transition
temperature, defined such that it includes all global
isotropic shifts from the corresponding temperature of
bulk *He. The overall coefficient N, ¢ has the dimen-
sion of density of states. Phenomenological coefficients
B1,...,05 depend on the pressure and the properties
of the aerogel. When anisotropy is uniaxial, in proper
axes

2K.

Rz = Kyy = —K, Kzz =

872

In contrast to a magnetic field, which always favors
Sy +1 projections, a uniaxial deformation of the
aerogel, depending on the sign of k, favors either the
l, = %1 orl, =0 projection. For a compressed aero-
gel, k > 0 and the states with [, = +1 have a higher
transition temperature, while for a stretched aerogel,
k < 0, a state with [, = 0 is favored.

Stabilization of the polar phase by a stretched aero-
gel within this approach follows immediately from the
explicit form of the second-order terms in the expres-
sion for thermodynamic potential (1):

(T +2r)Ap Ay, + (7 — K)(Apa ALy + Apy AL

For negative k, the highest transition temperature is
7 = —2k. For realistic values of the coefficients /3, in
particular, if 515 < 0 (here and in what follows, conven-
tional shorthand notation for sums of 5 coefficients is
used, e.g., 51 + 85 = P15, etc.) below 7 = —2k the su-
perfluid polar phase is favored [7]. Its order parameter
can be written as

A‘,),j = Ag exp(ip) dumy,

where d,, is a real spin vector and m; is a unit vector
in z-direction.

The polar phase is stable within the interval of tem-
peratures 7 ~ k. On further cooling, the suppressed
angular momentum projections [, = £1 come into ef-
fect; they change the order parameter symmetry and
further phase transitions can occur. While stabiliza-
tion of the polar phase practically depends only on the
sign of &, its stability interval and the sequence of fur-
ther transitions also depend on the values of the coeffi-
cients 1, ..., 5. To avoid the discussion of nonrealis-
tic situations, we have to restrict the region of admit-
ted values of $s. Within the BCS theory, their values
are proportional to one combination of the parameters,
Bo = 7¢(3)/872T2:

617 ce 7B5 = BO(_1/27 17 17 17 _1)

This set of values of the s is referred to as the weak
coupling limit [1]. In the definition of By ((3) is the
Riemann zeta function. The observed thermodynamic
properties of bulk superfluid >He in the vicinity of T,
can be fitted by the S1,..., 35 that deviate from their
weak coupling values by 10-20 % [8]. The deviations
are smaller at low pressures. For >He in an aerogel, the
situation is less certain. Impurities give rise to correc-
tions to the f coefficients of the order of &/, where
& is the correlation length of superfluid *He and \ is
the mean free path. This ratio is of the order of 1/10.
In what follows, we assume that deviations of the s
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for superfluid *He in a nematically ordered aerogel from
their-weak coupling values are also of the order of 1/10,
at least at low pressures.

There is another reason for restricting the present
discussion to a region of low pressures (for example,
below 10 bar). The diameters of strands in a nemati-
cally ordered aerogel, estimated as d ~ 10 nm [4], are
bigger than in silica aerogels and can be comparable
with the correlation length of superfluid *He, which at
pressures above 20 bar is about 20 nm. When d ~ &,
perturbation of the order parameter in a vicinity of a
strand is of the order of unity. Well below T, the con-
densate varies over a distance ~ &y, which is smaller
than the average distance £, ~ 200 nm. In this situa-
tion, the condensate is essentially nonuniform and the
average order parameter does not properly character-
ize the state of ®He. The uniform approximation works
better at low pressures and in the vicinity of T, in the
region where the Ginzburg and Landau (GL) coherence
length £(T') exceeds not only the diameter of a strand
but also &,. In this GL region d < &, < £(T'), the av-
erage order parameter A,; is a suitable characteristic
of the state of superfluid He.

Preliminary results of phenomenological analysis of
the phase diagram of superfluid >He in a nematically
ordered aerogel were published before [7]. A principal
suggestion in that paper was to regard the extra line
(ESP2) in the experimentally found phase diagram as
evidence of the possible stability (or meta-stability) of
the axi-planar phase. Further experiments and their
analysis [9] have shown that this suggestion is not cor-
rect. Nevertheless, there remains the question of pos-
sible stability of the axi-planar phase in an anisotropic
environment. It was shown in [7] that the axi-planar
phase is a possible minimum of the thermodynamic po-
tential at weak-coupling values of the phenomenological
coefficients 3. The weak-coupling limit corresponds to
a singular point in the space of parameters § and the
solution presented in Ref. [7] is only one of many possi-
bilities. In what follows, the question of stability of the
axi-planar phase is discussed with the account of the
mentioned singularity, and the conditions determining
the possibility of its existence are found.

2. FURTHER PHASES

To find further possible phase transitions, we rep-
resent the order parameter as

_ 40 _
Apj = Ayj + g,
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where
AD = Agexp(ip) d,m;
is the order parameter of the polar phase and a,; is a

small increment, and expand the change of the thermo-
dynamic potential

o, — 9,

)
Negr

in powers of a,;, separating terms of different orders:
® =0y + Dy + Py. (2)

The zeroth-order term in a,;,

- 1
By = AL(T + 2k) + 5512345A§7 (3)

represents the energy gain of the polar phase with re-
spect to the normal phase and determines the temper-
ature dependence of the amplitude Ag:

T+ 2K

/612345 )

2
0

A

The explicit form of the second-order term depends on
the choice of gauge for Azj. It is convenient to take
@ = 0, such that Agj is a real matrix. The expected
transition is due to the occurrence of two of angular mo-
mentum projections [, = +1 previously suppressed by
the anisotropy. This means that only the components
of a,; transverse to m; are essential, and the condition
au;m; = 0 has to be imposed. With this simplification,
we have

&y = (7 — K)ayjal; +

*

- wj
* *

+ Ay Qg

) + 2645dﬂd,,auja,’jj}.

1
+ S OB (050

* *
i vj

)+ 2ﬂ2auja‘*ﬂ +

+ Bad,d, (ayja,; + a

(4)

All experimentally observed transitions occurs at || ~
~ 0.1, where Eq. (1) is still a good approximation for
®. For this reason, corrections of the order of 7, origi-
nating from the higher-order terms in the expansion of
® over A,,;, are neglected and terms of the fourth order
in a,; have the same form as the analogous terms in
Eq. (1) with the substitution of a,; instead of A,;:

- 1
by = 525518(auj7a;l)~ (5)

The polar phase preserves its stability (or meta-
stability) until ®» is positive definite with respect to
a,j. The coefficients in ®, are determined by the more
symmetric (polar) phase. In particular, d, and m;
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are the respective symmetry axes in spin and orbital
spaces, and therefore the components of a,; parallel
and perpendicular to d, are essentially different. Of
possible orientations in the orbital space only the com-
ponents perpendicular to m; are essential, as was ex-
plained above. Because of the fixed gauge of the polar
phase, ®, is not gauge invariant with respect to Ay
On the other hand ®, is T-invariant and the transition
to T-even,

2buj = apj + ag;,
and T-odd,

o
2icy; = apj — ay;,

combinations of a,; diagonalizes ®5:

Dy = Ay (1, 8) (8 — dpdy)byjby; + [A1 (1, K) +
+ (545 - 261 - BS)A(Z)]duduCujcuj + A2(Ta K’) X
X dydybyjbyj + [A2(7,8) = (Bas + 261 + B3)Aj] x

X (Opr — dpdy)epjevj.  (6)
Here,
Ay =T—I<.:+,812Ag

and
Ao=7—-K+ 612345A3.

Hence, for each j, there are four different variables: real
and imaginary parts of the components of a,; parallel
and orthogonal to d,. In principle, there may be four
different continuous transitions from the polar phase
into a less symmetric phase. Each of the transitions oc-
curs when the coefficient in front of the corresponding
second-order term changes sign, e.g., the component
of the real part of a,; that is perpendicular to d, can
occur at 7 determined by the condition

Ay (7,k) =0.

Most important is the transition with the highest of the
four values of 7.

When the coefficients §; have their weak-coupling
values, the combinations

Bas=e=0
and
Qﬂl-l-ﬂgEl/:O.

Instead of four different transition temperatures, there
are two in this limit, and they are determined by the
conditions

A1 (Tl, K}) =0

and
A2(T2, h}) = 0,
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both being doubly degenerate. The degeneracy is a
manifestation of the “hidden symmetry”, which exists
in the weak-coupling limit for the equal spin pairing
(ESP) states. For such states, the quantization axis of
spin can be chosen such that the condensate of Cooper
pairs contains only pairs with spin projections £1. The
BCS Hamiltonian in that case does not couple conden-
sates with different spin projections and these two con-
densates can be treated as independent. In particular,
they can have different orientations of the orbital parts
of the order parameter and different complex phases.
Strong-coupling corrections give rise to a coupling be-
tween the two condensates and lift the corresponding
degeneracy. The “hidden symmetry” was previously
discussed in the context of classifying collective modes
in the ABM phase [1,10].

The condition Ax(7,k) = 0 leads to k = 0. At a
finite &, there is no transition, resulting in occurrence
of b,; parallel to d,; and ¢, perpendicular to d,;. An-
other condition A; (7, x) = 0 has the solution

=78 = k(14 3612/B34s)-

T

In the weak-coupling limit below this 7, the incremen-
tal order parameter is a linear combination of b,; per-
pendicular to d,; and c,; parallel to d,;. When the
strong-coupling corrections are restored, they lift this
degeneracy such that 7 relates only to the perpendic-
ular b,;, while the parallel components ¢,; can occur

below
_ K(3Paas — Pi3)
Tp= —————~.
2013
The difference between the two transition temperatures
can be expressed in terms of the parameters ¢ and v
introduced above:

_ 3kP12345
26136345

Depending on the sign of the difference ¢ — v, one
or another type of the order parameter is favored.
The strong-coupling corrections “transfer” the orbital
anisotropy in the spin space. If d,, is taken as a quanti-
zation axis, the components parallel to d, correspond
to s, = 0 and the perpendicular ones, to s, = £1. At
¢ > v, the favored incremental order parameter is a
combination of projections s, = +1, and hence the full
order parameter is

TA —TB (e —v).

Afj = Aodymj + Aseyli + Az funj, (7)

where n; and [; are two mutually orthogonal vectors
that together with m; form a basis in the orbital space,
and A, and Aj are real amplitudes. Minimizing ® with
respect to the amplitudes Ag, Ao, and Az yields
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T—TB

A2=A2=—77 2: ——|—A2
? s 3B12 + Baas 0 345 >
with the energy gain
g — @, = Psas (r—18)%

" Br2345(3B1z + Baus)

This is the order parameter of the distorted BW phase;
it is specified by two amplitudes Ag and A, with dif-
ferent temperature dependences [3, 7].

For conditions of the experiments in [4] on cooling
from the polar phase, the distorted ABM phase occurs
first. This means that the opposite inequality ¢ < v is
satisfied. In this case, the increment c,; is parallel to
d,; it corresponds to s, = 0, and the resulting order
parameter is

A = Nodymy +iAid,n;. (8)
Here, A is a real amplitude. The temperature depen-
dences of Ag and A; are found by minimizing ®:

3K

T —TA T —TA

2045 2813 2Bous

In comparison with the polar phase, the new phase has
a lower thermodynamic potential. The gain is

P
2945512345

see [7]. The distorted BW phase in Eq. (8) in conditions
of the experiments in [4] is reached via a first-order
transition. The temperature 7p preserves its mean-
ing of the upper limit temperature for existence of this
phase and determines temperature dependences of the
amplitudes A3 and A3.

2

0=

A2 = -

oy B, =

(1 —174)%,

3. AXI-PLANAR PHASE

In the distorted ABM phase, d, is still a symme-
try axis in spin space. Further lowering this symmetry
via a continuous phase transition is possible at cool-
ing when the suppressed perpendicular projection b, ;
comes into effect. Analysis of the stability of A;‘j with
respect to b,; along the lines of the preceding section

with the order parameter of the form
A
Auj = ALy +byj
yields

By = [T—k+L12A3+(Poza—P1s)AT](bin;) (buini) +
+ 1 — K+ B12Af + (B1 — B2) AT (busl;) (buili)  (9)
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instead of Eq. (6). The combination in front
of (by;n;)(bun;) is positive, but that in front of
(bujl;i)(busl;) changes sign at 7 = T74p, where

3k Pous v

2 pig e

It is the temperature of a continuous transition in the
phase with finite (b,;l;)(buli). Its dependence on the
parameters v and ¢ in the limit as ¥ — 0 and ¢ — 0 is
singular. Tt follows from

rap—a = B (V)
2 Pis

that 74p < 74 if v > e. The transition temperature
TAp is not far from 74 if e At ¢ & 3k, TApP
moves to lower temperatures, well beyond the limit of
applicability of expansion (1). Below 74p, the order
parameter is that of the axi-planar phase:

K

TAP = —3

. (10)

3k Pous (Vv

Z-1
9

~

V.

Auj = Aodymy +idydyng + Age, d;. (1)

Minimizing the thermodynamic potential with respect
to Ag, A1, As gives the following equations for the
amplitudes:

[B12345 A8 + (Baas — B13)AT +

—+ 612A§ + (T + 2&)]A0 = 0, (12)
[(Baas — 513)A(2) + ﬂ12345A% +
+ (B2 = B)AS + (1 — K)]AL =0, (13)

[B12AZ+(Bo—B1) AT +B12345 A5 +(T—r)] Ay = 0. (14)

In the case v > ¢, solutions of these equations repro-
duce the sequence of phase transitions under cooling
from 7 = —2k. At 74 < 7 < —2k, a stable solution is
Ay =0, Ay =0, and from Eq. (12),

T+ 2K

612345 )

Af

At T = 74, Ay starts to increase, indicating a second-
order phase transition in the distorted ABM phase, as
discussed at the end of the preceding section. If T74p is
within the applicability limits of the Ginzburg—Landau
expansion, the distorted ABM phase remains stable in
the interval 74p < 7 < 74. Below 74p, As becomes fi-
nite and Eqs. (12)—(14) admit a solution corresponding
to the axi-planar phase:

efis(tap — 1)

A2 = ,
27 (v+e)Bafs +evfaz +22Pi3

(15)
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3k v—e (B3+e)w
AZ — A2, 16
! 4613 € 2B13e ° (16)
o _vte [ 3k 2
A0 - 2B135 ( 2 +/83A2> - (17)

It follows from Eq. (15) that the axi-planar phase
can exist only if ¢ > 0. Experimentally, it can be
detected by CW NMR method. As was discussed in
Ref. [7], when the magnetic field is perpendicular to
the anisotropy axis, the transverse NMR shift is zero
for the distorted ABM phase, but it is finite and pro-
portional to A2 in the axi-planar phase. The transition
could also be detected by a jump in the specific heat
at cooling of the distorted ABM phase.

Both A2 and 74p are very sensitive to the values
of the parameters v and e, which for superfluid *He in
a nematically ordered aerogel are poorly known. Cur-
rently, it is difficult to even estimate their values. In
the published NMR data [4], the distorted ABM phase
remains meta-stable until ~ 0.77,, when it jumps to
the low-temperature phase, which is identified as a dis-
torted BW phase. There is no indication of a continu-
ous transition of the distorted ABM in the axi-planar
phase. A more detailed theoretical discussion of the
properties of the axi-planar phase could be appropri-
ate if such indications would be available.

4. DISCUSSION

A nematically ordered aerogel turned out to be an
efficient tool for “decomposing” the order parameter of
superfluid *He into its constituents. Phenomenologi-
cal analysis shows that, in principle, there are more
possible phase diagrams than observed in real *He and
found in the model calculation in [3]. The first super-
fluid phase realized immediately below T, is always the
polar phase. Its symmetry is higher than that of the
most stable phases at low temperature, ABM and BW.
This means that these phases can be reached in steps,
via one or more phase transitions. The concrete route
depends on particular values of the phenomenological
parameters 3. Of importance are two combinations of
these parameters,

=04+ B
and
v =203 + Bs.

If ¢ > v, the distorted BW phase can form at cooling
via a second-order transition directly from the polar
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phase. Such a scenario is admitted by symmetry, but
not realized either in experiment [4] or in microscopic
calculations [3]. The situation where ¢ < v corresponds
to the observed sequence of phase transitions on cool-
ing: a distorted ABM phase forms from the polar phase
via a continuous transition. If ¢ > 0 and ¢ ~ v, a fur-
ther continuous transition, to the axi-planar phase, is
possible. This transition is also admitted by symmetry,
but is not observed. Unfortunately, there are no effi-
cient tools for tuning the parameters 3, and therefore
not all possible phase diagrams can be realized in real
3He, but the phenomenological description can be used
as a framework for a systematic description of experi-
mental data for the realized scenario in the vicinity of
the transition of 3He into the superfluid state.
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