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EVOLUTION OF THE 4f ELECTRON LOCALIZATION FROMYbRh2Si2 to YbRh2Pb STUDIED BY ELECTRON SPIN RESONANCEV. A. Ivanshin a;
*, T. O. Litvinova a, N. A. Ivanshin b,A. Pöppl 
, D. A. Sokolov d, M. C. Aronson e;faMRS Laboratory, Kazan Federal (Volga Region) University420008, Kazan, RussiabKazan State University of Ar
hite
ture and Engineering420043, Kazan, Russia
Fa
ulty of Physi
s and Earth S
ien
es, University of LeipzigD-04103, Leipzig, GermanydS
hool on Physi
s and CSEC, University of EdinburghEH 3JZ, Edinburgh, UKeDepartment of Physi
s and Astronomy, Stony Brook University11794-3800, Stony Brook, NY, USAfCondensed Matter Physi
s and Materials Department, Brookhaven National Laboratory11973-5000, Upton, NY, USARe
eived November 4, 2013We report ele
tron spin resonan
e (ESR) experiments on the Heusler alloy YbRh2Pb and 
ompare its spindynami
s with that of several other Yb-based intermetalli
s. A detailed analysis of the derived ESR parametersindi
ates the extremely weak hybridization, more lo
alized distribution of the 4f states, and a smaller RKKYintera
tion in YbRh2Pb. These �ndings reveal the important interplay between hybridization e�e
ts, 
hemi
alsubstitution, and 
rystalline ele
tri
 �eld intera
tions that determines the ground state properties of strongly
orrelated ele
tron systems.DOI: 10.7868/S00444510140500971. INTRODUCTIONOne interesting aspe
t of the heavy-fermion (HF)
ompounds is the evolution from high-temperature un-s
reened lo
alized f ele
trons to itinerant heavy quasi-parti
les with e�e
tive masses hunderds of times thatof bare ele
trons at low temperature [1℄. Re
ent ex-perimental and theoreti
al studies on the HF Yb-basedmaterials have revealed a ri
h physi
s of transport andmagneti
 properties of these systems (see, e. g., Ref. [2℄for a review). In prin
iple, the Yb systems are the4f -hole analogue of the Ce-based 
ompounds [3℄ andtheir ground state properties strongly depend on theYb valen
e and the strength of hybridization betweenthe 4f ele
trons (holes) and the 
ondu
tion d-, p-, or*E-mail: Vladimir.Ivanshin�kpfu.ru

s-ele
trons. The most essential role belongs here, onthe one hand, to the Kondo 
oupling that s
reens theYb or Ce magneti
 moment and 
reates a paramag-neti
 ground state with enhan
ed masses of quasiparti-
les and, on the other hand, to the Ruderman�Kittel�Kasuya�Yoshida (RKKY) ex
hange intera
tion, whi
h
auses a magneti
 ordering [4℄. A key for understand-ing the behavior of HF 
ompounds is the interplay be-tween both these phenomena. At a low value of Kondoex
hange, the 
ondu
tion ele
trons are 
arriers of long-range magneti
 intera
tions, and the lo
al moments off shells are ordered in the weak Kondo 
oupling limit.With an in
rease in the Kondo e�e
t, the ordered stateis suppressed, 
reating a s
reening of moments in thestrong Kondo 
oupling regime. As presented on theDonia
h phase diagram [5℄, a quantum phase transi-tion o

urs between these two regimes.866
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tron lo
alization : : :The ESR te
hnique 
ould dire
tly probe the lo
almoments of f ele
trons and their intera
tion with 
on-du
tion ele
trons [6℄. However, as a rule, no 
on
en-trated HF systems (in
luding Kondo latti
es) 
an bestudied using ESR be
ause of a very fast relaxationof the resonating spin, whi
h leads to a huge ESRlinewidth, too broad to be observable and proportionalto the Kondo temperature. One expe
ts the ESR tobe washed out by the Kondo e�e
t be
ause the lat-ti
e of lo
al moments is strongly 
oupled to 
ondu
-tion ele
trons. Therefore, it is ne
essary to dope smallamounts of ions with lo
alized magneti
 moments, su
has Ce3+ or Gd3+, into the 
ompound under investiga-tion. Surprisingly, during the last two de
ades, thelow-temperature ESR signals have been dete
ted insome undoped Yb-based intermetalli
s, e. g., mixed-valen
e 
ompound YbCuAl [7℄, quantum 
riti
al sys-tem YbRh2Si2 [8℄, its parent 
ompounds YbIr2Si2 [9℄and YbCo2Si2 [10℄, and in several other Ce- and Eu-based alloys [11℄.Di�erent theoreti
al approa
hes [12�15℄ show thatthe narrow anisotropi
 ESR 
an be observed in somedense HF 
ompounds in a broad range of magneti
�elds as a result of hybridization between 4f and 
on-du
tion ele
trons in 
onjun
tion with ferromagneti
(FM) �u
tuations [16℄, whi
h 
an signi�
antly redu
ethe ESR linewidth and make it observable. Finally,very re
ent results of inelasti
 neutron s
attering ex-periments [17℄ explain the ESR mode in YbRh2Si2 asa mesos
opi
 spin resonan
e of lo
alized droplets ofYb3+ spins and 
ondu
tion ele
trons due to a 
oherentpre
ession of the spin density, extending the distan
e6 � 2Å beyond the Yb site. Su
h ESR absorption isnot 
aused by the purely lo
alized Yb3+ ions and isnot asso
iated with 
orrelated e�e
ts over long lengths
ales. In this work, the spin dynami
s in YbRh2Pbprobed by ESR is 
ompared to that of some relativeYb materials.2. EXPERIMENTAL PROCEDURESamples of YbRh2Pb were obtained from Pb �uxas des
ribed previously in [18℄. They 
rystallizein a distorted Heusler alloy stru
ture with dimen-sions a = 4:5235(4)Å and 
 = 6:9864(6)Å, anda probable spa
e group I4=mmm. The ESR spe
-tra (ESR linewidth �H = 600�2300 Oe) were takenin the Bruker ESM/plus X-band (9.4 GHz) [19℄ andin the EMX 10�40 Q-band (34.1 GHz) spe
trome-ters. In both 
ases, we used the Oxford 
ontinuous-�ow liquid-helium 
ryostats in the temperature range

0 1 2 3 4 5H; êÎå
dP=dHdP=dH

4 6 8 10 12H; êÎåFig. 1. Derivative of the absorption ESR signal atT = 5 K at the Q-band frequen
y (34:1 GHz) inYbRh2Pb. Inset: The X-band (9:45 GHz) ESR spe
-trum at T = 4:2 K. The arrow indi
ates the parasiti
signal from the mi
rowave 
avity4:2 K � T � 25 K. Above 25 K, no ESR signal wasobserved. A multiply twinned 
rystal stru
ture of theinvestigated small grains (1�2 mm2 surfa
e area), whi
hwas established with a Bruker Smart 
harged-
oupleddevi
e X-ray di�ra
tometer, has prevented an orienta-tion of samples and an a

urate determination of thelo
al symmetry of paramagneti
 
enters.The X- and Q-band ESR spe
tra of YbRh2Pb areshown in Fig. 1 for 5 K. The intensity of the X-bandESR spe
trum was 
omparable with that of the 
avi-ty ba
kground signal, whi
h is indi
ated by arrow onthe inset in Fig. 1. Its intensity was approximately20�30 times smaller than that for YbRh2Si2 as mea-sured by identi
al experimental 
onditions on the sam-ples of very similar size and weight [8; 20℄. The mea-surements at the Q-band frequen
y allowed us to obtaina higher resolution of the ESR line with a mu
h bettersignal-to-noise ratio.No signi�
ant deviation from the linear behaviorwas observed below 15 K for the temperature depen-den
e of the ESR linewidth �H at the Q-band fre-quen
y (Fig. 2). On a further in
rease in tempera-ture, the ESR lineshape was essentially distorted, andthis was a

ompanied by an even faster in
rease in itslinewidth. The temperature dependen
es of the ESRg-fa
tor are given in Fig. 3 for both frequen
ies.867 7*
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Fig. 2. Temperature evolution of the ESR linewidth at34:1 GHz in YbRh2Pb. The dashed line is the theo-reti
al 
urve obtained from Eq. (1)
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Fig. 3. Temperature e�e
tive ESR g-fa
tor dependen
efor X-band at 9:45 GHz (triangles) [19℄ and Q-band at34:1 GHz (squares) in YbRh2Pb. Solid lines representthe best �ts using Eq. (2)3. DISCUSSIONWe suppose that the ESR signal in YbRh2Pb orig-inates from the hybridization of 4f Yb ele
trons with
ondu
tion ele
trons in the presen
e of FM �u
tua-tions, as was also proposed for YbRh2Si2 and YbIr2Si2[8; 9℄. In a

ordan
e to Refs. [8℄ and [20℄, the tempe-rature dependen
e of �H of ESR spe
tra in YbRh2Pbat 34.1 GHz 
an be well �tted (see the dashed line inFig. 2) by the formula�H = A+BT + C exp(��=T ); (1)

where the measured Korringa rate B � 27 � 2 Oe/Kis within the usual order of magnitude of ytterbium,and the a
tivation energy of the �rst ex
ited Starksublevel of the Yb3+ ion is � � 73:5 K. This valueof � 
orresponds very well to the estimation of the�rst ex
ited 
rystal ele
tri
 �eld level of this ion, �1 == 68� 5 K, whi
h has been derived after heat 
apa
ityand magneti
 sus
eptibility measurements in YbRh2Pb[18℄. The residual ESR linewidth A 
hanges approxi-mately from 420 to 470 Oe upon passing from the X-to the Q-band experiments. Finally, the parameterC = 69:5�2 kOe (X-band) [19℄ or 9:0�1 kOe (Q-band).The exponential term is 
aused by random transitionsfrom the ground sublevel of the Yb3+ ion to the �rstex
ited 
rystal ele
tri
 �eld level separated by the dis-tan
e � [8℄. This ele
troni
 me
hanism of thermal�u
tuations 
an ni
ely explain the temperature depen-den
e of the e�e
tive ESR g-fa
tor in YbRh2Pb above10 K (see Fig. 3), also with the same value � � 73:5 K,using the expressiong(T ) = g0 +�g0 exp(��=T ); (2)where �g0 = gex
 � g0, g0 and gex
 are respe
tivelythe e�e
tive ESR g-fa
tors of the ground and �rst ex-
ited sublevels of the ytterbium ion. At the Q-bandfrequen
y, �g0 = �2:23 and gex
 = 1:509 are foundto be more reasonable values than those reported af-ter the �tting pro
edure of the X-band ESR spe
train YbRh2Pb (�g0 = �18:5 and gex
 = �15:1) [19℄.A huge di�eren
e between both sets of the parametersis 
aused by errors during simulation of the extremelybroad and weak X-band ESR signals in the tempera-ture range between 13 and 20 K. Moreover, both theseQ-band values are in 
lose agreement with the 
orre-sponding �tting parameters obtained from the Q-bandESR experiments on YbRh2Si2 [8℄, �g0 = �2:58 andgex
? = 1:0. Re
ently, Ramires and Coleman [15℄showed that a very similar ESR g-fa
tor shift with tem-perature in the another HF metal �-YbAlB4 
an be un-derstood as a result of the development of a 
oherentmany-body hybridization between 
ondu
tion ele
tronsand the lo
alized f states. This approa
h is related tothe intermediate value of the 
rystal ele
tri
 �eld ex-
itations, whi
h are 
omparable to the hybridizationstrength.Therefore, the ESR of YbRh2Pb 
an be asso
iatedwith the �eld-split ground-state doublet of the Yb3+ions, as was also predi
ted in YbRh2Si2 [8; 17℄, YbIr2Si2[9℄, and YbRh6P4 [21℄. The lo
alized droplets of theYb3+ spins, whi
h were indu
ed by a magneti
 �eld,are resonantly ex
ited through 
rystal ele
tri
 �eld in-tradoublet transitions. The spin dynami
s in YbRh2Pb868
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tron lo
alization : : :at T > 10 K 
an be attributed to the spin�latti
e re-laxation via the hybridized �rst ex
ited 
rystal ele
tri
�eld state of the Yb3+ ion at � � 73:5 K. This 
on-
lusion 
ontradi
ts the �ndings of the high-frequen
yESR studies at 360 GHz in YbRh2Si2 [22℄, where thestrong broadening of the ESR response above 15 K inYbRh2Si2 was explained by the breakdown of the HFstate only be
ause of a huge di�eren
e between thepositions of the Yb3+ � the �rst ex
ited state mea-sured in YbRh2Si2 by ESR te
hnique and inelasti
 neu-tron s
attering (INS). However, an e�e
tive hybridiza-tion of the 4f ele
trons with 
ondu
tion ele
trons inthe strongly hybridized HF materials YbRh2Si2 andYbIr2Si2 signi�
antly broadens the otherwise atomi-
ally sharp f states (in 
ontrast to the usual inter-metalli
s YbRh2Pb and YbRh6P4 with a mu
h weakerhybridization, for example). Therefore, the positionsof all ex
ited states of Yb3+ in YbRh2Si2 and YbIr2Si2have been estimated from the INS studies as an ex-tremely small humps on a very broad (80�100 K) shoul-ders [23; 24℄. The lowest part of su
h a shoulder only
an be involved in the ele
troni
 spin�latti
e relaxationand 
an be measured from the ESR experiments di-re
tly with a signi�
ant deviation from the 
entral po-sition of the shoulder [8; 19℄. By 
ontrast, a very weakextent of hybridization e�e
ts in YbRh2Pb leads to amore a

urate determination of the �rst ex
ited 
rystalele
tri
 �eld level of Yb3+ during ESR studies.The hybridization strength strongly depends on
hemi
al 
omposition. A 
omparison of the ESR datain YbRh2Pb, YbRh2Si2, and YbIr2Si2 allows estima-ting possible e�e
ts of the f�d�p hybridization on thespin dynami
s. Apart from the 
hemi
ally ina
tive 
oreele
trons, Si ([Ne℄3s23p2) and Pb ([Hg℄6p2) are iso-ele
troni
. Indeed, the ESR measurements show verysimilar spin�latti
e relaxation pro
esses in YbRh2Pband YbRh2Si2. However, the extremely weak f�phybridization in YbRh2Pb 
auses a very low inten-sity of ESR signals, probably, as a result of a mu
hlower e�
ien
y of the mixing between the 4f - and6p-shells in 
omparison with the strong 4f�3p hy-bridization in YbRh2Si2. Further, the substitutionof Rh ([Kr℄4d85s2) by Ir ([Xe℄5d76s2), having oned ele
tron less than Rh, in YbIr2Si2 leads to a re-du
ed 
ontribution of 
ondu
tion ele
trons to the ESRrelaxation me
hanism in 
omparison with YbRh2Si2[9; 20℄. A vanishingly small RKKY intera
tion amongmagneti
 moments and a weakened f�d�p hybridiza-tion with the absen
e of 
orrelation e�e
ts among the
ondu
tion ele
trons [18℄ suggest that relatively smallFM droplets of the Yb3+ moments are more lo
al-ized in YbRh2Pb than in the quantum 
riti
al sys-

tems YbRh2Si2, YbIr2Si2, and �-YbAlB4, in whi
h themost intense ESR signals have been observed. A pos-sible 
lose relation of quantum 
riti
ality to observa-tion of a sharp well-de�ned f -ele
tron ESR lines is oneof the unresolved problems in the physi
s of HF met-als [15℄. A deli
ate balan
e between the Kondo 
ouplingof the lo
alized 4f ele
trons to the 
ondu
tion ele
-trons and spin�orbit 
oupling 
ompared with the 
rys-tal ele
tri
 �eld intera
tion 
an be tuned by doping orby pressure and 
an lead to the appearan
e of a quan-tum phase transition [25; 26℄. Thus, the substitution ofsili
on with lead atoms by passing from YbRh2Si2 toYbRh2Pb 
hanges the f�p hybridization and a possi-ble distan
e to the quantum 
riti
al point. We believethat YbRh2Pb belongs to the weak-
oupling limit ofthe Donia
h phase diagram [5℄, and the small but �-nite temperature magneti
 phase transition observedin YbRh2Pb [18℄ limits any non-Fermi liquid behaviorto very small redu
ed temperatures.Several 
ommuni
ations devoted to the dete
tionof ESR in a variety of dense intermetalli
s with apossible strong f�d�s�p hybridization e�e
ts havebeen published during the last �ve years. The ESRabsorption has been found not only in the typi
al HFmaterials su
h as YbBiPt, YbT2Zn20 (T = Co, Fe)[27℄, �-YbAlB4 [6℄ or in the borides CeB6 [13; 28�30℄and EuB6 [31℄ with strong low-energy FM �u
tuations,but also in the Kondo latti
e CeRuPO and in thealloy YbRh that exhibit a stati
 FM order [16℄. Theseobservations appear to be supported by FM 
orre-lations, and a sharp ESR signals may exist in manyother intermetalli
 systems. The probable 
onne
tionbetween intense ESR spe
tra and quantum 
riti
ale�e
ts should be a subje
t for further investigations.Therefore, the ESR te
hnique 
an be a very powerfultool in studying hybridization e�e
ts in di�erentitinerant ferromagnets in addition to methods su
h asINS, X-ray-, and photoemission spe
tros
opy.The authors are grateful to J. Hoents
h for his as-sistan
e during the Q-band ESR measurements. One ofthe autors (V. A. I.) thanks the University of Leipzigfor hospitality. Work at Brookhaven National Labo-ratory was 
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