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ALGEBRAIC FORM OF THE M3-BRANE ACTIONH. Ghadjari a*, Z. Rezaei b**aDepartment of Physis, Amirkabir University of Tehnology (Tehran Polytehni)15875-4413, Tehran, IranbDepartment of Physis, University of Tafresh39518-79611, Tehran, IranReeived Deember 20, 2013We reformulate the bosoni ation of an unstable M3-brane to manifest its algebrai representation. It is seenthat in ontrast to string and M2-brane ations, whih are respetively represented only in terms of two- andthree-dimensional Lie algebras, the algebrai form of the M3-brane ation is a ombination of four-, three-,and two-dimensional Lie algebras. Corresponding brakets appear as mixtures of the tahyon �eld, spae-timeoordinates X, the two-form �eld !̂(2), and the Born�Infeld one-form b̂�.DOI: 10.7868/S004445101405005X1. INTRODUCTIONAlgebrai reformulation of known ations in stringtheory and M-theory shows that string theory is basedon the onventional algebra, or a two-dimensional Liealgebra (known as a two-algebra), but a omplete de-sription of M-theory reguires an extended Lie algebraalled a three-algebra [1℄, whih was mainly developedin [2�5℄. The numbers two and three are respetivelyassoiated with string theory and M-theory. Two is thestring worldsheet dimension and also the odimensionof D-branes in both type-IIA and type-IIB superstringtheories [6℄. Three is the membrane worldvolume di-mension in M-theory and the odimension of M2- andM5-branes. This means that via two-algebra intera-tions, some Dp-branes an ondense to a D(p + 2)-brane [7℄ and through three-algebra interations mul-tiple M2-branes ondense to a M5-brane [8�16℄. Theseonnetions between two and three and, respetively,string theory and M-theory beome obvious by rewrit-ing Nambu�Goto ations in algebrai form.By analogy, we an expet to desribe p-branes ap-plying a (p+1)-algebra struture [17℄. These extendedalgebras are used to onstrut worldvolume theories formultiple p-branes in terms of Nambu brakets that arelassial approximations to multiple ommutators of*E-mail: h-ghajari�aut.a.ir**E-mail: z.rezaei�aut.a.ir

these algebras [18℄. Nambu n-brakets introdue a wayto understand the n-dimensional Lie algebra presentedin [19℄. Formulation of the p-brane ation in terms ofa (p + 1)-algebra makes it more ompat and we areleft with algebrai alulations, whih are then usuallysimpler to handle.In string theory, we are inevitably faed with un-stable systems, and studying them deepens our under-standing of the string theory. In bosoni string theory,the instability is always present due to the tahyonpresene in the open string spetrum. Two exam-ples of unstable states in superstring theories are non-BPS branes (odd (even) dimensional branes in type-IIA (IIB) theory) and brane�anti-brane pairs in bothtype-IIA and type-IIB theories [20, 21℄. An interest-ing fat about the dynamis of these unstable branes,generally obvious in the e�etive ation formulation, istheir dimensional redution through tahyon ondensa-tion [22�27℄. During this proess, the negative energydensity of the tahyon potential at its minimum pointanels the tension of the D-brane (or D-branes) [28℄,and the �nal produt is a losed-string vauum with-out a D-brane or stable lower-dimensional D-branes.On the other hand, stable objets in string theory anbe obtained by dimensional redution of stable branesin M-theory (M2- and M5-branes). Naturally, we anexpet to have a preimage of unstable branes in su-perstring theories by formulating an e�etive ation forunstable branes in M-theory. Among di�erent unstablesystems in M-theory [29℄, the M3-brane is noteworthy825



H. Ghadjari, Z. Rezaei ÆÝÒÔ, òîì 145, âûï. 5, 2014beause it is diretly related to the M2-brane. Tahyonondensation of the M3-brane e�etive ation resultsin the M2-brane ation, and its dimensional redutionalso leads to a non-BPS D3-brane ation in type-IIAstring theory [30℄.Despite attempts made to formulate the M3-braneation onsistent with desired onditions [30℄, there hasbeen no algebrai approah towards this formulation.The existene of the algebrai form for the ation ofthe M2-brane, as the fundamental objet of M-theory,motivated us to searh for the algebrai presentation ofthe M3-brane as the main unstable objet in M-theory,whose instability is due to the presene of the tahyon.What distinguishes the present study from on-ventional algebrai formulations is the instability ofthe M3-brane. In other words, the presene of thetahyon and other bakground �elds a�et the resul-tant algebra. It is shown that a pure four-algebra doesnot our, as expeted, and we are enountered withfour-, three-, and two-brakets that are mixtures of thetahyon, spae-time oordinates, and other �elds.2. ALGEBRAIC M3-BRANE ACTIONThe onventional ation orresponding to a non-BPS M3-brane is a ombination of the DBI (Dira�Born�Infeld) and WZ (Wess�Zumino) parts [30℄S = SDBI + SWZ ;SDBI = �Z d4�V (T )jk̂j1=2p� detH�� ;SWZ = � Z d4�V (T )"�1�2�3�4��1T �̂�2�3�4 ; (2.1)where �� with � = 0; 1; 2; 3 labels worldvolume oordi-nates of the M3-brane, V (T ) is the tahyon potential,whih is an even funtion of T and is haraterized asV (T = �1) = 0 and V (T = 0) = TM3, TM3 is the M3-brane tension, and k̂M (X) is the Killing vetor, suhthat the Lie derivatives of all target-spae �elds vanishwith respet to it [30℄. Other �elds in (2.1) are de�nedas H�� = ĝMND̂�X̂MD̂�X̂N+ 1jk̂j F̂��+ 1jk̂j��T��T;k̂2 = k̂M k̂N ĝMN ; k̂2 = jk̂j2;F̂�� = ��b̂���� b̂�+��X̂M��X̂N (ik̂Ĉ)MN ;

D̂�XM = ��X̂M � Â�k̂M ;Â� = 1jk̂j2 ��X̂M k̂M ;�̂�2�3�4 = ��2 !̂(2)�3�4 � ��3 !̂(2)�2�4 + ��4 !̂(2)�2�3 ++ 13! ĈKMN D̂�2X̂KD̂�3X̂MD̂�4X̂N ++ 12! Â�2(��3 b̂�4 � ��4 b̂�3): (2.2)
The tensor H�� onsists of the pullbak of the bak-ground metri, the �eld strength F̂�� of the gauge �eldA�, and the tahyon �eld T ; M and N represent spa-e-time indies and D̂� is the ovariant derivative. The�eld strength itself is expressed in terms of the Born�Infeld 1-form b̂� and the R�R setor �eld Ĉ. The ur-vature of the 2-form !̂(2) is denoted by �̂.The determinant of the tensor H�� in the DBI a-tion an be deomposed asp� detH�� =q� det( ~G�� + ~F��); (2.3)where ~F�� = ��b̂� � �� b̂�;~G�� = LMN��XM��XN+ 1jk̂j��T��T; (2.4)and LMN = gMN + ijk̂jĈMNjk̂j � k̂M k̂Njk̂j2 : (2.5)Regarding (2.3), the DBI ation an be expanded tothe quadrati order [31℄ asSDBI = � Z d4�V (T )q� det ~G�� ���1 + 14 ~F�� ~F�� + : : :� : (2.6)2.1. DBI part of the M3-brane ationTo �nd the algebrai form of the DBI ation, westart with the �rst term in (2.6), q� det ~G�� , whihis the determinant of a 4 � 4 matrix and all its ele-ments are sums of a tahyoni part and a spae-likepart (�X �X + �T �T ). This determinant totally on-sists of 48 � 8 terms. These terms an be lassi�edinto sixteen 4� 4 determinants suh that the elementsof these determinants are only �X �X or �T �T andnot sums of them. Hene, eah determinant has 24terms suh that adding them leads to the same num-ber of terms (16 � 24) as in the initial main determi-nant. These 16 determinants an be ategorized as: one826



ÆÝÒÔ, òîì 145, âûï. 5, 2014 Algebrai form of the M3-brane ationdeterminant with �X�X elements (four ombinationsfrom the 4 states � 44� = 1), one determinant with ele-ments �T �T (� 44� = 1), four determinants with threerows of �X �X elements and one row of �T�T elements(� 41� = 4), four determinants with three rows of �T�Telements and one row of �X �X elements (� 41� = 4),and, �nally, six determinants with two rows of �T�Telements and two rows of �X �X elements (� 42� = 6).It follows that determinants with more than one row of�T �T are zero. We are therefore left with two kinds ofdeterminants: a determinant onsisting of only �X �Xentities and those with three rows of �X �X elementsand one row of �T �T entities. Beause a determi-nant does not hange under exhanging of rows, onsi-dering all possible permutations (4!) of rows for eah ofthe remaining determinants yields the form of the four-algebra in aordane with (A.5). Eventually, after atedious alulation, the algebrai form of q� det ~G��is obtained asq� det ~G�� !! ���LMNLOPLQRLST [XM ; XO; XQ; XS ℄�� [XN ; XP ; XR; XT ℄ + 4jk̂jLMNLOPLQR �� [T;XM ; XO; XQ℄[T;XN ; XP ; XR℄��1=2: (2.7)The 4-braket of the spae-time oordinates X or-responds to the algebrai ation derived in [1; 17℄ forp = 3 ase and with the fermioni �elds turned o�.The new term here is the mixed four-braket of the Xand T .Presenting a general algebrai form for the term~F�� ~F�� in the DBI ation is not possible, but insome speial ases it aquires a simple form. Forexample, one an onsider a selfdual (anti-selfdual) �eldstrength that orresponds to instanton. An instantonis a stati (solitoni) solution of pure Yang�Mills theo-ries [32℄. They are important in both supersymmetri�eld theories and superstring theories, mostly beauseof their nonperturbative e�ets. They also play a rolein M-theory, for instane, in applying the M2-brane a-tions to the M5-brane [33℄. The solution of �eld equa-tions in the Yang�Mills theory orresponding to an in-stanton has a selfdual (anti-selfdual) �eld strength [32℄.Considering this property gives the following expression

for tr ~F�� ~F�� in the ase of a regular one-instanton so-lution [32℄:tr ~F�� ~F�� = �96 �4((x � x0)2 + �2)4 ; (2.8)where x0 and � are arbitrary parameters alled olle-tive oordinates. Hene, in the instantoni ase, thefull algebrai form of the DBI part of the ationSDBI = �Z d4�V (T )�1�24 �4((x�x0)2+�2)4������LMNLOPLQRLST [XM ; XO; XQ; XS ℄�� [XN ; XP ; XR; XT ℄ + 4jk̂jLMNLOPLQR �� [T;XM ; XO; XQ℄[T;XN ; XP ; XR℄��1=2: (2.9)2.2. WZ part of the M3-brane ationThe integrand of the WZ ation in (2.1) an be di-vided into three parts by replaing �̂ from (2.2):SWZ ! "�1�2�3�4��1T �̂�2�3�4 == "�1�2�3�4��1T���2 !̂(2)�3�4���3 !̂(2)�2�4+��4 !̂(2)�2�3++ 13! ĈKMN D̂�2X̂KD̂�3X̂MD̂�4X̂N ++ 12!Â�2 (��3 b̂�4 � ��4 b̂�3)�; (2.10)where we now deal with eah part separately.By expanding the �rst part, three terms of !̂(2)derivatives, and onsidering all possible permutationsof the four-dimensional Levi-Civita symbol "�1�2�3�4 ,we ome to a view of a two-algebra. The reason isthat aording to (A.5), having two derivative fatorssignals a two-algebra arrying its two-dimensional Le-vi-Civita symbol. But beause only di�erent permuta-tions of "�1�2�3�4 give orret signs to the terms here,multiplying the resultant two-algebra by another two-dimensional Levi-Civita symbol and using the relation"��"Æ = Æ� Æ�Æ � Æ�Æ Æ�leads to the orret form. The �rst part of the WZ a-tion is therefore reformulated in terms of the two-bra-ket asSWZ;1 ! "�1�2�3�4 �� ��1T ���2 !̂(2)�3�4 � ��3 !̂(2)�2�4 + ��4 !̂(2)�2�3� == 3"�1�2�3�4"�1�2 [T; !�3�4 ℄: (2.11)827



H. Ghadjari, Z. Rezaei ÆÝÒÔ, òîì 145, âûï. 5, 2014In the seond part of the WZ ation, threeX deriva-tives, �X , and one tahyon derivative, �T , appear suhthat they obviously form a four-algebra:SWZ;2 ! 13! ĈKMN"�1�2�3�4 �� ��1TD̂�2X̂KD̂�3X̂MD̂�4X̂N == 13! ĈKMN"�1�2�3�4  1� k̂P k̂Pjk̂j2 !3 ��1T �� ��2XK��3XM��4XN == 13! ĈKMN  1� k̂P k̂Pjk̂j2 !3 [T;XK; XM ; XN ℄: (2.12)Substituting A� in the last part of the WZ ation,we are faed with terms onsisting of �X , �T , and�b, whih aording to (A.5) indiates a three-algebra.Similarly to the argument made for the �rst part of theWZ ation, multiplying this three-braket by a three-dimensional Levi-Civita symbol and using the identity"��"Æ�� = Æ�Æ (Æ�� Æ� � Æ��Æ� )� Æ�� (Æ�Æ Æ� � Æ��ÆÆ ) ++ Æ�� (Æ�Æ Æ� � Æ�� ÆÆ );gives the onvenient three-algebra. Di�erent permu-tations of the four-dimensional Levi-Civita symbol areresponsible for orret signs of di�erent terms in thethree-algebra. Hene, the algebrai form of this part isSWZ;3 ! 12!"�1�2�3�4��1TÂ�2(��3 b̂�4���4 b̂�3) == k̂M2!jk̂j2 "�1�2�3�4"�1�2�3 [T;XM ; b�4 ℄: (2.13)Therefore, the WZ ation of the M3-brane is pre-sented in terms of two-, three-, and four-brakets asSWZ = �Z d4�V (T )�3"�1�2�3�4"�1�2 [T; !�3�4 ℄ ++ 13!CKMN  1� k̂P k̂Pjk̂j2 !3 [T;XK; XM ; XN ℄ ++ k̂M2!jk̂j2 "�1�2�3�4"�1�2�3 [T;XM ; b�4 ℄�: (2.14)We see that the tahyon �eld respetively ouples tospae-time oordinates, the Born�Infeld one-form b̂�,and the two-form !̂(2) through four-, three-, and two-brakets.3. SUMMARY AND CONCLUSIONWe have presented an algebrai form for the bosoniM3-brane ation by reformulating this ation in terms

of brakets. In the literature, p-branes are desribedby a (p + 1)-algebra [17℄, and we ould therefore ex-pet a four-algebra struture for the M3-brane. Butit was shown that the algebrai representation of theM3-brane is a ombination of four-, three-, and two-al-gebras. Generally, this di�erene stems from the in-stability of the system that the tahyon is responsiblefor. Exept the four-braket of spae-time oordinatesin the DBI part, the tahyon �eld is present in all otherbrakets and forms four-, three-, and two-brakets withspae-time oordinates, the two-form, !̂(2), and theBorn�Infeld one-form b̂�. In the future, we will tryto study the dimensional redution of this algebraiation. APPENDIXFillipov's n-Lie algebraFillipov's n-Lie algebra [19℄, as a natural general-ization of a Lie algebra, is de�ned by an n-braket sat-isfying the total antisymmetry property[X1; : : : ; Xi; : : : ; Xj ; : : : ; Xn℄ == �[X1; : : : ; Xj ; : : : ; Xi; : : : ; Xn℄; (A.1)and the Leibniz rule[X1; : : : ; Xn�1; [Y1; : : : ; Yn℄℄ == nXj=1[Y1; : : : ; [X1; : : : ; Xn�1; Yj ℄; : : : ; Yn℄: (A.2)The n-Lie algebra is equipped with an invariant innerprodut hX;Y i = hY;Xi; (A.3)and the invariane under the n-braket transformationh[X1; : : : ; Xn�1; Y ℄; Zi++ hY; [X1; : : : ; Xn�1; Z℄i = 0: (A.4)When n = 2, the de�nition redues to the usual Lie al-gebra and the inner produt an be given by the trae.The n-Lie algebra an be realized in terms of theNambu n-braket de�ned over a funtional spae on ann-dimensional manifold [18℄:[X1; X2; : : : ; Xn℄, fX1; X2; : : : ; XngNB :=:= 1pG "l1l2:::ln�l1X1�l2X2 : : : �lnXn; (A.5)where G is the determinant of the metri of the ma-nifold and an be hosen arbitrarily sine properties(A.1)�(A.4) hold irrespetive of the presene of the lo-al fator [1℄.828
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