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We reformulate the bosonic action of an unstable M3-brane to manifest its algebraic representation. It is seen
that in contrast to string and M2-brane actions, which are respectively represented only in terms of two- and
three-dimensional Lie algebras, the algebraic form of the M3-brane action is a combination of four-, three-,
and two-dimensional Lie algebras. Corresponding brackets appear as mixtures of the tachyon field, space-time
coordinates X, the two-form field &(®), and the Born-Infeld one-form b,,.
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1. INTRODUCTION

Algebraic reformulation of known actions in string
theory and M-theory shows that string theory is based
on the conventional algebra, or a two-dimensional Lie
algebra (known as a two-algebra), but a complete de-
scription of M-theory reguires an extended Lie algebra
called a three-algebra [1], which was mainly developed
in [2-5]. The numbers two and three are respectively
associated with string theory and M-theory. Two is the
string worldsheet dimension and also the codimension
of D-branes in both type-ITA and type-IIB superstring
theories [6]. Three is the membrane worldvolume di-
mension in M-theory and the codimension of M2- and
M5-branes. This means that via two-algebra interac-
tions, some Dp-branes can condense to a D(p + 2)-
brane [7] and through three-algebra interactions mul-
tiple M2-branes condense to a M5-brane [8-16]. These
connections between two and three and, respectively,
string theory and M-theory become obvious by rewrit-
ing Nambu-Goto actions in algebraic form.

By analogy, we can expect to describe p-branes ap-
plying a (p+ 1)-algebra structure [17]. These extended
algebras are used to construct worldvolume theories for
multiple p-branes in terms of Nambu brackets that are
classical approximations to multiple commutators of
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these algebras [18]. Nambu n-brackets introduce a way
to understand the n-dimensional Lie algebra presented
in [19]. Formulation of the p-brane action in terms of
a (p + 1)-algebra makes it more compact and we are
left with algebraic calculations, which are then usually
simpler to handle.

In string theory, we are inevitably faced with un-
stable systems, and studying them deepens our under-
standing of the string theory. In bosonic string theory,
the instability is always present due to the tachyon
presence in the open string spectrum. Two exam-
ples of unstable states in superstring theories are non-
BPS branes (odd (even) dimensional branes in type-
ITA (IIB) theory) and brane—anti-brane pairs in both
type-ITA and type-T1IB theories [20, 21]. An interest-
ing fact about the dynamics of these unstable branes,
generally obvious in the effective action formulation, is
their dimensional reduction through tachyon condensa-
tion [22-27]. During this process, the negative energy
density of the tachyon potential at its minimum point
cancels the tension of the D-brane (or D-branes) [28],
and the final product is a closed-string vacuum with-
out a D-brane or stable lower-dimensional D-branes.
On the other hand, stable objects in string theory can
be obtained by dimensional reduction of stable branes
in M-theory (M2- and M5-branes). Naturally, we can
expect to have a preimage of unstable branes in su-
perstring theories by formulating an effective action for
unstable branes in M-theory. Among different unstable
systems in M-theory [29], the M3-brane is noteworthy
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because it is directly related to the M2-brane. Tachyon
condensation of the M3-brane effective action results
in the M2-brane action, and its dimensional reduction
also leads to a non-BPS D3-brane action in type-ITA
string theory [30].

Despite attempts made to formulate the M3-brane
action consistent with desired conditions [30], there has
been no algebraic approach towards this formulation.
The existence of the algebraic form for the action of
the M2-brane, as the fundamental object of M-theory,
motivated us to search for the algebraic presentation of
the M3-brane as the main unstable object in M-theory,
whose instability is due to the presence of the tachyon.

What distinguishes the present study from con-
ventional algebraic formulations is the instability of
the M3-brane. In other words, the presence of the
tachyon and other background fields affect the resul-
tant algebra. It is shown that a pure four-algebra does
not, occur, as expected, and we are encountered with
four-, three-, and two-brackets that are mixtures of the
tachyon, space-time coordinates, and other fields.

2. ALGEBRAIC M3-BRANE ACTION
The conventional action corresponding to a non-

BPS M3-brane is a combination of the DBI (Dirac—
Born-Infeld) and WZ (Wess—Zumino) parts [30]

S =Sper+ Swz,
Spar = - [ atev(@)i " V=T,

Swz = —/d4§V(T)5“1“2“3“46”1TRMMM,

(2.1)

where £# with © =0, 1,2, 3 labels worldvolume coordi-
nates of the M3-brane, V(T') is the tachyon potential,
which is an even function of 7" and is characterized as
V(T = £o00) =0 and V(T = 0) = Tars, Tars is the M3-
brane tension, and M (X) is the Killing vector, such
that the Lie derivatives of all target-space fields vanish
with respect to it [30]. Other fields in (2.1) are defined
as

D, XM =9, XM — A,kM,
1

~ 2

|
~ ~(2 ~ (2 ~(2
Fpapspa = 6“2wl(t3)u4 - 6ﬂ3wl(tz)u4 + al“lwl(tz)l% +

A, = —50, XMk,

(2.2)

+ —é[\’MN[)MZXKDM3XMDM4XN +

The tensor H,, consists of the pullback of the back-
ground metric, the field strength F',“, of the gauge field
A, and the tachyon field T'; M and N represent spa-
ce-time indices and Du is the covariant derivative. The
field strength itself is expressed in terms of the Born—
Infeld 1-form b, and the R-R sector field C'. The cur-
vature of the 2-form &) is denoted by &.

The determinant of the tensor H,, in the DBI ac-
tion can be decomposed as

V=6t Huy = /= det(Gpu + Fu), (2.3)
where
F,, = 8,b, — 8,b,,
. 1 (2.4)
G = LMNauXMayXN+m8MT8VT,
and
i CuN Beasl
Lun = gun + 2 - DMy (2.5)

I |2
Regarding (2.3), the DBI action can be expanded to
the quadratic order [31] as

Sppr = —/d4€V(T)\/—det G X

1. -
(s ). e

2.1. DBI part of the M3-brane action
To find the algebraic form of the DBI action, we

start with the first term in (2.6), y/— det G ,,,, which

is the determinant of a 4 x 4 matrix and all its ele-
ments are sums of a tachyonic part and a space-like
part (0X 0X + 0T OT). This determinant totally con-
sists of 48 x 8 terms. These terms can be classified
into sixteen 4 x 4 determinants such that the elements
of these determinants are only 0X 0X or 9T 0T and
not sums of them. Hence, each determinant has 24
terms such that adding them leads to the same num-
ber of terms (16 x 24) as in the initial main determi-
nant. These 16 determinants can be categorized as: one
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determinant with 9X9X elements (four combinations

from the 4 states (:) = 1), one determinant with ele-

ments 0T 9T ( : = 1), four determinants with three

rows of X 90X elements and one row of 97T0T elements
( <11 ) = 4), four determinants with three rows of 970T

elements and one row of 9X 90X elements ((‘11) =4),
and, finally, six determinants with two rows of 9T9T
elements and two rows of 9.X X elements (<3> =06).

It follows that determinants with more than one row of
OT OT are zero. We are therefore left with two kinds of
determinants: a determinant consisting of only 90X 0X
entities and those with three rows of X 90X elements
and one row of 9T JT entities. Because a determi-
nant, does not change under exchanging of rows, consi-
dering all possible permutations (4!) of rows for each of
the remaining determinants yields the form of the four-
algebra in accordance with (A.5). Eventually, after a

tedious calculation, the algebraic form of y/— det G,

is obtained as

\/—detéw —

— { — <LMNLOPLQRL5T[XM,XO,XQ,XS] X

4
x XN, xP xR xT) 4+ mLMNLOPLQR X

1/2
><[T,XM,XO,XQ][T,XN,XP,XR]>} . (27

The 4-bracket of the space-time coordinates X cor-
responds to the algebraic action derived in [1,17] for
p = 3 case and with the fermionic fields turned off.
The new term here is the mixed four-bracket of the X
and T

Presenting a general algebraic form for the term
FWF'W in the DBI action is not possible, but in
some special cases it acquires a simple form. For
example, one can consider a selfdual (anti-selfdual) field
strength that corresponds to instanton. An instanton
is a static (solitonic) solution of pure Yang—Mills theo-
ries [32]. They are important in both supersymmetric
field theories and superstring theories, mostly because
of their nonperturbative effects. They also play a role
in M-theory, for instance, in applying the M2-brane ac-
tions to the M5-brane [33]. The solution of field equa-
tions in the Yang—Mills theory corresponding to an in-
stanton has a selfdual (anti-selfdual) field strength [32].
Considering this property gives the following expression

for tr FHVF'“” in the case of a regular one-instanton so-
lution [32]:
~ ~ p4
tr F,, F* = —96 ,
" ((z = 20)* + p?)*

(2.8)

where zg and p are arbitrary parameters called collec-
tive coordinates. Hence, in the instantonic case, the
full algebraic form of the DBI part of the action

Spar = —/d‘*gV(T) (1—24((”—4> x

l‘—l‘g)2+p2)4

X { - <LMNLOPLQRLST[XM,XO,XQ,XS] X

4
x XN, xP xR xT)+ mLMNLOPLQR X

1/2
><[T,XM,XO,XQ][T,XN,XP,XR]>} . (2.9

2.2. WZ part of the M3-brane action

The integrand of the WZ action in (2.1) can be di-
vided into three parts by replacing & from (2.2):

K123 fea i —
Swz ¢ 8H1T"€M2M3M4 =

=6u1“2”3”48u1T<8 o2 g 52 +8u4@)(2) +

M2 g fia 3" o g K23
1 -~ ~ N ~ ~ N N
+ 501\’MND;12XKDM3XMDM4XN +
1 . . .
+ aAuz (auab;m - 8M4bu3)>7 (2'10)

where we now deal with each part separately.

By expanding the first part, three terms of (%
derivatives, and considering all possible permutations
of the four-dimensional Levi-Civita symbol g#tHzH3ks
we come to a view of a two-algebra. The reason is
that according to (A.5), having two derivative factors
signals a two-algebra carrying its two-dimensional Le-
vi-Civita symbol. But because only different permuta-
tions of eH1H2k3H4 oive correct signs to the terms here,
multiplying the resultant two-algebra by another two-
dimensional Levi-Civita symbol and using the relation

e s = 0205 — 6367

leads to the correct form. The first part of the WZ ac-
tion is therefore reformulated in terms of the two-bra-
cket as

SWZ,l — 5#1#2#3#4 X

X 0T (s = Ouaoys + 0iof2, ) =

K2 g g 3= o g Ha=pops

= 35111#2#3#46“1“2 [Tv Wu3u4]~ (2'11)
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In the second part of the WZ action, three X deriva-
tives, 90X, and one tachyon derivative, 9T, appear such
that they obviously form a four-algebra:

1 -~
SWZ72 — yCI\’MNEMNZMNM X

1

= 3l OKMN5“1“2“3“4 (

X Oy XK 0,, XM, XN =

(1_

Substituting A, in the last part of the WZ action,
we are faced with terms consisting of 90X, 9T, and
0b, which according to (A.5) indicates a three-algebra.
Similarly to the argument made for the first part of the
WZ action, multiplying this three-bracket by a three-
dimensional Levi-Civita symbol and using the identity

kPkp

|kI?

= =Cgun

3
2 ) [T, XK xM xN. (2.12)

s = 05 (0567 — 0367) — 62(85 83 — 557) +
+05(5507 = 6587),
gives the convenient three-algebra. Different permu-
tations of the four-dimensional Levi-Civita symbol are

responsible for correct signs of different terms in the
three-algebra. Hence, the algebraic form of this part is

1 N ~ ~
Swzs — 56”1“2“3“48;“1114”2 (8H3bﬂ4 _8M4bu3) —
ko
= 2'|I%|25M1u2u3u46u1u2u3[T,XM,bM]. (2.13)

Therefore, the WZ action of the M3-brane is pre-
sented in terms of two-, three-, and four-brackets as

Swz = _/d4£V(T){3€mu2u3M€mu2 [T, Wyspa] +

kPkp

3
W) [T, X%, xM XN+

1
+ chMN (1 -

XV b @)

We see that the tachyon field respectively couples to
space-time coordinates, the Born—Infeld one-form lA)M,
and the two-form &® through four-, three-, and two-
brackets.

3. SUMMARY AND CONCLUSION

We have presented an algebraic form for the bosonic
M3-brane action by reformulating this action in terms
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of brackets. In the literature, p-branes are described
by a (p + 1)-algebra [17], and we could therefore ex-
pect a four-algebra structure for the M3-brane. But
it was shown that the algebraic representation of the
M3-brane is a combination of four-, three-, and two-al-
gebras. Generally, this difference stems from the in-
stability of the system that the tachyon is responsible
for. Except the four-bracket of space-time coordinates
in the DBI part, the tachyon field is present in all other
brackets and forms four-, three-, and two-brackets with
space-time coordinates, the two-form, ©®), and the
Born—Infeld one-form Eu. In the future, we will try
to study the dimensional reduction of this algebraic
action.

APPENDIX

Fillipov’s n-Lie algebra

Fillipov’s n-Lie algebra [19], as a natural general-
ization of a Lie algebra, is defined by an n-bracket sat-
isfying the total antisymmetry property

X1, Xy XG0 X)) =
=—-[Xq,..., X;,..., X5, X)L (AL
and the Leibniz rule
X1,..., Xn 1, [V, Y]] =

=> W, [X e X Y] Yol (A2)
j=1

The n-Lie algebra is equipped with an invariant inner
product,

(X,Y) =(Y, X), (A.3)

and the invariance under the n-bracket transformation
([X1,..., X1, YL, 2) +

+(Y,[Xy,..., X0n-1,Z2]) =0. (A4)

When n = 2, the definition reduces to the usual Lie al-
gebra and the inner product can be given by the trace.

The n-Lie algebra can be realized in terms of the
Nambu n-bracket defined over a functional space on an
n-dimensional manifold [18]:

[Xl,XQ,... ,Xn] p=4 {Xl,XQ,... 7Xn}NB =
1

= ﬁglllz---lnahxlalz& 0, Xny (ALB)

where G is the determinant of the metric of the ma-
nifold and can be chosen arbitrarily since properties
(A.1)—(A.4) hold irrespective of the presence of the lo-
cal factor [1].
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