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Using the imaginary time method, a new formulation of Coulomb corrections to the amplitude of nonlinear ion-
ization of atoms is given. The Coulomb corrections to the photoelectron action and trajectory are presented in
the form independent of the integration path in the imaginary time plane. The obtained representation corrects
the previously known results and shows that the subdivision of photoelectron motion into the sub-barrier and
after-barrier parts is conditional and does not influence observables. The new correction is particularly relevant

in the multiphoton regime of ionization.
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1. INTRODUCTION

The theory of nonlinear ionization of atoms by in-
tense laser radiation originates in the seminal work
of Keldysh [1], where an efficient nonperturbative ap-
proximation for the amplitude of ionization by an in-
tense low-frequency electromagnetic field was formu-
lated. The term “low-frequency field” means in this
content that the ionization potential I, of an atom is
much greater than the photon energy fw, i.e., the mul-
tiquantum parameter is large,

Ky=1I,/w>1 (1)
Under this condition, ionization can only proceed via a
nonlinear mechanism. The Keldysh ionization ansatz
can be summarized as follows. In a strong laser field,
the electron continuum states can be with reasonable
accuracy approximated by Gordon—Volkov waves [2, 3],
solutions of the Schrodinger equation (Klein—Gordon or
Dirac equation in the relativistic case) for an electron
in the field of a plane electromagnetic wave. If the
laser field is strong enough, the interaction of a liber-
ated electron with its parent ion can be disregarded in
the zeroth approximation. On the other hand, in order
to fully ionize a bound atomic level, the electric field
strength & well below the characteristic electric field
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Een, of this level is usually sufficient, and therefore the
condition

F=8&/6nx1 (2)

is satisfied for most of the cases. Here, the characteris-
tic field is defined as
( > 3/2

with m and e being the electron mass and the elemen-
tary charge. Under conditions (1) and (2), the influence
of the laser field on the bound state can be disregarded,
and the ionization amplitude can be presented in the
form

m2

_ 21,
T eh

m

Een (3)

Ao(p) = — / e UV (@) Vit ()W), (4)

h

where Wy is the bound field-free atomic state, \I/S/)
is the Volkov function corresponding to the asymp-
totic electron momentum equal to p, and Vj,; is the
electron—field interaction operator. Equation (4) gives
the probability amplitude of nonlinear ionization at ar-
bitrary values of the Keldysh parameter

\2mlI,w
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where w is the laser-field frequency.
The theoretical approach based on the above idea
is known in the literature as the Keldysh theory or

v = (5)
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strong field approximation (SFA) [4, 5]. Over the time
after publication of Keldysh’s work [1], it was essen-
tially developed and applied for description of a variety
of strong-field phenomena. The present status of the
Keldysh theory and SFA was reviewed in Refs. [6-8].
Amplitude (4) does not account for the electron—ion
interaction in the continuum. For systems bound by
short-range forces, e.g., negative ions, this interaction
is small, but still causes observable effects. For a re-
view of theoretical approaches to description of strong-
field ionization of negative ions, we refer the reader
to [9, 10] and the references therein. For atoms and
molecules, the Coulomb force generates significant ef-
fects, whose description requires an essential modifica-
tion of the theory. This was achieved by the introduc-
tion of Coulomb corrections into the phase of ampli-
tude (4). Evaluation of these corrections is based on
the imaginary time method (ITM) [11], which allows
expressing amplitude (4) via the electron action in the
field of a plane electromagnetic wave, calculated along
a classical trajectory in complex time. In the early pa-
per by Perelomov and Popov [12], the ITM was applied
for calculation of the total ionization rate of atoms in
the tunneling limit, v < 1. It was shown there that
the Coulomb field enhances the rate of ionization typi-
cally by several orders of magnitude. Later, this result
was generalized to the case of arbitrary values of the
Keldysh parameter [13] (assuming that inequality (1) is
satisfied, however). Besides enhancing the total ioniza-
tion rate, the Coulomb interaction was shown to gener-
ate several effects accessible for experimental observa-
tion, including the Coulomb asymmetry in elliptically
polarized fields [14-16], cusps and double-hump struc-
tures [17-19], low-energy structures [20-23], and side
lobes [24] in momentum spectra of photoelectrons.
Currently, the method of Coulomb corrections in
the theory of strong-field ionization is well developed.
This includes classical trajectory simulations, a rela-
tivistic version of the Keldysh theory, the trajectory-
based SFA, and other approaches. For details, we re-
fer to [6,8,25] and the references therein. The aim
of this paper is to address one controversial issue in-
herent to all the above-mentioned methods of evalua-
tion of Coulomb corrections. Namely, the calculation
procedure involves the photoelectron tunnel exit — a
spatial point where the electron appears in real time
and space after ionization. In purely classical simula-
tions (e.g., in Refs.[15, 21, 23]), the tunnel exit is a
starting point for a calculation, and the influence of
the electron—ion interaction on the electron dynamics
before the electron appears at the exit is not consid-
ered. In quantum mechanical calculations, including
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the ITM, both sub-barrier and after-barrier motion of
the electron are taken into account. The sub-barrier
motion mostly yields the imaginary part of the action
and influences the absolute value of the ionization prob-
ability. Photoelectron motion after the barrier proceeds
in real time and space and influences the real part of the
action, and therefore the interference structure of pho-
toelectron spectra. As a result, the tunnel exit enters
Coulomb corrections to the photoelectron action. On
the other hand, the position of the tunnel exit is not an
observable, and hence it must not influence momentum
distributions.

The question therefore arises: is it possible to for-
mulate the method of Coulomb corrections in a form
that does not involve the tunnel exit, but only depends
on the observables of the problem? Such a formulation
is given in this paper. It is shown that the Coulomb
correction to the photoelectron momentum can be pre-
sented in the form of a converging integral in the com-
plex time plane, which only depends on the momentum
itself. The integration paths must be chosen taking the
analyticity properties of the Coulomb interaction en-
ergy in complex space into account. It is then shown
that the obtained Coulomb correction reproduces the
previously known result in the tunneling regime v < 1,
but this is not the case for v > 1.

This paper is organized as follows. In Sec. 2, we in-
troduce basic equations and briefly describe the stan-
dard approach to the calculation of Coulomb correc-
tions. In Sec. 3, we derive an invariant form of the
Coulomb correction to the photoelectron momentum,
which does not involve the tunnel exit position. The
choice of the integration path in the complex time plane
is then discussed. The last section contains conclusions.

2. BASIC EQUATIONS

Using the ITM, ionization amplitude (4) can be rep-
resented in the form (here and hereafter, atomic units
h=m = e are used) [11,12]

AO (p) X exp(iWO (P, ls, T))v (6)

where W, is the reduced electron action in the laser
field £(¢),

WO (pa ts (p)a T)
T

/A

ts

T
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and the trajectory ro(t) satisfies the Newton equation
fo = —£(t), (8)
with the initial and final conditions

ro(ts) =0, vo(T)=p. (9)

Here, T — oo is the time instant when the electron,
having the velocity vp and momentum p is observed
at the detector. A preexponential factor not important
for our purposes is omitted in (6). Its particular form is
determined by the initial-state wave function [6, 7, 26].
The first equation in (9) shows that the initial time
ts of electron motion is always complex, while the se-
cond equation assumes that before the ionization event,
the electron was confined in the atom. Introducing the
laser field vector potential such that £(t) = —A(t), we
can represent the first equation in (9) in the form

b+ A(t,)] = —21,, (10)

v% (ts) = —21I),

which determines a complex saddle point t5(p). The
ITM equations provide us with a physically appealing
picture of ionization: the electron starts from the origin
at a complex time instant 5 = to+i7y, having an imag-
inary initial velocity vo(ts) = i\/2I,. As time arrives
to the real axis, t = tg, the velocity also becomes real.
The electron coordinate b = rg(tp) is also real for the
most probable trajectory that minimizes the imaginary
part of action (7). This point b is interpreted as the
tunnel exit. For a linearly polarized monochromatic

field
E(t) =Epcosp, ¢ =wt, (11)
we obtain
Eo .
vol¢) = p — sing,
w
(12)
P &y
ro(p) = ;(99 — ps) + E(COS@ — COS (Pg).

For the most probable trajectory p = 0, s = iArcsh~y,
and the tunnel exit point is given by

b:%<\/1+72—1). (13)

In the tunneling limit v < 1, this gives the standard
potential barrier width in a static field b = I,,/&; in
the opposite multiphoton regime, b = /21, /w.

The procedure introducing Coulomb corrections to
amplitude (6) is as follows [13, 25].

1. The Coulomb-free trajectory is replaced by a
corrected one:
Zrg

3 )
o

vo(t) = p+A(t) = vo(t)+vi(t), (14)

Vi =

where Z is the atomic residual charge (Z = 1 for ion-
ization of neutral atoms and Z = 0 for negative ions).

2. The photoelectron momentum is no longer con-
served, and therefore its value p’ at the tunnel exit is
different from the one measured by a detector. Thus,
the initial drift momentum is to be found from

v(T)=p'+vi(T) =p. (15)

3. The corresponding saddle point t, = t4(p') is cal-
culated from the same saddle-point equation (10) with
p’ instead of p. The momentum p’ is defined such that
Vi (to) =0.

4. The Coulomb interaction Uc = —Z/r is added
to the action.

The Coulomb-corrected ionization amplitude is

A(p) ~ exp(iW (p, t;, T)),

T (16)

ts

T
W:/{%v2—£(t)~r+£—fp}dt—r~v
r
tl

Taking into account that the correction vy in (14) is
found perturbatively and assuming that the Coulomb
perturbation is small compared to the value of the field-
induced action Wy, we can keep only contributions
linear in the charge Z in (16). We note that being
small compared to the action W}, Coulomb corrections
are usually much greater than unity in absolute value;
this determines their significant effect on the ionization
probability and momentum distributions.
The first-order expansion of action (16) yields
W(p,t,,T) ~ Wo(p',t., T) +

IR

T T

A
+/r0—(7_)d7'—r0-v1t. (17)

ts °

The first term is the Coulomb-free action calculated
along the new trajectory, and the second is the
Coulomb action calculated along the Coulomb-free tra-
jectory. The last term originates from the correction to
the photoelectron trajectory and has a finite nonzero
value at the lower limit.

The Coulomb integral

T

A

ts

is logarithmically divergent at the lower limit and re-
quires regularization. It is performed by replacing
ts — t. (Fig. 1) and matching the result of integra-
tion to the asymptotic form of the atomic bound-state
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Fig.1. Complex time plane with the saddle point #,
= to + i7o: (@) the standard integration path connec-
ting the saddle point with the real time of observation
T is shown by a solid line. Other possible paths gi-
ving the same result for Wy are shown by dashed lines;
(b) the circle of the radius |t. — ts| characterizing the
matching region. In the tunneling regime, the radius of
this curve is greater than 7o, and hence the real part of
the stationary point can be chosen as a starting point
for integration in Eq. (21)

wave function [11-13]. The matching point satisfies the
condition
1/Ko € wlt, —ts] < 1. (19)

The regularized result has the form [12]

We = —in, In(2iKoT) +
T 7 .
+/ e+ Lt (20)
AW

where the effective principal quantum number n,
= Z/\/2I, is introduced. The integration path in (20)
is usually chosen as shown in Fig. 1a by a solid line:
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from the stationary point ¢4 to its projection #y on the
real axis and then along the real axis. The respective
contributions can be interpreted as the sub-barrier and
after-barrier corrections. For the most probable photo-
electron momentum, the first integral is imaginary and
gives the Coulomb correction to the rate of ionization
[12, 13], while the second is real and corrects the phase
of the probability amplitude and thus the interference
structure of momentum distributions [25]. For other
final momenta, both sub-barrier and after-barrier cor-
rections respectively acquire a real and an imaginary
part. The sub-barrier correction for arbitrary final mo-
menta was first calculated in Ref. [27]. Tt was shown
that taking it into account essentially corrects the in-
terference structure of momentum distributions, impro-
ving their agreement with results of ab-initio numerical
solutions of the time-dependent Schrodinger equation.
For circularly polarized fields, this phase correction was
analyzed in Refs. [28-31].

To calculate the first term in (17), we must find the
renormalized momentum p’(p). This calculation meets
a principal difficulty. In the first order with respect to
the Coulomb force,

T
r
v = —Z/ 2 dt.
To
ts

This integral is divergent at the lower integration limit,
and a similar problem appears with differential equa-
tion (14), because the particle starts at the origin where
the Coulomb force is divergent. A commonly accepted
way of avoiding this difficulty is to start integration
from the real time instant tg when the electron is at
the tunnel exit b = rg(tg). In other words, the influ-
ence of the Coulomb force on the photoelectron mo-
mentum is taken into account only after the barrier.
To the best of our knowledge, this ansatz was used in
all the works with calculations of Coulomb corrections
to photoelectron trajectories. This approach yields the
high-frequency correction to the rate of ionization [13]
and allows reproducing the Coulomb asymmetry in el-
liptically polarized fields [15, 16], the low-energy struc-
ture [21, 22], and other effects in photoionization spec-
tra. In the recent series of works [32-34], this method
for calculating the Coulomb-induced correction to the
photoelectron final momentum was used for quantita-

(21)

tive description of experiments on attosecond streaking.

Despite good agreement with experimental data
and exact numerical solutions, the above-described ap-
proach to the calculation of the final momentum is obvi-
ously controversial. The tunnel exit is not a physically
distinguished spatial point and nothing special happens



S. V. Popruzhenko

MKITD, Tom 145, Bhm. 4, 2014

to the electron there. Moreover, because laser-induced
action (7) is an analytic function of the complex time,
any integration path connecting the points ¢; and T,
can be chosen, such that the time instant when the
electron velocity becomes real is arbitrary (see the il-
lustration in Fig. 1a). Hence, the starting point for in-
tegration in real time cannot be defined in the theory.
As a result, any proper expression for the Coulomb-
corrected action must involve not ¢y but only the sad-
dle point ¢4(p). The questions then occur: (i) how to
make integral (21) meaningful and path-independent,
and (ii) why do the previously obtained results based
on an incorrect regularization of (21) yield good agree-
ment with the data? These questions are answered in
the next section, where an invariant expression for the
Coulomb correction to the final photoelectron momen-
tum is derived.

3. INVARIANT FORM OF THE COULOMB
CORRECTION

Coulomb correction (20) is already presented in the
form independent, of the integration path, if this path
does not intersect cuts of the function 1/ro(t). Posi-
tions of the branch points and the corresponding cuts
are discussed at the end of this section.

To obtain a finite expression for the Coulomb-cor-
rected momentum, we consider Eq. (14) at a time .
that satisfies (19). Under this condition, the electron
is far from the atom, and hence the Coulomb force is
small compared with the laser one, but its excursion
is still small compare to the electron quiver amplitude
in the laser field, & /w?. Then ry from (12) can be
expanded in a series in t — tg:

ro(t) ~ [p + A(ts)](t —ts) — %E(ts)(t —tg)2.

Omitting the terms that are small under condition (19),
after a simple algebra, we obtain

v, = f{—ig‘zg) +f(t—ts)}dt-|-

s

+iZFg(p,v)In(T), (22)

where
_igpud_ata  slays)
f=r {(sa—¢s)2 sa—sos} (23)
and
5= [+ Sarale @rap|ospn @0

Here, the dimensionless quantities are q = p/pr
and a = A(ts)/pr, with the field-induced momentum
pr = £ /w and the unit vector e along the polarization
direction. The integral in (22) converges and its value
is independent of the integration path if it does not in-
tersect the cuts of the function ro/r3. The obtained
value of vy corrects the initial complex photoelectron
velocity, such that

v(ts) =p+A(t,) —vi =p' + A(t).  (25)

Equations (22)—(25) define the action in (17) and thus
the ionization amplitude and present the main result
in the paper. They improve the previously accepted
equation (21) for the Coulomb corrected photoelectron
momentum.

Unlike laser-induced action (7), Coulomb integral
(18) is not an analytic function in the whole complex
plane. The analytic function r2 from (12) in general has
an infinite number of first-order zeros, which generate
corresponding branch points and cuts of the functions
1/rg and ro/r3. A proper integration path in Eqs. (20)
and (22) should connect t; and T without intersecting
the cuts. A map of cuts is shown on Fig. 2 for some
typical set of parameters. The roots of the equation

r3(t,) =0 (26)

come in pairs, which merge for the electron momenta
parallel to the polarization axis. In this special case,
the t,, are second-order zeros, like the saddle point g
always is. Then the Coulomb potential energy has no
branch points but first-order poles only. The presence
of even a small lateral momentum component converts
these poles into pairs of branch points, which recede
from another with as p; increases. Cuts are defined as
the lines in the complex time plane where rj < 0. For
trajectory (12), their asymptotic forms are given by

@nzz-l-ﬂ'n’ n=0,12,... (27)

2
As is seen from Fig. 2, it is possible to connect the
time instants ts and T by a curve avoiding the cuts. A
more detailed study shows that this is always the case.
This curve may even coincide with the standard path
(solid curve in Fig. 1) associated with the tunnel exit,
but not for all final momenta: for small longitudinal
and large perpendicular momenta, a branch point ap-
proaches this line (see Fig. 2b); for p, = 0, it is clearly
seen that it lies exactly between s and ty. Indeed, the
equation
S — i) = chp = cheiy
0
always has a solution 0 < v, < 99 if p, is sufficiently
large or if v < 1.
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Fig.2. Branch points (solid dots) and cuts (lines) of
the function 1/7 () in the dimensionless complex time
plane for emission at 0.1 rad (a) to the polarization axis
and (b) in the perpendicular direction. The parameters
are &, = w = 0.05, p = 1.0. Branch points come in
pairs. The stationary point t5 is a first-order pole

4. CONCLUSIONS

To conclude, we have derived a new expression for
the Coulomb-corrected photoelectron momentum for a
strong field ionization of atoms. The main advantage of
Eqs. (22)—(24) compared to the previously known result
is that their form is invariant with respect to the choice
of the integration path, i.e., the Coulomb-corrected ac-

tion remains a function of a complex variable as it was
in the Coulomb-free theory. In the new formulation,
the tunnel exit does not play the role of a physically
significant spatial point.

For their applicability, Eqgs. (22)—(24) require the
condition

4KEF > 1, (28)

which follows from (19). It is equivalent to 2Ky > v
and imposes an upper bound on the Keldysh parame-
ter.

The question may arise: why do the calculations
based on the meaningless regularized form of expres-
sion (21) with t; — o in many cases yield good
agreement with experimental data and numerical
results? The reason becomes clear if we compare the
barrier width with the distance between the electron
and the ion at the matching time instant t.. In the
tunneling regime, the two length parameters ro(t.)
and b are of the same order, and therefore the tunnel
exit can be taken as a starting point for electron
motion, as can be any other spatial point from the
matching circle shown in Fig. 1b. In the opposite limit
v > 1, we have ro(t.) < b because b > & /w?. Then
the integral in (22) contains an essential “sub-barrier”
contribution, omitted in the standard expression for
the Coulomb-corrected momentum. Thus, our results
are virtually identical to the previously known ones in
the regime of tunneling and provide new expressions
for the Coulomb-corrected momentum and action in
the multiphoton limit.
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