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INVARIANT FORM OF COULOMB CORRECTIONSIN THE THEORY OF NONLINEAR IONIZATIONOF ATOMS BY INTENSE LASER RADIATIONS. V. Popruzhenko *National Resear
h Nu
lear University MEPhI115409, Mos
ow, RussiaRe
eived November 24, 2013Using the imaginary time method, a new formulation of Coulomb 
orre
tions to the amplitude of nonlinear ion-ization of atoms is given. The Coulomb 
orre
tions to the photoele
tron a
tion and traje
tory are presented inthe form independent of the integration path in the imaginary time plane. The obtained representation 
orre
tsthe previously known results and shows that the subdivision of photoele
tron motion into the sub-barrier andafter-barrier parts is 
onditional and does not in�uen
e observables. The new 
orre
tion is parti
ularly relevantin the multiphoton regime of ionization.DOI: 10.7868/S00444510140400891. INTRODUCTIONThe theory of nonlinear ionization of atoms by in-tense laser radiation originates in the seminal workof Keldysh [1℄, where an e�
ient nonperturbative ap-proximation for the amplitude of ionization by an in-tense low-frequen
y ele
tromagneti
 �eld was formu-lated. The term �low-frequen
y �eld� means in this
ontent that the ionization potential Ip of an atom ismu
h greater than the photon energy ~!, i. e., the mul-tiquantum parameter is large,K0 = Ip=! � 1: (1)Under this 
ondition, ionization 
an only pro
eed via anonlinear me
hanism. The Keldysh ionization ansatz
an be summarized as follows. In a strong laser �eld,the ele
tron 
ontinuum states 
an be with reasonablea

ura
y approximated by Gordon�Volkov waves [2, 3℄,solutions of the S
hrödinger equation (Klein�Gordon orDira
 equation in the relativisti
 
ase) for an ele
tronin the �eld of a plane ele
tromagneti
 wave. If thelaser �eld is strong enough, the intera
tion of a liber-ated ele
tron with its parent ion 
an be disregarded inthe zeroth approximation. On the other hand, in orderto fully ionize a bound atomi
 level, the ele
tri
 �eldstrength E0 well below the 
hara
teristi
 ele
tri
 �eld*E-mail: sergey.popruzhenko�gmail.
om

E
h of this level is usually su�
ient, and therefore the
ondition F = E0=E
h � 1 (2)is satis�ed for most of the 
ases. Here, the 
hara
teris-ti
 �eld is de�ned asE
h = m2e~ �2Ipm �3=2 (3)with m and e being the ele
tron mass and the elemen-tary 
harge. Under 
onditions (1) and (2), the in�uen
eof the laser �eld on the bound state 
an be disregarded,and the ionization amplitude 
an be presented in theform A0(p) = � i~ Z d4x	�(V )p (x)Vint(x)	b(x); (4)where 	b is the bound �eld-free atomi
 state, 	(V )pis the Volkov fun
tion 
orresponding to the asymp-toti
 ele
tron momentum equal to p, and Vint is theele
tron��eld intera
tion operator. Equation (4) givesthe probability amplitude of nonlinear ionization at ar-bitrary values of the Keldysh parameter
 = p2mIp !eE0 ; (5)where ! is the laser-�eld frequen
y.The theoreti
al approa
h based on the above ideais known in the literature as the Keldysh theory or664
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tions : : :strong �eld approximation (SFA) [4, 5℄. Over the timeafter publi
ation of Keldysh's work [1℄, it was essen-tially developed and applied for des
ription of a varietyof strong-�eld phenomena. The present status of theKeldysh theory and SFA was reviewed in Refs. [6�8℄.Amplitude (4) does not a

ount for the ele
tron�ionintera
tion in the 
ontinuum. For systems bound byshort-range for
es, e. g., negative ions, this intera
tionis small, but still 
auses observable e�e
ts. For a re-view of theoreti
al approa
hes to des
ription of strong-�eld ionization of negative ions, we refer the readerto [9, 10℄ and the referen
es therein. For atoms andmole
ules, the Coulomb for
e generates signi�
ant ef-fe
ts, whose des
ription requires an essential modi�
a-tion of the theory. This was a
hieved by the introdu
-tion of Coulomb 
orre
tions into the phase of ampli-tude (4). Evaluation of these 
orre
tions is based onthe imaginary time method (ITM) [11℄, whi
h allowsexpressing amplitude (4) via the ele
tron a
tion in the�eld of a plane ele
tromagneti
 wave, 
al
ulated alonga 
lassi
al traje
tory in 
omplex time. In the early pa-per by Perelomov and Popov [12℄, the ITM was appliedfor 
al
ulation of the total ionization rate of atoms inthe tunneling limit, 
 � 1. It was shown there thatthe Coulomb �eld enhan
es the rate of ionization typi-
ally by several orders of magnitude. Later, this resultwas generalized to the 
ase of arbitrary values of theKeldysh parameter [13℄ (assuming that inequality (1) issatis�ed, however). Besides enhan
ing the total ioniza-tion rate, the Coulomb intera
tion was shown to gener-ate several e�e
ts a

essible for experimental observa-tion, in
luding the Coulomb asymmetry in ellipti
allypolarized �elds [14�16℄, 
usps and double-hump stru
-tures [17�19℄, low-energy stru
tures [20�23℄, and sidelobes [24℄ in momentum spe
tra of photoele
trons.Currently, the method of Coulomb 
orre
tions inthe theory of strong-�eld ionization is well developed.This in
ludes 
lassi
al traje
tory simulations, a rela-tivisti
 version of the Keldysh theory, the traje
tory-based SFA, and other approa
hes. For details, we re-fer to [6; 8; 25℄ and the referen
es therein. The aimof this paper is to address one 
ontroversial issue in-herent to all the above-mentioned methods of evalua-tion of Coulomb 
orre
tions. Namely, the 
al
ulationpro
edure involves the photoele
tron tunnel exit � aspatial point where the ele
tron appears in real timeand spa
e after ionization. In purely 
lassi
al simula-tions (e. g., in Refs.[15, 21, 23℄), the tunnel exit is astarting point for a 
al
ulation, and the in�uen
e ofthe ele
tron�ion intera
tion on the ele
tron dynami
sbefore the ele
tron appears at the exit is not 
onsid-ered. In quantum me
hani
al 
al
ulations, in
luding

the ITM, both sub-barrier and after-barrier motion ofthe ele
tron are taken into a

ount. The sub-barriermotion mostly yields the imaginary part of the a
tionand in�uen
es the absolute value of the ionization prob-ability. Photoele
tron motion after the barrier pro
eedsin real time and spa
e and in�uen
es the real part of thea
tion, and therefore the interferen
e stru
ture of pho-toele
tron spe
tra. As a result, the tunnel exit entersCoulomb 
orre
tions to the photoele
tron a
tion. Onthe other hand, the position of the tunnel exit is not anobservable, and hen
e it must not in�uen
e momentumdistributions.The question therefore arises: is it possible to for-mulate the method of Coulomb 
orre
tions in a formthat does not involve the tunnel exit, but only dependson the observables of the problem? Su
h a formulationis given in this paper. It is shown that the Coulomb
orre
tion to the photoele
tron momentum 
an be pre-sented in the form of a 
onverging integral in the 
om-plex time plane, whi
h only depends on the momentumitself. The integration paths must be 
hosen taking theanalyti
ity properties of the Coulomb intera
tion en-ergy in 
omplex spa
e into a

ount. It is then shownthat the obtained Coulomb 
orre
tion reprodu
es thepreviously known result in the tunneling regime 
 � 1,but this is not the 
ase for 
 � 1.This paper is organized as follows. In Se
. 2, we in-trodu
e basi
 equations and brie�y des
ribe the stan-dard approa
h to the 
al
ulation of Coulomb 
orre
-tions. In Se
. 3, we derive an invariant form of theCoulomb 
orre
tion to the photoele
tron momentum,whi
h does not involve the tunnel exit position. The
hoi
e of the integration path in the 
omplex time planeis then dis
ussed. The last se
tion 
ontains 
on
lusions.2. BASIC EQUATIONSUsing the ITM, ionization amplitude (4) 
an be rep-resented in the form (here and hereafter, atomi
 units~ = m = e are used) [11; 12℄A0(p) / exp(iW0(p; ts; T )); (6)where W0 is the redu
ed ele
tron a
tion in the laser�eld E(t),W0(p; ts(p); T ) == TZts �12v20 � E(t) � r0 � Ip�dt� r0 � v0����Tts ; (7)665
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tory r0(t) satis�es the Newton equation�r0 = �E(t); (8)with the initial and �nal 
onditionsv20(ts) = �2Ip; r0(ts) = 0; v0(T ) = p: (9)Here, T ! 1 is the time instant when the ele
tron,having the velo
ity v0 and momentum p is observedat the dete
tor. A preexponential fa
tor not importantfor our purposes is omitted in (6). Its parti
ular form isdetermined by the initial-state wave fun
tion [6, 7, 26℄.The �rst equation in (9) shows that the initial timets of ele
tron motion is always 
omplex, while the se-
ond equation assumes that before the ionization event,the ele
tron was 
on�ned in the atom. Introdu
ing thelaser �eld ve
tor potential su
h that E(t) = � _A(t), we
an represent the �rst equation in (9) in the form[p+A(ts)℄2 = �2Ip; (10)whi
h determines a 
omplex saddle point ts(p). TheITM equations provide us with a physi
ally appealingpi
ture of ionization: the ele
tron starts from the originat a 
omplex time instant ts = t0+i�0, having an imag-inary initial velo
ity v0(ts) = �ip2Ip. As time arrivesto the real axis, t = t0, the velo
ity also be
omes real.The ele
tron 
oordinate b � r0(t0) is also real for themost probable traje
tory that minimizes the imaginarypart of a
tion (7). This point b is interpreted as thetunnel exit. For a linearly polarized mono
hromati
�eld E(t) = E0 
os'; ' = !t; (11)we obtain v0(') = p� E0! sin';r0(') = p! ('� 's) + E0!2 (
os'� 
os's): (12)For the most probable traje
tory p = 0, 's = iAr
sh 
,and the tunnel exit point is given byb = E0!2 �p1 + 
2 � 1� : (13)In the tunneling limit 
 � 1, this gives the standardpotential barrier width in a stati
 �eld b = Ip=E0; inthe opposite multiphoton regime, b =p2Ip=!.The pro
edure introdu
ing Coulomb 
orre
tions toamplitude (6) is as follows [13, 25℄.1. The Coulomb-free traje
tory is repla
ed by a
orre
ted one:v0(t) = p+A(t)! v0(t)+v1(t); _v1 = �Zr0r30 ; (14)

where Z is the atomi
 residual 
harge (Z = 1 for ion-ization of neutral atoms and Z = 0 for negative ions).2. The photoele
tron momentum is no longer 
on-served, and therefore its value p0 at the tunnel exit isdi�erent from the one measured by a dete
tor. Thus,the initial drift momentum is to be found fromv(T ) = p0 + v1(T ) = p: (15)3. The 
orresponding saddle point t0s = ts(p0) is 
al-
ulated from the same saddle-point equation (10) withp0 instead of p. The momentum p0 is de�ned su
h thatv1(t0) = 0.4. The Coulomb intera
tion UC = �Z=r is addedto the a
tion.The Coulomb-
orre
ted ionization amplitude isA(p) � exp(iW (p; t0s; T ));W = TZt0s �12v2 � E(t) � r+ Zr � Ip�dt� r � v����Tt0s : (16)Taking into a

ount that the 
orre
tion v1 in (14) isfound perturbatively and assuming that the Coulombperturbation is small 
ompared to the value of the �eld-indu
ed a
tion W0, we 
an keep only 
ontributionslinear in the 
harge Z in (16). We note that beingsmall 
ompared to the a
tionW0, Coulomb 
orre
tionsare usually mu
h greater than unity in absolute value;this determines their signi�
ant e�e
t on the ionizationprobability and momentum distributions.The �rst-order expansion of a
tion (16) yieldsW (p; t0s; T ) �W0(p0; t0s; T ) ++ TZts Zr0(�)d� � r0 � v1����Tts : (17)The �rst term is the Coulomb-free a
tion 
al
ulatedalong the new traje
tory, and the se
ond is theCoulomb a
tion 
al
ulated along the Coulomb-free tra-je
tory. The last term originates from the 
orre
tion tothe photoele
tron traje
tory and has a �nite nonzerovalue at the lower limit.The Coulomb integralWC = TZts Zr0(�)d� (18)is logarithmi
ally divergent at the lower limit and re-quires regularization. It is performed by repla
ingts ! t� (Fig. 1) and mat
hing the result of integra-tion to the asymptoti
 form of the atomi
 bound-state666
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Fig. 1. Complex time plane with the saddle point ts == t0 + i�0: (a) the standard integration path 
onne
-ting the saddle point with the real time of observationT is shown by a solid line. Other possible paths gi-ving the same result for W0 are shown by dashed lines;(b ) the 
ir
le of the radius jt� � tsj 
hara
terizing themat
hing region. In the tunneling regime, the radius ofthis 
urve is greater than �0, and hen
e the real part ofthe stationary point 
an be 
hosen as a starting pointfor integration in Eq. (21)wave fun
tion [11�13℄. The mat
hing point satis�es the
ondition 1=K0 � !jt� � tsj � 1: (19)The regularized result has the form [12℄WC = �in� ln(2iK0T ) ++ TZts ( Zpr20(t) + in�t� ts) dt; (20)where the e�e
tive prin
ipal quantum number n� == Z=p2Ip is introdu
ed. The integration path in (20)is usually 
hosen as shown in Fig. 1a by a solid line:

from the stationary point ts to its proje
tion t0 on thereal axis and then along the real axis. The respe
tive
ontributions 
an be interpreted as the sub-barrier andafter-barrier 
orre
tions. For the most probable photo-ele
tron momentum, the �rst integral is imaginary andgives the Coulomb 
orre
tion to the rate of ionization[12, 13℄, while the se
ond is real and 
orre
ts the phaseof the probability amplitude and thus the interferen
estru
ture of momentum distributions [25℄. For other�nal momenta, both sub-barrier and after-barrier 
or-re
tions respe
tively a
quire a real and an imaginarypart. The sub-barrier 
orre
tion for arbitrary �nal mo-menta was �rst 
al
ulated in Ref. [27℄. It was shownthat taking it into a

ount essentially 
orre
ts the in-terferen
e stru
ture of momentum distributions, impro-ving their agreement with results of ab-initio numeri
alsolutions of the time-dependent S
hrödinger equation.For 
ir
ularly polarized �elds, this phase 
orre
tion wasanalyzed in Refs. [28�31℄.To 
al
ulate the �rst term in (17), we must �nd therenormalized momentum p0(p). This 
al
ulation meetsa prin
ipal di�
ulty. In the �rst order with respe
t tothe Coulomb for
e,v1 = �Z TZts r0r30 dt: (21)This integral is divergent at the lower integration limit,and a similar problem appears with di�erential equa-tion (14), be
ause the parti
le starts at the origin wherethe Coulomb for
e is divergent. A 
ommonly a

eptedway of avoiding this di�
ulty is to start integrationfrom the real time instant t0 when the ele
tron is atthe tunnel exit b = r0(t0). In other words, the in�u-en
e of the Coulomb for
e on the photoele
tron mo-mentum is taken into a

ount only after the barrier.To the best of our knowledge, this ansatz was used inall the works with 
al
ulations of Coulomb 
orre
tionsto photoele
tron traje
tories. This approa
h yields thehigh-frequen
y 
orre
tion to the rate of ionization [13℄and allows reprodu
ing the Coulomb asymmetry in el-lipti
ally polarized �elds [15, 16℄, the low-energy stru
-ture [21, 22℄, and other e�e
ts in photoionization spe
-tra. In the re
ent series of works [32�34℄, this methodfor 
al
ulating the Coulomb-indu
ed 
orre
tion to thephotoele
tron �nal momentum was used for quantita-tive des
ription of experiments on attose
ond streaking.Despite good agreement with experimental dataand exa
t numeri
al solutions, the above-des
ribed ap-proa
h to the 
al
ulation of the �nal momentum is obvi-ously 
ontroversial. The tunnel exit is not a physi
allydistinguished spatial point and nothing spe
ial happens667
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tron there. Moreover, be
ause laser-indu
eda
tion (7) is an analyti
 fun
tion of the 
omplex time,any integration path 
onne
ting the points ts and T ,
an be 
hosen, su
h that the time instant when theele
tron velo
ity be
omes real is arbitrary (see the il-lustration in Fig. 1a). Hen
e, the starting point for in-tegration in real time 
annot be de�ned in the theory.As a result, any proper expression for the Coulomb-
orre
ted a
tion must involve not t0 but only the sad-dle point ts(p). The questions then o

ur: (i) how tomake integral (21) meaningful and path-independent,and (ii) why do the previously obtained results basedon an in
orre
t regularization of (21) yield good agree-ment with the data? These questions are answered inthe next se
tion, where an invariant expression for theCoulomb 
orre
tion to the �nal photoele
tron momen-tum is derived.3. INVARIANT FORM OF THE COULOMBCORRECTIONCoulomb 
orre
tion (20) is already presented in theform independent of the integration path, if this pathdoes not interse
t 
uts of the fun
tion 1=r0(t). Posi-tions of the bran
h points and the 
orresponding 
utsare dis
ussed at the end of this se
tion.To obtain a �nite expression for the Coulomb-
or-re
ted momentum, we 
onsider Eq. (14) at a time t�that satis�es (19). Under this 
ondition, the ele
tronis far from the atom, and hen
e the Coulomb for
e issmall 
ompared with the laser one, but its ex
ursionis still small 
ompare to the ele
tron quiver amplitudein the laser �eld, E0=!2. Then r0 from (12) 
an beexpanded in a series in t� ts:r0(t) � [p+A(ts)℄(t� ts)� 12E(ts)(t� ts)2:Omitting the terms that are small under 
ondition (19),after a simple algebra, we obtainv1 = TZts ��Zr0(t)r30(t) + f(t� ts)� dt++ iZFg(p; 
) ln(T ); (22)where f = iZF!� q+ a(' � 's)2 � g(q; 's)'� 's � (23)and g = 12 �e+ 3
2 (q+ a)(e � (q+ a))� 
os's: (24)

Here, the dimensionless quantities are q = p=pFand a = A(ts)=pF , with the �eld-indu
ed momentumpF = E0=! and the unit ve
tor e along the polarizationdire
tion. The integral in (22) 
onverges and its valueis independent of the integration path if it does not in-terse
t the 
uts of the fun
tion r0=r30. The obtainedvalue of v1 
orre
ts the initial 
omplex photoele
tronvelo
ity, su
h thatv(ts) = p+A(t0s)� v1 � p0 +A(t0s): (25)Equations (22)�(25) de�ne the a
tion in (17) and thusthe ionization amplitude and present the main resultin the paper. They improve the previously a

eptedequation (21) for the Coulomb 
orre
ted photoele
tronmomentum.Unlike laser-indu
ed a
tion (7), Coulomb integral(18) is not an analyti
 fun
tion in the whole 
omplexplane. The analyti
 fun
tion r20 from (12) in general hasan in�nite number of �rst-order zeros, whi
h generate
orresponding bran
h points and 
uts of the fun
tions1=r0 and r0=r30. A proper integration path in Eqs. (20)and (22) should 
onne
t ts and T without interse
tingthe 
uts. A map of 
uts is shown on Fig. 2 for sometypi
al set of parameters. The roots of the equationr20(tn) = 0 (26)
ome in pairs, whi
h merge for the ele
tron momentaparallel to the polarization axis. In this spe
ial 
ase,the tn are se
ond-order zeros, like the saddle point tsalways is. Then the Coulomb potential energy has nobran
h points but �rst-order poles only. The presen
eof even a small lateral momentum 
omponent 
onvertsthese poles into pairs of bran
h points, whi
h re
edefrom another with as p? in
reases. Cuts are de�ned asthe lines in the 
omplex time plane where r20 < 0. Fortraje
tory (12), their asymptoti
 forms are given by'n = �2 + �n; n = 0; 1; 2; : : : (27)As is seen from Fig. 2, it is possible to 
onne
t thetime instants ts and T by a 
urve avoiding the 
uts. Amore detailed study shows that this is always the 
ase.This 
urve may even 
oin
ide with the standard path(solid 
urve in Fig. 1) asso
iated with the tunnel exit,but not for all �nal momenta: for small longitudinaland large perpendi
ular momenta, a bran
h point ap-proa
hes this line (see Fig. 2b ); for px = 0, it is 
learlyseen that it lies exa
tly between ts and t0. Indeed, theequation p?!E0 ( �  0) = 
h � 
h 0always has a solution 0 <  b <  0 if p? is su�
ientlylarge or if 
 � 1.668
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Fig. 2. Bran
h points (solid dots) and 
uts (lines) ofthe fun
tion 1=r0(t) in the dimensionless 
omplex timeplane for emission at 0.1 rad (a) to the polarization axisand (b ) in the perpendi
ular dire
tion. The parametersare E0 = ! = 0:05, p = 1:0. Bran
h points 
ome inpairs. The stationary point ts is a �rst-order pole4. CONCLUSIONSTo 
on
lude, we have derived a new expression forthe Coulomb-
orre
ted photoele
tron momentum for astrong �eld ionization of atoms. The main advantage ofEqs. (22)�(24) 
ompared to the previously known resultis that their form is invariant with respe
t to the 
hoi
eof the integration path, i. e., the Coulomb-
orre
ted a
-

tion remains a fun
tion of a 
omplex variable as it wasin the Coulomb-free theory. In the new formulation,the tunnel exit does not play the role of a physi
allysigni�
ant spatial point.For their appli
ability, Eqs. (22)�(24) require the
ondition 4K20F � 1; (28)whi
h follows from (19). It is equivalent to 2K0 � 
and imposes an upper bound on the Keldysh parame-ter.The question may arise: why do the 
al
ulationsbased on the meaningless regularized form of expres-sion (21) with ts ! t0 in many 
ases yield goodagreement with experimental data and numeri
alresults? The reason be
omes 
lear if we 
ompare thebarrier width with the distan
e between the ele
tronand the ion at the mat
hing time instant t�. In thetunneling regime, the two length parameters r0(t�)and b are of the same order, and therefore the tunnelexit 
an be taken as a starting point for ele
tronmotion, as 
an be any other spatial point from themat
hing 
ir
le shown in Fig. 1b. In the opposite limit
 � 1, we have r0(t�) � b be
ause b � E0=!2. Thenthe integral in (22) 
ontains an essential �sub-barrier�
ontribution, omitted in the standard expression forthe Coulomb-
orre
ted momentum. Thus, our resultsare virtually identi
al to the previously known ones inthe regime of tunneling and provide new expressionsfor the Coulomb-
orre
ted momentum and a
tion inthe multiphoton limit.The author is grateful to W. Be
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