ПАРНЫЕ КОРРЕЛЯЦИИ В БИДИСПЕРСНОЙ ФЕРРОЖИДКОСТИ ВО ВНЕШНЕМ МАГНИТНОМ ПОЛЕ: ТЕОРИЯ И КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ

Ю. Е. Нехорошкова^а, О. А. Гольдина^а, Ф. Дж. Кэмп^{b*}, Е. А. Елфимова^{а**}, А. О. Иванов^а

^а Институт математики и компьютерных наук, Уральский федеральный университет им. первого Президента России Б. Н. Ельцина 620000, Екатеринбург, Россия

> ^b School of Chemistry, University of Edinburgh EH9 3JJ, Edinburgh, Scotland

Поступила в редакцию 18 октября 2013 г.

Вычисляется парная функция распределения $g(\mathbf{r})$ феррожидкости, которая моделируется бидисперсной системой дипольных твердых сфер. Изучается влияние внешнего однородного магнитного поля и полидисперсности на $g(\mathbf{r})$ и связанный с ней структурный фактор. Расчет проводится методами диаграммного разложения в рамках термодинамической теории возмущений по концентрации частиц и интенсивности межчастичного диполь-дипольного взаимодействия. Приведены аналитические выражения для парной функции распределения с точностью до первого порядка по плотности и второго порядка по интенсивности дипольного взаимодействия. Построенная теория сравнивается с результатами компьютерного моделирования (метод Монте-Карло) для определения ее области применимости. С помощью преобразования Фурье парной корреляционной функции $g(\mathbf{r}) - 1$ определяется структурный фактор рассеяния. Анализируется влияние гранулометрического состава и интенсивности магнитного поля на значение и положение первого максимума структурного фактора, наиболее легко поддающихся экспериментальных изучению. Полученные данные могут служить основой для интерпретации экспериментальных результатов малоуглового нейтронного рассеяния и определения закономерностей в поведении структурного фактора, его зависимости от фракционного состава феррожидкости, межчастичных корреляций и внешнего магнитного поля.

DOI: 10.7868/S0044451014030136

1. ВВЕДЕНИЕ

Возможность управления свойствами и поведением жидких и полимерных сред при помощи внешнего магнитного поля очень привлекательна для современных технологий, так как позволяет решать многие инженерные, биологические и медицинские задачи. Главным условием применения таких материалов является их чувствительность к слабым полям, создание которых не требует громоздкого и дорогостоящего оборудования. Эффективное решение такой задачи дают феррожидкости — искусственно синтезируемые устойчивые взвеси наноразмерных однодоменных частиц ферро- и ферримагнитных материалов в жидких носителях [1]. Свойства феррожидкостей широко изучаются экспериментально [2-8], теоретически [9-15] и методами компьютерного моделирования [14-19]. Для эффективного применения феррожидкостей ключевой характеристикой является микроструктура этих материалов. Прямое экспериментальное изучение микроструктуры феррожидкостей возможно только с помощью техники малоуглового нейтронного рассеяния, позволяющего определить структурный фактор (СФ) [6, 20]. Последний отражает особенности межчастичных корреляций в фурье-пространстве. С помощью обратного преобразования Фурье можно восстановить парную функцию распределения (ПФР), которая описывает плотность вероятности расположения пары феррочастиц на заданном расстоянии и содержит всю информацию о межчастичных корреляциях в системе феррочастиц [21, 22].

^{*}P. J. Camp.

^{**}E-mail: Ekaterina.Elfimova@usu.ru

ПФР позволяет определить многие реологические, электромагнитные и термодинамические характеристики системы [23–27], такие как вязкость, намагниченность, оптическая анизотропия, сжимаемость. Однако обработка экспериментальных данных СФ для восстановления ПФР очень чувствительна к базовой модели феррожидкости, выбранной для интерпретации экспериментальных данных. Только при учете таких факторов, как полидисперсность, межчастичные корреляции, вызванная внешним магнитным полем анизотропия, можно минимизировать ошибки при восстановлении ПФР.

Теоретические исследования и компьютерное моделирование, в отличие от экспериментальных методов, подходят к проблеме изучения микроструктуры феррожидкостей с другой стороны. В базовой модели изначально определена микроструктура феррожидкости. Методами компьютерного моделирования и теоретически вычисляется ПФР, а затем с помощью преобразования Фурье находится СФ. Таким образом можно проследить, как изменение микроструктуры системы отражается на СФ. Эти данные служат основой для интерпретации экспериментальных результатов и определения закономерностей в поведении СФ, его зависимости от фракционного состава феррожидкости, межчастичных корреляций, внешнего магнитного поля.

Что касается теоретических исследований, то СФ феррожидкости с частицами, интенсивно взаимодействующими друг с другом посредством магнитных диполь-дипольных сил, достаточно полно изучен [6, 18, 28–31]. Такие феррожидкости содержат агрегаты феррочастиц в форме гибких цепочек, колец или сеток. Наличие таких агрегатов подтверждено данными компьютерного моделирования [18, 28]; известны также косвенные признаки их присутствия в экспериментах [6]. Теоретические работы позволили объяснить анизотропию СФ во внешнем магнитном поле в рамках «цепочечной» трактовки [31]. Однако в реальных, широко используемых феррожидкостях типа «магнетит в керосине», стабилизированных олеиновой кислотой, устойчивые цепочечные агрегаты фактически невозможны. В работе [32] на основе монодисперсной модели дипольных твердых сфер анизотропия СФ в магнитном поле впервые теоретически была объяснена наличием межчастичных корреляций в феррожидкостях с умеренными концентрациями и невысокой интенсивностью диполь-дипольных взаимодействий. Сравнения построенной теории с результатами компьютерного моделирования [33] (метод Монте-Карло) и [34] (метод молекулярной динамики) позволили определить область применимости теории.

Поскольку реальные феррожидкости являются полидисперсными по своему гранулометрическому составу, следующим шагом развития теории микроструктуры феррожидкостей стала работа [35], в которой было изучено влияние полидисперсности на СФ в отсутствие внешнего магнитного поля. В работе [36] проведено исследование влияния стерических межчастичных взаимодействий немагнитной природы на СФ бидисперсной феррожидкости в отсутствие поля. Построенные аналитические закономерности сравнивались с результатами компьютерного моделирования, проведенного методом молекулярной динамики. Настоящая работа является продолжением предшествующих теоретических исследований, в ней изучено влияние внешнего магнитного поля на СФ и ПФР бидисперсной феррожидкости. Исследования проводятся теоретически и методами компьютерного моделирования (метод Монте-Карло) на основе бидисперсной модели дипольных твердых сфер.

Целью данной статьи являются теоретическое определение ПФР и СФ бидисперсной системы дипольных твердых сфер во внешнем магнитном поле и исследование закономерностей между дисперсным составом феррожидкости и поведением СФ во внешнем магнитном поле.

Статья построена следующим образом. В разд. 2 представлена исследуемая бидисперсная модель дипольных твердых сфер во внешнем магнитном поле. Раздел 3 посвящен теоретическому построению ПФР и СФ: описаны методы исследования, определены аналитические выражения парциальных ПФР. В разд. 4 изложены детали компьютерного моделирования, проведенного методом Монте-Карло. В разд. 5 продемонстрированы результаты исследования ПФР и СФ. Заключительный разд. 6 содержит выводы.

2. МОДЕЛЬ

Феррожидкость моделируется бидисперсной системой однородно намагниченных твердых сферических частиц. Две компоненты рассматриваемой системы будем называть мелкой и крупной фракциями. В мелкой фракции содержится N_s частиц диаметра σ_s и с магнитным моментом m_s . Крупная фракция состоит из N_l частиц диаметра σ_l с магнитным моментом m_l . Соответствующие молярные доли частиц фракций

$$x_s = N_s/N, \quad x_l = N_l/N \quad (N = N_s + N_l).$$

Все частицы взвешены в объеме V при температуре T. Общая объемная концентрация φ определяется суммой объемных концентраций мелкой и крупной фракций:

$$\varphi = \varphi_s + \varphi_l, \quad \varphi_s = N_s \pi \sigma_s^3 / 6V, \quad \varphi_l = N_l \pi \sigma_l^3 / 6V.$$

Внешнее магнитное поле $\mathbf{H} = (0, 0, H)$ направлено параллельно оси *z* лабораторной системы координат. Каждая частица обладает пятью степенями свободы: три степени свободы приходятся на трансляционное движение, описываемое в сферических координатах перемещением радиус-вектора центра масс *i*-й частицы $\mathbf{r}_i = (r_i, \theta_i, \phi_i)$, и две степени связаны с вращением ее магнитного момента $\mathbf{m}_i = (m_i, \omega_i, \zeta_i).$

Общая потенциальная энергия системы $U = U_{int} + U_{ext}$ содержит вклады от парных межчастичных взаимодействий (U_{int}) и одночастичных взаимодействий диполей частиц с внешним магнитным полем (U_{ext}). Энергия U_{int} задается суммой:

$$U_{int} = \sum_{i < j}^{N} u_{ij} = \sum_{i < j}^{N} u_{ij}^{hs} + u_{ij}^{d}, \qquad (1)$$

где u_{ij}^{hs} — потенциал твердых сфер,

$$u_{ij}^{hs} = \begin{cases} \infty, & r_{ij} < (\sigma_i + \sigma_j)/2, \\ 0, & r_{ij} \ge (\sigma_i + \sigma_j)/2, \end{cases}$$
(2)
$$\mathbf{r}_{ij} = \mathbf{r}_i - \mathbf{r}_j,$$

 u_{ij}^d — потенциал диполь-дипольного взаимодействия:

$$u_{ij}^d = -\left[3\frac{(\mathbf{m}_i \cdot \mathbf{r}_{ij})(\mathbf{m}_j \cdot \mathbf{r}_{ij})}{r_{ij}^5} - \frac{(\mathbf{m}_i \cdot \mathbf{m}_j)}{r_{ij}^3}\right].$$
 (3)

Потенциал взаимодействия диполей частиц с внешним магнитным полем определяется формулой

$$U_{ext} = -\sum_{i=1}^{N} \mathbf{m}_i \cdot \mathbf{H} = -H \sum_{i=1}^{N} m_i \cos \omega_i.$$
(4)

В качестве меры интенсивности диполь-дипольного взаимодействия традиционно используется параметр диполь-дипольного взаимодействия, имеющий смысл отношения характерной энергии взаимодействия магнитных моментов двух частиц при их контакте к тепловой энергии kT. В бидисперсной системе для частиц мелкой (крупной) фракции параметр диполь-дипольного взаимодействия определяется соотношением

$$\lambda_{ss(ll)} = \beta m_{s(l)}^2 / \sigma_{s(l)}^3, \quad \beta = 1/kT.$$

Интенсивность взаимодействия мелкой и крупной частиц задается параметром

$$\lambda_{sl} = 8\beta m_s m_l / (\sigma_s + \sigma_l)^3.$$

Величина взаимодействия магнитных моментов мелких (крупных) частиц с внешним магнитным полем описывается параметром Ланжевена

$$\alpha_{s(l)} = \beta m_{s(l)} H.$$

Типичные, широко используемые феррожидкости типа «магнетит в керосине», стабилизированные олеиновой кислотой, имеют среднее значение параметра диполь-дипольного взаимодействия $\lambda \sim 1$, объемную концентрацию $\varphi \sim 0.1$. Количество крупных частиц в таких системах не превосходит 20 %. Типичные феррожидкости достигают примерно 80 % намагниченности насыщения, когда параметр Ланжевена $\alpha = 5$. Поэтому в статье феррожидкость будет изучаться для следующих параметров системы: $\varphi = 0.1$; $\varphi_l = 0.01$, 0.02; $\lambda_{ss} = 0.77$; $\lambda_{sl} = 1.06$, 1.34; $\lambda_{ll} = 1.5$, 2.6; $\alpha_s = 0, 1, 2$, 5.

3. ТЕОРИЯ

Для бидисперсной системы СФ $S(\mathbf{q})$ можно представить в виде суммы парциальных СФ [37]:

$$S(\mathbf{q}) = S_{ss}(\mathbf{q}) + 2S_{sl}(\mathbf{q}) + S_{ll}(\mathbf{q}), \qquad (5)$$

$$S_{\gamma\epsilon}(\mathbf{q}) = x_{\gamma}\delta_{\gamma\epsilon} + x_{\gamma}x_{\epsilon}\rho \int d\mathbf{r}[g_{\gamma\epsilon}(\mathbf{r}) - 1]e^{-i\mathbf{r}\cdot\mathbf{q}}, \quad (6)$$

где **q** — волновой вектор, $\gamma, \epsilon \in \{s, l\}, \delta_{\gamma\epsilon}$ — символ Кронекера, $g_{\gamma\epsilon}(\mathbf{r})$ — парциальные ПФР, $\rho = N/V$ числовая концентрация. ПФР определяет плотность вероятности того, что две частицы занимают положения \mathbf{r}_1 и \mathbf{r}_2 в объеме системы, а радиус-вектор $\mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2$ связывает центры двух случайно выбранных частиц с номерами 1 и 2. Для парциальных ПФР величина **г** является расстоянием между двумя случайно выбранными мелкими частицами (g_{ss}), или расстоянием между двумя крупными частицами (g_{ll}), или когда одна выбранная частица крупная, другая мелкая (g_{sl}). Полную ПФР системы можно определить суммой парциальных ПФР с весовыми коэффициентами:

$$g(\mathbf{r}) = x_s^2 g_{ss}(\mathbf{r}) + 2x_s x_l g_{sl}(\mathbf{r}) + x_l^2 g_{ll}(\mathbf{r}).$$
(7)

Классический результат группового (вириального) разложения [23, 37, 38] представляет ПФР в виде ряда по степеням концентрации:

$$g(\mathbf{r}) = \sum_{k=2}^{\infty} \rho^{k-2} B_k(\mathbf{r}).$$
(8)

Коэффициенты $B_k(\mathbf{r})$ аналогичны вириальным коэффициентам и могут быть выражены через функцию Майера $f(ij) = \exp(-\beta u_{ij}) - 1$ [37–40]. Например, первые два слагаемых имеют вид

$$B_2(\mathbf{r}) = \langle f(12) + 1 \rangle_{12}, \tag{9}$$

$$B_3(\mathbf{r}) = \int d\mathbf{r}_3 \langle (f(12) + 1)f(13)f(23) \rangle_{123}, \qquad (10)$$

где угловые скобки означают усреднение по всем ориентациям магнитного момента с учетом энергии его взаимодействия с полем и нормировки:

$$\langle \dots \rangle_i = \frac{\alpha}{4\pi \operatorname{sh} \alpha} \int \dots \exp(\alpha \cos \omega_i) \, d\mathbf{\Omega}_i, \qquad (11)$$
$$d\mathbf{\Omega}_i = \sin \omega_i d\omega_i d\zeta_i.$$

Согласно работам [32, 33, 41], в каждой функции Майера может быть отдельно выделен вклад, связанный со взаимодействием твердых сфер,

$$f^{hs}(ij) = \exp(-\beta u_{ij}^{hs}) - 1$$

Вклад диполь-дипольного взаимодействия

$$f^d(ij) = \exp(-\beta u^d_{ij}) - 1$$

может быть представлен в виде ряда Тейлора, в котором «малым параметром» является λ_{ij} :

$$f(ij) = f^{hs}(ij) + (f^{hs}(ij) + 1)f^{d}(ij) =$$

= $f^{hs}(ij) + (f^{hs}(ij) + 1)\sum_{l=1}^{\infty} \frac{(-\beta u_{ij}^{d})^{l}}{l!}.$ (12)

В таком разложении каждое слагаемое ПФР можно ассоциировать с диаграммой, в вершинах которой располагаются частицы, а линии, соединяющие вершины, обозначают интегралы от соответствующих функций. На рис. 1 представлены двухи трехчастичные диаграммы, позволяющие определить ПФР с точностью до первого порядка по концентрации ρ и до второго порядка по потенциалу диполь-дипольного взаимодействия u_{ij}^d . Приведем интегралы, определяющие каждую диаграмму на рис. 1:

$$I_{2a} = f^{hs}(12) + 1, (13)$$

$$I_{2b} = (f^{hs}(12) + 1) \left\langle -\frac{\beta u_{12}^d}{\lambda_{12}} \right\rangle_{12}, \qquad (14)$$

$$I_{2c} = (f^{hs}(12) + 1) \left\langle \frac{1}{2} \left(-\frac{\beta u_{12}^d}{\lambda_{12}} \right)^2 \right\rangle_{12}, \qquad (15)$$

$$B_{2} = \bigcirc \frac{I_{2a}}{2} + \lambda_{12} \oslash \frac{I_{2b}}{2} = \lambda_{12} \odot \frac{I_{2c}}{2} + \dots,$$

$$B_{3} = \bigwedge_{I_{3a}} + \lambda_{12} & \bigwedge_{I_{3b}} + 2\lambda_{13} & \bigwedge_{I_{3c}} + \lambda_{12}^{2} & \bigwedge_{I_{3d}} + \lambda_{12} & \bigwedge_{I_{3d}} + \lambda_{12} & \bigwedge_{I_{3d}} + \lambda_{12} & \bigwedge_{I_{3d}} + \lambda_{12} & \bigwedge_{I_{3d}} + \lambda_{13} & \bigwedge_{I_{3d}} + \dots$$

Рис.1. Диаграммы, соответствующие второму и третьему вириальным коэффициентам и используемые при расчете ПФР для различных размеров частиц $\{1, 2, 3\}$. Двойная сплошная линия обозначает функцию Майера $f^{hs}(ij)$ для системы твердых сфер; сплошная линия соответствует комбинации $f^{hs}(ij) + 1$; n штриховых линий обозначают $(-\beta u_{ij}^{i})^n/n!$

$$I_{3a} = \left(f^{hs}(12) + 1\right) \int d\mathbf{r}_3 f^{hs}(13) f^{hs}(23), \qquad (16)$$

$$I_{3b} = \left(f^{hs}(12) + 1\right) \left\langle -\frac{\beta u_{12}^d}{\lambda_{12}} \right\rangle_{12} \times \int d\mathbf{r}_3 f^{hs}(13) f^{hs}(23), \quad (17)$$

$$I_{3c} = (f^{hs}(12) + 1) \int d\mathbf{r}_3(f^{hs}(13) + 1) f^{hs}(23) \times \left\langle -\frac{\beta u_{13}^d}{\lambda_{13}} \right\rangle_{13}, \quad (18)$$

$$I_{3d} = \left(f^{hs}(12) + 1\right) \left\langle \frac{1}{2} \left(-\frac{\beta u_{12}^d}{\lambda_{12}}\right)^2 \right\rangle_{12} \times \int d\mathbf{r}_3 f^{hs}(13) f^{hs}(23), \quad (19)$$

$$I_{3e} = \left(f^{hs}(12) + 1\right) \int d\mathbf{r}_3(f^{hs}(13) + 1) f^{hs}(23) \times \left\langle \frac{1}{2} \left(-\frac{\beta u_{13}^d}{\lambda_{13}}\right)^2 \right\rangle_{13}, \quad (20)$$

$$I_{3f} = \left(f^{hs}(12) + 1\right) \int d\mathbf{r}_3 \left(f^{hs}(13) + 1\right) f^{hs}(23) \times \left\langle \frac{(-\beta u_{12}^d)(-\beta u_{13}^d)}{\lambda_{12}\lambda_{13}} \right\rangle_{123}, \quad (21)$$

$$I_{3g} = \left(f^{hs}(12)+1\right) \int d\mathbf{r}_3(f^{hs}(13)+1)(f^{hs}(23)+1) \times \left(\frac{(-\beta u_{13}^d)(-\beta u_{23}^d)}{\lambda_{13}\lambda_{23}}\right)_{123} .$$
 (22)

Поскольку рассматриваемая система является бидисперсной, каждая частица диаграммы может быть двух типов: мелкой и крупной. Вклад каждой диаграммы в ПРФ зависит от типа частиц, входящих в ее состав. Диаграммы, у которых частицы 1 и 2 принадлежат мелкой (крупной) фракции, вносят вклад в парциальные ПФР $g_{ss}(\mathbf{r})$ ($g_{ll}(\mathbf{r})$). Если 1 и 2 являются частицами разных фракций, то соответствующие диаграммы учитываются в $g_{sl}(\mathbf{r})$.

3.1. ПФР в отсутствие внешнего поля

В отсутствие внешнего магнитного поля феррожидкость в целом является изотропной и ПФР зависит только от расстояния $r = |\mathbf{r}|$. Поэтому СФ зависит только от модуля $q = |\mathbf{q}|$ волнового вектора. В работе [36] вычислены ПФР в отсутствие внешнего магнитного поля для бидисперсной системы до слагаемых порядка $\rho \lambda_{\gamma \epsilon}^4$ и приведены явные выражения для диаграмм, определяющих второй и третий вириальные коэффициенты. Показано, что в отсутствие внешнего магнитного поля диаграммы, в структуру которых входит одна штриховая линия, равны нулю. Проведено сравнение полученного вириального разложения ПФР с результатами компьютерного моделирования (метод молекулярной динамики) и определена область применимости построенной теории: $\varphi < 0.15, \lambda_{\gamma\epsilon} < 2$. Также изучена роль стерического потенциала межчастичного взаимодействия в парных корреляциях: показано, что ПФР очень чувствительна к типу короткодействующего стерического потенциала.

В табл. 1 приведены явные выражения для величин $I_{2a}(r)$, $I_{2c}(r)$, $I_{3a}(r)$, $I_{3d}(r)$ и $I_{3e}(r)$, которые будут использоваться в настоящей работе. Для удобства записи введено следующее обозначение: d_{ij} расстояние между центрами частиц *i* и *j*; для бидисперсной системы величина d_{ij} может принимать три различных значения: σ_s , σ_l и $\sigma_{sl} = (\sigma_s + \sigma_l)/2$. Таким образом, парциальные ПФР для случая отсутствия внешнего магнитного поля в ограничении слагаемыми порядка $\rho \lambda_{\gamma\epsilon}^2$ имеют вид [36]

$$g_{ss(ll)}(r) = \left[I_{2a}(r) + \lambda_{ss(ll)}^2 \sigma_{s(l)}^6 I_{2c}(r) \right]_{d_{12} = \sigma_{s(l)}} + \rho x_{s(l)} \left[I_{3a}(r) + \lambda_{ss(ll)}^2 \sigma_{s(l)}^6 (I_{3d}(r) + 2I_{3e}(r)) \right]_{d_{ij} = \sigma_{s(l)}} + \rho x_{l(s)} \left[I_{3a}(r) + \lambda_{ss(ll)}^2 \sigma_{s(l)}^6 I_{3d}(r) + 2\lambda_{sl}^2 \sigma_{sl}^6 I_{3e}(r) \right]_{d_{12} = \sigma_{s(l)}, d_{13} = d_{23} = \sigma_{sl}}, \quad (23)$$

$$g_{sl}(r) = \left[I_{2a}(r) + \lambda_{sl}^2 \sigma_{sl}^6 I_{2c}(r)\right]_{d_{12}=\sigma_{sl}} + \\ + \rho x_s \left[I_{3a}(r) + \lambda_{sl}^2 \sigma_{sl}^6 I_{3d}(r) + \\ + \lambda_{ss}^2 \sigma_s^6 I_{3e}(r)\right]_{d_{12}=d_{23}=\sigma_{sl}, \ d_{13}=\sigma_s} + \\ + \rho x_l \left[I_{3a}(r) + \lambda_{sl}^2 \sigma_{sl}^6 I_{3d}(r) + \\ + \lambda_{sl}^2 \sigma_{sl}^6 I_{3e}(r)\right]_{d_{12}=d_{13}=\sigma_{sl}, \ d_{23}=\sigma_l} + \\ + \rho x_s \lambda_{sl}^2 \sigma_{sl}^6 \left[I_{3e}(r)\right]_{d_{12}=d_{13}=\sigma_{sl}, \ d_{23}=\sigma_s} + \\ + \rho x_l \lambda_{ll}^2 \sigma_{l}^6 \left[I_{3e}(r)\right]_{d_{12}=d_{23}=\sigma_{sl}, \ d_{23}=\sigma_l} .$$
(24)

3.2. ПФР во внешнем магнитном поле

Во внешнем магнитном поле ПФР зависит не только от r, но и от угла $\theta = \theta_{12}$ между радиус-вектором **r**, соединяющим центры частиц 1 и 2, и направлением магнитного поля **H** (осью z). Соответственно, С
 Φ также становится функцией компонент волнового вектора $\mathbf{q} = (q_{\perp}, q_{||})$, перпендикулярной и параллельной направлению внешнего магнитного поля. Изучение анизотропии ПФР в поле для монодисперсной феррожидкости проведено в работах [32, 33], где подробно изложена процедура усреднения диаграмм по ориентациям магнитного момента $\langle \cdots \rangle_i$ и положению третьей частицы $d\mathbf{r}_3$. В случае присутствия поля в ПФР появляются вклады, линейные по $\lambda_{\gamma\epsilon}$, поскольку диаграммы I_{2b} , I_{3b} и I_{3c} на рис. 1 становятся ненулевыми. Для феррожидкостей с $\lambda_{\gamma\epsilon} \lesssim 1$ эти слагаемые в основном определяют анизотропию ПФР в поле. Данная работа ограничивается вычислением для бидисперсной системы в магнитном поле двух- и трехчастичных диаграмм $I_{2b}(r,\theta)$, $I_{3b}(r,\theta)$ и $I_{3c}(r,\theta)$, линейных по $\lambda_{\gamma\epsilon}$, и двухчастичной диаграммы $I_{2c}(r, \theta)$, квадратичной по $\lambda_{\gamma\epsilon}^2$.

Первый шаг при вычислении перечисленных выше диаграмм — усреднение по ориентациям магнитных моментов феррочастиц:

$$\left\langle -\frac{\beta u_{ij}^d}{\lambda_{ij}} \right\rangle_{ij} = \left(\frac{d_{ij}}{r_{ij}}\right)^3 2L(\alpha_i)L(\alpha_j)P_2(\cos\theta_{ij}), \quad (25)$$

Коэффициент	Область	Формула			
$I_{2a}(r)$	$r \geqslant d_{12}$	1			
$I_{2c}(r)$	$r \geqslant d_{12}$	$\frac{1}{3r^6}$			
$I_{3a}(r)$	$d_{12} \leqslant r < d_{13} + d_{23}$	$\frac{\pi}{6} \left[\frac{1}{2}r^3 - 3r\left(d_{13}^2 + d_{23}^2\right) + 4\left(d_{13}^3 + d_{23}^3\right) - \frac{3}{2r}\left(d_{13}^2 - d_{23}^2\right)^2 \right]$			
	$r \geqslant d_{13} + d_{23}$	0			
$I_{3d}(r)$	$r \geqslant d_{12}$	$I_{3a}(r)I_{2c}(r)$			
$I_{3e}(r)$	$d_{12} \leqslant r < d_{13} + d_{23}$	$\frac{\pi \left(r + d_{23} - d_{13}\right)^2}{36rd_{13}^4 \left(r + d_{23}\right)^3} \left[3r^3 + r^2(3d_{23} - 2d_{13}) - r(8d_{13}d_{23} + 3d_{23}^2 + d_{13}^2) - 6d_{13}d_{23}^2 - 3d_{13}^2d_{23} - 3d_{23}^2\right]$			
	$r \geqslant d_{13} + d_{23}$	$-\frac{4\pi}{9} \frac{d_{23}^3}{\left(r^2 - d_{23}^2\right)^3}$			

Таблица 1. Коэффициенты $I_{kl}(r)$ в разложении ПФР в отсутствие внешнего магнитного поля [36]. Каждый коэффициент равен нулю в области $r < d_{12}$

$$\left\langle \frac{1}{2} \left(-\frac{\beta u_{ij}^d}{\lambda_{ij}} \right)^2 \right\rangle_{ij} = \left(\frac{d_{ij}}{r_{ij}} \right)^6 \times \\ \times \left[\frac{36}{35} L_3(\alpha_i) L_3(\alpha_j) P_4(\cos \theta_{ij}) + \right. \\ \left. + \left(\frac{L(\alpha_i) L_3(\alpha_j)}{\alpha_i} + \frac{L(\alpha_j) L_3(\alpha_i)}{\alpha_j} + \right. \\ \left. + \frac{4}{7} L_3(\alpha_i) L_3(\alpha_j) \right) P_2(\cos \theta_{ij}) + \right. \\ \left. + \frac{L(\alpha_i) L_3(\alpha_j)}{2\alpha_i} + \frac{L(\alpha_j) L_3(\alpha_i)}{2\alpha_j} - \frac{1}{10} L_3(\alpha_i) L_3(\alpha_j) + \right. \\ \left. + \frac{9L(\alpha_i) L(\alpha_j)}{2\alpha_i \alpha_j} - \frac{L(\alpha_i)}{\alpha_i} - \frac{L(\alpha_j)}{\alpha_j} + \frac{1}{2} \right],$$
(26)

где $L(\alpha) = \operatorname{cth} \alpha - 1/\alpha$ — функция Ланжевена, $L_3(\alpha) = 1 - 3L(\alpha)/\alpha$, $P_2(z) = (3z^2 - 1)/2$ — второй полином Лежандра, $P_4(z) = (35z^4 - 30z^2 + 3)/8$ четвертый полином Лежандра; θ_{ij} — угол между радиус-вектором \mathbf{r}_{ij} , соединяющим центры частиц i и j, и направлением магнитного поля **H** (осью z).

Следующим шагом является усреднение по положению третьей частицы $d\mathbf{r}_3$. Множитель $f^{hs}(ij) + 1$ в интеграле (18) ограничивает область интегрирования $r_{ij} \ge d_{ij}$. В свою очередь, множитель $f^{hs}(ij)$ в (17) и (18) означает, что центр частицы *i* должен располагаться внутри исключенного объема со стороны частицы *j*. Последовательность интегрирова-

9 ЖЭТФ, вып. 3

ний проводится в новой системе координат, в которой ось z' направлена вдоль радиус-вектора **r**, соединяющего центры частиц 1 и 2. Результаты усреднения приведены в табл. 2.

Принимая во внимание, что вклад в $g_{ss(ll)}(r, \theta)$ дают диаграммы, у которых частицы 1 и 2 принадлежат мелкой (крупной) фракции, а $g_{sl}(r, \theta)$ учитывает все диаграммы, в которых частицы 1 и 2 принадлежат разным фракциям, приходим к аналитическому выражению для парциальных ПФР во внешнем магнитном поле:

$$g_{ss(ll)}(r,\theta) = = \left\{ g_{ss(ll)}(r) - \lambda_{ss(ll)}^{2} \sigma_{s(l)}^{6} \left[I_{2c}(r) - I_{2c}(r,\theta) \right] \right\} + + \lambda_{ss(ll)} \sigma_{s(l)}^{3} I_{2b}(r,\theta) + \rho x_{s(l)} \lambda_{ss(ll)} \sigma_{s(l)}^{3} \times \times \left[I_{3b}(r,\theta) + 2I_{3c}(r,\theta) \right] + + \rho x_{l(s)} \left[\lambda_{ss(ll)} \sigma_{s(l)}^{3} I_{3b}(r,\theta) + 2\lambda_{sl} \sigma_{sl}^{3} I_{3c}(r,\theta) \right], \quad (27)$$

$$g_{sl}(r,\theta) = \left\{ g_{sl}(r) - \lambda_{sl}^2 \sigma_{sl}^6 \left[I_{2c}(r) - I_{2c}(r,\theta) \right] \right\} + \\ + \lambda_{sl} \sigma_{sl}^3 I_{2b}(r,\theta) + \\ + \rho x_s \left[\lambda_{sl} \sigma_{sl}^3 \left(I_{3b}(r,\theta) + I_{3c}(r,\theta) \right) + \lambda_{ss} \sigma_s^3 I_{3c}(r,\theta) \right] + \\ + \rho x_l \left[\lambda_{sl} \sigma_{sl}^3 \left(I_{3b}(r,\theta) + I_{3c}(r,\theta) \right) + \\ + \lambda_{ll} \sigma_l^3 I_{3c}(r,\theta) \right].$$
(28)

Коэффициент	Область	Формула				
$I_{2b}(r,\theta)$	$r \geqslant d_{12}$	$\frac{2}{r^3}L(\alpha_1)L(\alpha_2)P_2(\cos\theta)$				
$I_{2c}(r,\theta)$	$r \geqslant d_{12}$	$ \left\langle \frac{1}{2d_{12}^6} \left(\frac{-\beta u_{12}^d}{\lambda_{12}} \right)^2 \right\rangle_{12} $ (формула (26))				
$I_{3b}(r,\theta)$	$r \geqslant d_{12}$	$I_{2b}(r,\theta)I_{3a}(r)$				
$I_{3c}(r,\theta)$	$d_{12} \leqslant r < d_{13} + d_{23}$	$\frac{\pi}{12r^3d_{13}^3} \left(r^2 - d_{13}^2 - d_{23}^2 - 4d_{13}d_{23}\right) \times \\ \times \left(r^2 - \left[d_{13} - d_{23}\right]^2\right)^2 L(\alpha_1)L(\alpha_3)P_2(\cos\theta)$				
	$r \geqslant d_{13} + d_{23}$	$-\frac{8\pi d_{23}^3}{3r^3}L(\alpha_1)L(\alpha_3)P_2(\cos\theta)$				

Таблица 2. Коэффициенты $I_{2b}(r, \theta)$, $I_{2c}(r, \theta)$, $I_{3b}(r, \theta)$ и $I_{3c}(r, \theta)$ в разложении ПФР во внешнем магнитном поле. Каждый коэффициент равен нулю в области $r < d_{12}$

Функции $g_{ss(ll)}(r)$ и $g_{sl}(r)$ определены выражениями (23), (24). В фигурных скобках в выражениях (27) и (28) исключен вклад в ПФР от диаграммы $I_{2c}(r)$, не учитывающий влияния поля, и явно включен вклад от диаграммы $I_{2c}(r, \theta)$, учитывающий это влияние.

В формуле (27) во всех слагаемых $I_{kl}(r, \theta)$ расстояние между частицами 1 и 2 и значение параметра Ланжевена для частиц 1 и 2 определяются следующим образом: $d_{12} = \sigma_{s(l)}, \alpha_1 = \alpha_2 = \alpha_{s(l)}$. В функциях $\rho x_{s(l)} \lambda_{ss(ll)} \sigma_{s(l)}^3 I_{3b}(r, \theta)$ и $2\rho x_{s(l)} \lambda_{ss(ll)} \sigma_{s(l)}^3 I_{3c}(r, \theta)$, описывающих трехчастичные взаимодействия, параметры, характеризующие расстояния между частицами и интенсивность взаимодействия частицы 3 с внешним магнитным полем, принимают значения $d_{13} = d_{23} = \sigma_{s(l)}, \alpha_3 = \alpha_{s(l)}$. В функциях $\rho x_{l(s)} \lambda_{ss(ll)} \sigma_{s(l)}^3 I_{3b}(r, \theta)$ и $2\rho x_{l(s)} \lambda_{sl} \sigma_{sl}^3 I_{3c}(r, \theta)$ параметры равны $d_{13} = d_{23} = \sigma_{sl}, \alpha_3 = \alpha_{l(s)}$.

В формуле (28) во всех слагаемых $I_{kl}(r, \theta)$ расстояние $d_{12} = \sigma_{sl}$. Функции $I_{2c}(r, \theta)$ и $I_{2b}(r, \theta)$, описывающие двухчастичные взаимодействия, вычисляются со следующими значениями параметров: $\alpha_1 = \alpha_s$, $\alpha_2 = \alpha_l$. Для расчета слагаемых, определяющих трехчастичные корреляции, использовались следующие параметры:

$$\begin{split} d_{13} &= \sigma_s, \quad d_{23} = \sigma_{sl}, \quad \alpha_1 = \alpha_s, \\ \alpha_2 &= \alpha_l, \quad \alpha_3 = \alpha_s \\ \alpha_s \lambda_{sl} \sigma_{sl}^3 I_{3b}(r, \theta) \ \text{м} \ \rho x_s \lambda_{ss} \sigma_s^3 I_{3c}(r, \theta); \end{split}$$

для (

$$d_{13} = \sigma_{sl}, \quad d_{23} = \sigma_l, \quad \alpha_1 = \alpha_s, \quad \alpha_2 = \alpha_3 = \alpha_l$$

для
$$\rho x_l \lambda_{sl} \sigma_{sl}^3 I_{3b}(r, \theta)$$
 и $\rho x_l \lambda_{sl} \sigma_{sl}^3 I_{3c}(r, \theta);$
 $d_{13} = \sigma_{sl}, \quad d_{23} = \sigma_s, \quad \alpha_1 = \alpha_l, \quad \alpha_2 = \alpha_3 = \alpha$
для $\rho x_s \lambda_{sl} \sigma_{sl}^3 I_{3c}(r, \theta)$ и

$$d_{13} = \sigma_l, \quad d_{23} = \sigma_{sl}, \quad \alpha_1 = \alpha_l$$

 $\alpha_2 = \alpha_s, \quad \alpha_3 = \alpha_l$

для $\rho x_l \lambda_{ll} \sigma_l^3 I_{3c}(r, \theta)$.

4. КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ

Компьютерное моделирование проводилось методом Монте-Карло (МК) для канонического (NVT) ансамбля [42, 43]. Ячейка моделирования имела кубическую форму с объемом $V = L^3$, к ней были применены периодические граничные условия. Дальнодействующие дипольные взаимодействия учитывались при помощи суммирования Эвальда с граничными условиями для металла [42, 43]. Для каждого случая начальная конфигурация содержала $N_s = 1372$ частиц мелкой фракции, размещенных на ГЦК-решетке при заданной объемной концентрации φ_s . Число N_l частиц крупной фракции выбиралось в соответствии с определенной объемной концентрацией φ_l . Крупные частицы размещались случайно; в случае возникновения пересечений частиц конфигурация отвергалась, и процедура расстановки крупных частиц повторялась. Один МК-цикл содержал трансляционные или ориентационные перемещения

 $N = N_s + N_l$ случайно выбранных частиц. Параметры максимальных трансляционных и ориентационных сдвигов были выбраны так, чтобы коэффициенты принятия конфигураций были соответственно 30 % и 50 %. В каждом случае система приводилась в состояние равновесия 10^5 МК-циклами; результаты определялись в течение 10^6 МК-циклов. ПФР измерялась стандартными методами [42, 43]. Парциальные СФ вычислялись без использования прямого преобразования Фурье ПФР по следующей формуле:

$$S_{\gamma\epsilon}(\mathbf{q}) = \frac{1}{N} \left\langle \rho_{\gamma}(\mathbf{q}) \rho_{\epsilon}(-\mathbf{q}) \right\rangle, \qquad (29)$$

где $\rho_{\gamma}(\mathbf{q})- фурье-компонента концентрации частиц типа <math display="inline">\gamma,$ определяемая соотношением

$$\rho_{\gamma}(\mathbf{q}) = \sum_{j=1}^{N_{\gamma}} \exp\left[-i(\mathbf{r}_j \cdot \mathbf{q})\right],\tag{30}$$

в котором волновой вектор согласован с периодическими граничными условиями и задается формулой

$$\mathbf{q} = (2\pi/L)(n_x, n_y, n_z), \quad n_x, n_y, n_z = 0, \pm 1, \pm 2, \dots$$

Угловые скобки в (29) означают усреднение по ансамблю. Во внешнем магнитном поле волновые векторы рассматривались либо параллельными (\mathbf{q}_{\parallel}) либо перпендикулярными (\mathbf{q}_{\perp}) направлению поля. С Φ для волновых векторов | \mathbf{q}_{\perp} | усреднялся.

5. РЕЗУЛЬТАТЫ

В данном разделе приводятся результаты для пяти моделей феррожидкости, имеющих разный дисперсный состав, но общую объемную концентрацию $\varphi = 0.1$. Основные характеристики систем приведены в табл. 3. Влияние внешнего магнитного поля на ПФР и СФ будет представлено для двух направлений: параллельного $(g(r, 0), S(q_{\parallel}) = S(q_{\perp} = 0, q_{\parallel}))$ и перпендикулярного $(g(r, \pi/2), S(q_{\perp}) = S(q_{\perp}, q_{\parallel} = 0))$ внешнему магнитному полю **H**.

5.1. Парная функция распределения

На рис. 2, 3 представлены теоретические парциальные ПФР (27), (28) для системы М2 при различных напряженностях внешнего магнитного поля ($\alpha_s = 0, 1, 2, 5$) в направлениях, параллельном ($\theta = 0$, рис. 2) и перпендикулярном ($\theta = \pi/2$, рис. 3) внешнему магнитному полю. В нулевом поле ($\alpha_s = \alpha_l = 0$) корреляции в обоих направлениях

эквивалентны (рис. 2*a* идентичен рис. 3*a*); в области контакта частиц ($r \approx d_{12}$) парциальные ПФР демонстрируют короткодействующие притягивающие межчастичные корреляции. Увеличение магнитного поля приводит к значительному увеличению притягивающих корреляций в направлении, параллельном внешнему магнитному полю (рис. 2b-r) и уменьшению притягивающих взаимодействий в перпендикулярном полю направлении (рис. 36, в). В сильном магнитном поле ($\alpha_s = 5$, рис. 3r) в перпендикулярном направлении преобладают отталкивающие корреляции в области контакта ($r \approx d_{12}$), где значение парциальных ПФР меньше единицы. С ростом внешнего магнитного поля значение функций $g_{\gamma\epsilon}(r,0)$ при $r \approx d_{12}$ возрастает за счет усиления корреляций типа голова-хвост между магнитными моментами частиц в направлении поля, в то время как значение функций $g_{\gamma\epsilon}(r,\pi/2)$ при $r \approx d_{12}$ уменьшается из-за увеличения отталкивающего межчастичного взаимодействия типа бок-о-бок между параллельными направлениями магнитных моментов феррочастиц. Заметим, что в параллельном полю направлении всегда справедливо соотношение

$$g_{ss}(r \approx d_{12}, 0) < g_{sl}(r \approx d_{12}, 0) < g_{ll}(r \approx d_{12}, 0).$$

Это означает, что притяжение значительнее между крупными частицами. В перпендикулярном полю направлении, уже в умеренных полях ($\alpha_s = 2$), наблюдается обратная ситуация:

$$\begin{split} g_{ss}(r \approx d_{12}, \pi/2) > g_{sl}(r \approx d_{12}, \pi/2) > \\ > g_{ll}(r \approx d_{12}, \pi/2). \end{split}$$

Такое поведение объясняется тем, что крупные частицы более чувствительны к внешнему полю и уже в умеренных полях имеют направление магнитных моментов, близкое к расположению бок-о-бок, что приводит к резкому уменьшению притягивающих взаимодействий в направлении перпендикулярном полю.

На рис. 4, 5 показано сравнение общей ПФР (7), определенной теоретически, с результатами компьютерного моделирования для g(r, 0) и $g(r, \pi/2)$ для систем М1 и М4 (рис. 4) и М2 и М5 (рис. 5). Теория отлично согласуется с данными компьютерного моделирования. В отсутствие внешнего магнитного поля структура ПФР характеризуется двумя ярко выраженными пиками в областях $r \approx \sigma_s$ и $r \approx \sigma_{sl}$. Увеличение φ_l (рис. 4*a* сравнивается с рис. 5*a*, рис. 4*b* – с рис. 5*b*) при неизменной общей объемной концентрации φ приводит к небольшому уменьшению притягивающих корреляций в области $r \approx \sigma_s$ и к незначительному росту притягивающих корреляций в области $r \approx \sigma_{sl}$. Изменение размера крупных частиц

	Характеристика										
Модель	σ_l / σ_s	φ_s	φ_l	λ_{ss}	λ_{sl}	λ_{ll}	N_s	N_l	L/σ_{ss}		
M1	1.25	0.09	0.01	0.77	1.06	1.51	1372	78	19.984724		
M2	1.25	0.08	0.02	0.77	1.06	1.51	1372	176	20.786911		
M3	_	0.10	0.00	0.77	_	_	1372	_	19.295273		
M4	1.50	0.09	0.01	0.77	1.34	2.61	1372	45	19.984180		
M5	1.50	0.08	0.02	0.77	1.34	2.61	1372	102	20.786964		

Таблица 3. Характеристики исследуемых моделей феррожидкости

Рис. 2. Теоретические парциальные ПФР (27), (28) для системы М2 при различных напряженностях внешнего магнитного поля ($\alpha_s = 0$ (a), 1 (b), 2 (b), 5 (c)) в параллельном полю направлении ($\theta = 0$). Кривые: $1 - g_{ss}(r, 0)$; $2 - g_{sl}(r, 0)$; $3 - g_{ll}(r, 0)$

при неизменных объемных концентрациях φ_s и φ_l (рис. 4a сравнивается с рис. 4a, рис. 5a — с рис. 5e) влечет небольшой рост притягивающих корреляций в области $r \approx \sigma_s$. Во внешнем магнитном поле в направлении, параллельном полю, изменение дисперсного состава качественно подобно отражается на по-

ведении ПФР, однако эти изменения гораздо значительнее. Кроме того, при высокой концентрации крупных частиц, $\varphi_l = 0.02$ (рис. $56, \epsilon$), в структуре ПФР появляется слабовыраженный третий пик в области $r \approx \sigma_l$. При $\alpha_s = 5$ в перпендикулярном полю направлении в ПФР наблюдаются отталкивающие

Рис. 3. То же, что на рис. 2, но в перпендикулярном полю направлении ($\theta = \pi/2$)

корреляции, и при изменении дисперсного состава системы происходит только горизонтальный сдвиг положения пика в области $r \approx \sigma_{sl}$.

5.2. Структурный фактор

Влияние полидисперсности на СФ в отсутствие поля в умеренных и сильных полях продемонстрировано на рис. 6. Сравнивались модели МЗ и М5. Теория отлично согласуется с данными компьютерного моделирования в области волновых векторов $q\sigma_s \gtrsim 3$. В пределе малых волновых векторов построенная теория не может адекватно описать поведение СФ. Это связано с тем, что рассеяние здесь определяется в основном большими длинами волн и очень чувствительно к зависимости ПФР от межчастичного расстояния на масштабах, значительно превышающих размер частиц. Корректное описание СФ в этой области требует вычисления многочастичных диаграмм для парциальных ПФР. В данном разделе будут представлены основные закономерности для первого максимума СФ, наиболее легко поддающегося экспериментальному изучению. Волновые векторы, соответствующие первому максимуму СФ, определяют рассеяние на масштабах, близких к контакту пары частиц.

При $\alpha_s = \alpha_l = 0$ (рис. 6*a*) появление полидисперсности в системе приводит к незначительному смещению влево первого максимума СФ. Этот сдвиг обусловлен тем, что в системе появляются крупные частицы и среднее расстояние между центрами в каждой паре феррочастиц, являющейся центром рассеяния, становится больше. Естественно, что при этом увеличивается характерное значение длины волны рассеяния и уменьшается значение волнового вектора *q*, при котором СФ является максимальным.

Во внешнем магнитном поле, в направлении параллельном полю (рис. 6δ , ϵ , сплошные кривые), появление полидисперсности в системе приводит к более выраженному сдвигу влево первого максимума СФ. Кроме того, наблюдается смещение первого максимума СФ вниз. Уменьшение значения максимума СФ связано с тем, что появление крупных частиц в системе, при постоянной общей объемной

Рис.4. Сравнение общей ПФР (7), определенной теоретически (сплошные линии), с результатами компьютерного моделирования (точки) в параллельном (g(r,0)) и перпендикулярном ($g(r,\pi/2)$) полю направлениях для систем М1 (a, b) и М4 (b, c): $a, b - \alpha_s = \alpha_l = 0$; $b, c - \alpha_s = 5$. Функция g(r, 0) сдвинута на единицу вверх для наглядности

концентрации φ частиц, приводит к уменьшению общего количества частиц. Следовательно, уменьшается количество пар, рассеивающих на данной длине волны. В сильных полях, в параллельном полю направлении (рис. 66, сплошные кривые), изменение положения первого максимума СФ проявляется значительнее.

В перпендикулярном полю направлении (рис. 6, штриховые кривые) полидисперсность не вызывает больших изменений в поведении СФ. Это связано с тем, что межчастичное отталкивающее взаимодействие бок-о-бок не способствует сближению частиц на расстояния порядка размера частиц. Следовательно, пар, рассеивающих на таком расстоянии, мало, а незначительное уменьшение общего количества частиц в системе за счет появления крупных частиц (при неизменной общей объемной концентрации) не приводит к существенному изменению количества пар расположенных близко друг к другу.

Парциальные и общий СФ для системы М4 в поле при различных значениях $\alpha_s = 0, 2, 5$ показаны на рис. 7 в направлении, параллельном внешнему полю, и на рис. 8 в направлении, перпендикулярном полю. Заметим, что в области $q\sigma_s \gtrsim 2$ наблюдается отличное согласие теории и компьютерного моделирования. Прежде всего обратим внимание на общий

Рис. 5. То же, что на рис. 4, для систем M2 (a, δ) и M5 (e, r)

СФ (рис. 7г и 8г). В параллельном полю направлении (рис. 7г) внешнее магнитное поле способствует увеличению и сужению первого максимума $S(q_{||})$. Рост максимума связан с тем, что внешнее магнитное поле усиливает корреляции типа голова-хвост между магнитными моментами ближайших феррочастиц, а ориентирующее воздействие поля выстраивает скоррелированные пары частиц по направлению поля. За счет этого происходит рост количества пар феррочастиц, рассеивающих на этой длине волны в параллельном полю направлении. Положение первого максимума функции $S(q_{||})$ остается неизменным в поле, поскольку ближайшее расстояние между парой феррочастиц фиксировано потенциалом твердых сфер. Сужение и рост первого максиму-

ма $S(q_{||})$ в поле соответствует экспериментальным наблюдениям [6, 29, 44–46] и результатам компьютерного и теоретического моделирования монодисперсной феррожидкости [28, 33, 34, 47, 48].

В перпендикулярном полю направлении (рис. 8*г*) структурный фактор $S(q_{\perp})$ также чувствителен к внешнему магнитному полю. Первый максимум $S(q_{\perp})$ расширяется и сдвигается в сторону малых волновых векторов при увеличении внешнего поля. Аналогичное поведение хорошо заметно в экспериментальных работах [6, 29, 44–46] и соответствует данным компьютерного и теоретического моделирования монодисперсной феррожидкости [28, 33, 34, 47, 48]. Сдвиг положения первого максимума обусловлен тем, что магнитные моменты фер-

Рис. 6. Влияние полидисперсности на СФ в отсутствие поля $\alpha_s = \alpha_l = 0$ (*a*), а также в умеренных, $\alpha_s = 2$ (*б*), и сильных, $\alpha_s = 5$ (*b*), полях: теоретические СФ (5) в параллельном ($S(\mathbf{q}_{\parallel})$, сплошные кривые) и перпендикулярном ($S(\mathbf{q}_{\perp})$, штриховые кривые) полю направлениях и результаты компьютерного моделирования (точки)

рочастиц выстраиваются в направлении внешнего магнитного поля, следовательно, в перпендикулярном полю направлении возникают отталкивающие конфигурации типа бок-о-бок, и среднее расстояние между частицами в этом направлении увеличивается. Другая интересная зависимость $S(q_{\perp})$ от поля связана с уменьшением значения первого максимума в направлении, перпендикулярном полю. Последняя тенденция свидетельствует о том, что в перпендикулярном полю направлении притягивающие и отталкивающие межчастичные корреляции взаимно компенсируют друг друга.

Различия в положениях первого максимума парциальных СФ (рис. 7a-6, 8a-6) связаны с нормировкой оси абсцисс $q\sigma_s$. С ростом внешнего поля для парциальных СФ наблюдаются те же тенденции, что и для общего структурного фактора: в параллельном полю направлении значение первого максимума возрастает, при этом его положение остается неизменным; в перпендикулярном полю направлении происходят расширение и сдвиг влево первого максимума. В поле отклонения величины $S_{ll}(q_{\perp})$ (рис. 8*a*) от асимптотического поведения (горизонтальная прямая) становятся незначительными, поэтому зависимость $S_{ll}(q_{\perp})$ характеризуется поведением, близким к поведению идеального газа невзаимодействующих частиц. Необходимо отметить, что в поле, в области малых волновых векторов, кривая $S_{ll}(q_{\perp})$ имеет отрицательный наклон. Такое поведение кардинально отличается от поведения кривых $S_{ss}(q_{\perp}), S_{sl}(q_{\perp})$ и $S(q_{\perp})$. Отрицательный наклон СФ в области малых волновых векторов при низких концентрациях частиц, в сильных полях и при умеренных интенсивностях меж-

Рис. 7. Парциальные и общий СФ для системы М4 в направлении, параллельном внешнему полю, при $\alpha_s = \alpha_l = 0$ (кривая 1), $\alpha_s = 2$ (2) и $\alpha_s = 5$ (3). Кривые — теоретические результаты, точки — данные компьютерного моделирования, горизонтальная прямая — асимптотическое значение СФ при $q \to \infty$ (0.968 для $S_{ss}(\mathbf{q})$, 0.032 для $S_{ll}(\mathbf{q})$, 0 для $S_{sl}(\mathbf{q})$, 1.0 для $S(\mathbf{q})$)

частичного диполь-дипольного взаимодействия изучался ранее [28, 33, 48]. В работе [48] был сделан вывод о том, что такое поведение СФ связано с дальнодействующими корреляциями в направлении, перпендикулярном полю. В работе [33] было продемонстрировано, что отрицательный наклон СФ связан с тем, что ориентированные по направлению внешнего магнитного поля магнитные моменты частиц флуктуируют, отклоняясь от наиболее энергетически выгодного расположения.

6. ЗАКЛЮЧЕНИЕ

В статье приведены результаты вычисления ПФР феррожидкости во внешнем магнитном поле, которая моделировалась бидисперсной системой дипольных твердых сфер. ПФР представлялась в виде вириального ряда по концентрации ρ феррочастиц. Вириальные коэффициенты определялись как ряд по параметру диполь-дипольного взаимодействия $\lambda_{\gamma\epsilon}$. Получены аналитические выражения для парциальных ПФР с точностью до ρ и $\lambda_{\gamma\epsilon}^2$. Анизотропная часть ПФР рассчитана во втором вириальном коэффициенте до второго порядка по $\lambda_{\gamma\epsilon}^2$, в третьем вириальном коэффициенте в низшем порядке по $\lambda_{\gamma\epsilon}$ (см. выражения (27), (28)).

Основной результат статьи — структурные характеристики феррожидкости (П Φ Р и С Φ) чувствительны к появлению полидисперсности в системе; внешнее однородное магнитное поле значительно усиливает эффекты, связанные с присутствием полидисперсности.

Анализ анизотропной ПФР в параллельном по-

Рис. 8. То же, что на рис. 7, но в направлении, перпендикулярном внешнему полю, при $\alpha_s = \alpha_l = 0$ (1) и $\alpha_s = 5$ (2)

лю направлении показал, что изменение дисперсного состава качественно подобно поведению ПФР в отсутствие поля, однако эти изменения гораздо значительнее. В параллельном полю направлении структура ПФР характеризуется двумя ярко выраженными пиками в областях $r \approx \sigma_s$ и $r \approx \sigma_{sl}$. Увеличение концентрации крупных частиц при неизменной общей объемной концентрации приводит к уменьшению притягивающих взаимодействий в области $r \approx \sigma_s$ и к их росту в области $r \approx \sigma_{sl}$. Изменение размера крупных частиц при неизменных объемных концентрациях φ_s и φ_l влечет рост притягивающих корреляций в области $r \approx \sigma_s$. При высокой концентрации крупных частиц ($\varphi_l = 0.02$) в структуре ПФР появляется слабовыраженный третий пик в области $r \approx \sigma_l$. В перпендикулярном полю направлении ПФР крайне малочувствительна к дисперсному составу феррожидкости и демонстрирует преобладание отталкивающих взаимодействий в сильных полях. Сравнение теоретической ПФР с результатами компьютерного моделирования методом МК показало отличное согласие данных в слабых, умеренных и сильных полях для различных моделей феррожидкости (см. табл. 3).

Рассчитанная ПФР использовалась для изучения СФ и его анизотропии в магнитном поле. Появление полидисперсности в системе приводит к смещению влево и вниз первого максимума СФ в направлении, параллельном полю. Причиной смещения влево является увеличение среднего расстояния между центрами в каждой паре феррочастиц при появлении крупных частиц в системе. Уменьшение значения максимума СФ связано с тем, что возникновение крупных частиц в системе при постоянной общей объемной концентрации φ частиц приводит к уменьшению общего количества частиц, следовательно, уменьшается количество пар, рассеивающих на данной длине волны.

В перпендикулярном полю направлении полидисперсность не вызывает значительных изменений в поведении СФ. Проведено сравнение теоретического СФ с результатами компьютерного МК-моделирования. В области волновых векторов $q\sigma_s \gtrsim 2$ данные отлично согласуются.

Полученные в настоящей статье данные являются основой для интерпретации экспериментальных результатов малоуглового нейтронного рассеяния и определения закономерностей в поведении СФ, его зависимости от фракционного состава феррожидкости и внешнего магнитного поля.

Работа выполнена при частичной финансовой поддержке РФФИ (гранты №№ 12-02-12063-офи-м, 12-02-31079-мол), а также в рамках проекта № 2.609.2011 и соглашения № 02.А03.21.0006 от 27.08.2013, финансируемых Министерством образования и науки Российской Федерации.

ЛИТЕРАТУРА

- 1. Р. Розенцвейг, *Феррогидродинамика*, Мир, Москва (1989).
- B. Luigjes, D. M. E. Thies-Weesie, A. P. Philipse, and B. H. Erné, J. Phys.: Condens. Matter 24, 245104 (2012).
- A. F. Pshenichnikov and A. S. Ivanov, Phys. Rev. E 86, 051401 (2012).
- V. Socoliuc, D. Bica, and L. Vekas, Magnetohydrodynamics 47, 201 (2011).
- M. V. Avdeev, E. Dubois, G. Meriguet et al., J. Appl. Crystallogr. 42, 1009 (2009).
- F. Gazeau, E. Dubois, J. Bacri et al., Phys. Rev. E 65, 031403 (2002).
- A. A. Bozhko, M. T. Kuchukova, and G. F. Putin, Magnetohydrodynamics 49, 161 (2013).
- C. Magnet, P. Kuzhir, G. Bossis et al., Phys. Rev. E 86, 011404 (2012).
- 9. А. Ю. Зубарев, ЖЭТФ **120**, 94 (2001).

- А. Ю. Зубарев, Л. Ю. Искакова, ЖЭТФ 132, 1160 (2007).
- E. Minina, E. Novak, and S. Kantorovich, Magnetohydrodynamics 49, 169 (2013).
- P. I. C. Teixeira, J. Phys.: Condens. Matter 25, 195102 (2013).
- Е. А. Елфимова, А. О. Иванов, А. Ю. Зубарев, ЖЭТФ 130, 1061 (2006).
- 14. Z. Mate, I. Szalai, D. Boda, and D. Henderson, Mol. Phys. 109, 203 (2011).
- Е. С. Минина, А. Б. Муратова, Дж. Серда, С. С. Канторович, ЖЭТФ 143, 486 (2013).
- L. Rovigatti, J. Russo, and F. Sciortino, Soft Matter 8, 6310 (2012).
- A. F. Pshenichnikov and A. A. Kuznetsov, Magnetohydrodynamics 49, 101 (2013).
- 18. P. J. Camp and G. N. Patey, Phys. Rev. E 62, 5403 (2000).
- **19**. Т. А. Прокопьева, В. А. Данилов, С. С. Канторович, ЖЭТФ **140**, 499 (2011).
- 20. М. В. Авдеев, В. Л. Аксенов, УФН 180, 1009 (2010).
- 21. J. S. Pedersen, Adv. Colloid Interface Sci. 70, 171 (1997).
- 22. H. Brumberger, Modern Aspects of Small-Angle Scattering, Kluwer Acad. Publ. and Nato ASI, Dordrecht-Boston-London (1993).
- 23. Дж. Гиршфельдер, Ч. Кертисс, Р. Берд, Молекулярная теория газов и жидкостей, Изд-во иностр. лит., Москва (1961).
- V. Socoliuc and L. B. Popescu, J. Magn. Magn. Mater. 347, 146 (2013).
- 25. H. J. M. Hanley, J. C. Rainwater, and M. L. Huber, Int. J. Thermophys. 9, 1041 (1988).
- 26. A. O. Ivanov and O. B. Kuznetsova, Phys. Rev. E 64, 041405 (2001).
- 27. А. Ю. Зубарев, Л. Ю. Искакова, ЖЭТФ 143, 329 (2013).
- 28. J. P. Huang, Z. W. Wang, and C. Holm, Phys. Rev. E 71, 061203 (2005).
- 29. A. Wiedenmann, U. Keiderling, M. Meissner et al., Phys. Rev. B 77, 184417 (2008).
- 30. E. Dubois, R. Przynski, F. Boué, and V. Cabuil, Langmuir 16, 5617 (2000).

- 31. E. Pyanzina, S. Kantorovich, J. J. Cerdá et al., Mol. Phys. 107, 571 (2009).
- **32**. Е. А. Елфимова, А. О. Иванов, ЖЭТФ **138**, 162 (2010).
- 33. E. A. Elfimova, A. O. Ivanov, and P. J. Camp, J. Chem. Phys. 136, 194502 (2012).
- 34. J. J. Cerdá, E. Elfimova, V. Ballenegger et al., J. Magn. Magn. Mater. 323, 1246 (2011).
- **35**. Е. В. Крутикова, Е. А. Елфимова, Письма в ЭЧАЯ **8**, 29 (2011).
- 36. E. Novak, E. Minina, E. Pyanzina et al., J. Chem. Phys. 139, 22 (2013).
- 37. J.-P. Hansen and I. R. McDonald, *Theory of Simple Liquids*, Acad. Press, London (2006).
- **38**. Р. Балеску, *Равновесная и неравновесная статистическая механика*, т. 1, Мир, Москва (1978).
- 39. J. E. Mayer and E. Montroll, J. Chem. Phys. 9, 2 (1941).

- 40. J. de Boer, Rep. Progr. Phys. 12, 305 (1949).
- 41. E. A. Elfimova, A. O. Ivanov, and P. J. Camp, Phys. Rev. E 136, 194502 (2012).
- M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford (1987).
- 43. D. Frenkel and B. Smit, Understanding Molecular Simulation: from Algorithms to Applications, Acad. Press, San Diego (2001).
- 44. D. J. Cebula, S. W. Charles, and J. Popplewell, Colloid Polymer Sci. 259, 395 (1981).
- 45. G. Meriguet, F. Cousin, E. Dubois et al., J. Phys. Chem. B 110, 4378 (2006).
- 46. J. Wagner and B. Fisher, J. Chem. Phys. 124, 114901 (2006).
- 47. G. Meriguet, M. Jardan, and P. Turq, J. Chem. Phys. 121, 6078 (2004).
- 48. J. J. Cerdá, E. Elfimova, V. Ballenegger et al., Phys. Rev. E 81, 011501 (2010).