КРИТИЧЕСКОЕ ПОВЕДЕНИЕ ТРЕХМЕРНЫХ ФРУСТРИРОВАННЫХ СПИРАЛЬНЫХ МАГНЕТИКОВ

А. О. Сорокин*

Петербургский институт ядерной физики им. Б. П. Константинова 188300, Гатчина, Ленинградская обл., Россия

> Санкт-Петербургский государственный университет 198504, Санкт-Петербург, Россия

> > Поступила в редакцию 10 сентября 2013 г.

Методом Монте-Карло исследуются критические свойства классических фрустрированных спиральных магнетиков с различным числом киральных параметров порядка в трех измерениях. Рассматривается модель антиферромагнетика на простой кубической решетке с конкурирующими обменными взаимодействиями между спинами первого и третьего порядков дальности, в которой существуют геликоидальные фазы с одним, двумя и тремя независимыми киральными параметрами порядка. Во всех случаях найдено, что переход из упорядоченной фазы в разупорядоченную осуществляется в виде одного перехода первого рода при отсутствии частично упорядоченных фаз.

DOI: 10.7868/S0044451014030100

1. ВВЕДЕНИЕ

Спиральные магнетики являются объектом интенсивных исследований последние десятилетия. Они интересны как сами по себе, так и в контексте их связи с другими важными системами физики конденсированного состояния, например, мультиферроиками [1] или экзотическими фазами типа киральной спиновой жидкости [2].

В основном рассматривают два механизма возникновения магнитной спирали, длиннопериодической модуляции (анти)ферромагнитной структуры. В так называемых фрустрированных спиральных магнетиках длиннопериодическая модуляция возникает из-за конкуренции обменных взаимодействий между спинами первых нескольких порядков дальности [3]. Нефрустрированная спираль возникает в магнетиках без центра инверсии благодаря наличию взаимодействия Дзялошинского – Мория [4] в дополнение к обычному обмену.

С точки зрения теории критического поведения, фрустрированные и нефрустрированные спиральные магнетики являются совершенно разными объектами, с различной структурой параметра порядка. В первом случае ось спирали фиксирована и определяется структурой обменных взаимодействий и геометрией решетки, в то время как фаза спина на узле и общее направление закручивания спирали определяются спонтанно. В упорядоченной (геликоидальной) фазе планарный порядок спинов описывается двумя взаимно перпендикулярными векторами и функционалом Гинзбурга – Ландау [5]

$$F = \int d^{3}x \times \left(\frac{1}{2}\sum_{n=1}^{P} \left((\partial_{\mu}\phi_{n})^{2} + r\phi_{n}^{2}\right) + \frac{u}{4!}\left(\sum_{n=1}^{P}\phi_{n}^{2}\right)^{2} + \frac{v}{4!}\sum_{n,m=1}^{P} \left((\phi_{n}\phi_{m})^{2} - \phi_{n}^{2}\phi_{m}^{2}\right)\right)$$
(1)

с P = 2, где ϕ_n — классический *N*-вектор. В разупорядоченной фазе функционал инвариантен относительно группы $G_x \otimes O(N)_L \otimes O(P)_R$, где G_x — группа симметрии решетки (или в непрерывном пределе $G_x = O(3)$, группа поворотов и отражений в трех измерениях), действующая в *x*-пространстве, а $O(N)_L \otimes O(P)_R$ — группа, действующая соответственно слева и справа на $N \times P$ -матрицу $\Phi = (\phi_1, \ldots, \phi_P)$, являющуюся параметром порядка. В упорядоченной фазе при u > 0 и v < 4u группа

^{*}E-mail: aosorokin@gmail.com

⁷ ЖЭТФ, вып.3

симметрии, действующая на параметр порядка, нарушается до подгруппы $O(N-P)_L \otimes O(P)_{diag}$. Таким образом, пространство параметра порядка является многообразием Штифеля O(N)/O(N-P) [6]. В физически интересных случаях планарных (N = 2) и изотропных (N = 3) спинов соответственно происходит нарушение групп симметрии $O(2) = \mathbb{Z}_2 \otimes SO(2)$ и SO(3). В случае спиральных магнетиков с несколькими киральными параметрами порядка группа симметрии решетки будет также нарушаться и к модели (1) добавятся дискретные параметры порядка. В важном случае гелимагнетика с двумя киральными параметрами порядка и изотропными спинами критическое поведение снова будет описываться моделью (1) с N = 3 и P = 3, что соответствует нарушению симметрии $O(3) = \mathbb{Z}_2 \otimes SO(3)$ [7].

Критическое поведение нефрустрированных спиральных магнетиков со взаимодействием Дзялошинского – Мория описывается функционалом [4]

$$F = \int d^3x \left(\frac{1}{2} \left((\partial_\mu \phi)^2 + r \phi^2 \right) + \frac{u}{4!} \left(\phi^2 \right)^2 + D\phi \left(\nabla \times \phi \right) \right), \quad (2)$$

где ϕ — 3-вектор, $\nabla = (\partial_1, \partial_2, \partial_3)$. Последнее слагаемое связывает *x*-пространство со спиновым пространством. Направление волнового вектора спирали определяется спонтанно. (В реальных системах может присутствовать слабая анизотропия, связанная с решеткой.) Также спонтанно определяется фаза спина на узле, причем спины лежат в плоскости перпендикулярной волновому вектору спирали. Последнее условие явно нарушает симметрию вращения в спиновом пространстве O(3) до подгруппы SO(2). Таким образом, параметр порядка принадлежит многообразию $SO(3)/SO(2) \otimes SO(2)$.

Общим в критическом поведении обеих моделей является то, что в трех измерениях в них происходит один индуцированный флуктуациями переход первого рода (см. [8] для фрустрированной модели и [9] для модели со взаимодействием Дзялошинского – Мория). Другие фрустрированные магнитные системы также интенсивно изучаются на предмет их критических свойств в трех измерениях (исторический обзор этих исследований можно найти в работе [10]). В основном в них также наблюдается переход первого рода.

Численно исследовались несколько моделей фрустрированных спиральных магнетиков: модель на простой кубической решетке [7, 11], на объемноцентрированной тетрагональной решетке [12–14],

на гранецентрированной кубической решетке [15], на гексагональной решетке [16], а также модели спиральных магнетиков с двумя киральными параметрами порядка [7, 11]. В исследованиях моделей с одним киральным параметром порядка найден переход второго рода [13, 14]. Однако ожидается, что данный переход очень слабого первого рода, близкого ко второму. Внутренняя теплота перехода очень мала и не наблюдается на решетках малого размера $L \lesssim 60$, рассматривавшихся в работах [13, 14]. Аналогичная ситуация происходит в хорошо исследованной модели антиферромагнетика на гексагональной решетке, принадлежащей тому же (псевдо)классу универсальности. Здесь первый род перехода становится заметным при размерах решетки $L \ge 90$ для N = 2 спинов [17] и $L \ge 120$ для N = 3 спинов [18].

Численное моделирование спиральных структур имеет свои особенности, связанные с несоизмеримостью спирали и ее температурными свойствами. Даже если рассматривать те отношения величин обменных взаимодействий, что соответствуют шагу спирали кратному постоянной решетки, то температурные перенормировки констант взаимодействия, по-разному действующие на обмены между спинами разных порядков дальности, сделают спиральную структуру несоизмеримой при конечной температуре. В трех измерениях тот же эффект, возможно, приводит к смещению точки Лифшица в область конечных температур. Температурные свойства в окрестности точки Лифшица требуют отдельного аккуратного изучения.

В данной работе рассматривается переход из геликоидальной фазы в разупорядоченную в моделях спиральных магнетиков с одним и несколькими киральными параметрами порядка. Во всех моделях найден переход первого рода, причем для случая с одним киральным параметром рассматриваются решетки больших размеров $L \leq 150$. При этом изучается возможность существования псевдоскейлингового поведения, показатели которого сравниваются с другими системами из соответствующих классов универсальности.

2. МОДЕЛЬ И МЕТОДЫ

Мы рассматриваем модель антиферромагнетика на простой кубической решетке с гамильтонианом

$$H = J_1 \sum_{\mathbf{x},\mu} \mathbf{S}_{\mathbf{x}} \cdot \mathbf{S}_{\mathbf{x}+\mathbf{e}_{\mu}} + \sum_{\mathbf{x},\mu} J_3^{\mu} \mathbf{S}_{\mathbf{x}} \cdot \mathbf{S}_{\mathbf{x}+2\mathbf{e}_{\mu}}, \qquad (3)$$

где $\mathbf{S}_{\mathbf{x}}$ — классический *N*-компонентный вектор (N = 2, 3), расположенный в узле **x** решетки, \mathbf{e}_{μ} — единичные векторы, направленные вдоль трех направлений решетки, а $\mu = 1, 2, 3$. Константы связи выбраны положительными $J_1 > 0, J_3^{\mu} > 0$. Модель с $J_2 \neq 0$ и $J_3 = 0$ рассматривалась в работе [19].

При $J_3^2 = J_3^3 = 0$ и $J_3^1 > J_1/4$ основным состоянием является спираль с волновым вектором $\mathbf{q}_0 = (q_0^1, 0, 0)$, соз $q_0^1 = -J_1/4J_2$. Данный случай описывает геликоидальную фазу с одним киральным параметром порядка. Для исследования псевдоскейлингового поведения рассматривались решетки с размерами в диапазоне $15 \le L \le 48$, однако для выяснения типа перехода использовались также решетки большего размера: L = 90, 120 в случае N = 2 и L = 90, 120, 150 в случае N = 3.

Если $J_3^3 = 0$ и $J_3^1, J_3^2 > J_1/4$, то при T = 0 система находится в геликоидальной фазе с двумя киральными параметрами порядка с волновым вектором $\mathbf{q}_0 = (q_0^1, q_0^2, 0)$, где $\cos q_0^\mu = -J_1/4 J_3^\mu$ с $\mu = 1, 2$. Для случая N = 3, соответствующего полностью нарушенной симметрии O(3), были рассмотрены решетки с $15 \leq L \leq 42$. В случае N = 2 происходит ярко выраженный переход первого рода с нарушением симметрии $\mathbb{Z}_2 \otimes \mathbb{Z}_2 \otimes SO(2)$. Определение типа перехода было получено в работе [11] для случая $J_3^1 = J_3^2$.

В случае $J_3^1, J_3^2, J_3^3 > J_1/4$ можно ввести три независимых киральных параметра, основное состояние является спиралью с вектором $\mathbf{q}_0 = (q_0^1, q_0^2, q_0^3)$. В случае N = 3 основное состояние соответствует фазе с нарушенной симметрией $\mathbb{Z}_2 \otimes \mathbb{Z}_2 \otimes SO(3)$. В случае N = 2 при $J_3^1 = J_3^2 = J_3^3$ нарушенной симметрией является $\mathbb{Z}_4 \otimes \mathbb{Z}_2 \otimes SO(2)$, где первый фактор соответствует нарушению симметрии куба относительно поворотов на $\pi/2$ вокруг любой оси. При анизотропии обменов данная симметрия редуцируется в $\mathbb{Z}_2 \otimes \mathbb{Z}_2 \otimes \mathbb{Z}_2 \otimes SO(2)$. (Напомним, что группы \mathbb{Z}_{mn} и $\mathbb{Z}_m \otimes \mathbb{Z}_n$ не изоморфны, если m и n — не взаимно простые числа.) Здесь рассматривались решетки с $15 \leq L \leq 30$.

Предлагаемая модель исследовалась методом Монте-Карло с использованием релаксационного алгоритма [20]. Для изучения типа перехода использовался метод анализа гистограмм. Термализация к равновесному состоянию осуществлялась за $2 \cdot 10^5$ шагов алгоритма на спин, а набор статистики проводился за $3 \cdot 10^6$ шагов. Рассматривались соизмеримые (при нулевой температуре) спирали с $q_0^{\mu} = 2\pi/3, 6\pi/11$, позволяющие использовать периодические граничные условия и вводить магнитный параметр порядка как намагниченность каждой из соответственно трех и одиннадцати подрешеток:

$$\mathbf{m}_{i} = \frac{n_{sl}}{L^{3}} \sum_{\mathbf{x}_{i}} \mathbf{S}_{\mathbf{x}_{i}}, \quad \bar{m} = \sqrt{\frac{1}{n_{sl}} \sum_{i=1}^{n_{sl}} \langle \mathbf{m}_{i}^{2} \rangle}, \qquad (4)$$

где \mathbf{x}_i пробегает узлы *i*-й подрешетки, L^3 — объем системы (для случаев с $J_3^{\mu} \neq J_3^{\nu}$ рассматривались решетки с объемом $L_1 \cdot L_2 \cdot L_3$, где L_{μ} выбирались, исходя из шага спирали при нулевой температуре). Для модели с планарными спинами используется следующее определение кирального параметра порядка:

$$k_{\mu} = \frac{1}{L^{3} \sin q_{0}^{\mu}} \sum_{\mathbf{x}} \left(S_{\mathbf{x}}^{a} S_{\mathbf{x}+\mathbf{e}_{\mu}}^{b} - S_{\mathbf{x}}^{b} S_{\mathbf{x}+\mathbf{e}_{\mu}}^{a} \right),$$

$$\bar{k}_{\mu} = \sqrt{\langle k_{\mu}^{2} \rangle}.$$
 (5)

Для изотропных спинов использовались как киральные параметры

$$\mathbf{k}_{\mu} = \frac{1}{L^3 \sin q_0^{\mu}} \sum_{\mathbf{x}} \mathbf{S}_{\mathbf{x}} \times \mathbf{S}_{\mathbf{x}+\mathbf{e}_{\mu}}, \quad \bar{k}_{\mu} = \sqrt{\langle \mathbf{k}_{\mu}^2 \rangle}, \quad (6)$$

так и их корреляторы

$$\sigma_{\mu\nu} = \mathbf{k}_{\mu} \cdot \mathbf{k}_{\nu}, \quad \bar{\sigma}_{\mu\nu} = \sqrt{\langle |\sigma_{\mu\nu}| \rangle}. \tag{7}$$

Оценка температуры перехода по тому или иному параметру порядка $p = \bar{m}, \bar{k}_{\mu}$, а также оценка точности определения температуры проводились с помощью метода пересечения кумулянтов Биндера [21]

$$U_p = 1 - \frac{\langle p^4 \rangle}{3 \langle p^2 \rangle^2}.$$
 (8)

Критический показатель ν оценивается с помощью следующего кумулянта [22]:

$$V_p = \frac{\partial}{\partial (1/T)} \ln \langle p^2 \rangle = L^2 \left(\frac{\langle p^2 E \rangle}{\langle p^2 \rangle} - \langle E \rangle \right).$$
(9)

3. РЕЗУЛЬТАТЫ

3.1. Класс $\mathbb{Z}_2 \otimes SO(2)$

В спиральном XY-магнетике с одним киральным параметром порядка наблюдается один переход слабого первого рода из фазы со спиральным порядком в разупорядоченную фазу. Для модели (3) с $J_3^2 = J_3^3 = 0$ и $J_3^1 = J_1/2$ температура перехода и по магнитному, и по киральному параметрам порядка имеет следующие оценки (рис. 1, 2):

$$T_c^{(m)}/J_1 = 1.8028(8), \quad T_c^{(k)}/J_1 = 1.8034(7), \quad (10)$$

 7^{*}

Рис. 1. Оценка температуры перехода по магнитному параметру порядка при $J_3^2=J_3^3=0,\ J_3^1=J_1/2$ и N=2

Рис.2. Оценка температуры перехода по киральному параметру порядка при $J_3^2=J_3^3=0,\ J_3^1=J_1/2$ и N=2

с универсальным значением кумулянта Биндера

$$U_m^* = 0.623(7), \quad U_k^* = 0.39(3).$$
 (11)

Таким образом, в пределах точности данных мы имеем дело с одним переходом.

Данный переход первого рода. Но это становится заметно лишь на решетках очень большого размера. Двухпиковая структура распределения по энергии вблизи T_c , указывающая на наличие скрытой теплоты перехода, характерной для переходов первого рода, была найдена только на решетках с L = 90, 120(рис. 3). Примерно на решетках такого размера об-

Рис.3. Гистограмма распределения по энергии вблизи перехода при $J_3^2 = J_3^3 = 0, J_3^1 = J_1/2$ и N=2

наруживается первый род перехода в модели антиферромагнетика на гексагональной решетке [17].

При моделировании на решетках небольшого размера наблюдается скейлинговое поведение. Непосредственно из моделирования получены следующие критические показатели:

 $\nu = 0.548(6), \quad \beta = 0.247(8), \quad \gamma = 1.16(3), \quad (12)$

$$\nu_k = 0.556(7), \quad \beta_k = 0.41(2), \quad \gamma_k = 0.88(4), \quad (13)$$

где индексом k помечены показатели, относящиеся к киральному параметру порядка. Полученные критические индексы хорошо согласуются с наиболее аккуратными численными результатами для антиферромагнетика на гексагональной решетке [23]. Сравнение с результатами теоретических расчетов для других моделей из этого класса, а также с экспериментальными данными можно найти в обзоре [10]. Некоторые данные приведены в табл. 1. Отметим, что измерения критических показателей в спиральных магнетиках Но и Dy, включая киральные, дают результаты, сильно отличающиеся от теоретических (12), (13). В ранних теоретических работах (см., например, [5]) предполагалось, что критическое поведение в этом случае определяется вильсоновской неподвижной точкой, соответствующей случаю v = 0 в модели (1), эквивалентной критической точке O(2N)-модели с $\beta = 0.39$ при N = 2.

Важно отметить, что в трех измерениях переходы по магнитному и киральному параметрам порядка происходят при одной температуре, и фазы с частичным порядком типа киральной спиновой жидкости отсутствуют. В двух измерениях наблюдается

Таблица 1. Сравнение критических индексов, полученных в данной работе (первая строчка), с теоретическими и экспериментальными оценками индексов других систем из класса универсальности $\mathbb{Z}_2 \otimes SO(2)$, а также с показателями других классов: \mathbb{Z}_2 (модель Изинга), SO(2) (N = 2, ферромагнетик) и SO(4)/SO(3) (N = 4, ферромагнетик); $\tilde{\beta}_k = \beta_k/2$, $\tilde{\gamma}_k = \gamma_k + \beta_k$, STA — модель антиферромагнетика на гексагональной решетке

	ν	$ u_k$	β	$ ilde{eta}_k$	γ	$\tilde{\gamma}_k$
Данная работа	0.548(6)	0.556(7)	0.25(1)	0.21(1)	1.16(3)	1.29(6)
STA, [23]	0.54(2)	0.55(2)	0.25(1)	0.23(1)	1.13(5)	1.22(7)
STA, [24]	0.50(1)	0.55(1)	0.24(1)	0.19(1)	1.05(2)	1.31(4)
STA, [25]	0.48(2)		0.25(2)		1.15(5)	
$CsMnBr_3, [26, 27]$	0.55(2)		0.24(2)	0.22(2)	1.08(8)	1.28(9)
Ho, Dy, [28, 29]	0.56(2)		0.39(2)	0.45(2)	1.10(10)	1.58(9)
$\mathbb{Z}_{2}, [30]$	0.630		0.327		1.236	
SO(2), [30]	0.671		0.348		1.317	
SO(4)/SO(3), [30]	0.75		0.39		1.47	

Рис. 4. Оценка температуры перехода по магнитному параметру порядка при $J_3^2=J_3^3=0,\ J_3^1=J_1/2$ и N=3

 $\begin{array}{c} U_k(L) \\ 0.65 \\ 0.60 \\ 0.55 \\ 0.50 \\ 0.45 \\ 0.40 \\ 1.170 \\ 1.175 \\ 1.180 \\ 1.185 \\ 1.190 \\ T/J_1 \end{array}$

Рис.5. Оценка температуры перехода по киральному параметру порядка при $J_3^2=J_3^3=0,\ J_3^1=J_1/2$ и N=3

3.2. Класс SO(3)

Для случая изотропных спинов и модели спирального магнетика с одним киральным параметром также наблюдается один переход первого рода. Так, при $q_0^1 = 2\pi/3$ температура перехода по магнитному и киральному параметрам порядка оценивается как (рис. 4, 5)

$$T_c^{(m)}/J_1 = 1.1798(2), \quad T_c^{(k)}/J_1 = 1.1801(2) \quad (14)$$

с универсальным значением перенормированной константы связи (кумулянта Биндера)

иная картина, когда переходы расщепляются, и переход Березинского – Костерлица – Таулесса, связанный с нарушением квазидальнего магнитного порядка, происходит при температуре ниже, чем киральный переход, принадлежащий классу универсальности двумерной модели Изинга [31]. Вопрос о возможном расщеплении переходов в трехмерном случае обсуждается (см., например, [2]), но на текущий момент остается открытым.

Рис.6. Гистограмма распределения по энергии вблизи перехода при $J_3^2=J_3^3=0,\ J_3^1=J_1/2$ и N=3

Рис.7. Зависимость внутренней энергии от температуры при L = 150, $J_3^2 = J_3^3 = 0$, $J_3^1 = J_1/2$ и N = 3. Сплошная кривая соответствует результатам, полученным из симуляции, стартующей со случайной конфигурации. Штриховая линия соответствует старту с основного состояния

$$U_m^* = 0.642(3), \quad U_k^* = 0.54(1).$$
 (15)

Двухпиковая структура распределения по энергии вблизи T_c проявляется только на решетках с $L \gtrsim 150$ (рис. 6). По-видимому, для получения надежного результата по определению типа перехода следует использовать специализированные алгоритмы, работающие более эффективно на решетках очень большого размера [18]. Для подтверждения результата мы провели симуляции при L = 150, где в качестве стартовой конфигурации брались как случайные конфигурации спинов (как правило, сильно разупорядоченные), так и основное состояние. Вдали от критической температуры $T_c^{(L)} \approx 1.1794$ среднее значение внутренней энергии не зависит от стартовой конфигурации, в то время как в небольшой окрестности перехода наблюдается гистерезис, свидетельствующий о первом роде перехода (рис. 7).

Для данного класса критические (псевдо)индексы также были вычислены:

 $\nu = 0.589(7), \quad \beta = 0.280(6), \quad \gamma = 1.21(2), \quad (16)$

$$\nu_k = 0.602(8), \quad \beta_k = 0.51(1), \quad \gamma_k = 0.79(2).$$
 (17)

Полученные результаты также хорошо согласуются с критическими показателями модели антиферромагнетика на гексагональной решетке [23] и с некоторыми другими моделями из этого класса (см. табл. 2 и обзор [10]).

Хотя в трех измерениях модель (1) с N = 3 и P = 2, описывающая системы из рассматриваемого класса, предсказывает индуцированный флуктуациями переход первого рода [8], в размерности $2 + \epsilon$ должен происходить переход второго рода из класса универсальности N = 4 ферромагнетика, соответствующего нарушению симметрии SO(4)/SO(3), с критической температурой $T_c^{(\epsilon)} \sim \epsilon$ [37, 38]. Данное предсказание σ -модели должно нарушаться при $\epsilon < 1$ [39]. В двух измерениях нет дальнего или квазидальнего порядка при конечных температурах, тем не менее взаимодействие топологических дефектов (так называемых Z₂-вихрей) может приводить к кроссоверу при ненулевой температуре, наблюдающемуся экспериментально (см. работу [40] и ссылки там).

3.3. Класс $\mathbb{Z}_2 \otimes SO(3)$

Прибавление к модели из предыдущего подраздела дополнительного конкурирующего обмена $J_3^2 > J_1/4$ меняет симметрийный класс и характер вырождения основного состояния добавлением дискретного параметра порядка. Тем не менее, и в случае $J_3^1 = J_3^2$, и при $J_3^1 \neq J_3^2$ по-прежнему наблюдается один переход первого рода (рис. 8).

Для этого класса можно наблюдать скейлинговое поведение на маленьких решетках [6, 7, 41] с показателями, очень близкими к значениям, характерным для переходов первого рода в теории конечноразмерного масштабирования ($\nu = 1/3$, $\alpha = 1$, $\beta = 0$ и $\gamma = 1$), хотя и отличающимися от них (см. табл. 3).

Таблица 2. Сравнение критических экспонент, полученных в данной работе, с результатами для других моделей из класса SO(3), а также с известными показателями N = 3 и N = 4 ферромагнетика; BCT — модель спирального магнетика на объемноцентрированной кубической решетке, NPRG — оценка критических показателей в модели (1) с помощью непертурбативной ренормгруппы, где в отсутствие притягивающей неподвижной точки показатели вычислялись в точке минимума РГ-потока

	ν	$ u_k$	β	\tilde{eta}_k	γ	$\tilde{\gamma}_k$
Данная работа	0.589(7)	0.602(8)	0.28(1)	0.26(1)	1.21(2)	1.30(4)
STA, [23]	0.59(2)	0.60(3)	0.30(2)	0.28(2)	1.17(7)	1.27(8)
STA, [32]	0.586(8)	0.61(1)	0.29(1)	0.25(2)	1.19(1)	1.32(6)
STA, [33]	0.59(1)		0.28(1)		1.25(3)	
STA, [34]	0.59(1)	0.59(2)	0.26(1)	0.22(4)	1.23(2)	1.30(7)
BCT, [13]	0.57(2)		0.25(3)		1.22(3)	
NPRG, [35]	0.63		0.31		1.26	
NPRG, [36]	0.53		0.28		1.03	
SO(3)/SO(2), [30]	0.706		0.365		1.388	
SO(4)/SO(3), [30]	0.75		0.39		1.47	

Таблица 3. Сравнение критических экспонент, полученных в данной работе, с результатами для других моделей из класса $\mathbb{Z}_2 \otimes SO(3)$, а также с показателями, характерными для перехода первого рода в теории конечноразмерного масштабирования; STA+ J_2 — модель антиферромагнетика на гексагональной решетке с дополнительным обменом между слоями, $V_{3,3}$ — модель Штифеля, Руг — модель антиферромагнетика на решетке со структурой пирохлора

	ν	$ u_k$	β	$ ilde{eta}_k$	γ	$\tilde{\gamma}_k$
Данная работа, [7]	0.37(2)	0.37(2)	0.13(1)	0.09(2)	0.84(4)	0.95(7)
$\mathrm{STA}{+}J_2,[7]$	0.37(1)	0.37(1)	0.118(7)	0.08(1)	0.88(3)	0.96(5)
$V_{3,3}, [6]$	0.37		0.10		0.90	
Pyr, [41]	0.38(3)		0.19(2)		0.9(1)	
${\rm FeCl}_{3}, [41]$			0.18(2)			
I-order	0.333	0.333	0	0	1	1

Совершенно неожиданно значение кумулянта Биндера в точке перехода в пределах погрешности совпадает с результатом для простого (N = 3) спирального магнетика (15) и антиферромагнетика на треугольной решетке [34]

$$U_m^* = 0.641(5), \quad U_k^* = 0.53(2).$$
 (18)

Данное сходство универсальных величин для двух различных классов SO(3) и $\mathbb{Z}_2 \otimes SO(3)$ может являться частным свойством рассматриваемой модели. Напомним, что спиновый порядок в ней остается планарным, как в случае с одним киральным параметром. Два киральных вектора, определенных выражением (6), оказываются параллельными или антипараллельными, а потому вместо одного из них следует рассматривать в качестве параметра порядка величину (7), принимающую при T = 0 значения $\sigma_{12} = \pm 1$. Классу с нарушенной симметрией $\mathbb{Z}_2 \otimes SO(3)$ также принадлежат магнетики с непланарным порядком (реализующиеся, например, в модели антиферромагнетика со структурой пирохлора), где могут наблюдаться другие значения кумулянта Биндера. Для спинов с большим числом компонент, $N \geq 4$, рассматриваемая модель и магнетики с непланарным порядком будут принадлежать разным классам — соответствен-

Рис.8. Гистограмма распределения по энергии вблизи перехода при $J_3^1 = J_3^2 = J_1/2$, $J_3^3 = 0$ и N = 3

но $\mathbb{Z}_2 \otimes O(N) / O(N-2)$ и O(N) / O(N-3), совпадающим только при N = 3.

С понижением размерности переходы по дискретному и непрерывному параметрам порядка должны расщепляться. При приближении размерности к двойке температура второго перехода стремится к нулю, а сам переход принадлежит классу SO(4)/SO(3) [38, 42]. Переход по дискретному параметру происходит при конечной температуре и в двух измерениях и принадлежит классу универсальности двумерной модели Изинга [43]. Хотя в этом случае будут также присутствовать \mathbb{Z}_2 -вихри, их роль в критическом поведении остается до конца не выясненной. Возможно, они меняют характер критического поведения при переходе по дискретному параметру, и тогда должно наблюдаться отклонение от универсальных значений [44].

3.4. Другие классы

Для модели спирального XY-магнетика с двумя киральными параметрами порядка, равно как и для случая с тремя киральностями, найден один ярко выраженный переход первого рода. Гистограммы распределения по энергии вблизи температуры перехода для некоторых случаев в этих моделях показаны на рис. 9, 10.

Интересно отметить, что исследование модели спирального XY-магнетика с двумя киральными параметрами в двух измерениях предсказывает, что переход Березинского-Костерлица-Таулесса и оба киральных перехода происходят при одной темпера-

Рис.9. Гистограмма распределения по энергии вблизи перехода при $J_3^1 = J_3^2 = J_3^3 = J_1/2$ и N=3

Рис.10. Гистограмма распределения по энергии вблизи перехода при $J_3^1 = J_3^2 = J_3^3 = J_1/2$ и N=2

туре в виде перехода первого рода [45]. Таким образом, фаза киральной спиновой жидкости отсутствует здесь и в двух измерениях в противоположность случаю с одной киральностью.

4. ЗАКЛЮЧЕНИЕ

Мы рассмотрели несколько моделей трехмерных фрустрированных антиферромагнетиков с планарными и изотропными спинами, в которых реализуется геликоидальная фаза, характеризующаяся одним или несколькими киральными параметрами порядка. Во всех случаях найдено, что переход между геликоидальной и разупорядоченной фазами осуществляется в виде одного перехода первого рода с отсутствием частично упорядоченных фаз типа киральной спиновой жидкости. В случаях, где индуцированный флуктуациями первый род перехода оказывается близким ко второму, исследовалась возможность имитации скейлингового поведения.

В настоящее время активно исследуются многослойные структуры типа Dy/Y, Ho/Y [46]. Благодаря наличию ступенек и других дефектов на поверхностях между слоями в системе может появляться взаимодействие Дзялошинского – Мория, усиливающее эффекты киральности [47]. Изучение критических свойств этих систем могло бы стать проверкой предположений о (слабом) расщеплении магнитного и кирального переходов в классе $\mathbb{Z}_2 \otimes SO(2)$.

Работа выполнена при финансовой поддержке Фонда «Династия» и РФФИ (гранты №№ 12-02-01234, 12-02-00498).

ЛИТЕРАТУРА

- 1. M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006).
- F. David and T. Jolicoeur, Phys. Rev. Lett. 76, 3148 (1996); S. Onoda and N. Nagaosa, Phys. Rev. Lett. 99, 027206 (2007).
- J. Villain, J. Phys. Chem. Sol. 11, 303 (1959);
 A. Yoshimori, J. Phys. Soc. Jpn. 14, 508 (1959);
 T. A. Kaplan, Phys. Rev. 116, 888 (1959).
- И. Е. Дзялошинский, ЖЭТФ 46, 1420 (1964);
 L. L. Liu, Phys. Rev. Lett. 31, 459 (1973); P. Bak and M. H. Jensen, J. Phys. C: Sol. St. Phys. 13, L881 (1980); O. Nakanishi, A. Yanase, A. Hasegawat, and M. Kataoka, Sol. St. Comm. 35, 995 (1980).
- 5. Т. Garel and P. Pfeuty, J. Phys. C: Sol. St. Phys.
 9, L245 (1976); P. Bak and D. Mukamel, Phys. Rev. В 13, 5086 (1976); С. А. Бразовский, И. Е. Дзялошинский, Б. Г. Кухаренко, ЖЭТФ 70, 2257 (1976); И. Е. Дзялошинский, ЖЭТФ 72, 1930 (1977); Z. Barak and M. B. Walker, Phys. Rev. B 25, 1969 (1982); H. Kawamura, Phys. Rev. B 38, 4916 (1988).
- H. Kunz and G. Zumbach, J. Phys. A: Math. Gen. 26, 3121 (1993).
- А. О. Сорокин, А. В. Сыромятников, ЖЭТФ 139, 1148 (2011).

- Критическое поведение . . .
- S. A. Antonenko, A. I. Sokolov, and K. B. Varnashev, Phys. Lett. A 208, 161 (1995); A. Pelissetto, P. Rossi, and E. Vicari, Nucl. Phys. B 607, 605 (2001); P. Calabrese and P. Parruccini, Nucl. Phys. B 679, 568 (2004).
- 9. С. А. Бразовский, ЖЭТФ 68, 175 (1975); S. V. Grigoriev et al., Phys. Rev. B 72, 134420 (2005).
- B. Delamotte, D. Mouhanna, and M. Tissier, Phys. Rev. B 69, 134413 (2004).
- **11**. А. О. Сорокин, А. В. Сыромятников, ЖЭТФ **140**, 771 (2011).
- H. T. Diep, Europhys. Lett. 7, 725 (1988); Phys. Rev. B 39, 397 (1989).
- 13. D. Loison, Physica A 275, 207 (2000).
- 14. F. Cinti, A. Rettori, and A. Cuccoli, Phys. Rev. B 81, 134415 (2010).
- M. Collins and W. M. Saslow, Phys. Rev. B 53, 8533 (1996).
- H. Kawamura, Progr. Theor. Phys. Suppl. 101, 545 (1990).
- 17. M. Itakura, J. Phys. Soc. Jpn. 72, 74 (2003); A. Peles et al., Phys. Rev. B 69, 220408 (2004); V. Thanh Ngo and H. T. Diep, J. Appl. Phys. 103, 07C712 (2008); А. К. Муртазаев, М. К. Рамазанов, М. К. Бадиев, ЖЭТФ 142, 338 (2012).
- 18. V. Thanh Ngo and H. T. Diep, Phys. Rev. E 78, 031119 (2008).
- 19. C. Pinettes and H. T. Diep, J. Appl. Phys. 83, 6318 (1998).
- 20. F. R. Brown and T. J. Woch, Phys. Rev. Lett. 58, 2394 (1987); M. Creutz, Phys. Rev. D 36, 515 (1987).
- 21. K. Binder, Z. Phys. B 43, 119 (1981); Phys. Rev. Lett. 47, 693 (1981).
- 22. A. M. Ferrenberg and D. P. Landau, Phys. Rev. B 44, 5081 (1991).
- 23. H. Kawamura, J. Phys. Soc. Jpn. 61, 1299 (1992).
- 24. M. L. Plumer and A. Mailhot, Phys. Rev. B 50, 16113 (1994).
- 25. E. H. Boubcheur, D. Loison, and H. T. Diep, Phys. Rev. B 54, 4165 (1996).
- 26. H. Kadowaki et al., J. Phys. Soc. Jpn. 57, 2640 (1988);
 Y. Ajiro et al., J. Phys. Soc. Jpn. 57, 2648 (1988);
 T. E. Mason, B. D. Gaulin, and M. F. Collins, Phys. Rev. B 39, 586 (1989); J. Wang, D. P. Belanger, and
 B. D. Gaulin, Phys. Rev. Lett. 66, 3195 (1991).

- V. P. Plakhty et al., Phys. Rev. Lett. 85, 3942 (2000);
 V. P. Plakhty et al., Europhys. Lett. 48, 215 (1999).
- G. H. F. Brits and P. de V. Du Plessis, J. Phys. F: Met. Phys. 18, 2659 (1988); T. R. Thurston et al., Phys. Rev. Lett. 70, 3151 (1993); T. R. Thurston et al., Phys. Rev. B 49, 15730 (1994); G. Helgesen et al., Phys. Rev. B 50, 2990 (1994); P. de V. Du Plessis, A. M. Venter, and G. H. F. Brits, J. Phys.: Cond. Mat. 7, 9863 (1995).
- 29. V. P. Plakhty et al., Phys. Rev. B 64, 100402R (2001);
 С. В. Григорьев и др., Письма в ЖЭТФ 83, 568 (2006).
- 30. A. Pelissetto and E. Vicari, Phys. Rep. 368, 549 (2002).
- A. O. Sorokin and A. V. Syromyatnikov, Phys. Rev. B 85, 174404 (2012); 86, 059904(E) (2012).
- 32. A. Mailhot, M. L. Plumer, and A. Caillé, Phys. Rev. B 50, 6854 (1994).
- 33. D. Loison and H. T. Diep, Phys. Rev. B 50, 16453 (1994).
- **34**. А. К. Муртазаев, УФН **178**, 1001 (2008).
- 35. G. Zumbach, Nucl. Phys. B 413, 771 (1994).
- 36. M. Tiesser, B. Delamotte, and D. Mouhanna, Phys. Rev. B 67, 134422 (2003).

- 37. A. McKane and M. Stone, Nucl. Phys. B 163, 169 (1980); S. Hikami, Phys. Lett. B 98, 208 (1981).
- B. Delamotte, and T. Jolicoeur, Phys. Rev. Lett. 64, 3175 (1990); P. Azaria, B. Delamotte, and T. Jolicoeur, J. Appl. Phys. 69, 6170 (1991); P. Azaria, B. Delamotte, F. Delduc, and T. Jolicoeur, Nucl. Phys. B 408, 485 (1993).
- **39**. G. Zumbach, Nucl. Phys. B **435**, 753 (1995).
- 40. H. Kawamura, J. Phys.: Conf. Ser. 320, 012002 (2011).
- 41. J. N. Reimers, J. E. Greedan, and M. Björgvinsson, Phys. Rev. B 45, 7295 (1992).
- 42. M. Tissier, D. Mouhanna, and B. Delamotte, Phys. Rev. B 61, 15327 (2000).
- 43. L. Capriotti and S. Sachdev, Phys. Rev. Lett. 93, 257206 (2004).
- 44. J.-C. Domenge et al., Phys. Rev. B 77, 172413 (2008).
- 45. А. О. Сорокин, А. В. Сыромятников, Письма в ЖЭТФ 96, 449 (2012).
- 46. S. V. Grigoriev, Yu. O. Chetverikov, D. Lott, and
 A. Schreyer, Phys. Rev. Lett. 100, 197203 (2008);
 S. V. Grigoriev et al., Phys. Rev. B 82, 195432 (2010).
- 47. M. Bode et al., Nature 447, 190 (2007).