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We show that the quantum state of a multiverse made up of classically disconnected regions of the space-time,
whose dynamical evolution is dominated by a homogeneous and isotropic fluid, is given by a squeezed state.
These are typical quantum states that have no classical counterpart and therefore allow analyzing the violation
of classical inequalities as well as the EPR argument in the context of the quantum multiverse. The thermody-
namical properties of entanglement are calculated for a composite quantum state of two universes whose states
are quantum mechanically correlated. The energy of entanglement between the positive and negative modes
of a scalar field, which correspond to the expanding and contracting branches of a phantom universe, are also

computed.
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1. INTRODUCTION

In quantum optics, there are quantum states that
violate some inequalities that should be satisfied in
the classical theory of light. The effect of photon an-
tibunching, the violation of the Cauchy-Schwartz in-
equality and, first and foremost the violation of Bell’s
inequalities, clearly reveal the corpuscular nature of the
photon and the existence of nonlocal correlations in the
quantum state of the electromagnetic field [1]. Thus,
quantum states with no classical analogue allow bet-
ter understanding the distinguishing concept of com-
plementarity and the nonlocal character of quantum
theory.

The interpretation of such nonclassical states in the
context of the quantum multiverse would be signifi-
cantly different from that given in quantum optics.
First, there is no need of a common space—time among
the universes of the multiverse, and hence the concepts
of complementarity and nonlocality have to be revised
or extended. One of the aims of this paper is the anal-
ysis of such an extension. Second, we do not observe
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other universes rather than ours, and therefore the non-
classicality of the multiversal states can only be inferred
from the properties of our single universe.

The other aim of the paper is to study the ther-
modynamics of entanglement of a pair of universes
whose quantum mechanical states are entangled. As
it is well known, entanglement is a quantum feature
without a classical analogue. Actually, gravitational
and cosmic entanglement are clearly related to quan-
tum effects that have no classical counterpart because
they can be related to the origin of the black hole ther-
modynamics [2, 3], and, on cosmological grounds, to
the current accelerated expansion of the universe [4, 5].
Quantum entanglement, can also be considered between
the modes of matter fields that belong to different uni-
verses in a multiverse that shares a common space—
time [6, 7]. Therefore, the entanglement between the
states of two universes in a more general multiverse
scenario also provides us with quantum effects having
no classical analogue, one of which could be the small
value of the cosmological constant nowadays [8].

The origin of the inter-universal entanglement is a
question that deserves a better understanding of the
physical processes that occur in the multiverse. It
might well be that the universes of the multiverse could
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be created in pairs [9], some of which could stay in an
entangled state, or it could also be that inter-universal
entanglement is a relic effect of a dimensional reduc-
tion from any multidimensional theory. We can gener-
ally consider the existence of entangled states between
two or more universes in any multiverse scenario. The
key question is whether inter-universal entanglement
can have dynamical or thermodynamical consequences
in the properties of each single universe. That would
make the whole multiverse proposal testable.

On the other hand, the quantum multiverse is a new
paradigm that requires introducing statistical bound-
ary conditions in cosmology. These can be given, for
instance, by imposing a constant number of universes
in the multiverse, a constant energy or a constant en-
tropy, conditions that can be partially determined by
the choice of the representation taken to describe the
state of single universes. The representation plays a
significant role in the degree of entanglement between
the universes (described by that representation) and,
thus, the boundary condition imposed on the state of
the whole multiverse also determine, at least partially,
the degree of entanglement between different universes.

The outline of the paper is as follows. In Sec. 2, we
specify the multiverse scenario that we discuss in the
context of a third-quantization formalism. A general-
ized quantum formulation of thermodynamics is ana-
lyzed in Sec. 3. In Sec. 4, some examples of entan-
gled and squeezed states in the context of the quantum
multiverse are computed and their thermodynamical
magnitudes are considered of entanglement for differ-
ent cases. The possible violation of classical inequalities
and the analog of the EPR argument in the multiverse
are analyzed in Sec. 5. Finally, in Sec. 6, we draw some
tentative conclusions and make further comments.

2. THE MULTIVERSE SCENARIO IN THE
THIRD-QUANTIZATION FORMALISM

Different multiverse scenarios can be found in the
literature [7, 10-12] and, therefore, it is first needed to
specify the model of the multiverse we are dealing with.
Precisely, we shall consider the multiverse formed by
different, regions of the space—time which are causally
disconnected from each other: (i) because the existence
of cosmic singularities, like it happens in a phantom-
dominated universe [13, 14] where the big-rip singular-
ity splits the whole space—time into two disconnected
pieces, (ii) because the very definition of the whole
space—time manifold entails a nonsimply topology, like
it would happen in a multiverse formed by a discon-
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nected set of n simply-connected regions of space- time;
or (iii) because the existence of a quantum barrier that
makes meaningless any causal relationship between dif-
ferent regions of the space—time. Each simply-connec-
ted region of the space—time will then be considered a
single universe throughout this paper!).

From a classical standpoint, we should just consider
the causal piece of the space—time that we inhabit and
regard the rest of the manifold as not being physically
admissible. However, and this is one of the main claims
of the present work, there might be quantum correla-
tions among the otherwise disconnected regions of the
space—time (similarly to how quantum correlations may
appear in the composite state of two distant particles),
which would have observable consequences on the prop-
erties of our single universe. In that case, other uni-
verses different from ours should also be considered to
physically describe the universe.

In that context, the natural formulation of the
quantum multiverse is a third-quantization scheme
[15-17], where creation and annihilation operators of
universes can be defined and a many-universe descrip-
tion of the wave function of the multiverse can be given
similarly to the many-particle description naturally
arising in quantum field theory. The basic idea of the
third-quantization formalism is to consider the wave
function of the universe as a field that propagates in the
superspace of geometries and matter fields and, then,
to study the state of the multiverse as quantum field
theory in the superspace. Such a quantum field the-
ory is not well-defined in the general superspace. But
in the case of a homogeneous and isotropic space—time
minimally coupled to n scalar fields, ¢ = (@1, .., ¥n),
the Wheeler-De Witt equation can be written as [1§]

(_

where

h2
V-G

0 (V=GG"70) +V(a)) ola”)

o(a™) = d(a, )

is the wave function of the universe, which is defined
on the configuration variables

{a"} = {a, ¢},
the potential V(¢*) is given by

V(") =aPA—a+a®(Vi(p1) + ... + Valen)),

1) Of course, other multiverse scenarios can also be posed
within each single universe of the quantum multiverse consid-
ered in this paper.
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with V;(p;) being the potential of the scalar field p;,
and GAP is the inverse of the minisupermetric

,a%), (2)

Gap = diag(—a,a®, ...
whose determinant is

G = —a®"tL.

Wheeler-De Witt equation (1) can be seen as a Klein—
Gordon equation in the minisuperspace [15-17] and the
Lorentzian signature of the minisupermetric (2) allows
us to consider a formal analogy with quantum field the-
ory in a curved space—time with the scale factor play-
ing the role of a time-like variable of the minisuperspace
and the scalar fields ¢ = (¢1, ... ,¢y), the spatial coor-
dinates. The role of the scale factor as the time variable
within a single universe can generally be a tricky task
(see Refs. [18-24] for the customary discussions on the
subject). However, we mainly restrict our attention to
large parent universes with semiclassical space-times
that undergo a monotonic expansion and for which,
therefore, there is a one-to-one correspondence between
the scale factor and the cosmic time, given by the Fried-
mann equation. In the context of the multiverse being
considered, however, the cosmic time ¢t becomes mean-
ingless and the scale factor turns out to be the intrinsic
time-like variable of the minisuperspace.

Following a description parallel to quantum field
theory (see, e.g., Sec. 4.6 in Ref. [25]), the wave func-
tion of the whole multiverse is given by the generalized
third-quantized Schrédinger equation

00 (a,0)
0

S = H¥(a,0) =

1. 800
> / P 5ol ol a)

s / I od"x6(,a) Mg, X, a)6(x, ) ¥(a,6), (3)

where M (@, x,a) is the kernel of Eq. (1). The quan-
tum state of the multiverse, in which different species
of universes can coexist, is then given by a linear com-
bination of product states of the form [26]

‘IJN(a7¢)) =
= R (a,01)¥R; (a, 02) ... ¥R (a, om),  (4)
where
¢E(¢17¢27"'7¢m)7 NE(N17N27"'7Nm)7

with V; being the number of universes of type ¢, rep-
resented by the wave function

¢i = ¢(a, @)
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that corresponds to a universe that is described in
terms of ¢; matter fields and
a; = (Oéi71, c. ,ai7k)

parameters. For instance, it may represent a landscape
of de Sitter universes with different values A; of their
vacuum energies. The functions ‘IJ% (a, ;) in Eq. (4)
are then the wave functions of the number eigenstates
of the third-quantized Schriédinger equation

0 ) . ,
ih=—UN (a,6:) = Hi(a, 6, ps) TN (a, 6;),

50 (5)

where H’i(a, ¢,pg) is the third-quantized Hamiltonian
[17, 26] that corresponds to each kind of universe, with

po = V-GG*PV5o

and V g being respectively the third-quantized momen-
tum and the covariant derivative in the minisuperspace.
We note that we could also consider Hamiltonians of in-
teraction between different species of universes, adding
a more exhaustive phenomenology to the model of the
multiverse [8].

Generally, the customary interpretation of the wave
function of the multiverse, Eq. (4), is as follows [17]: we
consider the expansion of the wave function in the or-
thonormal basis of number states, i.e.,

T =>"Un(a,¢)N), (6)
N

and ¥ (ag, @) here is the probability amplitude to find
N universes in the state of the multiverse with the value
of the scale factor a = ap. We note that the state given
by Eq. (6) only represents the quantum state of a multi-
verse made up of homogeneous and isotropic universes.
But the homogeneity and isotropy of the universes of
the multiverse are conditions that can be assumed in
the first approximation if we are dealing with large
parent universes where macroscopic observers can in-
habit. We can then assume that quantum state (6) is
rather general and, indeed, it represents the most gen-
eral quantum state of the multiverse in this paper.
We then consider a Friedmann—Robertson—Walker
(FRW) metric whose evolution is dominated by a per-
fect fluid with the equation of state p = wp, where p
and p are the pressure and the energy density of the
fluid. We also consider an auxiliary scalar field ¢ that
can represent the homogeneous and isotropic modes of
a matter field whose potential is subdominant, at least
as a first approximation. This is helpful in analyz-
ing the influence of the inter-universal entanglement in
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the matter fields of single universes. Wheeler-De Witt
equation (1) can then be conveniently written as

0, (7)

- B2, B2
Wo+ —d— —¢" +w(a)o
a a
where ¢ = ¢(a, p) is the wave function of the universe,

with
;09
~ da

9¢

Ay’

The potential term w?(a) is given by

and

o=

(8)

where w? is a constant that is proportional to the en-
ergy density of the fluid on a given hypersurface

Yo =3(an), q= %(1 —w)

parameterizes different kinds of fluids that permeate
the universe, for instance, with the values w -1,
w = 0, and w 1/3, which respectively mimic a
vacuum-like fluid, a dust-like fluid, and a radiation-like
fluid, and x = 0, £1 for a space—time with flat, closed,
and open spatial sections, respectively. More realistic
degrees of freedom are desirable in Eq. (7). But some
interesting models of the universe can already be de-
scribed by Eqs. (7) and (8), e.g., a flat or a closed

de Sitter universe with

w=—1, wi=A,

k=0 or k=41,

and a universe with a slow-roll field x for which

ox

atNO

with w = —1 and w = V(xo).

The quantum state of the multiverse can then be
expressed in terms of an orthonormal basis of num-
ber states |N) that represent the number of universes
(see, Eq. (6)). However, different representations can
be taken for the number states |N) and it is not clear
at all which one can properly represent the number of
universes of the multiverse. A boundary condition has
to be imposed on the state of the multiverse in order
to (partially) fix the appropriate representation to be
considered.

In the multiverse we are dealing with, there is no
common space—time among the universes of the multi-
verse, and therefore no real observer can exist outside
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the universes. However, it is expected that the mea-
surements performed by an idealized “super-observer”,
i.e., someone who lives in the multiverse, would not de-
pend on the spatial and temporal properties of a par-
ticular single universe if these are internal properties of
the universes with a meaning supplied by a particular
reference system. It is then expected that the global
properties of the multiverse, like the number of uni-
verses, would be invariant under changes, for instance,
in the scale factor of a particular single universe. The
boundary condition that the properties of the multi-
verse be independent of the value of the scale factor
of a particular single universe then restricts the possi-
ble representations of universes to the set of invariant
representations. These are given by annihilation and
creation operators b and b' for which [27]

o

db™ i
da ~ h

(1,50 + 9)
The solution of Eq. (9) is not unique [28], but for each
solution, the eigenvalues of an operator constructed
from a combination of invariant operators are indepen-
dent of the value of the scale factor of a single uni-
verse. The boundary condition imposed is therefore an
appropriate boundary condition to represent a multi-
verse with a constant number of universes, although it
is worth noting that it is not the only boundary condi-
tion that can be imposed on the state of the multiverse.

Furthermore, the invariant representation does not
have to be the most appropriate representation to de-
scribe the state of a singled-out universe from the
standpoint of an internal observer who lives in the
asymptotic regime of a large classical universe. We
therefore consider two representations: the invariant
representation induced by the boundary condition,
which is imposed on the state of the whole multiverse,
and the asymptotic representation that describes the
state of one single universe from the standpoint of an
internal observer. We then show that both representa-
tions are related by a Bogoliubov transformation, which
entails entanglement effects between the states of two
universes.

Like in quantum optics [1] and quantum gravity [9],
entanglement among the states of two or more universes
can be seen as a quantum feature that has no classical
counterpart because it is a feature that does not appear
in a classical multiverse of causally disconnected uni-
verses. But it is worth noting that the universes we are
dealing with are large regions of space—time where it
behaves classically, and therefore the quantum effects
we are describing are not quantum properties of the
space—time of a single universe, i. e., we are dealing not
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with quantum gravity as such but with novel features
that exclusively appear in the quantum multiverse.

3. QUANTUM THERMODYNAMICS IN THE
MULTIVERSE

In quantum information theory, the generation of
quantum entanglement follows some formal analogies
with respect to the classical formulation of thermo-
dynamics [29-33]. In particular, the impossibility of
increasing the amount of entanglement in a bipartite
system by means of local operations and classical com-
munications alone has been claimed to be an analogue
of the second principle of thermodynamics in quantum
information theory [29]. This and other parallelisms
have motivated the search for a quantum formulation
of the thermodynamics of entanglement [29, 31, 32, 34|
that would generalize the classical formulation of ther-
modynamics much as quantum theory is a more general
framework from which the classical one can be recov-
ered as a particular limit case.

The multiverse scenario allows considering entan-
gled states among the states of two or more universes
and computing the thermodynamical properties of en-
tanglement between them. Inter-universal entangle-
ment might then have observable consequences in the
thermodynamical properties of a single universe if the
relation between the quantum formulation of the ther-
modynamics of entanglement and the classical formu-
lation of thermodynamics is eventually found. That
would represent a major achievement for testing the
multiverse scenario.

We first discuss the basics of the thermodynam-
ics of entanglement in the multiverse.  Following
Refs. [30, 33], we define thermodynamical quantities
for a closed system that is quantum mechanically rep-
resented by a density matrix p, with the dynamics de-
termined by a Hamiltonian operator H:

Qa) = /an (d’(’;i‘f')ﬁ(a'o da’, (11)

where TY(O) means the trace of an operator O, and, in
the case of the multiverse, the time variable is replaced
by the scale factor, which is a time-like variable of the
minisuperspace. In these definitions, E is the quantum
informational analog of energy, @ is the analogue of

heat, and W is the analogue of work. Then the first
principle of thermodynamics

dE = W + 6Q, (13)

is directly satisfied. The quantum entropy is custom-
arily defined by the von Neumann formula

5(p) = =Tr(p(a) Inp(a)), (14)

where the logarithmic function of an operator must be
understood as its series expansion, i.e.,

A X1 [k A1
S(P)=ZEZ(—1) ] Tr (5'*) =
== XX, (15)

with A; being the eigenstates of the density matrix, and
0-In0=0.

For a pure state, p"” = p and \; = §;; for some value j,
and therefore the entropy vanishes.

It is worthy of note that the quantum thermody-
namical analogues to energy and entropy are invariant
under a unitary evolution of the state of the multiverse.
Using the cyclic property of the trace, we can write

=1 e k
sw =310 ()
k=1 =0
x Tr (UL (a) gl U =S(p
(W (@it ts (@) = S(ho),  (16)

and analogously for the energy F if no dissipative pro-
cesses are considered in the dynamics of the multiverse.
Such processes can make the state of a single universe
effectively undergo an nonunitary evolution, increasing
the entropy of an expanding universe [35, 36].

The invariance expressed by Eq. (16) is not neces-
sarily applicable to the heat @ and work W. For in-
stance, we consider two representations A and B that
were related by a unitary transformation U such that

pp =Upaltt, Hp=UHU'.
It then follows that E4 = Eg and S4 = Sp. In partic-
ular,

5Q A(a)+6Wa(a) = Tr (%m) +

OH Opp
+Te(pant | =T (P2 A ) +
Oa Oa

+ Tr (ﬁB%) =0Qg(a) +Wg(a), (17)
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where we use that

Son At
uut = —uu .

However, if = U (a), then it is not necessarily true
that Q4 = 6Qp and 6W,4 = §Wg. In classical ther-
modynamics, heat and work, unlike the energy and the
entropy, are not functions of state because their values
depend on the path of integration of Q) and §W. The
analogy in quantum thermodynamics is that @) and W
depend on the representation that is taken to compute
them.

Two terms can be distinguished in the change of en-
tropy: one due to the variation of heat and the other
caused by an adiabatic process, i.e., [18,30]

s 146Q
— == 18
da T da U(a)7 ( )
where the second term o(a) is called production of en-
tropy [30]. The second principle of thermodynamics
states that the entropy of a system cannot decrease un-
der any adiabatic process, which is equivalent to saying
that the production of entropy must be non-negative,
i.e.,
o(a) > 0. (19)
We note that in quantum thermodynamics of open
systems [18, 30], the change of entropy is also expressed

as _(dS\  (ds
dt a dt ext dt int7

as\  _ 4@
a).., T

is interpreted as the change in the entropy because of
the interaction with an external bath (or reservoir) at
a temperature 7T'; and

<§> >0
dt int N

is interpreted as the change of entropy because of the
change in the internal degrees of freedom. But in the
multiverse, the terms external and internal have no
meaning because in a closed system all the thermo-
dynamical quantities are by definition internal to the
system. We can still formally define the thermodynam-
ical quantities in Eqs. (10)—(12) and (14) similarly to
how this is done in open systems, although their in-
terpretation is rather different for a closed system like
the multiverse. Here, the heat @) and work W can-
not be interpreted as ways of exchanging energy with a

where
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Fig.1. Energy E (1), heat Q (2), and work W (3),

Eqgs. (21)—(24), for different values of the parameter

w =0 (a), —0.6 (b), and —1 (¢) in the equation of

state p = wp. The first principle of thermodynamics
E =@ + W is always satisfied
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Fig.2. Quantum entropy of the universe, Eq. (25), for

different values of the parameter w: w = —1 (solid

line), —0.6 (dashed line), 0 (dotted line). The entropy

decreases as the scale factor increases. However, the

second principle of thermodynamics is still satisfied be-

cause the process is not adiabatic and the production
of entropy is zero

reservoir because there is no such reservoir. Similarly,
the analogue of the temperature T does not represent
the temperature of an external bath. All the thermo-
dynamical quantities of a closed system are internal
properties of the system.

In some appropriate limit, we should recover
the classical formulation of thermodynamics, whose
paradigmatic state is a thermal state at a constant tem-
perature with the density matrix given by

5= % ;exp {— th(a) <N+%)} IN,a)(N,a], (20)
where
Z7'=2sh h“;—(Ta)
and
w(a) = w—;aqfl

is the frequency of the Hamiltonian that determines the
evolution of one single universe (see Eq. (8)). In that
case, the thermodynamical quantities involved in the
first principle of thermodynamics (13) turn out to be

hw(a)
——Z~ cth
5 Mo

hw(a)

E(a) = (21)

4 JKOT®, Beim. 1
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with
B hw(a) hw(a) hw(a)
Q(a)=T (—2T cth 5T Insh 5T ) (22)
W(a) = T'lnsh m;é?) . (23)
It can be verified that
dE = §Q + oW. (24)

For a constant value of the frequency, the total energy
is also a constant, and then

5Q = §W = 0.

In the multiverse, however, the heat production term
0@ appears because of the dependence of the frequency
on the scale factor. Hence, the entropy

_ Thw(a) hw(a) hw(a)
S = 5T cth 5T Insh 5T In2 (25)
is no longer constant and the change of entropy
h2we 1
s = ——2% da (26)

4T? sh?(hw(a)/2T)

turns out to be negative as the scale factor increases.
However, the second principle of thermodynamics is
still satisfied because the change of entropy corresponds
precisely to the change of heat (divided by the temper-
ature T'), and the production of entropy is therefore
7€10,

(27)

as is expected in a closed system with no dissipative
process (which we do not consider here). Therefore, the
second principle of thermodynamics does not impose
any arrow of time in the case being considered because
it is satisfied for an expanding universe as well as for a
contracting one, simply because Eq. (27) is identically
satisfied in both cases. We note that the customary ar-
row of time appears in cosmology as a consequence of
taking some coarse graining over the matter fields that
we do not consider here. The relation between the ar-
row of time of entanglement thermodynamics and the
usual arrow of time in cosmology is a subject that de-
serves further investigation.
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4. ENTANGLED AND SQUEEZED STATES IN
THE MULTIVERSE

4.1. FRW universe filled with a fluid and a
massless scalar field

We consider a massless scalar field in a flat FRW
space—time whose dynamics is dominated by a perfect
fluid with the equation of state

p=wp,

where p and p are the pressure and the energy density
of the fluid, and w is a constant parameter. A mass-
less scalar field ¢ can represent the homogeneous and
isotropic modes of a local matter field whose potential
energy is subdominant and negligible, in the first ap-
proximation. Then, with an appropriate factor order-
ing [18] and rescaling the scalar field to absorb unim-
portant constants, the Wheeler-De Witt equation can
be written as Eq. (7), with Eq. (8) for k = 0. We recall

that 3
5(1 —w)

in Eq. (8) just parameterizes the kind of fluid that
permeates the universe. We mostly consider the val-
ues w = —1, which mimics a flat de Sitter space—ti-
me with A = w2, w > —1, which corresponds to a
quintessence-like fluid, and w < —1, which corresponds
to a phantom-like fluid. However, we note that the
formalism equally applies to any other constant value
of w.

In the third-quantization formalism, the wave func-
tion of the universe is promoted to an operator that
can be decomposed in normal modes as

q

Sop) = [[db [ a @] + e R i@ (29)

where the amplitudes Ay (a) satisfy the Bessel equation

GQAk + aAk + ((Z)ga% + kQ)Ak =0, (29)
with oA
Ap=Z2E =20
=00 T h

The constant operators

L Jwor [t 4o ok 5
C = . - C = . T

: 21 (¢+w0kp¢)’ k 21 <¢ kapd’)
can respectively be interpreted in Eq. (28) as the an-

nihilation and creation operators of a universe whose
energy density is proportional to

~2 — ~2 2¢ | 12
Wor = Wpag + k7,

at the boundary hypersurface
E[) = E(ag).

The kind of universes created or annihilated by éL
and ¢ depends on the boundary condition that is im-
posed on the probability amplitude Ay (a). If the op-
erators éL and ¢, in (28) respectively create and an-
nihilate expanding branches of the universe, then the
probability amplitude Ay, is given by

T . w
Ap(a) = | /4—qe k) (q—%&) . (30)

where ¥ (z) is the Hankel function of second kind
and order v. The normalization constant in Eq. (30) is
chosen such that the usual orthonormality conditions

(Dks D) = Oty (05 07) = —Orts  (dn,97) =0, (31)

hold for the modes
ok (a, p) = e*? Ay (a),

with the scalar product,
©0) =i [ deW (60,07~ 000), (32

where W = 1/a is the Wronskian of Bessel equation
(29). The modes in Eq. (30) correspond to the expand-
ing branches of the universe because in the semiclassical
regime [37],

HY (%“q> ~aTtPem S (33)

where

Se(a) = %aq

is the classical action. Then the momentum operator,
which is defined by the equation

9¢(a)
Oa ’

is highly peaked around the value of the classical mo-
mentum [38],

Pad(a) = —ih

e = _g20
Po = ar’
and it then follows that

da 1 08,

ot~ a da’
which corresponds to the expanding branch of the
Friedmann equation.
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We could have imposed a different boundary con-
dition on the probability amplitudes A (a) such that
the creation and annihilation operators, éL and ¢ in
Eq. (28), would create and annihilate entangled pairs
of expanding and contracting branches of the universe.
The modes Aj, would then be given by

- 2q | km —1/2 wo
Ak = (? sh 7) j—ik/q <an s (34)

where 7, (x) is the Bessel function of first kind and
order v. The two sets of modes are related by the Bo-
goliubov transformation

Ay, = a Ay, + BrA;, (35)

where ay and (3 are given by

Cakjg N\ 1/2

— wk/q — €

ap =B, B <72sh(7rk/q)) ; (36)
with

| ? = [B* = 1.
The vacuum state of the bar modes, |0), turns out to

be a squeezed state in the representation of the modes
without bar. The mean value of the number operator

= _QT’;
Nk = CCk,

computed in the vacuum state |0g),

1

o _ 2 _
(O NklOk) = 18el” = g (37)
turns out to represent a thermal distribution with the

temperature given by

_ 4. (N
r=La (L), (39)
where 3
q= 5(1 —w)

and & is a constant of dimension s~!'. The above ther-
mal distribution is formally similar to thermal radia-
tion that appears in quantizing a scalar field in a Milne
universe in the context of quantum field theory in a
curved space-time (see Ref. [39]). However, unlike for
the Milne universe, it is not clear in the case of a multi-
verse made up of parent universes which vacuum state
corresponds to a “preferred observer” (i.e., to an adia-
batic vacuum), because the modes of the wave function
of the universe are defined on the minisuperspace rather
than on the space—time variables. For the same reason,
it seems difficult to estimate T in Eq. (38). However,

the remarkable result is that the universe might stay in
the thermal state as a consequence of quantum entan-
glement between different branches.

Indeed, the interpretation in the multiverse is rather
different from that of the quantum field theory in the
Milne universe. The “no-boundary” condition proposed
by Hartle and Hawking [40] implies that the quantum
state of the universe is described by a real wave func-
tion given by the superposition of an expanding and a
contracting branch [41]. Then the universes of the mul-
tiverse would be quantum mechanically represented by
the modes Ay (a) in Eq. (34), and the state of each sin-
gle branch by the modes Ay (a) and Aj(a) in Eq. (30),
for the expanding and the contracting branches, respec-
tively.

The expanding and the contracting branches of the
universe would subsequently undergo a very effective
decoherence process [42, 43| by means of which their
states rapidly become causally disconnected. However,
squeezing relation (35) between the two sets of modes
Ay, and A, does not depend on the value of the scalar
factor, and is therefore still valid even when the two
semiclassical branches of the universe are rather inde-
pendent from each other. In that case, an observer
inhabiting one of the semiclassical branches would de-
scribe the state of her universe by a reduced density
matrix that is the result of tracing out the degrees of
freedom of the partner branch from the composite state
of the two branches.

A particularly interesting case where the causal dis-
connection between the branches of the universe is even
more explicit is where the evolution of the universe is
dominated by a phantom-like fluid (with w < —1).
Then the big rip singularity [13, 44] splits the whole
space—time manifold into two regions, before and af-
ter the singularity. These two regions are causally dis-
connected because of the breaking down of the classi-
cal laws of physics in the singularity, which prevents
each region from any physical signaling to the part-
ner region. The universe expands before the big rips
occurs and contracts after it. Therefore, the compos-
ite quantum state of the universe is given by a super-
position of the expanding and contracting branches in
Eq. (34). However, for an observer inhabiting one of
the branches, the quantum state of the corresponding
branch is given by a reduced density matrix that is
obtained by tracing out the degrees of freedom of the
partner region. Within the formal analogy with quan-
tum field theory in a curved space-time [25], if a com-
posite state corresponds to the vacuum state |(_)k,,k>,
then the total density matrix can be written as

4*
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p =10k, 1) (O, x| =
1

[e'e] Bk n+m
—om 3 () e tmam il (39)
n,m=0

where the modes k£ and —Fk respectively correspond to
the expanding and contracting branches of the uni-
verse. The reduced density matrix for the expanding
region before the singularity turns out to be

pr=Tr_pp=
1 21k 1
Z gexp |:—T <nk + §>:| |nk><nk|, (40)

(+3)]

It represents a thermal state with the temperature
in (38).

Using the reduced density matrix and the equa-
tions developed in this section, we can obtain the ther-
modynamical quantities that correspond to thermal
state (40). Entanglement entropy (94) turns out to
be

with

:2sh7r—k.
q

Sent = |ak|2 In |ak|2 - |ﬂk|2 In |ﬂk|2 =

LN (2 sh lk) (41)
q

= —cth— —1In
q q
which coincides with Eq. (25) if wp, = k and T' = ¢/27.
From Eqs. (??) and (23), we can verify that Q) = T'Sept,
and the energy and work are given by

E:Ecthw—k7

2 q
In sh ﬂ-—k
q

(42)

w=_1L (43)
27
The change of the entropy with respect to the value

of the mode k for the constant temperature T' = ¢/2m
is (see Eq. (26))

@_ 2k 1
= —— = )
dk q sh27r—k T dk

q

15

(44)

Therefore, the production of entropy o is zero. In that
case, the energy of entanglement can be identified with

the heat @, i.e.,
<2 sh %k> , (45)

k

k
Ee’nt = Q = 5 cth a4

— ——1In
q 27

52

Fig.3. Energy of entanglement between the positive

and negative modes k of the scalar field, Eq. (45), for

different values of the parameter w of the equation of

state of the fluid that dominates the expansion of the

universe: w = —1 (solid line), —0.6 (dashed line), 0
(dotted line)

where 3
q= 5(1 - lU),

with w being the proportionality constant of the equa-
tion of state of the fluid that dominates the expan-
sion of the universe, p = wp (we recall that ¢ = 3 for
vacuum-dominated universes). The energy of entan-
glement is depicted in Fig. 3 for different values of the
parameter w.

Similar results should be expected for a closed FRW
space-time because the geometric term in Eq. (8) be-
comes negligible for large values of the scale factor. Fur-
thermore, the squeezing relation given by Eq. (35) does
not depend on the value of the scale factor, and it can
therefore be expected that the entanglement between
the branches of the universe also survives at small val-
ues of the scale factor.

We consider the particular case of a massless scalar
field in a closed de Sitter space-time endowed with a
cosmological constant A. Then the Wheeler-De Witt
equation can be written as Eq. (7) with

A

k=1 q=3, wg

in Eq. (8):

27 h2' h2 " 4 2
Bé+ —d— 6"+ (ha' —a®)6 =0, (46)

where we recall that

6= 6ae), =22,



MITD, Tom 145, Bem. 1, 2014

Quantum entanglement in the multiverse

Imaginary
time

| Lorentzian
T7=0 ) universe
Euclidean
instanton

The creation of a de Sitter universe from a
de Sitter instanton

Fig.4.

The probability amplitude of wave function (28),
Ay (a), now satisfies the equation of a damped harmonic
oscillator,

2

h2Ak (a) + %Ak (a) + w,%(a)Ak (a) =0, (47)

with the mode-dependent frequency wy(a) given by

212
wi(a) = \/Aa4 —a?®+ halj .

(48)

The corresponding Friedmann equation for each sin-
gle mode turns out to be

da

da _ wi(a)
ot a

and hence real values of frequency (48) essentially de-
fine a Lorentzian domain of the wave function of a sin-
gle universe, and complex values define the Euclidean
region of the universe. We first consider the zero-mode
wave function, i.e., k = 0. Then, for

1
a>a+5ﬁ,

the solution of the Friedmann equation describes the
evolution of a closed de Sitter space—time with an even-
tual exponential expansion of the scale factor with the
Friedmann time,

a(t) ~ eVAL,

For a < a4, the solution of the Euclidean Friedmann
equation corresponds to a de Sitter instanton that even-
tually collapses at the Euclidean time 7 = 0 (see Fig. 4).
This is the customary picture of a de Sitter universe
created from a de Sitter instanton [18,19, 45, 46].
Other modes different from zero should also be con-
sidered [47]; the quantum correction given by the last

53

Euclidean
instanton

\
\
| Lorentzian
| universe

/

Fig.5. Before reaching the collapse, the instanton finds
the transition hypersurface ¥

Euclidean double
instanton

Entangled

| Entangled
universe 2

universe 1

sy =5

Fig.6. The creation of a pair of entangled universes
from a pair of instantons

term in Eq. (48) then introduces an important differ-
ence. For

km >k >0,
where
k2 = 4
m T 2Th2A2]

there are two transition hypersurfaces from the Eu-
clidean to the Lorentzian region,

Y =%(ay), ¥'=3(a-),
with
1 9k>
= ——4/1+4+2cos|— |, 49
“ = ( 3 )
1 01 + 7T>
a_ = ——4/1—2cos , 50
\/3A\/ < 3 (50)
where, in units for which # =1,
2kr\/k2, — k>
O = arctg ——"——. (51)

k2, — 2k?

The picture is then rather different from the one de-
picted in Fig. 4. First, on the transition hypersurface
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Y, the universe finds the Euclidean region (we note
that a;, — 1/v/A, and a_ — 0 as k — 0). However,
before reaching the collapse, the Euclidean instanton
finds the transition hypersurface ¥" (see Fig. 5). Then,
following a mechanism that parallels that proposed in
Refs. [48-50], two instantons can be matched by iden-
tifying their hypersurfaces " (see Fig. 6). A double
instanton like the one depicted in Fig. 6 would eventu-
ally give rise to an entangled pair of universes because
the matching hypersurface

EII = E”(a,),

where
_=a_ (Gk)

is given by Eq. (50) with Eq. (51), depends on the value
of the mode k. Hence, the matched instantons can only
be joined for an equal value of the mode of their respec-
tive scalar fields, i. e., for an equal value of the momen-
tum of the scalar field. The pair of universes created
from such a double instanton is then entangled, with
the composite quantum state given by

b= / dk [exp (ik(p1 + o11)) X

x Arp(@)Arri(a)é] el +exp (<ik(pr + o)) x

X A;,k(a)A;I,k(a) CI,k é]Lk] , (52)

where ¢ and @r7 are the values of the scalar fields of
each single universe, labeled I and I1. The cross terms
like A7 A7) cannot be present in the state of the pair
of universes because of orthonormality relations (31).
Then the composite quantum state must necessarily
be the entangled state represented by Eq. (52).

We note that this is a quantum effect having no
classical analogue because the quantum correction term
in Eq. (48)does not appear in the classical theory.
Furthermore, we also note that there is no Euclidean
regime for k > k,,, and it can therefore be assumed that
no universes were created from the space—time foam
with such values of the mode. The value k,, would
then become the natural cut-off of the theory.

For each single universe of the entangled pair, we
should expect a behavior similar to that in the case of
a flat space—time, at least for large values of the scale
factor. However, Eq. (47) is not exactly solvable. For
a scale factor a > a_, the quantum correction term in
Eq. (48) can be disregarded and the WKB approxima-
tion can be considered. Then the solutions of Eq. (47)
are given, up to the order A, by

Ap(a) ~ #() exp (i%&(a)) L)

54

where
w(a) = wig=o(a)
and

a

a2 A — 1)3/2
S’c(a):/da'w(a') @A -1

3A

= (54)
is the solution of the corresponding Hamilton-Jacobi
equation. However, the dependence on the mode k has
disappeared in WKB approximation (53) and no ex-
plicit computation can be made to relate the different
modes of the scalar field for different boundary condi-
tions.

4.2, Slowly varying field in a closed FRW
space—time

We now consider the case of a slowly varying field
in a closed FRW space—time. In that regime,

%

~0
ot ’

V(p) = V(po),

and Wheeler-De Witt equation (7) can be written as

. M . _
¢(a’7900) + H¢(a7 990) + w2¢(a7 990) = 07 (55)
where oM
ME—a, M= Ma)=a
and

&

& =d(a,00) = V@V (o) — 1.
The Wheeler-De Witt equation is explicitly written
in form (55) to stress the formal similarity with the
equation of a damped harmonic oscillator with a time-
dependent frequency, where the scale factor formally
plays the role of the time variable of the minisuperspace
spanned by the variables (a, ). The term with ¢" in
Eq. (7) does not appear in Eq. (55) because it comes
from the quantization of the classical momentum
Oy
Py X Ev
which is zero in the slow-roll approximation.
Following the analogy between Wheeler-De Witt
equation (55) and the standard equation for the har-
monic oscillator, we can use different representations
to describe the quantum state of the multiverse. How-
ever, as is well known, the Hamiltonian of a harmonic
oscillator with a time-dependent frequency is not an
invariant operator [27], and its eigenstates evolve as
squeezed states [27,51-56]. The representation given
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by the eigenstates of the Hamiltonian of harmonic os-
cillator (55) is not an appropriate representation for
describing a given number of universes in the multi-
verse because the number of universes of the multiverse
would then depend on the value of the scale factor of a
particular single universe. Similarly, the representation
chosen in Sec. 2 in terms of the constant operators ¢
and 6;2, defined after Eq. (28), is not an appropriate
number representation because the eigenvalues of the
constant number operator

Ny =éleéy

are not scale-factor invariant either, a property which
is expected in the multiverse.

The boundary condition of the multiverse that the
number of universes does not depend on the value of the
scale factor of a particular single universe determines
the representation that has to be chosen. This has to
be an invariant representation [27, 28]. For instance,
we consider the invariant representation defined by the
annihilation and creation operators [28]

~ 7 . e
ba) = —= (wps = M), (56)
b (a) = - (upy — Mid) (57)
Vh
where 1
u(a) = ﬁR(a)e_wR(a),
with R(a) satisfying the auxiliary equation
. M. ~2 1
and 1
or = Vime

It can be verified that a solution of Eq. (58) is given by

=1/¢7 + 63,

where ¢1 and ¢» are two linearly independent solutions
of Eq. (55) satisfying the normalization condition

0162 = a1 = .
In the WKB approximation, they can be chosen as

1 S,

o1(a, o) ~ — cos —,
Mo h

(59)
o=2(a, o) ~ ! sin Se
2 7(}90 ~ M(Z) h )

55

where
o _ @V(g0) = 1"
‘ 3V (o) ’
whence
Ra — x V4732, (60)

VM

for large values of the scale factor. The operators de-
fined in Eqs. (56) and (57) satisfy the usual relations

b(a)|N,a) = \/_|N —1,a), (61)
' (a)|N,a) = VN + 1|N + 1,a), (62)
b (a)b(a)|N, a) = NIN, a), (63)

where | N, a) are the eigenstates of the invariant opera-
tor,

I =b(a)b(a) + %,

and therefore N # N(a). Thus, N can be interpreted
as the number of universes in the multiverse, and BT(a)
and E(a) as the creation and annihilation operators of
universes.

The creation and annihilation operators defined by
Eqs. (56) and (57) can be related to the creation and
annihilation operators ¢ and ¢é of the harmonic oscil-
lator with the constant mass My = ag and frequency

wo = w(a, @0)\&:0@

by the squeezing transformation

b(a) = poé + voét, (64)
b (a) = g et + vge, (65)
where
iGR 1 .
= + MowoR —iMR ), 66
0= 5 e (7 + Mook~ MR (69
zOR 1 .
= — MowoR —iMR ) , 67
= st (Mot MR). 6

with

|,u0|2 - |V0|2 =1

In quantum optics, the squeezed states of light are
also called two-photon coherent states [57, 58] because
they can be interpreted as coherent states of an en-
tangled pair of photons. This allows interpreting the
squeezed states of the multiverse as the state of a cor-
related pair of universes. We note that in invariant
representation (56), (57), the Hamiltonian of the mul-
tiverse that leads to Wheeler-De Witt equation (55),
i.e.,

1

H =P

Py + —¢2
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becomes
H =180+ BN+ Bo (iﬂé%)], (68)
where
B =p-= % (0 + o*u?) , (69)
Bo = M (Jaf* + &*[ul?) . (70)

It is worth noting that the Hamiltonian given by
Eq. (68) is formally equivalent to the Hamiltonian of
a degenerate parametric amplifier in quantum optics,
which is associated with the creation and annihilation
of pairs of photons. Similarly, the quadratic terms in
bt and b in Hamiltonian (68) can be associated with
the creation and annihilation of correlated pairs of uni-
verses in the quantum state of the multiverse.

We can define the creation and annihilation oper-
ators B and BT of pairs of degenerate universes, i.e.,
those with the same properties and by = 132, as

B(a) = chr b+ exp (—if/2) shrbt, (71)
Bt(a) = chrb! + exp(if/2) shr b, (72)
where
ch2r = @ (73)
sh2r = %, (74)
f=iln gj , (75)

and 1 and [y are defined in Eqgs. (69), (70). In terms
of the creation and annihilation operators of correlated
pairs of universes, the Hamiltonian is diagonal,

ﬁ:m(BTBJr%).

This can be interpreted such that the quantum corre-
lations between the states of the multiverse, which are
given by the nondiagonal terms in the Hamiltonian,
disappear when the universes are considered in pairs.
However, a pair of universes forms an entangled state
for which the thermodynamical properties of entangle-
ment of each individual universe can be computed.
We now define two other representations with a
clear physical interpretation of the state of the mul-
tiverse. We can consider large parent universes [17]
with a characteristic length of the order of the Hubble
length of our universe. For large values of the scale fac-
tor, the nondiagonal terms in Hamiltonian (68) vanish

56

and the coefficient 8y asymptotically coincides with the
proper frequency of the Hamiltonian [26]. Equivalently,
it can be verified that r — 0 in Egs. (71) and (72),
and therefore the operators Bt and B are the creation
and annihilation operators of single universes. Then
the quantum correlations between the number states
disappear and, thus, the quantum transitions among
number states are asymptotically suppressed for par-
ent universes. In terms of the creation and annihilation
operators of parent universes, asymptotically defined as

b} = \ 2 Mo (¢— waas)
EPE \//\;—: (Qg*‘ﬁﬁqﬁ) )

with M = M(a) and w = w(a, ¢p), the invariant cre-
ation and annihilation operators given by Eqs. (56) and
(57) are given by

~

b(a) = up Bp +vp B;rw (76)
bt (a) = 1 b + v by, (77)
where
eifr 1
My = W < +MwR—zMR> (78)
v, = e <l — MwR — z'/\/lR) (79)
P2V Mw \R ’
with

|Np|2 - |Vp|2 =1,

and are therefore also related by a squeezing transfor-
mation.

For completeness, we also describe the quantum
fluctuations of the space-time of a parent universe,
whose contribution to the wave function of the uni-
verse is important at the Planck scale [60]. Some of
these fluctuations can be viewed as tiny regions of the
space—time that branch off from the parent universe
and rejoin the large regions thereafter; thus, they can
be interpreted as virtual baby universes [17]. In that
case, M =~ [, and w =~ wp are two constants that are
given by the characteristic length and energy of the
baby universe. Quantum correlations then play an im-
portant role in the state of the gravitational vacuum.
This is represented by a squeezed state, an effect that
can be related to that previously pointed out by Gr-
ishchuck and Sidorov [61], who also showed that the
squeezed state of the gravitational vacuum can be in-
terpreted as the creation of gravitational waves in an
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expanding universe. In terms of the creation and anni-
hilation operators of baby universes,

~ lbwb ) N

bl =/22 (- —

b 2h (¢ lbwbp¢> ’
s lywe (4 i

bp = ﬁ (¢ + mp(p) s

invariant representation (56), (57) becomes

b(a) = pup by + v b}, (80)
bl (a) = pj b + v by, (81)
with
e (1 M
= + R — R, 82
b 2\/le( bWh ? ) ( )
7,93 1 .
- — lywyR —iMR) , 83
o (bl iMR) )
and

ol = [ =

We finally pose the general quantum state of a mul-
tiverse made up of pairs of entangled universes. As
noted in Sec. 2, the universes of the multiverse can gen-
erally have different values of their parameters. How-
ever, these parameters have the same value for an en-
tangled pair of universes by the very definition of the
boundary condition imposed on the state of the whole
multiverse. Then the general quantum state of the mul-
tiverse would evolve in accordance with Schrodinger
equation (5), with the Hamiltonians H; given by

S\ A

ilao.pe) = b (BB + 50 07)1 1)
IBNOWEYONTAC ONTC
#5080 (G050 + G0 +1)) . o0

where 55;') and B(()i) are given by Egs. (69) and (70),
and the index i labels the different species of pairs of
universes that can be present in the multiverse. In the
case considered in this section, it can label the differ-
ent values of the effective vacuum energy determined

by V(@3).

4.2.1. Energy and entropy of entanglement

The plausible existence of entangled and squeezed
states in the context of a quantum multiverse allow
considering general correlated states between two uni-
verses. It has to be noted that entanglement is highly
dependent on the choice of modes, [which] is mainly dic-
tated by the physics of the given situation (cf. Ref. [62,

57

p. 88]). We therefore mainly consider two sets of modes
in the multiverse: one is given by the invariant repre-
sentation in Eqs. (56) and (57), which is consistent with
the boundary condition imposed on the state of a mul-
tiverse with a fixed number of universes, and the other
corresponds to the asymptotic representation of a large
parent universe like ours, where observers can exist. As
we have seen, these two representations are related by
the squeezing transformation given by Eqs. (76) and
(77). For completeness, we also consider the represen-
tation of baby universes given by Eqs. (80) and (81).

In both cases, the squeezing relations given by
Eqs. (76) and (80), (81) allow writing the composite
state of two entangled universes as

pla) = Uk(a)|0102)(010 s (a), (85)

where the evolution operator is the squeezing operator
given by

Us(a) = exp (r(a)eieglzzQ - r(a)eii%llg) , (86)
with r(a) and #(a) being the squeezing parameters that
depend on the value of the scale factor. In Eq. (85),
0102) = [01)]02),

with |01) and |02) being the ground states of each sin-
gle universe in their asymptotic representations. We
first obtain the thermodynamical properties of entan-
glement in terms of the squeezing parameters r and 6,
and then compute the value of these parameters for
baby and parent universes and their thermodynamical
properties of entanglement.

The reduced density matrix for each single universe
is given by

Z (NenldIN@y). (87

,1)=0

We note that N, 1) in Eq. (87) does not label the uni-
verses because it is not an eigenvalue of the number
operator in the invariant representation. Instead, it
represents the excitation level of one single universe as
seen by an internal observer [63]. We focus, for in-
stance, on universe 1 (they both are identical anyway).
Its state is then given by

pr = Z (Na|2£5]02)101) (01 (0 [ths|Na). — (88)
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Using the disentangling theorem [64, 65]
Z/A{;(a) = exp (I‘(a)ewl;{l;;) X
X exp (—g(a)(i)l{l}l + blby + 1)) X
X exp (—e_wl"(a)lA)lﬁAQ) , (89)
where
I'(a) = thr(a),

g(a) =Inchr(a), (90)

we obtain that each single universe is quantum mechan-
ically represented by the thermal state given by

o0

1 oo
72
where |N) = |N); (and similarly for po with |[N) =
= |N)2), and

(N+ %)) INY(N|, (91)

w
Z 1 =2sh—.
or

The two universes of the entangled pair evolve in ther-
mal equilibrium with respect to each other, with a tem-
perature that depends on the scale factor:

T=T(a)= % (92)
The entanglement entropy, which is defined as
Sent = = Tr(p11n py), (93)
turns out to be
Sent(a) = ch?rInch? r — sh? rInsh?r. (94)

It is an increasing function of the squeezing parameter
r (see Fig. 7). The second principle of quantum ther-
modynamics, given by Eq. (19), is satisfied because the
change in the entropy of entanglement corresponds pre-
cisely to the change of heat divided by the temperature,
and the production of entropy ¢ vanishes. This can be
verified by computing the thermodynamical quantities
in Egs. (10)-(12). From Eq. (10), the energy of the
state represented by p1 (= E(p2)) is given by

- 1
El(a) = TI'pAlHl = w <Sh27'+ 5) =

58

Fig.7.

Entanglement entropy, Eq. (94), as a function
of the squeezing parameter r

)

The change in the heat and work, given by Eqgs. (11)
and (12), are

dH
Wi =Tr (,31—1>
da

5Qr = Tr <@ﬁ1) _ ”W»

da a

where
= w (a;al +

ow

=% ((N(a» + %) , (96)

whence it follows that
dE1 = (SWl + (SQl

From Eqs. (97) and (94), it also follows that the pro-
duction of entropy is zero,
o= dSent
da

16Q

T da

(98)

where
w

1
In~!' =
2T

is defined in Eq. (92). Moreover, Eq. (98) can be com-
pared with the expression that is standardly used to
compute the energy of entanglement (see Refs. [2-4]),

T

dBeny = TdSen:. (99)

It allows establishing that the energy of entanglement
is given by
dEep; = 6Q = wsh2rdr. (100)

The results can be interpreted as follows. For an
entangled pair of large parent universes, the squeezing
parameter, r, given by

r = arcsh |vp)
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with v, in Eq. (79), turns out to be a decreasing func-
tion of the scale factor. We note that in the case of the

parent universes,
. N\ 2
M N w
M w
-6

~ Wa
Then the energy of entanglement given by the integra-
tion of Eq. (100) becomes

MR 1

T 4w 16w?

~

(N(a))

(101)

Eent = Q o8 V71/2a747 (102)
and the entropy of entanglement, Eq. (94), is
Sent & —(N(a))log(N(a)) x V"'a"%loga. (103)

These are the expected results because the universes
of an entangled pair become more and more disentan-
gled from each other as the universes expand, becoming
asymptotically independent for an infinite value of the
scale factor. Thus, the entropy and the energy of en-
tanglement are also decreasing functions of the scale
factor. The entropy of entanglement turns out to be a
monotonic function, thus providing us with an arrow
of time for each single universe [66]. The energy of
entanglement between the pair of universes would con-
tribute to the energy density of each single universe if it
can effectively be considered a kind of energy that fills
the universe. It would yield a large contribution at the
early stage of the universe, and it becomes extremely
small at large values of the scale factor, i.e., for more
evolved universes.

In the case of baby universes that describe vacuum
fluctuations of the space-time of a parent universe,
the results can be related to those previously obtained
in [61]. Actually, the effective number of vacuum fluc-
tuations,

(Ny(a)) < — =~ Va®, (104)

scales with the volume of the space of the parent uni-
verse. The energy of the vacuum fluctuations there-
fore increases as the universe expands, as does the en-
tropy of entanglement, which hence provides us with
the customary behavior of the arrow of time in cosmol-
ogy [18,61].

5. VIOLATION OF CLASSICAL INEQUALITIES
AND THE EPR ARGUMENT IN THE
MULTIVERSE

Entangled and squeezed states have no classical
analogue and provide us with an example in which
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the EPR argument could be applied in a cosmologi-
cal context. However, there is no need of a common
space—time to be shared by the universes in the quan-
tum multiverse, and therefore the concepts of locality
and nonlocality become meaningless. The entangled
states in the quantum multiverse are rather related to
the quantum interdependence of the states that repre-
sent disconnected regions or branches of the universe.
Nevertheless, it has been shown that quantum correla-
tions between two disconnected universes might have
observable consequences for the properties of each sin-
gle universe, one of which might well be the existence of
a contribution to the vacuum energy of each single uni-
verse. That would make the whole multiverse proposal
testable, at least in principle.

In the preceding sections, it has been shown that
entangled and squeezed states can generally be consid-
ered in the quantum multiverse. In quantum optics,
these quantum states are called nonclassical states [1]
because they can violate some inequalities that should
be satisfied in the classical description of light. For
instance, the second-order coherence function ¢(*(0),
which classically should satisfy

g (0) > 1

(see [1,67]), quantum mechanically is given, for a single
mode, by [1]

_(@h)?)
(b5)?
where b and bt are boson operators satisfying the com-

mutation relation

(o) =

g

b

[b,b1] = 1.

In the quantum state of the multiverse, taking rela-
tions (64) and (65) for the operators b and b into
account, the second-order coherence function can be
written as
142* 4+ 92% — 2
Ay=14 —— "= =

9O = T e v o
where = |vp|. Function (105) is plotted in Fig. 8 for
different values of the parameter w and for

(105)

No = (No|éte|Noy) = 2.
For values of the scale factor that are close to the value
ag = 10,
Nogr = (No|bTb|Np) = 522 + 2 &~ 2,
and the second-order coherence function is less than

unity (see Fig. 8), which is consistent because for val-
ues a & ag, with ag > 1,

5%6, bh ~ et
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Fig.8. Antibunching effect in the multiverse,
Eq. (105), with Eq. (65) and the values My = aq,
wo =al™" ao =10 (> 1), and R = 1/vV Muw, for

different values of the parameter w: w = —1 (¢ = 3,
dotted line), —2/3 (¢ = 2.5, dashed line), 0 (¢ = 1.5,
solid line)

For smaller and larger values of the scale factor, a > ag
or a < ag, the effect disappears because the effective
number N,y is large and the quantum correlations dis-
appear. This clearly reveals a strong dependence of the
violation of the classical inequalities on the representa-
tion that is chosen to describe the quantum state of the
multiverse.

Squeezed states violate the Cauchy—Schwartz in-
equality for any value of the squeezing parameters [1],
and they can also violate Bell’s inequalities. The latter
violation is even more important because it is directly
related to nonlocal characteristic of the quantum the-
ory. Bell’s inequalities are violated, for a two-mode
state, when [1]

(106)

In the multiverse, taking Eqs. (64) and (65) into ac-
count, we obtain

((B1)202) = N2(62* + 62> + 1) +

+ N(6z* + 227 — 1) + 22*, (107)
(blbybiby) = N2(62* + 622 + 1) +
+ N(62* +42%) + 2*(222 +1),  (108)

where

$E|V0|=Sh7’, N1=NQEN.

In Egs. (107) and (108), it is assumed that the universes
are identical except for the existence of conscious ob-
servers that make each single universe distinguishable,
and hence [i)l,l;;r] = 0 for ¢ # j. For the initial vac-
uum state, r = 0 and N = 0, C = 1 > 0.7, which
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implies a maximum violation of Bell’s inequalities [1].
For N =1, i.e., for a pair of entangled universes, we
obtain
_ 4zt + 1122 + 1
- 2874 4+ 1922 + 17

and Bell’s inequalities are violated (C' > 0.7) for
0 < shr < 0.31, i.e., for small values of the squeez-
ing parameter.

However, it is not clear at all how the violation
of Bell’s inequalities could be checked in the quantum
multiverse because the customary procedure would in-
volve measuring properties of the two universes of an
entangled pair. That could only be done by a hypo-
thetical observer who would live in the multiverse. For
a real observer living in a single universe, the entan-
glement of the universe could only be inferred by com-
paring the thermal properties derived from the theory
of interuniversal entanglement with the thermal prop-
erties of her universe, at least in principle.

Furthermore, it is worth noticing that what is vio-
lated in an experiment with photons involving squeezed
and entangled states are some classical assumptions like
the wave description of light or the local character of
classical particles. Those experiments clearly show the
fundamental character of the concept of complemen-
tarity in quantum theory: quantum systems have to
be complementarily described in terms of particles and

(109)

waves.
Despite the profound differences between quantum
optics and quantum cosmology, mainly due to the role
of the observer in both theories, the existence of en-
tangled and squeezed states in the quantum multi-
verse would also violate some classical assumptions
like the independence of disconnected regions of space—
time. The extension of the principle of complemen-
tarity, which is a fundamental and general feature of
quantum theory and should therefore be also assumed
in quantum cosmology, would mean that a complemen-
tary quantum description of the universe has to exist
in terms of “particles” and “waves”, the former natu-
rally leading to the multiverse scenario and the latter
impelling us to also consider interactions and quantum
correlations among the universes of the multiverse.
The existence of squeezed and entangled states in
the multiverse also allows proposing an argument anal-
ogous to the EPR argument in quantum mechanics.
The original EPR argument [68] was an attempt to
show the incompleteness of the quantum theory from
a realistic standpoint. It was Bell [69] who pointed
out that the EPR experiment actually showed nonlocal
characteristics of quantum mechanics. Roughly speak-
ing, in an entangled state between two particles, we
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can know the properties of a distant particle by means
of making a measurement on the other particle of the
pair, irrespectively of how far are they separated. In
the quantum multiverse, however, there is no need of
a common space—time to be shared by the universes
and therefore the concepts of locality and nonlocality
become meaningless, having to be extended to the con-
cepts of independence or interdependence of the quan-
tum states of the universes. The entangled states of the
multiverse are rather related to the concept of nonsep-
arability of the states that correspond to different re-
gions of space—time, which are classically disconnected,
however.

Generally speaking, the separability or nonsepara-
bility of the modes of a given representation is clearly
dependent on that representation. As is pointed out in
Ref. [62], the crux is that what is an interacting Hamil-
tonian for one of the modes may not be so for a differ-
ent set of modes (see also Ref. [8]). Thus, the objection
could be raised that the existence of entangled states in
the multiverse can be the result of an incorrect choice
of subspaces H; and Hs of the whole Hilbert space H
that corresponds to the complete quantum description
of the universe. That is, H cannot be given by a direct

product,
H # Hi @ Ha,

or splitting the whole Hilbert space into two subspaces
because it is just a useful mathematical tool to obtain
the quantum state in H that corresponds to a unique
single universe. This can be accepted. But the analo-
gous argument in the quantum description of the elec-
tromagnetic field would be that entangled states of a
pair of photons are just a useful way to represent the
state of the field. The violation of classical inequali-
ties in quantum optics reveals the corpuscular nature
of the photon, and its existence as an autonomous
entity, although not necessarily independent. In the
second-quantization formalism, this allows interpreting
different modes of the wave function of the universe
as different universes in an appropriate representation.
The complementarity characteristic of quantum theory
impels us to also consider their wave properties and
thus quantum interference and correlations between the
states of different universes, which can be considered
identical, as in the model considered in this paper, ex-
cept for the plausible existence of conscious observers
that might communicate with each other through quan-
tum channels® .

2) Classical channels to construct the communication protocol
could be provided by the existence of wormholes joining different
regions.

61

Of course, the measurement process is even more
difficult to be formulated in the context of the mul-
tiverse, and this is crucial in determining the appro-
priate representation of universes as being seen by an
observer who lives in the universe. It is therefore not
clear at all what representation should be chosen. How-
ever, the inter-universal entanglement in the multiverse
scenario may provide us with a wide variety of novel
features that could account for unexplained and new
unexpected cosmic phenomena, and it therefore seems
to be worthy of further investigation.

6. CONCLUSIONS AND FURTHER
COMMENTS

It has been shown that squeezed and entangled
states can generally be posed in the context of the
multiverse. Specifically, it has been shown that the
quantum state of a multiverse made up of homogeneous
and isotropic space—times with a massless scalar field
is given by a squeezed state, and that the quantum
state of the phantom multiverse turns out to be an en-
tangled state between the modes that correspond to
the expanding and contracting branches of each uni-
verse, before and after the big rip singularity. A pair
of entangled universes can also originate from a double
instanton, whose creation is allowed by the presence of
quantum corrections in the Wheeler-De Witt equation.
Therefore, quantum states with no classical analogue
have generally to be considered in the context of the
quantum multiverse.

Statistical boundary conditions have to be imposed
to determine the quantum state of the multiverse. The
boundary condition of the multiverse that the number
of universes of the multiverse does not depend on the
value of the scale factor of a particular single universe
partially fixes the representation to be chosen. This is
given by the Lewis states that can be interpreted, in the
context of the multiverse, as the states that represent
entangled pairs of universes.

If the existence of squeezed states in the multiverse
would imply a violation of Bell’s inequalities, then, be-
cause there is no common space-time to the universes
in the quantum multiverse, the nonlocality features of
squeezed states would rather be related to the interde-
pendence of the entangled quantum states that repre-
sent different universes or regions of the universe, which
are classically and thus causally disconnected.

The thermodynamical properties of a closed system
like the multiverse have been studied. All the ther-
modynamical quantities of a closed system are internal
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properties of the system and, with the given definitions,
the first and second principles of thermodynamics are
satisfied for any value of the scale factor. The entropy
of the multiverse can decrease, at the same time satis-
fying the second principle of thermodynamics because
the process is not adiabatic, the change of entropy pre-
cisely corresponds to the change of heat (divided by
the temperature), and hence the entropy production is
7€10.

Unlike the values of the quantum informational
analogies of work and heat, the values of the quantum
thermodynamical energy and entropy do not depend
on the representation chosen to describe the state of
the multiverse if different representations are related
to each other by unitary transformations. Therefore, if
the universe starts in a pure state, it remains a pure
state in the course of the unitary evolution of the uni-
verses in the multiverse.

We have also considered a pair of universes whose
quantum mechanical states are entangled. The com-
posite state of the pair is given by a pure state. How-
ever, the state of each single universe turns out to be
given by a thermal state with a temperature that de-
pends on the scale factor. Both universes of the entan-
gled pair therefore stay in thermal equilibrium in the
course of the correlated evolutions of their scale factors.
Cosmic entanglement thus provides us with a mecha-
nism by which the thermodynamical arrow of time in
the multiverse, given by the change of the total quan-
tum entropy, would be zero for a multiverse described
in terms of pure states of entangled pairs of universes,
a conclusion which could be related to that already
pointed out in Ref. [6] (see also Ref. [70]). Each single
universe of the multiverse, however, would still have
an arrow of time given by the change of the entropy
of entanglement with its partner universe. This arrow
of time corresponds to a decrease of the entanglement
entropy rather than an increase, however. Neverthe-
less, the second principle of thermodynamics is satis-
fied because the change of the entropy of entanglement
precisely corresponds to the change of the energy of
entanglement, which can be identified with the heat of
entanglement of each single universe.

The evolution of the temperature and the energy of
entanglement depends on the kind of universes that are
considered. For baby universes, the energy of entangle-
ment grows with the expansion of the parent universe.
It can be interpreted as an effective creation of a large
number of vacuum fluctuations in the space—time of
the parent universe. For parent universes, the temper-
ature and the energy of entanglement decrease in the
course of the expansion of the universe. Thus, the en-
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ergy density of each single universe can be high in the
initial stage, which is expected for an inflationary pe-
riod, but it can have a smaller value in a more evolved
epoch, like the current one.

The energy of entanglement for the positive and
negative modes of a massless scalar field, which re-
spectively correspond to the expanding and contracting
branches of the universe, behaves similarly to the vac-
uum energy when the scalar field starts with a small
value of the mode and evolves to higher values with
the expansion of the universe.

In this paper, it has also been pointed out that the
quantum mechanical fundamental concepts of comple-
mentarity and nonlocality have to be revised in the con-
text of the quantum multiverse. Thus, multiversal non-
locality has to be extended so as to express the inter-
dependence of different regions of the whole manifold
that represents the multiverse. These regions can clas-
sically and causally be disconnected from each other,
although their composite state can still have quantum
correlations. Therefore, the classical concept of causal-
ity ought to be revised. The concept of complementar-
ity in the multiverse implies the consideration of inter-
ference processes among different universes or branches
of the universe. These processes might have observable
effects in each single universe, underlying the question
of whether the multiverse studied in this paper can be
tested, i.e., whether it is in fact a falseable scientific
proposal®).

In general, regarding the testability of a multiverse
proposal, we first note that a multiverse can actually
be considered if it allows searching for the effects that
other universes might imprint on the properties of our
Furthermore, different ways of poten-
tially observing the effects of the multiverse in our uni-
verse have been proposed. In Refs. [71, 72], it has been
proposed that giant voids in the sky could be the result
of inter-universal interactions; according to Ref. [73],
the light pattern of gravitational lensing produced by
wormbholes, ringholes, and Klein-bottle holes that con-
nect our universe with others would be distinguishable
from that made by similar tunnels connecting differ-
ent regions of our universe, thus providing us with a
mechanism for testing the multiverse.

own universe.

In the model presented in this paper, it has been
shown that the inter-universal entanglement can mod-
ify the dynamical and thermodynamical properties
of single universes. Thus, some additional forms of
testability of the quantum multiverse can be envis-

3) In words of Ellis [10], the issue of testability underlies the
question of whether multiverse proposals are really scientific.
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aged. First, the temperature of entanglement might
be matched with the temperature of our universe if
there exists a relation between the thermodynamics of
entanglement and the thermodynamics of the universe.
Second, assuming that the energy of inter-universal en-
tanglement is the major contribution to the vacuum
energy of a single universe, the evolution rate of the
scale factor would have a correlation with the amount of
inter-universal entanglement and, particularly, with the
rate of change of its energy of entanglement. By using
the observational data, the entanglement rate could be
fixed. Furthermore, different boundary conditions for
the state of the multiverse imply different entanglement
rates between the states of single universes. Therefore,
it might well be that the evolution rate of the scale fac-
tor of our universe would provide us with a criterion
for selecting the appropriate boundary condition of the
whole multiverse, making not only the multiverse pro-
posal but also the choice of cosmic boundary conditions
testable.

Thus, the question of testability of the multiverse,
far from being the problem of the multiverse, seems
to be the keystone for considering new approaches
to traditional questions in quantum cosmology, like
the boundary conditions, the arrow of time, or the
anthropic principles, among others. It challenges us
to adopt new and open-minded points of view about
major physical and philosophical preconceptions.
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Basque Government project IT-221-07.
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