ТЕПЛОЕМКОСТЬ МУЛЬТИФЕРРОИКОВ НА ОСНОВЕ BiFeO₃

С. Н. Каллаев^{а,b}^{*}, Р. Г. Митаров^с, З. М. Омаров^{а**}, Г. Г. Гаджиев^а, Л. А. Резниченко^d

^а Институт физики Дагестанского научного центра Российской академии наук 367025, Махачкала, Россия

> ^b Дагестанский государственный университет 367000, Махачкала, Россия

^сДагестанский государственный технический университет 367015, Махачкала, Россия

^d Научно-исследовательский институт физики южного федерального университета 344090, Ростов-на-Дону, Россия

Поступила в редакцию 9 июля 2013 г.

Исследована теплоемкость мультиферроиков ${\rm Bi}_{1-x} {\rm Re}_x {\rm FeO}_3$ (${\rm Re} = {\rm La}, {\rm Eu}, {\rm Ho}; x = 0, x = 0.05$) в области температур 120–800 К. Обнаружено, что незначительные замещения висмута редкоземельными элементами приводят к заметному увеличению теплоемкости в широкой области температур. Показано, что температурная зависимость избыточной теплоемкости обусловлена проявлением эффекта Шоттки для трехуровневых состояний, возникающих вследствие структурных искажений в легированных составах.

DOI: 10.7868/S0044451014020126

1. ВВЕДЕНИЕ

В настоящее время значительный интерес исследователей вызывает класс материалов, которые получили название мультиферроики. Эти вещества обладают одновременно магнитным и электрическим упорядочением. Современные исследования ряда мультиферроиков указывают на перспективность таких материалов для создания устройств записи/считывания информации, устройств спинтроники и других приборов. К числу таких соединений относится феррит висмута BiFeO₃, в котором в области высоких температур реализуются сегнетоэлектрический (при $T_c \approx 1083$ K) и антиферромагнитный (при $T_N \approx 643$ K) фазовые переходы [1]. Феррит висмута при комнатной температуре имеет пространственную группу R3c. Кристаллическая структура характеризуется ромбоэдрически искаженной перовскитовой ячейкой, очень близкой к кубу. В области температур ниже точки Нееля T_N

феррит висмута обладает сложной пространственно-модулированной магнитной структурой циклоидного типа, которая не допускает наличия ферромагнитных свойств [2]. Необходимым условием возникновения магнитоэлектрического эффекта является разрушение его пространственно-модулированной спиновой структуры, которое может быть достигнуто легированием феррита висмута редкоземельными элементами.

Исследованию керамических составов на основе BiFeO₃ с помощью различных методов посвящено большое количество работ. Однако остается много нерешенных вопросов, связанных с природой фазовых превращений и с особенностями поведения физических свойств мультиферроиков BiFeO₃, модифицированных редкоземельными элементами. Все это стимулирует дальнейшие подробные исследования мультиферроиков на основе BiFeO₃. Теплофизические свойства и, в частности, теплоемкость и ее поведение в широком интервале температур, исследовались эпизодически. Калориметрические исследования в широком температурном интервале позволяют регистрировать аномалии теплоемкости и получить важную информацию о природе физических

^{*}E-mail: kallaev-s@rambler.ru

^{**}E-mail: omarov050@mail.ru

явлений в исследуемых материалах.

В данной работе приведены результаты исследований теплоемкости мультиферроиков BiFeO₃ и Bi_{0.95}Re_{0.05}FeO₃ (где Re = La, Eu, Ho) в широком интервале температур 120–800 K, включая область антиферромагнитного фазового перехода.

2. ОБРАЗЦЫ И ЭКСПЕРИМЕНТ

Объектами исследования являлись керамические образцы твердых растворов BiFeO₃ и $\mathrm{Bi}_{0.95}\mathrm{Re}_{0.05}\mathrm{FeO}_3$ (где $\mathrm{Re}=\mathrm{La},\ \mathrm{Eu},\ \mathrm{Ho}$). Керамики были получены по обычной керамической технологии путем твердофазного синтеза с последующим спеканием без приложения давления в воздушной атмосфере. Синтез осуществлялся методом твердофазных реакций оксидов высокой чистоты в две стадии с промежуточным помолом и гранулированием порошков. Режимы синтеза: температура первого обжига $T_1 = 800 \,^{\circ}\text{C} \, (\tau_1 = 10 \, \text{ч}),$ второго — T₂ = 800 °C-850 °С (τ_2 = 5 ч). Для придания порошкам нужных для прессования свойств в них вводился пластификатор с последующим гранулированием. Подбор оптимальной температуры спекания проведен путем выбора из различных температур спекания T_{sinter} из интервала 900 °C-950 °C. Полученные твердые растворы обладали достаточно высокими значениями экспериментальной и относительной (89–94) % плотностей и соответствовали предельно достижимым по обычной керамической технологии (90-95) %, что свидетельствует о достаточно хорошем качестве керамик.

Рентгеноструктурный анализ проводился на установке ДРОН-3 в диапазоне температур 300–1000 К. Определялись фазовый состав, параметры ячейки, степень совершенства кристаллической структуры при различных температурах. Рентгенофазовый анализ показал, что Bi_{0.95}Eu_{0.05}FeO₃ содержит примесные фазы Bi₂Fe₄O₉ и Bi₂₅FeO₄₀, интенсивность спектральных линий которых не превышала 5 %, остальные твердые растворы являлись беспримесными.

Измерение теплоемкости проводилось на дифференциальном сканирующем калориметре DSC 204 F1 Phoenix[®] фирмы NETZSCH. Образец для измерения теплоемкости представлял собой пластину диаметром 4 мм и толщиной 1 мм. Скорость изменения температуры 5 К/мин. Погрешность измерения теплоемкости не превышала 3 %.

3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ОБСУЖДЕНИЯ

На рис. 1 представлены результаты экспериментальных исследований теплоемкости мультиферроиков BiFeO₃ и Bi_{0.95}Re_{0.05}FeO₃ (Re = La, Eu, Ho) в области температур 120–800 К. Как видно на рисунке, на температурной зависимости теплоемкости всех составов наблюдаются λ -аномалия в области температуры антиферромагнитного фазового перехода T_N . Легирование феррита висмута BiFeO₃ редкоземельными элементами приводит к увеличению теплоемкости в широкой области температур, т. е. наблюдается дополнительная компонента теплоемкости (при $T \geq 140$ K), зависящая от замещающего редкоземельного элемента и температуры (см. рис. 2).

При анализе экспериментальных данных по теплоемкости в широком интервале температур необходимо учитывать ангармонический вклад в фононную теплоемкость. Эту компоненту теплоемкости можно вычислить по экспериментальным данным сжимаемости К_Т и коэффициента теплового расширения $\alpha (C_p - C_V = V \alpha^2 T / K_T$, где V — молярный объем). Данные по сжимаемости BiFeO₃ в литературе отсутствуют, поэтому для вычисления ангармонического вклада в фононную теплоемкость использованы данные коэффициента теплового расширения, измеренные на этих же образцах [3], и модуля объемной сжимаемости керамики Pb(Ti,Zr)O₃ [4], близкой по структуре к BiFeO₃. На основании указанных данных ангармонический вклад в фононную теплоемкость $BiFeO_3$ при T = 300 K составил примерно 1 Дж/моль К, т. е. менее одного процента общей теплоемкости. Малая величина ангармонического вклада обусловлена достаточно низким коэффициентом теплового расширения BiFeO₃. Поэтому, в силу малости этой величины, при дальнейшем анализе температурной зависимости фононной теплоемкости различие между C_p и C_V можно не принимать во внимание.

В большинстве случаев для количественного анализа температурной зависимости теплоемкости и разделения фононного и аномального вкладов используется простая модель, описывающая фононную теплоемкость функцией Дебая $C_p^0 \sim D(\Theta_D/T)$, где Θ_D — характеристическая дебаевская температура. Результаты анализа наших данных по теплоемкости BiFeO₃ и Bi_{0.95}Re_{0.05}FeO₃ дают величины соответственно $\Theta_D \approx 550$ К и $\Theta_D \approx 500$ К. Известно, что температура Дебая Θ_D зависит от величины сил связи между узлами (атомы, ионы) кристалли-

9 ЖЭТФ, вып.2

Рис.1. Температурная зависимость теплоемкости BiFeO₃ (1), Bi_{0.95}La_{0.05}FeO₃ (2), Bi_{0.95}Ho_{0.05}FeO₃ (3) и Bi_{0.95}Eu_{0.05}FeO₃ (4). Штриховая и сплошная линии — результат аппроксимации фононной теплоемкости функцией Дебая соответственно для BiFeO₃ и Bi_{0.95}Re_{0.05}FeO₃

ческой решетки. Поэтому понижение Θ_D при замещении ионов Ві ионами редкоземельных элементов свидетельствует о том, что силы связи между атомами кристаллической решетки при этом ослабевают.

Результаты расчета фононной теплоемкости функцией Дебая показаны на рис. 1 штриховой линией для x = 0 и сплошной — для x = 0.05. Для составов BiFeO₃, модифицированных редкоземельными элементами, наблюдается отклонение экспериментальных точек от рассчитанной фононной теплоемкости, которое свидетельствует о наличии избыточной теплоемкости (рис. 2). Избыточная составляющая теплоемкости определялась как разность между измеренной и рассчитанной фононной (для каждого состава) теплоемкостями $\Delta C = C_p - C_p^0$. Температурная зависимость аномальной теплоемкости $\Delta C(T)$ показана на рис. 2. Характер выделенной таким образом теплоемкости позволяет интерпретировать ее как аномалию Шоттки для трехуровневых состояний, отделенных от основного состояния энергетическими барьерами ΔE_1 и ΔE_2 . Это могут быть атомы одного типа или группа атомов, разделенных барьером ΔE_1 ,

ΔE₂ и имеющих три структурно-эквивалентные позиции. Трехуровневая система при легировании редкоземельными элементами может возникать вследствие искажения параметров решетки за счет полярных смещений ионов висмута и железа из исходных позиций и изменения угла связи между кислородными октаэдрами FeO₆ [5].

В общем случае выражение для теплоемкости Шоттки можно получить, дифференцируя среднюю энергию частиц на энергетических уровнях $\Delta C_p =$ = $(kT^2)^{-1}(\langle \Delta E_i^2 \rangle - \langle \Delta E_i \rangle^2)$ [6]. Выражение для теплоемкости Шоттки для трехуровневой модели (для произвольной массы вещества) имеет вид [7]

$$\Delta C_p = \nu R \left[D_1 \left(\frac{\Delta E_1}{kT} \right)^2 \exp\left(-\frac{\Delta E_1}{kT} \right) + D_2 \left(\frac{\Delta E_2}{kT} \right)^2 \exp\left(-\frac{\Delta E_2}{kT} \right) \right] \times \left[1 + D_1 \exp\left(-\frac{\Delta E_1}{kT} \right) + D_2 \exp\left(-\frac{\Delta E_2}{kT} \right) \right]^{-2}, \quad (1)$$

где D_1, D_2 — отношение кратностей вырождения уровней, R — универсальная газовая постоянная,

Рис. 2. Температурная зависимость аномальной составляющей теплоемкости BiFeO₃ (1), Bi_{0.95}La_{0.05}FeO₃ (2), Bi_{0.95}Ho_{0.05}FeO₃ (3) и Bi_{0.95}Eu_{0.05}FeO₃ (4); кривые 1-4 — эксперимент; сплошные линии — результат аппроксимации выражением (1)

Таблица. Модельные параметры для мультиферроиков ${\rm Bi}_{0.95} {
m Re}_{0.05} {
m FeO}_3~({
m Re}={
m La},~{
m Eu},~{
m Ho}),$ рассчитанные по формуле (1)

	$\mathrm{Bi}_{0.95}\mathrm{La}_{0.05}\mathrm{FeO}_3$	$\mathrm{Bi}_{0.95}\mathrm{Ho}_{0.05}\mathrm{FeO}_3$	$\mathrm{Bi}_{0.95}\mathrm{Eu}_{0.05}\mathrm{FeO}_3$
D_1	13.694	30.093	60.742
ΔE_1 , эВ	0.195	0.280	0.284
D_2	0.744	1.850	2.691
ΔE_2 , эВ	0.014	0.092	0.081

 ν — число молей. Путем сравнения теплоемкости, рассчитанной по формуле (1), и экспериментально выделенной избыточной теплоемкости ΔC получены модельные параметры $D_1, D_2, \Delta E_1$ и ΔE_2 , которые приведены в таблице. Согласие экспериментально выделенной $\Delta C(T)$ с расчетной кривой зависимости аномальной теплоемкости от температуры достаточно хорошее (рис. 2). В области антиферромагнитного фазового перехода T_N (рис. 1 и 2) наблюдается характерная λ -аномалия $C_p(T)$ теплоемкости, которая обусловлена возникновением магнитного упорядочения. Легирование редкоземельными элементами приводит к смещению температуры T_N антиферромагнитного фазового перехода в область высоких температур на величину примерно до 2.5 К.

Следует отметить, что в работах [8, 9] рассматривался вклад Шоттки, связанный с присутствием малых концентраций редкоземельных элементов в сегнетокерамике (Pb_xLa_{1-x}) ($Zr_{0.65}$, $Ti_{0.35}$)O₃ и монокристаллах $Cs_xLa_{1-x}B_6$. Показано, что аномальное

Рис. 3. Температурная зависимость аномальной энтропии BiFeO₃ (1), Bi_{0.95}Eu_{0.05}FeO₃ (2), Bi_{0.95}La_{0.05}FeO₃ (3), Bi_{0.95}Ho_{0.05}FeO₃ (4)

T, K

поведение теплоемкости в широкой области температур может быть обусловлено проявлением двухуровневых состояний, которые возникают вследствие искажения структуры при легировании редкоземельными элементами.

Изменение энтропии, связанное с аномальным поведением теплоемкости, рассчитанное как $\Delta S(T) = \int \Delta C/T \, dT$, показано на рис. 3. Как видно на рис. 3, величина изменения энтропии в области антиферромагнитного фазового перехода T_N составляет $\Delta S < 0.1R$. Этот факт указывает на то, что основную роль в формировании антиферромагнитной фазы играют процессы типа смещения.

Таким образом, результаты исследований показывают, что легирование феррита висмута редкоземельными элементами приводят к появлению дополнительного вклада в теплоемкость в области температур 140–800 К, который можно интерпретировать как аномалию Шоттки для трехуровневых состояний.

Работа выполнена при финансовой поддержке РФФИ и ФЦП «Научные и научно-педагогические кадры инновационной России».

ЛИТЕРАТУРА

- G. A. Smolenskii and V. M. Yudin, Sov. Phys. Sol. St. 6, 2936 (1965).
- 2. А. П. Пятаков, А. К. Звездин, УФН 182, 594 (2012).
- А. А. Амиров, А. Б. Батдалов, С. Н. Каллаев и др., ФТТ 51, 1123 (2009).
- J. Ronguette, J. Haines, V. Bornand et al., Phys. Rev. B 65, 214102 (2002).
- D. C. Arnold, K. S. Knight, F. D. Morrison et al., Phys. Rev. Lett. 102, 027602 (2009).
- R. G. Mitarov, V. V. Tikhonov, L. V. Vasilev et al., Phys. St. Sol. (a) 30, 457 (1975).
- В. П. Жузе, Физические свойства халькогенидов редкоземельных элементов, Наука, Ленинград (1973).
- С. Н. Каллаев, З. М. Омаров, Р. Г. Митаров и др., ЖЭТФ 138, 475 (2010).
- 9. М. А. Анисимов, В. В. Глушков, А. В. Богач и др., ЖЭТФ 143, 877 (2013).