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Cuprous oxide is selected as a promising material for photovoltaic applications. Density functional theory is used
to study the structural, electronic, and thermodynamic properties of cuprous oxide by using the local density
approximation and generalized-gradient approximation. The effect of pressure on the structural and electronic
properties of CuO is investigated. This study confirms and characterizes the existence of new phases. Hexago-
nal and tetragonal phases are not completely indentified. We focus on the phase transition of the cuprous oxide
under hydrostatic pressure to tetragonal and hexagonal (Cdl:) structures. Variation of enthalpy with pressure
is used to calculate the pressure of the phase transition.
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1. INTRODUCTION

Metal oxides are widely used in various applica-
tions such as electronic components, building materials
and refractories in drastic conditions of pressure and/or
temperature. Studies of metal oxides are thus of great
importance for obtaining a better understanding of cor-
rosion of metals, heterogeneous catalysis, gas sensors,
and transparent conductive oxides. The cuprous oxide
(Cuz0) was the first substance known to behave as a
semiconductor, together with selenium [1]. Most of the
semiconductor theories were developed using the data
on Cuy0. This oxide remains an attractive alternative
material to silicon and other semiconductors, being fa-
vored at present for many applications due to its many
advantages. Tt is nontoxic, its starting material (which
is copper) is very abundant, and its production pro-
cess is simple [2]. The most important methods for the
production of CusO are thermal oxidation, electrode-
position, and sputtering technique [3-5].

Cuprous oxide is a potential material for fabrica-
tion of low-cost solar cells [6,7]. The first real solar
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cell with CusO was fabricated in the late 1920s. But
at that time, and until the first space explorations, the
energy production from the sun by photovoltaic effect
was just a curiosity. High-efficiency CuyO-based solar
cells require a good understanding of the crystallinity
of this oxide and a judicious choice of the structural
orientation. CuzO is a p-type semiconductor; it crys-
tallizes in the cubic structure (Pn — 3m) and has a
direct band gap of about 2 €V [8], which is suitable for
photovoltaic conversion [9, 10].

Cuprous oxide has been the subject of numerous
theoretical and experimental studies, but still its elec-
tronic and atomic structures continue to puzzle the re-
searchers. New applications of CuyO in nanoelectron-
ics, spintronics, superconductivity, and photovoltaics
are emerging [11,12]. A better understanding of the
atomic structure and electronic levels of cuprous ox-
ide may be useful for predicting and controlling the
phase transition under hydrostatic pressure, which will
in turn allow a better understanding of the growth
mechanism. Metal oxides present many polymorphs.
The stability and mechanism of phase transitions rep-
resent an active field of investigation to discover a new
stable phase or improve an existent one [13]. In ambi-
ent conditions, CuyO stabilizes in a simple cubic Bra-
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vais lattice, with the space group Pn — 3m(223) [14].
Under high pressure, the cubic phase has a number of
low-pressure phases. These phase transitions have been
studied both theoretically and experimentally [15, 16].
Experimental studies have shown that cuprous oxide
grows preferntially along the (111) direction [17,18].
Atomic stacking along this direction coincides well with
the hexagonal structure [19].

The present work is focused on clarifying some fun-
damental aspects of CusO that can be important for
both device fabrication and a better understanding of
the physical phenomena observed in CuO. The aim of
this work is to characterize hexagonal and tetragonal
structure of cuprous oxide. We focus on the effect of
pressure in the structural and electronic properties of
CuyO polymorphs. A relation is established between
the electronic structure and the phase transition mech-
anism in Cu»O.

2. COMPUTATIONAL DETAILS

Theoretical calculations are performed in the frame-
work of the density functional theory (DFT) [20,21]
using pseudopotentials and a plane-wave basis imple-
mented in the ABINIT package [22]. This package
is available under a free software licence and allows
computing a large set of useful properties for solid
state studies [23]. The valence electron wavefunctions
are expanded in plane waves with the kinetic energy
cutoff F.,; equal to 50 Hartree. The pseudopoten-
tials are generated with the respective 3d'%4s' and
2522p* atomic configurations of copper and oxygen.
Norm-conserving pseudopotentials [24] of Troullier—
Martins (TM) scheme [25], generated from the Fritz-
Haber-Institute package [26], are used. The exchange-
correlation terms were depicted, first, with the local
density approximation of Ceperly and Adler [27] by
the parameterization of Perdew and Zunger [28]; on
the other hand, we used the generalized-gradient ap-
proximation (GGA) proposed by Perdew, Burke, and
Ernzerhof (PBE) [29]. For the Brillouin zone sam-
pling, the 8 x 8 x 8 k-points distributed on a shifted
Monkhorst—Pack grid was used [30]. The numerical re-
sults given below correspond to zero temperature. A
judicious choice of the E.,; value and the k-point num-
ber is very important because if we increase these num-
bers, the CPU time and memory space also increase.

3. RESULTS AND DISCUSSION

Under ambient conditions, CuyO crystallizes in a
simple cubic structure, which belongs to the space
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Fig.1. (a) Cubic, (b) hexagonal CdIs-type, and (c)
tetragonal conventional unit cell for copper oxide

group Pn —3m. It can be described as a cubic unit cell
where oxygen atoms are in the corners with a tetrahe-
dral unit of CusO at the center (Fig. 1a). In the lattice,
each copper atom coordinates with two oxygen atoms
and each oxygen atom is surrounded by four copper
atoms, which makes the stoichiometry 2:1. The atomic
coordinates and space group of cuprous oxide are listed
in Table 1. To obtain the equilibrium bulk structure,
the total energy is minimized with respect to the unit
cell volume. Figure 2 shows a parabolic dependence
of the energy as a function of the volume. The vol-
ume corresponding to the minimum energy identifies
the equilibrium lattice parameter. The lattice parame-
ters and bulk modulus are determined by fitting a set
of data points to the Murnaghan equation of state [31].
A fit of the resulting energy versus volume curve with
the Murnaghan equation, shown in Fig. 2, gives the val-
ues of By and its pressure derivative B' = dBy/dP for
cuprous oxide. Our calculated lattice parameters, the
bulk moduli By and B’ together with other theoretical
and experimental values are listed in Table 2.

Our results are in good agreement with the pub-
lished experimental and theoretical data [15, 16, 32, 33].
For cuprous oxide, the local density approximation
(LDA) calculations show the well-known overbinding
effect value with a lattice parameter underestimated
by —1.17 % compared to the experimental results, and
GGA-PBE calculation is overestimated by 2.10 %.

Under hydrostatic pressure, in the range 0-10 GPa,
cuprous oxide transforms into tetragonal or hexagonal
structure (Fig. 1). It was confirmed in [16] that the
cubic CusO becomes tetragonal under 5.7 GPa. On
the other hand, as shown in [15], the oxide undergoes a
phase transition toward an hexagonal structure under a
pressure of 10 GPa. In this study, we have detailed the
structural and electronic information of the tetragonal
and hexagonal structures. We calculated and verified
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Table 1. Space group and atomic positions for copper oxide in the cuprous, hexagonal, and tetragonal structures [14]

Structure Space group Atomic positions
Cu (14, 1/4,1/4); (1/4, 3/4, 3/4)
Cuprous Pn — 3m(223) (3/4,1/4,3/4); (3/4,3/4,1/4)
0 (0,0,0); (1/2,1/2,1/2)
C 2/3,1/3,1/4); (1/3,2/3,1/4
Hexagonal (CdlIy) P — 3m(164) " (2/3,1/3,1/4); (1/3,2/3, 1/4)
0 (0, 0, 0)
Cu (1/4,3/4,1/4); (3/4, 1/4, 3/4)
Tetragonal P45 /nnm(134) (3/4, 3/4,3/4); (1/4, 1/4, 3/4)
0 (0,0,0); (1/2,1/2,1/2)
E, eV /atom E, eV /atom
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Fig.2. Total energies as a function of the unit cell volumes for the (o) cubic, (A) hexagonal (CdI.), and (o) tetragonal
conventional unit cell for copper oxide with the (a,c) LDA and (b,d) PBE approximation. Figures c and d are a zoom of the
area showing cubic (e) and tetragonal (o) energies versus volume curves

the phase-transition pressure value. Table 1 summa-
rizes the atomic positions and space group for the three
structures. The atoms in the hexagonal and tetragonal
structures are ordered in planes and form a lamellar
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structure.
transition, t
of the cell v

In order to look for the structural phase
he total energies are obtained as a function
olume in the three structures.

The total energy versus volume curves calculated
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Table 2.

Calculated and experimental lattice parameters, bulk modulus, and pressure derivative of the bulk modulus

for copper oxide in the cuprous, hexagonal, and tetragonal structures

Structure a, A e, A By, GPa B’ Reference

4.22 141.14 4.23 LDA | .

436 105.58 415 GGA 5 Sy

Cuprous 4.22 [15] 141.00 [15] — Other calculations

4.26 [32] 136.10 [32] | 4.67 [36]

4.27 114.10 Experiment [33]

2.48 3.90 137.91 4.45 LDA | o

Hexagonal (Cdl,) 2.52 3.86 103.11 434 GGA 8 study
2.90 3.86 Experiment [34]

3.88 4.39 156.69 4.52 LDA | .

Tetragonal 402 453 112.10 471 GGA 15 Sy
4.19 4.24 Experiment [35]

with the LDA and GGA-PBE for the three structures
and fitted by the Murnaghan equation of state are
shown in Fig. 2. For the hexagonal structures, the cal-
culated variation of the a/c ratio versus energy is not
shown. The calculated values of lattice parameters, the
bulk moduli By and B’ for tetragonal and hexagonal
structures of CusO under pressure, and other experi-
mental values available in the literature are reported in
Table 2. Comparison between our results and experi-
ence shows a good agreement, albeit with a small differ-
ence between the results obtained using the LDA and
GGA. The plot of the total energy E per atom versus
unit cell volume V' with the LDA and GGA (Fig. 2a,b)
shows two curves that are very close to the cubic and
tetragonal structures. The difference between these two
curves is clearly seen in Figs. 2¢ and 2d. This observa-
tion is evident because the structural transition from
cubic to tetragonal is under small distortion. In Fig. 2,
the dashed lines are common tangents, and the phase
transition pressure is given by the slope of these lines.

The pressure at which a phase transition occurs can
be deduced from the common tangent between cubic—
hexagonal and tetragonal-hexagonal energy-volume
curves. The pressure of the phase transition is ob-
tained via the tangent construction using the energy
versus volume plot for the two phases, i.e.,

E, - E,

P =
I T T

where P, is the phase transition pressure, Fy and Fy are
the respective energies at the transition for cubic and
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hexagonal structures, and V; and V5 are the transition
volume for these structures.

The same method is repeated for the cubic—tetra-
gonal phase transition, but it is very difficult to use the
common slope in this case because the two curves are
very close. This method is not very accurate. How-
ever, for pressure-induced phase transitions, it is more
suitable to consider the Gibbs free energy. In thermo-
dynamics, at constant temperature and pressure, the
state of a system is determined by the Gibbs free en-
ergy

G=E+PV-TS=H-TS,

where E and H denote the internal energy and en-
thalpy, T" and S are the temperature and entropy, and
P and V are the pressure and volume. We consider only
the zero-temperature limit in our calculation; then the
Gibbs free energy becomes equal to the enthalpy

H=FE+PV.

The fit of the curves H versus P has been performed
using the equation

BoVo
B -1

(B'-1)/B'
(egr) ]

where Ey and V, are the energy and volume at equi-
librium conditions, and By and B’ are the values of
the bulk modulus and its pressure derivative at P = 0.

G(P)

H(P)=E0+

X

!

1+—P
X +B0
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Table 3.  Calculated and experimental structural transition pressures
Pt, GPa
This study
LDA GGA-PBE Other results
Cubic — tetragonal 2.93 4.00 5.7 [16]
Cubic — hexagonal 6.60 8.00 7(LDA)-10(PBE) [15]
Tetragonal — hexagonal 6.81 8.25 —
E, eV /atom E, eV /atom
—469 . . . —469 T T T
— Cubic a — Cubic
g0l T Tetragonal | — — - Tetragonal 7
[— Hexagonal 470 - Hexagonal

—471

—472

—473 L . .
0 5 10 15 20
P, GPa
E, eV /atom
T T T |//’
L ¢ 7
7
_ N 7 i
471.39 %
g
- '/ .
o
—471.41 | 7 ]
7
/'//
- 7y -
/s
s
—471.43 L -
’// 7 1 |" 1
6.6 6.7 6.8 6.9
P, GPa

—471

—472 I . .
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P, GPa
E, eV /atom
T T T T T/
d s
L 7z E
Zi
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7
—470.62 i
—470.64 L Y . i
8.2 8.3
P, GPa

Fig.3. Variation of enthalpy versus pressure in the cubic, hexagonal, and tetragonal copper oxide with the (a, c) LDA and
(b,d) PBE approximation. Figures c and d are a zoom of the area showing intersection lines of enthalpy versus pressure

This equation of state depends on a few parameters and
covers a wide range of pressures [37]. This approach re-
lies on some knowledge or intuition of reasonable can-
didate crystal structures [38]. It depends on the nature
of the interatomic interactions and thus provides an
insight into the nature of the solid state. At the same
time, it determines the values of fundamental thermo-
dynamic parameters [39].

Generally, the results are in good agreement with
experiments. The minimum enthalpy state is the ther-
modynamic condition of stability at zero temperature
and at constant pressure. The equilibrium pressure is
determined by the intersection of the two Gibbs free
energy isotherms (Fig. 3). At P;, two phases have the
same enthalpy, and the transition pressure is then de-
termined by equating the enthalpies of the two phases
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of cuprous oxide. To see the possible phase transitions,
Fig. 3a,b shows the calculated enthalpy curves of the
cubic, tetragonal, and hexagonal cuprous oxide as a
function of pressure. Figures 3¢ and 3d are a zoom of
the area of the intersection of lines of enthalpy versus
pressure. The transition pressures of CusO are calcu-
lated and the results are summarized in Table 3. These
values are in agreement with recent experimental and
theoretical reports [15, 16].

Through this study, we find the following. The
pressures calculated with both LDA and GGA-PBE
are smaller than the experimental values. Hydrostatic
pressure deforms the cubic structure to tetragonal at
low pressure. Our PBE result (4.7 GPa) is slightly
smaller than the experimental results (Table 3). Cubic—
hexagonal deformation is in the vicinity of 10 GPa. Our
calculation yields 8 GPa. The passage from the tetrag-
onal to hexagonal structure is not known in the litera-
ture. This work confirms the existence of a tetragonal—
hexagonal phase transition. Our study gives a value of
the transition pressure with the LDA and GGA.

Figure 4 shows the band structure of copper oxide
in the three different structures at the experimental
lattice parameter. The maximum of the valence bands
is set to the zero energy in all plots. For cuprous ox-
ide, it is observed that the direct band gap is about
0.48 eV at the highly symmetric I' point, which is close
to the previously calculated result with the same ap-
proximations [40,41]. The experimental value of the
gap energy is 2.17 eV [42]. The underestimated band
gap can be due to the choice of the exchange-correlation
energy. In this study, the band gap is calculated with
the LDA. Our ab initio calculation shows that the fun-
damental gap of cuprous oxide is a direct one, with the
maximum of the valence band and the minimum of the
conduction band occurring at the T point (see Fig. 4).
Under pressure, the electronic structure undergoes a
drastic deformation. Cuprous oxide loses its semicon-
ductor character and we observe an overlap between
valence and conduction bands. This is normal because
tight bands occur as the effect of pressure.

4. CONCLUSION

A DFT study has been performed to evaluate the
structural, thermodynamic, and electronic properties
of CuzO in cubic structure and two different poly-
morphs under pressure. The electronic structures of
the cuprous oxide and two polymorphs are reproduced.
In the cubic structure, CusO is shown to have a semi-
conductor character with the band gap underestimated
because we use the LDA in our calculation. Tetrago-
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Fig.4. Energy band diagram of copper oxide calculated
for specific directions in the first Brillouin zone: (a) cubic,
(b) tetragonal, and (c) hexagonal structures
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nal and hexagonal structures are conductive in our ap-
proximations. In this study, we have used enthalpy ver-
sus pressure curves to calculate the transition pressure.
The value of the transition pressure of the cubic to the

tet

ragonal and hexagonal phase is calculated in very

good agreement with results in the literature. These
Cuy0 polymorphs have been reanalyzed with the goal

to

properly characterize each structure; this contribu-

tion can be used in a predictive way for manufacturing
high-efficiency and more stable solar cells.
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