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TIME-DEPENDENT PHOTON CORRELATIONSFOR INCOHERENTLY PUMPED QUANTUM DOT STRONGLYCOUPLED TO THE CAVITY MODEA. V. Poshakinskiy *, A. N. PoddubnyIo�e Physi
al-Te
hni
al Institute, Russian A
ademy of S
ien
es194021, St. Petersburg, RussiaRe
eived September 25, 2013The time dependen
e of 
orrelations between the photons emitted from a mi
ro
avity with an embedded quan-tum dot under in
oherent pumping is studied theoreti
ally. Analyti
 expressions for the se
ond-order 
orrelationfun
tion g(2)(t) are presented in strong and weak 
oupling regimes. The qualitative di�eren
e between thein
oherent and 
oherent pumping s
hemes in the strong 
oupling 
ase is revealed: under in
oherent pumping,the 
orrelation fun
tion demonstrates pronoun
ed Rabi os
illations, but in the resonant pumping 
ase, theseos
illations are suppressed. At high in
oherent pumping, the 
orrelations de
ay monoexponentially. The de
aytime nonmonotoni
ally depends on the pumping value and has a maximum 
orresponding to the self-quen
hingtransition.DOI: 10.7868/S00444510140200591. INTRODUCTIONSemi
ondu
tor quantum dots form a promisingplatform for quantum opti
s devi
es, in
luding single-photon emitters and emitters of entangled photonpairs [1�4℄. The quantum dot-based light sour
es 
anbe 
hara
terized by means of photon�photon 
orrela-tion spe
tros
opy, i. e., by measuring the se
ond-order
orrelation fun
tion g(2)(t) between two photons with adelay t [5, 6℄. Multiple experimental observations of theantibun
hing [g(2)(0) < 1℄ of the photons emitted fromquantum dots are already available [7�11℄. One of thepossible routes to further enhan
ing the performan
e ofthese light sour
es is to resonantly 
ouple the quantumdot ex
iton to the photon mode 
on�ned inside the mi-
ro
avity in all three spatial dire
tions [3℄. The physi
sof su
h quantum mi
ro
avites be
omes espe
ially ri
hin the strong-
oupling regime, where the new quasipar-ti
les, ex
iton polaritons, are formed due to the intera
-tion between ex
itons and 
avity photons [1; 3; 12�15℄.Here, we study the time dependen
e of the se
ond-order 
orrelations between the photons emitted froma quantum dot mi
ro
avity under stationary in
oher-ent pumping. Experimentally, this regime 
an be re-*E-mail: poshakinskiy�mail.io�e.ru

alized in quantum dot mi
ro
avities driven by ele
tri-
al pumping [16℄ or 
ontinuous opti
al pumping [14℄.The 
oexisten
e of (i) the strong-
oupling regime and(ii) the stationary in
oherent pumping regime makesthe time dynami
s of the 
orrelations very spe
i�
.The strong-
oupling regime [17�19℄ qualitativelydistinguishes the system from the 
onventional laser,des
ribed by the S
ully�Lamb theory [20℄. More-over, the in
oherent pumping makes it di�erent fromthe single-atom laser in the strong-
oupling regime,whi
h has been demonstrated experimentally and an-alyzed theoreti
ally [21, 22℄. Su
h systems are typi-
ally 
oherently pumped by resonant light [4; 23�26℄.As we show in Se
. 3, the photon�photon 
orrela-tions for a resonantly pumped atom and for an in-
oherently pumped quantum dot are very di�erent.While both systems show antibun
hing, the time-dependent 
orrelator g(2)(t) demonstrates os
illationsat the va
uum Rabi splitting frequen
y in the in
oher-ent pumping 
ase, but not in the 
ase of a resonantlypumped atom [21℄. Re
ent experiments for in
oher-ently pumped laser with a single quantum dot in thestrong-
oupling regime [14℄, as well as the 
omprehen-sive theoreti
al analysis in [27�29℄, were fo
used on thestationary 
orrelator g(2)(0) at zero time delay. De-tailed analysis of time-dependent 
orrelations was lim-ited to the regime with a large ex
iton�photon detun-237
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oupling [10℄, where the polaritonsare not formed.Hen
e, there is still a need to develop a detailed the-ory a

ounting for the spe
i�
s of the fast-in
reasing�eld of quantum-dot-based 
avity quantum ele
trody-nami
s. Here, we fo
us on the temporal dynami
s of
orrelations in the strong-
oupling regime and showthat it provides additional information on the lifetimeof polariton eigenstates and the energy splitting be-tween them. Our main goal is to derive transparentanalyti
 answers for the time-resolved 
orrelator g(2)(t)as a fun
tion of the in
oherent pumping intensity inboth strong and weak 
oupling regimes.The rest of the paper is organized as follows. InSe
. 2, the model and the 
al
ulation approa
h are de-s
ribed. Se
tion 3 is devoted to the role of the pumpingme
hanism and demonstrates the di�eren
e between in-
oherent and resonant pumping s
hemes. Se
tions 4and 5 respe
tively present the theory developed in thestrong and weak 
oupling regime. The results are sum-marized in Se
. 6. Auxiliary derivations are given inAppendi
es A and B.2. MODELWe 
onsider a zero-dimensional mi
ro
avity where asingle photon mode is 
oupled to a single ex
iton stateof the quantum dot. Polarization degrees of freedom ofboth photons and ex
itons are disregarded for simpli-
ity. Under these assumptions, the Hamiltonian of thesystem has the standard form [1℄H = ~!0
y
+ ~!0byb+ ~g(
yb+ 
by); (1)where !0 is the resonan
e frequen
y of the 
avity, tunedto the ex
iton resonan
e, 
 and 
y are the boson an-nihilation and 
reation operators for the 
avity mode([
; 
y℄ = 1), b = jGi hX j and by = jXi hGj are the 
or-responding operators for the single-ex
iton mode, jXiand jGi are respe
tive states with one ex
iton and noex
itons, and g is the light�ex
iton 
oupling 
onstant.Equation (1) 
orresponds to a quantum dot smallerthan the ex
iton Bohr radius. To 
onsider the 
ase ofa large quantum dot, one should generalize the modelfollowing Refs. [32, 33℄.To determine the intensity of emission from the 
av-ity, we should also introdu
e the pro
esses of parti
lesgeneration and de
ay. We 
onsider in
oherent 
ontin-uous pumping of ex
itons into the quantum dot withthe rate W (see Fig. 1a). The �mi
ros
opi
� dis
ussionof the pumping me
hanism 
an be found in Ref. [32℄,while the distin
tion between in
oherent and 
oherent

pumping s
hemes is dis
ussed in Se
. 3. The ex
itonmode is 
hara
terized by the nonradiative damping �X .Photons 
an es
ape the 
avity through the mirrors withthe rate �C . Hen
e, the full system state is des
ribedby a density matrix � and its evolution is determinedby the equation d�=dt = L[�℄ with the Liouvillian [1℄L[�℄ = � i~ [H; �℄+�CL
[�℄+�XLb[�℄+WLby [�℄; (2)where La[�℄ = (2a�ay � aya� � �aya)=2 are the Lind-blad terms, a

ounting for damping and pumping.The stationary density matrix �0 satis�es the equationL[�0℄ = 0. We 
an 
al
ulate the number of photonsin the 
avity NC = 

y
� and the ex
iton o

upationnumber NX = 
byb� asNC = Tr(
y
�0); NX = Tr(byb�0); (3)where Tr stands for the operator tra
e and angularbra
kets denote the quantum me
hani
al expe
tationvalue. The lumines
en
e spe
trum of the system isgiven by [5℄I(!) / Re 1Z0 dt ei!t 

y(0)
(t)� : (4)A detailed study of the dependen
e of these �rst-order
orrelators on the pumping and on other parameters
an be found in Refs. [28, 34℄. The goal of this paper isto analyze the time dependen
e of the se
ond-order 
or-relator that 
hara
terizes �u
tuations of the emissionintensity from the 
avity. They are des
ribed by the
orrelator g(2)(t) determining the probability to regis-ter two photons with the time delay t [5℄:g(2)(t) = 1N2C 

y(0)
y(t)
(t)
(0)� : (5)Equation (5) presents the simplest de�nition of the 
or-relation fun
tion, suitable for the analyti
 treatment inwhat follows. A more general expression, taking the�nite response rate and spe
tral window of the photondete
tor for two- and multiple-photon 
orrelations intoa

ount is given in Ref. [6℄. The 
al
ulation of g(2)(t)is based on the quantum regression theorem [5℄g(2)(t) = 1N2C Tr[
y
�(t)℄; (6)where the evolution of the operator �(t) � eLt[
�0
y℄ isgoverned by the dynami
 equationd�dt = L[�℄; �(0) = 
�0
y: (7)238



ÆÝÒÔ, òîì 145, âûï. 2, 2014 Time-dependent photon 
orrelations : : :
gà b


 d

e f

g jXijGijIi


0�1 1 �1 0 1(! � !0)=g (! � !0)=g

0 50 0 200 400

Lumines
en
eLumines
en
e
1:0
0:5 0:5

1:0
gt gt

g(2) g(2)

Fig. 1. The sket
h of (a) an in
oherently pumped quantum dot in a mi
ro
avity system and (b ) a resonantly pumped 3-levelatomi
 
avity system. Panels 
 and d show the 
omparison of the lumines
en
e spe
tra for these systems, while panels e andf present the g(2)(t) dependen
e. The parameters 
hosen are g=�C = 10, �X = 0:1�C , and W=�C = 0:1 for the quantumdot in the mi
ro
avity system (panels 
,e) and g=�C = 10, �X = �IX = �IG = 0:1�C and 
=2g = 0:01 for the atomi

avity system (panels d,f )For zero time delay, Eq. (6) assumes the formg(2)(0) = 1N2C Tr(
y
y

�0): (8)For large time delays, the 
orrelator tends to unity,g(2)(t!1) = 1, be
ause the probabilities of dete
tionof two photons be
ome independent.
3. COMPARISON OF INCOHERENT ANDCOHERENT PUMPINGIn this se
tion, we 
ompare the 
hara
teristi
s ofemitted photons in the 
ases of 
oherent and in
oher-ent pumping. We fo
us on the strong-
oupling regime,when the light�ex
iton 
oupling g is stronger than thede
ay rates of the ex
iton and photon. We demon-strate below that these two pumping s
hemes are qual-239
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oherent pumping s
heme is used for the quantumdot in a mi
ro
avity as sket
hed in Fig. 1a and was de-s
ribed in Se
. 2. The density matrix equations 
an be
onveniently analyzed using the basis of eigenstates ofHamiltonian (1), whi
h are well de�ned in the strong-
oupling regime (g � �C ;�X). The eigenstates aregiven by [35℄j0i = j0; Gi ; jm;�i = jm;Gi � jm� 1; Xip2 ;m � 1; (9)where jm;Gi and jm;Xi are the respe
tive states withm photons and no ex
itons or one ex
iton. The energyspe
trum forms the Jaynes�Cummings ladderE0 = 0; Em;� = m~!0 �pm~g: (10)Ea
h rung of the ladder 
ontains two states split by theRabi frequen
y 2pmg, in
reasing with the rung num-ber m. In the limit of vanishing pumping W � �C ,the lumines
en
e spe
trum is determined by transitionsfrom the lowest o

upied ex
ited levels j1;�i to theground state j0i, and therefore 
ontains two peaks atthe frequen
ies !0�g (va
uum Rabi splitting [12℄), seeFig. 1
. The detailed study of the lumines
en
e spe
traat higher pumping intensities 
an be found in Ref. [34℄.The presen
e of the split level j1;�i also results in os-
illations of the photon�photon 
orrelator, see Fig. 1e.The frequen
y of the os
illations is 2g, whi
h allowsinterpreting them as Rabi os
illations between photonand ex
iton states.To illustrate the di�eren
e between these emission
hara
teristi
s and those in the 
ase of resonant pump-ing, we 
onsider the simplest 3-level s
heme, see Fig. 1b.Su
h a s
heme may be used for atomi
 
avity sys-tems [4; 27℄. For this, we add a new ground state jIi tothe system, while the transition between levels jXi andjGi remains strongly 
oupled to the 
avity mode. Thepumping is performed by the 
oherent external �eldthat resonantly ex
ites the system from the state jIito the state jXi. This 
an be des
ribed by adding theterm V = 
2 (jXi hI j+ jIi hX j) (11)to Hamiltonian (1), where 
 is the Rabi frequen
y 
or-responding to the pumping �eld. We also introdu
e thede
ay rates �IX and �IG from the respe
tive states jXiand jGi to the state jIi. They are taken into a

ountby adding the terms �IXLjIihXj[�℄ and �IGLjIihGj[�℄ toLiouvillian (2). The eigenstates of the total Hamilto-nian taking pumping term (11) into a

ount are

j0i = j0; Gi ; jm;Ci = jm� 1; Ii � �m jm;Gip1 + �2m ; (12)jm;�i = 1p2  jm;Gi+ �m jm� 1; Iip1 + �2m � jm� 1; Xi! ;where �m = 
=(2pmg) des
ribes the pumping-indu
edstate intermixture strength. The energy spe
trumforms the Jaynes�Cummings ladder with ea
h rung now
onsisting of three states,E0 = 0; Em;C = m~!0;Em;� = m~!0 � ~pmg2 + (
=2)2: (13)In the 
ase of low pumping 
 � g, the state j1; Ci,whi
h is 
lose to the ground state j0; Ii, is o

upied witha probability 
lose to unity. The lumines
en
e spe
-trum is determined by transitions from the state j1; Cito j0i (due to an admixture of j1; Gi to j1; Ci), andfrom j2; Ci to j1; Ci. Contributions from both thesetransitions are linear in the pumping intensity. Sin
eboth transitions o

ur at the frequen
y !0, the lumi-nes
en
e spe
trum has the only peak at !0, see Fig. 1d.The dependen
e g(2)(t) is plotted in Fig. 1f. We 
an seethat the os
illations with the frequen
y of the va
uumRabi splitting 2g are strongly suppressed in 
ontrast tothe 
ase of in
oherent pumping 
onsidered above.Thus, we have shown that both the lumines
en
espe
trum and the g(2)(t) dependen
e are 
ru
iallydi�erent for the in
oherent and 
oherent pumpingregimes. More 
omplex atomi
 
avity systems withmore atomi
 levels and more 
ompli
ated resonan
epumping s
hemes have been studied in experimentaland theoreti
al works [4; 21; 22; 27℄. To the best of ourknowledge, despite the strong-
oupling regime, os
illa-tions of the 
orrelator g(2)(t) with the frequen
y of theva
uum Rabi splitting 2g have not been observed inany of these systems.4. EFFECT OF PUMPING INTENSITYIn this se
tion, we analyze the time dependen
eg(2)(t) for the in
oherently pumped quantum dotstrongly 
oupled to the 
avity mode. We �rst presenta general overview of the results and then provide adetailed analyti
 des
ription in di�erent regimes, de-termined by the pumping strength.Our main 
al
ulation results are summarized inFig. 2. Panel a shows the dynami
s of the 
orrelatorg(2)(t), and panels b and 
 present the average lifetimeof the 
orrelations240
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e of the 
orrelation fun
tion g(2)(t) in the strong-
oupling regime, g=�C = 10. The 
urves areplotted for �X = 0:1�C and various pumping rates W=�C shown in the graph. Solid lines are obtained numeri
ally. Thedotted line 
orresponds to the low pumping regime and is plotted in a

ordan
e with Eq. (15). Dashed lines representanalyti
 results in the 
ase of moderate pumping and are plotted in a

ordan
e with Eq. (19). Panels b and 
 respe
tivelyshow the 
orrelation fun
tion de
ay time 
al
ulated in a

ordan
e with Eq. (14) and the stationary 
orrelator g(2)(0) asfun
tions of the pumping. The titles 
orrespond to the regimes analyzed in Se
. 4. The dotted verti
al line indi
ates thevalue of the 
riti
al pumping W � = 4g2=�C = 400 �C , where the sharp peak of the 
orrelation lifetime � (2) o

urs. Theasymptoti
 behavior of the time � (2) near the 
riti
al point plotted in a

ordan
e with Eq. (22) is shown by the dash-dotted
urve� (2) = 1Z0 dt[g(2)(t)� 1℄t= 1Z0 dt[g(2)(t)� 1℄ (14)and the stationary value g(2)(0). Figure 2 demonstratesthat the dependen
e of the time-resolved 
orrelationson pumping is not trivial. In Se
s. 4.1�4.3, the follow-ing qualitatively di�erent regimes are des
ribed:A. Low pumping, W � �C . In this 
ase, the 
orre-lation fun
tion g(2)(t) is less than unity at t = 0 (anti-bun
hing) and demonstrates Rabi os
illations with thefrequen
y 2g. The de
ay rate of the os
illations is equalto the average of the ex
iton and photon de
ay rates.B. Moderate pumping, �C . W � g2=�C . Growthof the pumping intensity leads to the de
rease in boththe period and the lifetime of the os
illations. In a widerange of higher pumping intensities �C � W � g2=�C ,the emission statisti
s is Gaussian and the 
orrelationfun
tion is 
lose to unity and almost time-independent.This 
an be understood as a lasing regime for the dotstrongly 
oupled to the 
avity mode.C. High pumping. The pumping value W � == 4g2=�C 
orresponds to the transition from the lasingregime to the so-
alled self-quen
hing regime [27℄. Asthe pumping rate 
rosses the 
riti
al pointW �, the sta-tionary 
orrelator g(2)(0) exhibits an abrupt growth,

while the 
orrelation lifetime � (2) demonstrates non-monotoni
 behavior with a sharp peak. It in
reases as� (2) / 1=jW �W �j near the 
riti
al point W = W �.The peak height is of the order of g=�2C , and mu
hlarger than the value of the 
orrelation time in all otherregimes.At large pumping W � W �, the strong-
ouplingregime is destroyed: the emission statisti
s is thermal[g(2)(0) = 2℄ and the de
ay time of the 
orrelations isequal to the empty-
avity mode lifetime 1=�C.We now pro
eed to a more detailed analysis ofregimes (A)�(C).4.1. Low pumping, W � �CIn the limit of vanishing pumping W � �C , it issu�
ient to take only the rungs of Jaynes�Cummingsladder (10) with m � 2 parti
les into a

ount. Thisyields the 
orrelation fun
tiong(2)(t) = 1� 3�C � �X � (�C + �X) 
os 2gt2(3�C + �X) �� exp�� (�C + �X)t2 � : (15)4 ÆÝÒÔ, âûï. 2 241
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illations of the photon�photon
orrelator. This is a dire
t manifestation of the strong-
oupling regime. Due to the photon�ex
iton intera
-tion g, the photon is fully 
onverted into the ex
i-ton and vi
e versa every period �=(2g) (Rabi os
illa-tions). This results in the 
ontribution to the 
orre-lator, os
illating with the Rabi frequen
y of the �rstrung (E1;+�E1;�)=~ = 2g. The de
ay rate of the Rabios
illations is the mean of the photon and ex
iton de-
ay rates (�C + �X)=2. This is also a manifestationof strong 
oupling and shows formation of the ex
itonpolaritons. For realisti
 
avities, �C � �X [12℄ whi
hmeans that g(2) � 2=3 < 1 (antibun
hing) [29℄. Thebla
k-dotted 
urve in Fig. 2a is plotted in a

ordan
ewith Eq. (15) and well reprodu
es the numeri
al resultsfor a low pumping rate (the bla
k solid 
urve).4.2. Moderate pumping, �C ...W � g2=�CFor moderate pumping, in 
ontrast to the lowpumping 
ase (Se
. 4.1), it is ne
essary to take all therungs into a

ount. First, we must determine the sta-tionary density matrix �(0). As shown in Appendix A,this matrix �(0) is diagonal in the basis of states (9) andhas the elements �(0)0;0 = f (0)0 , �(0)m;�;m;� = f (0)m , wherethe distribution fun
tion f (0)m isf (0)m = p�2E(w) + 1 wm�(m+ 1=2) : (16)Here, w = W=2�C is the dimensionless pumping, andE(w) = ewp�w erfpw, �(x) and erf(x) are the gammaand error fun
tions. For simpli
ity in this se
tion, theex
iton de
ay rate �X is negle
ted, be
ause �X � �Cfor typi
al mi
ro
avities [12, 36℄. Equation (16) gener-alizes the analyti
 result for the distribution fun
tionobtained in Ref. [34℄.Distribution Eq. (16) yields the following expres-sions for the parti
le numbers and the stationary 
or-relator g(2)(0):NX = E2E + 1 ; NC = 2w E + 12E + 1 ; (17)g(2)(0) = (2E + 1)[4w2(E + 1) +E � 2w℄8w2(E + 1)2 :Solid 
urves in Figs. 3a,b,
 show the dependen
e ofNX , NC , and g(2)(0) on the pumping rate. The 
urvesare presented at di�erent values of the ex
iton�photon
oupling strength g. The results in Figs. 3a,b,
 agreewith those obtained numeri
ally in Ref. [28℄. Here, wefo
us on the strong-
oupling regime (bla
k 
urves); the
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Fig. 3. Dependen
e on the pumping rate W of (a) theex
iton number NX , (b) the photon number NC , (
) the
orrelation fun
tion g(2)(0), and (d) the 
orrelation de-
ay time � (2), plotted for various 
oupling strengths gand �X = 0:1�C . Solid lines are obtained from the nu-meri
al 
al
ulation. Dashed lines in panels a�
 representthe weak-
oupling regime and are plotted in a

ordan
ewith Eqs. (23) and (24), while dotted lines 
orrespond tothe strong-
oupling limit, Eqs. (17). Dash-dotted linesin panels a�d show the analyti
 results obtained in highpumping regime (20) and (22) and valid outside the pat-terned region jW�W �j � 4g = 40�C for the parameters
hosen. Thin dotted lines in panel d 
orrespond to therange of pumping where the fun
tion g(2)(t) is 
lose tounity and the de�nition of � (2) a

ording to Eq. (14)failsweak 
oupling 
ase is analyzed in Se
. 5. The dot pop-ulation NX (see Fig. 3a) monotoni
ally in
reases atlow pumping as NX = W=�C and rea
hes a plateauNX = 1=2 at W � �C . The plateau NX = 1=2 re�e
tsthe half-ex
iton�half-photon nature of polariton eigen-states Eq. (9) with m � 1. The photon number NC(see Fig. 3b) linearly in
reases for low and moderate242
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orrelations : : :pumping as NC = W=�C and NC = W=(2�C) respe
-tively. The se
ond-order 
orrelator g(2)(0) (see Fig. 3
)in
reases with the pumping and rea
hes the plateaug(2)(0) = 1 at W � �C (the lasing regime [27, 34℄). Inthe moderate pumping regime, all the 
urves NX , NC ,and g(2)(0) are well des
ribed by Eq. (17) (see bla
kdotted 
urves).We now pro
eed to the dis
ussion of the dynami
s ofg(2)(t). Two independent 
ontributions 
an be singledout in the time dependen
e (see Fig. 2a): (i) the os
il-latory 
ontribution and (ii) the monotoni
ally de
aying
ontribution. As shown in Appendix A, the os
illatoryterm demonstrates a superposition of the Rabi beatingsbetween the split states inside di�erent rungs of theJaynes�Cummings ladder with the frequen
ies 2pmg.The weight of the term 
orresponding to the rung mis determined by the distribution fun
tion f (0)m+1. Thedamping of the os
illations is due to the stimulatedphoton de
ay and ex
iton pumping and is equal to�C(m � 1=2) +W=2. The nonos
illating term de
aysin time toward unity on the time s
ale of �C . Cal
ula-tion shows that this de
ay 
an be approximated as anexponential one with the rate�1 = �C �1� 2w � 14w(E + 1) � (2w � 1)24w(2E + 1)��1 : (18)For small pumping W � �C , Eq. (18) redu
es to �1 == �C=2, whereas for moderate pumping W � �C , weobtain �1 = �C . The resulting expression for the 
or-relator g(2)(t) assumes the formg(2)(t) = 1� 12(E + 1) e��1t ++ 12N2C 1Xm=1 f (0)m+1 
os �2pmgt ��� exp�� ��C �m� 12�+W=2� t� : (19)For low pumping, the sum in Eq. (19) is determined bythe �rst term with m = 1 and the result agrees withEq. (15) assuming that �X = 0.Analyti
 results plotted in a

ordan
e with Eq. (19)are shown in Fig. 2a by dashed 
urves. The di�eren
efrom the exa
t 
al
ulation at small pumping is due tothe negle
ted ex
iton de
ay rate �X . Equation (19)well reprodu
es the main features of the numeri
ally
al
ulated dependen
e: for larger pumping, the os
il-lations amplitude signi�
antly de
reases and the os
il-lations de
ay faster. This is a 
hara
teristi
 feature ofthe two-level system, distin
t from the boson systemwhere the lifetime of �u
tuations in
reases with pum-ping [37, 38℄.

4.3. High pumping, W � 4g2=�CWhen the pumping rate in
reases to W � g2=�C ,the ex
iton level broadening 
aused by pumping be-
omes 
omparable to the rung splitting. This re-sults in saturation of the ex
iton number at unity (seeFig. 3a) and a drasti
 de
rease in the photon number(see Fig. 3b).A detailed des
ription of the stationary densitymatrix and 
orrelator dynami
 equations is given inAppendix B. It is shown that the emission statisti
s
hanges qualitatively when the pumping rate 
rossesthe 
riti
al value W � = 4g2=�C . For lower-than-
riti
al pumping, the distribution fun
tion is Gaussian,while for larger pumping it be
omes thermal. Thetransition o

urs in the vi
inity of the 
riti
al pointjW � W �j . 4g. Below, we present analyti
 expres-sions for emission 
hara
teristi
s valid outside this nar-row region.The stati
 
hara
teristi
s for jW � W �j & 4g aregiven byNX = 8>>><>>>:1 +W=W �2 ; W < W �1� �CW (W=W � � 1) ; W > W �;NC = 8>><>>: W2�C (1�W=W �); W < W �;1W=W � � 1 ; W > W �;g(2)(0) = 8>><>>:1 + 2�CW �(1�W=W �)2 ; W < W �;2� 4�CW (1�W �=W )2 ; W > W �:
(20)

Dash-dotted lines in Figs. 3a,b,
 present the depen-den
e of NX , NC , and g(2)(0) on the pumping ratenear the 
riti
al point W � plotted in a

ordan
e withEq. (20). We 
an see a perfe
t agreement of the analyti
results with the numeri
al 
al
ulation (the bla
k solid
urve) outside the narrow patterned transition region.The time dependen
e of the 
orrelator g(2)(t) ismono-exponential,g(2)(t) = 1 + [g(2)(0)� 1℄ e�t=� (2) ; (21)where the 
orrelation lifetime is given by� (2) = 1�C 8>><>>: 11�W=W � ; W < W �;11�W �=W ; W > W �: (22)243 4*
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orrelation lifetime dras-ti
ally in
reases near the 
riti
al point W = W �. Itsmaximum value 
an be estimated from Eq. (22) bysubstituting jW � W �j = 4g, whi
h gives the value� (2);max = g=�2C , whi
h is larger than the 
orrelationlifetime in all other regimes by the fa
tor g=�C . Thedependen
e of the lifetime � (2) on the pumping ratenear the 
riti
al point W � is shown in Fig. 3d by thedash-dotted line.The origin of the peak in the 
orrelation lifetime atW = W � 
an be qualitatively understood as follows.At W > W �, the strong-
oupling regime is alreadydestroyed due to the self-quen
hing. But if W �W � �� W �, then the number of photons in the 
avity isstill large (see Eq. (20)). Hen
e, this system 
an beviewed as a 
onventional weakly 
oupled laser, wherethe �u
tuation lifetime is in
reased due to the bosonstimulation fa
tor, � (2) = (NC + 1)=�C [37, 38℄. Fora single dot in the 
avity, su
h a de
ay time enhan
e-ment 
an be realized only at strong 
oupling, be
ausein the weak 
oupling 
ase, the number of photons re-mains small at any pumping (see Fig. 3b and Se
. 5below). 5. WEAK COUPLING REGIMEIn this se
tion, we analyze quantum dot mi
ro
avi-ties where the strong-
oupling 
ondition g � �C ; �X isviolated. Figures 3a,b,
,d show the dependen
e of theparti
le numbers, the stationary two-photon 
orrelator,and the 
orrelation lifetime on the 
oupling strength. Ade
rease in the 
oupling strength parameter g=�C sup-presses the maximal number of photons and the peakvalue of � (2), and also shifts the self-quen
hing transi-tion to lower values of the pumping (
urves (g=�C = 2)in Fig. 3). As soon as the 
oupling strength g be
omessmaller than �C , the regime of weak 
oupling betweenthe photon and the ex
iton is realized. At weak 
ou-pling, the number of photons is mu
h less than unityat any pumping, as 
an be 
learly seen from the 
urve(g=�C = 0:1) in Fig. 3b.The smallness of the photon number allows 
onsid-ering only the lowest levels of the system when derivinganalyti
 results. Hen
e, we take states with no morethan one photon into a

ount when 
al
ulating photonnumber and dot o

upation, and states with up to twophotons for the photon�photon 
orrelator. Analyti
 ex-pressions for the parti
le numbers in the weak-
ouplingregime are [39℄

NX = W [4g2 + �C(W + �C + �X)℄(W + �C + �X)[4g2 + �C(W + �X)℄ ;NC = 4g2W(W + �C + �X)[4g2 + �C(W + �X)℄ : (23)At low pumping, both NX and NC in
rease lin-early with pumping. At large pumping, the dot is
ompletely populated, NX = 1, while the 
avity isempty (NC ! 0) due to the self-quen
hing e�e
t (seeFigs. 3a,b).An analyti
 expression for g(2)(0) in the �bad� 
av-ity regime (g � �C) isg(2)(0) = 2 W + �X + 4g2=�CW + �X + 3�C : (24)In the limit of vanishing pumping and �X �� �C ; g2=�C , the value of g(2)(0) is smaller than thestrong-
oupling limit 2=3. With a de
rease in the
oupling strength g, antibun
hing be
omes strongerdue to a smaller admixture of photons to the ex
itonstate.With an in
rease in the pumping rate the initialvalue g(2)(0) in
reses from zero (antibun
hing) to 2(thermal regime) (see Fig. 3
). The lasing regime witha plateau at g(2)(0) = 1 is destroyed in the weak-
oupling 
ase. Shown in the Figs. 3a,b,
 by the dashedlines is the analyti
 dependen
e plotted in a

ordan
ewith Eqs. (23) and (24). We 
an see a perfe
t agree-ment with the numeri
al 
al
ulation shown by the solidlines.The time dependen
e g(2)(t) is 
al
ulated in a

or-dan
e with the pro
edure de�ned by Eq. (7). For sim-pli
ity, we negle
t the ex
iton damping (�X = 0) and
onsider only the two limit 
ases of low and high pump-ing 
ompared with the spontaneous de
ay rate of theex
iton 4g2=�C . At the low pumping, we obtaing(2)(t) = 1� e�4g2t=�C : (25)The system demonstrates antibun
hing similar to the
ase of the quantum dot without a 
avity. The onlye�e
t of the 
avity is the enhan
ement of the ex
itonde
ay rate due to the Pur
ell e�e
t. In the opposite
ase of high pumping, W � g2=�C , we obtaing(2)(t) = 1� �2C(W � �C)2 �� �2W (W � 5�C)�C(W + 3�C) e�(W+�C )t=2 ++ W (2�2C + 3W�C �W 2)�2C(W + 3�C) e��Ct + e�Wt� : (26)244
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0 5 10 15Fig. 4. Time dependen
e of the 
orrelation fun
tiong(2)(t) in the weak-
oupling regime, g=�C = 0:1.Curves are plotted for �X = 0:1�C and various pump-ing rates W=�C . Solid lines are obtained from thenumeri
al 
al
ulation. Dashed lines represent the mod-erate pumping 
ase and are plotted in a

ordan
e withEq. (26). The inset shows the pumping dependen
eof the 
orrelation lifetime � (2). The dashed region
orresponds to the unphysi
al divergen
e in � (2) nearW=�C = 3 when g(2)(t) � 1 and the lifetime inEq. (14) loses its meaningWe note that Eq. (26) is �nite at W = �C and re-du
es to 1� e��Ct(�2Ct2 + 2�Ct+ 2)=4 for this parti
-ular value of pumping. In Fig. 4, the dependen
e de-�ned by Eq. (26) is plotted by dashed 
urves. For thehigh pumping W � �C , Eq. (26) redu
es to g(2)(t) == 1+ e��Ct. This 
orresponds to a low number of 
av-ity photons and to thermal statisti
s. The de
ay time� (2) de
reases from �C=(4g2) to 1=�C as the pump-ing in
reases (see Fig. 3d and the inset in Fig. 4). Al-though the behavior of the de
ay time at weak 
ouplingis generally monotoni
, there is a region of pumping val-ues where g(2)(t) is 
lose to unity (see the wine-
olored
urve for W=�C = 3). In this 
ase, the 
orrelation life-time � (2) de�ned in a

ordan
e with Eq. (14) has nosense. Thin dotted lines in Fig. 3d and in the inset ofFig. 4 
orrespond to this region.6. SUMMARYWe have developed a theory of time-resolvedse
ond-order 
orrelations of photons emitted from an

in
oherently stationary pumped mi
ro
avity with asingle quantum dot strongly 
oupled to the photonmode. Expli
it analyti
 expressions for the photonnumber, ex
iton number, and photon�photon 
orrela-tor g(2)(t) have been obtained. We have shown that thein
oherent pumping s
heme, typi
al for semi
ondu
torsystems, leads to qualitatively di�erent 
orrelationdynami
s than the resonant pumping s
heme. Inthe 
ase of in
oherent pumping, the fun
tion g(2)(t)demonstrates os
illations at the frequen
y of theva
uum Rabi splitting, while su
h os
illations arestrongly suppressed in the 
ase of 
oherent pumping.Both the frequen
y and the de
ay rate of these os-
illations in
rease as the pumping rate in
reases. Atlarger pumping, the dynami
s of the 
orrelations is mo-noexponential. The de
ay time nonmonotoni
ally de-pends on the pumping and has a sharp peak at the 
rit-i
al pumping value 
orresponding to the self-quen
hingtransition between the lasing regime [where g(2)(0) = 1℄and the thermal regime [g(2)(0) = 2℄. The peak valuestrongly ex
eeds the lifetime of the empty 
avity mode.Su
h a nonmonotoni
 behavior of the 
orrelation life-time is a 
hara
teristi
 feature of the 
avity with a sin-gle dot in the strong-
oupling regime.In the weak-
oupling regime, the 
orrelation fun
-tion almost monotoni
ally 
hanges from the initialvalue at t = 0 to unity at large delays. The value ofthe zero-delay 
orrelator g(2)(0) in the weak-
ouplingregime is smaller than unity at low pumping (photonantibun
hing) and tends to 2 at large pumping (ther-mal bun
hing). The in
rease in pumping shortens thede
ay time of the photon�photon 
orrelations.The authors a
knowledge numerous fruitful dis
us-sions with M. M. Glazov. This work was supportedby the RFBR, RF President Grants MD-2062.2012.2and NSh-5442.2012.2, EU proje
ts SPANGL4Q andPOLAPHEN, and the �Dynasty� Foundation.APPENDIX ADynami
 equations in the strong-
ouplingregimeIn this Appendix, we present the details of thederivation of analyti
 answers (16)�(19) for the station-ary density matrix and for the time-dependent two-photon 
orrelator. We fo
us on the strong-
ouplingregime and the moderate pumping W � 4g2=�C .The key simpli�
ation in the strong-
oupling regimeis the smallness of the nondiagonal 
omponents of thestationary density matrix. This is so be
ause the en-245



A. V. Poshakinskiy, A. N. Poddubny ÆÝÒÔ, òîì 145, âûï. 2, 2014ergy width of polariton eigenstates (9) is of the orderof max(�C ;W ) and mu
h less than the splitting 2pmgbetween these states, wherem is the relevant rung num-ber of the Jaynes�Cummings ladder. Estimating thetypi
al values of m as W=�C , we obtain the small pa-rameter max(�C ;pW�C)=g for the nondiagonal den-sity matrix elements. We note that for a su�
ientlyhigh pumping W � g2=�C , this parameter is no longersmall. The nondiagonal density matrix elements in this
ase are given by Eq. (B.3) and their e�e
t is dis
ussedin detail in Appendix B.Thus, in the regime of moderate pumping, we
an 
onsider the dynami
s of diagonal and nondiag-onal density matrix elements separately. The kineti
equation for the diagonal elements fm = �m;+;m;+ == �m;�;m;�, f0 = �0;0 is obtained from Liouvillian (2)and is given bydfmdt =�W2 (fm�fm�1)��X2 (fm�fm+1)�� �C [(m�1=2)fm�(m+1=2)fm+1℄;df0dt =�Wf0 + (�X + �C)f1: (A.1)A stationary solution of this equation 
an be found us-ing the fa
t that the probability �ow between the twoadja
ent rungs m and m+ 1 should be zero, i. e.,�W2 f (0)m + �X2 f (0)m+1 + �C �m+ 12� f (0)m+1 = 0: (A.2)This yields the probability distributionf (0)m / (W=2�C)m�(m+ 1=2 + �X=2�C) ; (A.3)whi
h should be normalized asf (0)0 + 2 1Xm=1 f (0)m = 1: (A.4)Hereinafter, we negle
t the ex
iton damping for sim-pli
ity, �X = 0. In this 
ase, Eqs. (A.3) and (A.4) leadto Eq. (16). The stationary photon (NC) and ex
iton(NX) numbers and the two-photon 
orrelator g(2)(0)are readily found from the distribution f (0)m :NX = 1Xm=1 f (0)m ; NC = 1Xm=1 f (0)m (2m� 1); (A.5)g(2)(0) = 2N2C 1Xm=2 f (0)m (m� 1)2; (A.6)whi
h yields Eqs. (17).The time dynami
s of g(2)(t) is governed by Eq. (7).We must determine the time dependen
e of the oper-ator �(t) � eLt[
�0
y℄. This operator 
an be split into

diagonal and nondiagonal parts in the basis of polaritoneigenstates: �0;0 = �(d)0 , �m; �;m;� = �(d)m (diagonalpart), and �m;+;m;� = ��m;�;m;+ = �(nd)m (nondiago-nal part). These two parts evolve independently in thestrong 
oupling and moderate pumping regime. Cor-relation fun
tion (6) 
an be expressed in terms of thematrix elements asg(2)(t) = 1N2C �� 1Xm=1 h(2m� 1)�(d)m (t) +Re�(nd)m (t)i : (A.7)The initial 
onditions at t = 0 is�(d)0 (0) = f (0)1 ; �(d)m (0) = (m+ 1=2)f (0)m+1;�(nd)m (0) = f (0)m+1=2; m � 1: (A.8)Below, we �rst 
onsider the time dynami
s of the diago-nal matrix elements, and then analyze the nondiagonalones.Diagonal elements satisfy Eqs. (A.1), where fmshould be repla
ed with �(d)m . To determine their timedependen
e, we analyze the eigenve
tors and eigenval-ues of this linear system. The largest eigenvalue is zeroand 
orresponds to the stationary distribution fun
tionf (0)m . All other eigenvalues are negative and des
ribe so-lutions de
aying with time. Our goal is to provide anestimation for the nonzero eigenvalue with the smallestabsolute value �1. Comparison with the numeri
al 
al-
ulation demonstrates that this single eigenvalue satis-fa
torily des
ribes the dynami
s of the diagonal matrixelements �(d)(t).The Lindblad-type matrix 
orresponding to theright-hand side of Eqs. (A.1) is not Hermitian. Theproblem 
an be still redu
ed to a Hermitian one bythe pro
edure adopted for kineti
 and Fokker�Plan
kequations [40℄. In our 
ase, this pro
edure is formallyequivalent to de�ning the s
alar produ
t of two distri-butions um and vm as(u; v) � u0v0f (0)0 + 2 1Xm=1 umvmf (0)m : (A.9)In terms of s
alar produ
t (A.9), the operator 
orre-sponding to the right-hand side of Eqs. (A.1), denotedby a dot in what follows, turns out to be self-adjoint,(u; _v) = ( _u; v) for any distributions um and vm. Thisallows analyzing kineti
 equations (A.1) by the stan-dard approa
hes of quantum me
hani
s. For instan
e,normalization 
ondition (A.4) takes the 
ompa
t form(f (0); f (0)) = 1.246
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orrelations : : :From the 
onsidered distribution �(d)m , it is 
on-venient to single out the stationary 
ontribution(f (0); �(d)) f (0)m that 
orresponds to the zero eigenvalue.This yields �(d)m (t) = NCf (0)m + Æ�(d)m (t): (A.10)Initial 
onditions for the new variables Æ�(d)m (t) aregiven byÆ�(d)0 (0) = 2Ewf (0)02E + 1 ; Æ�(d)m (0) = � wf (0)m2E + 1 : (A.11)Sin
e the proje
tion of Æ�(d) onto the stationarysolution (Æ�(d); f (0)) is zero, Æ�(d)(t) vanishes atlarge times, whi
h allows verifying that g(2)(t) ! 1as t ! 1. Approximating the time de
ay asÆ�(d)(t) = Æ�(d)(0) e��1t and substituting Eqs. (A.10)and (A.11) in Eq. (A.7), we obtain the �rst two termsin the right-hand side of Eq. (19). Here, �1 is the de-sired eigenvalue governing the time de
ay of Æ�(d). It
an be estimated using the following variational ansatzfor the 
orresponding eigenve
tor:f (1)m = f (0)m (1 + �m); m � 0: (A.12)The 
onstant � is found by imposing the orthogonality
ondition (f (1); f (0)) = 0. On
e � is found, the valueof �1 is given by �1 = (f (1); _f (1))(f (1); f (1)) : (A.13)The result of 
al
ulations redu
es to Eq. (18).We now turn to the evolution of the nondiagonalmatrix elements �(nd)m . In the strong-
oupling regime,this pro
edure is quite simple. We 
an assume thatea
h matrix element �(nd)m (t) os
illates in time with itsown frequen
y (Em;+ � Em;�)=~ = 2pmg and de
aysexponentially. The intermixing of di�erent rungs 
anbe negle
ted if the frequen
y di�eren
e between theadja
ent rungs Em+1;+ � Em;+ � g(pm+ 1 � pm )is smaller than the 
oupling term, whi
h is of the or-der of the pumping strength W . This is realized forW � g2=3�1=3C , i. e., below the transition to the las-ing regime [34℄. We note that in the polariton lasingregime, g(2)(0) = 1 (see Eq. (17)) and the photon 
or-relator dynami
s is trivial, g(2)(t) � 1. Therefore, this
ase does not need any spe
ial 
onsideration. Hen
e,the desired time dependen
e of �(nd)m is des
ribed as�(nd)m (t) = �(nd)m (0) e�2ipmgt �� exp�� ��C �m� 12�+W=2� t� : (A.14)

Substituting the nondiagonal 
omponent dynami
s de-�ned by Eq. (A.14) in Eq. (A.7), we re
over the lastterm in Eq. (19). APPENDIX BDynami
 equations in the self-quen
hingregimeHere, we present the details of the g(2)(t) 
orrelatordynami
s for the system in the strong-
oupling regimeand under high pumping. We fo
us on the transitionfrom lasing to the self-quen
hing regime (W � 4g2=�C)when the 
orrelation lifetime turns out to be extremelylong.Despite the strong 
oupling, su�
iently high pump-ing leads to the intermixing of eigenstates of Hamilto-nian (1). Therefore, the density matrix is no longerdiagonal in the polariton basis. Inside the mth rung ofthe Jaynes�Cummings ladder, it 
an be written as�m =  fm xmx�m fm ! (B.1)in the basis of eigenstates in Eq. (9). Liouvillian (2)does not mix the intra-rung and inter-rung density ma-trix 
omponents. Hen
e, the stationary density matrix,as well as the operator �(t) that des
ribes the g(2)(t)dynami
s, do not 
ontain inter-rung 
omponents.In the 
onsidered regime of high pumping, the den-sity matrix equations for the rung m are given bydfmdt = W2 [fm�1 � fm +Re(xm�1 � xm)℄ ++ �C ��m+ 12� fm+1 ��m� 12� fm� ;dxmdt = �2ipmgxm �W �fm + 3xm4 + x�m4 � : (B.2)The diagonal 
omponents fm 
hange with the rate ofthe order of �C , as is proved later. The nondiago-nal 
omponent xm relaxes to its quasistationary valuewith a mu
h larger rate, of the order of W . Hen
e,we assume that xm adiabati
ally follows the diagonal
omponents fm, i. e.,xm = 2ipmgW �W 2=24mg2 +W 2=2 fm: (B.3)After substituting expression (B.3) for the nondiagonal
omponents in Eq. (B.2), we obtaindfmdt = W2 (�m�1fm�1 � �mfm) ++ �C ��m+ 12� fm+1 ��m� 12� fm� ; (B.4)247



A. V. Poshakinskiy, A. N. Poddubny ÆÝÒÔ, òîì 145, âûï. 2, 2014where �m = m=(m+q) and q = W 2=(8g2). In the mod-erate pumping 
ase, �m is 
lose to unity and Eq. (B.4)redu
es to Eq. (A.1).Sin
e we 
onsider high rungs, we 
an repla
e the dis-
rete rung number m with a 
ontinuous variable, whi
hyields�f(m; t)�t + �j(m; t)�m = 0;j(m; t) = �Cm �w�q�mm+q f(m; t)��f(m; t)�m � ; (B.5)where j(m; t) is the probability 
urrent. The stationarysolution found from the 
ondition j(m) = 0 isf (0)(m) / (m+ q)we�m: (B.6)As the pumping in
reases, the maximum of station-ary distribution fun
tion (B.6) behaves as w � q. Itin
reases linearly at low pumping, rea
hes a maxi-mum at W = 2g2=�C , then de
reases, rea
hes zeroat the 
riti
al pumping value W � = 4g2=�C whenw = q = 2g2=�2C , and remains zero for higher pumping.We �rst 
onsider the sub
riti
al pumping, W << W �. Stationary distribution fun
tion (B.6) 
an thenbe approximated as a Gaussian,f (0)(m) = 1p8�w exp�� (m� w + q)22w � : (B.7)We use distribution fun
tion (B.7) for w� q � p2w to
al
ulate NX , NC , and g(2)(0) a

ording to Eqs. (3)and (8) and taking both diagonal and nondiagonal
omponents of stationary density matrix (B.1) into a
-
ount. This yields the results presented in the upperparts of Eqs. (20). Time-dependent equation (B.5) re-du
es to�f(m; t)�t == �Cm ��m �m�mw f(m; t) + �f(m; t)�m � ; (B.8)where m = w � q is the mean rung number. The dy-nami
s of the 
orrelator g(2)(t) a

ording to Eq. (7) isgiven by g(2)(t) = 2N2C 1Z0 m�(m; t) dm; (B.9)where �(m; t) satis�es dynami
 equation (B.8) with theinitial 
ondition �(m; 0) = mf0(m). This initial 
on-dition 
an be represented as a sum of two 
ontribu-tions: mf (0)(m) and (m �m) f (0)(m). The �rst does

not evolve with time and provides the 
orre
t limitg(2)(t) ! 1 as t ! 1, while the se
ond turns out tobe the eigenfun
tion of the right-hand side of Eq. (B.8)with the eigenvalue ��Cm=w. Hen
e, this eigenvaluedes
ribes the de
ay of the 
orrelator g(2)(t) to unity,given in Eq. (21) and the upper part of Eq. (22).In the opposite 
ase of the pumping rate larger thanthe 
riti
al, w � q � p2w (W > W �), stationary dis-tribution fun
tion (B.6) redu
es to a thermal one,f (0)(m) = 12m e�m=m; (B.10)where the mean rung number is now given bym = q=(q � w). Using distribution fun
tion (B.10),we 
al
ulate the analyti
 expressions for NX and NCpresented in the lower parts of Eqs. (20). However,in order to obtain a 
orre
tion to g(2)(0) = 2, it isindispensable to take a deviation of the stati
 distri-bution from thermal into a

ount. This 
an be doneby introdu
ing the fa
tor 1 + (m2 � m2=2)w=q2 intoEq. (B.10). The dynami
 equation for the pumpinghigher than 
riti
al then redu
es to�f(m; t)�t == ��m ��Cm�f(m; t)m + �f(m; t)�m �� : (B.11)It 
an be easily veri�ed that (m �m) f (0)(m) is againan eigenfun
tion of the right-hand side of Eq. (B.11).Thus, the de
ay of the 
orrelator g(2)(t) is governed bythe 
orresponding rate �C=m, whi
h leads to Eq. (21)and the lower part of Eq. (22).REFERENCES1. A. Kavokin, J. Baumberg, G. Malpue
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