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The time dependence of correlations between the photons emitted from a microcavity with an embedded quan-
tum dot under incoherent pumping is studied theoretically. Analytic expressions for the second-order correlation
function ¢‘®(¢) are presented in strong and weak coupling regimes. The qualitative difference between the
incoherent and coherent pumping schemes in the strong coupling case is revealed: under incoherent pumping,
the correlation function demonstrates pronounced Rabi oscillations, but in the resonant pumping case, these
oscillations are suppressed. At high incoherent pumping, the correlations decay monoexponentially. The decay
time nonmonotonically depends on the pumping value and has a maximum corresponding to the self-quenching

transition.
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1. INTRODUCTION

Semiconductor quantum dots form a promising
platform for quantum optics devices, including single-
photon emitters and emitters of entangled photon
pairs [1-4]. The quantum dot-based light sources can
be characterized by means of photon—photon correla-
tion spectroscopy, i.e., by measuring the second-order
correlation function ¢(® (t) between two photons with a
delay ¢ [5, 6]. Multiple experimental observations of the
antibunching [¢(* (0) < 1] of the photons emitted from
quantum dots are already available [7T-11]. One of the
possible routes to further enhancing the performance of
these light sources is to resonantly couple the quantum
dot exciton to the photon mode confined inside the mi-
crocavity in all three spatial directions [3]. The physics
of such quantum microcavites becomes especially rich
in the strong-coupling regime, where the new quasipar-
ticles, exciton polaritons, are formed due to the interac-
tion between excitons and cavity photons [1, 3,12-15].

Here, we study the time dependence of the second-
order correlations between the photons emitted from
a quantum dot microcavity under stationary incoher-
ent pumping. Experimentally, this regime can be re-
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alized in quantum dot microcavities driven by electri-
cal pumping [16] or continuous optical pumping [14].
The coexistence of (i) the strong-coupling regime and
(ii) the stationary incoherent pumping regime makes
the time dynamics of the correlations very specific.

The strong-coupling regime [17-19] qualitatively
distinguishes the system from the conventional laser,
described by the Scully-Lamb theory [20]. More-
over, the incoherent pumping makes it different from
the single-atom laser in the strong-coupling regime,
which has been demonstrated experimentally and an-
alyzed theoretically [21, 22]. Such systems are typi-
cally coherently pumped by resonant light [4,23—26].
As we show in Sec. 3, the photon—photon correla-
tions for a resonantly pumped atom and for an in-
coherently pumped quantum dot are very different.
While both systems show antibunching, the time-
dependent correlator ¢(*)(t) demonstrates oscillations
at the vacuum Rabi splitting frequency in the incoher-
ent pumping case, but not in the case of a resonantly
pumped atom [21]. Recent experiments for incoher-
ently pumped laser with a single quantum dot in the
strong-coupling regime [14], as well as the comprehen-
sive theoretical analysis in [27-29], were focused on the
stationary correlator g(®(0) at zero time delay. De-
tailed analysis of time-dependent correlations was lim-
ited to the regime with a large exciton—photon detun-
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ing [30, 31] or weak coupling [10], where the polaritons
are not formed.

Hence, there is still a need to develop a detailed the-
ory accounting for the specifics of the fast-increasing
field of quantum-dot-based cavity quantum electrody-
namics. Here, we focus on the temporal dynamics of
correlations in the strong-coupling regime and show
that it provides additional information on the lifetime
of polariton eigenstates and the energy splitting be-
tween them. Our main goal is to derive transparent
analytic answers for the time-resolved correlator g(® (¢)
as a function of the incoherent pumping intensity in
both strong and weak coupling regimes.

The rest of the paper is organized as follows. In
Sec. 2, the model and the calculation approach are de-
scribed. Section 3 is devoted to the role of the pumping
mechanism and demonstrates the difference between in-
coherent and resonant pumping schemes. Sections 4
and 5 respectively present the theory developed in the
strong and weak coupling regime. The results are sum-
marized in Sec. 6. Auxiliary derivations are given in
Appendices A and B.

2. MODEL

We consider a zero-dimensional microcavity where a
single photon mode is coupled to a single exciton state
of the quantum dot. Polarization degrees of freedom of
both photons and excitons are disregarded for simpli-
city. Under these assumptions, the Hamiltonian of the
system has the standard form [1]

H = hwocte 4 huwob'b + hg(ctb + cb'), (1)
where wy is the resonance frequency of the cavity, tuned
to the exciton resonance, ¢ and ¢f are the boson an-
nihilation and creation operators for the cavity mode
([e,cf] = 1), b= |G) (X| and b = |X) (G| are the cor-
responding operators for the single-exciton mode, |X)
and |G) are respective states with one exciton and no
excitons, and ¢ is the light—exciton coupling constant.
Equation (1) corresponds to a quantum dot smaller
than the exciton Bohr radius. To consider the case of
a large quantum dot, one should generalize the model
following Refs. [32, 33].

To determine the intensity of emission from the cav-
ity, we should also introduce the processes of particles
generation and decay. We consider incoherent contin-
uous pumping of excitons into the quantum dot with
the rate W (see Fig. 1a). The “microscopic” discussion
of the pumping mechanism can be found in Ref. [32],
while the distinction between incoherent and coherent
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pumping schemes is discussed in Sec. 3. The exciton
mode is characterized by the nonradiative damping I' x.
Photons can escape the cavity through the mirrors with
the rate ['c. Hence, the full system state is described
by a density matrix p and its evolution is determined
by the equation dp/dt = L[p] with the Liouvillian [1]

i

L[p] W

[H, p]+TcLe[p]+T x Lo[p]+W Lyt [p],  (2)
where Ly[p] = (2apa’ — atap — pata)/2 are the Lind-
blad terms, accounting for damping and pumping.
The stationary density matrix pg satisfies the equation
L[po] = 0. We can calculate the number of photons
in the cavity N = {cfc) and the exciton occupation
number Nx = <bTb> as

Ne = Te(cfepo),  Nx = Te(b'bpo), (3)
where Tr stands for the operator trace and angular
brackets denote the quantum mechanical expectation
The luminescence spectrum of the system is

given by [5]

value.

I(w) x Re / dt et (¢ (0)e(t)) - (@)

A detailed study of the dependence of these first-order
correlators on the pumping and on other parameters
can be found in Refs. [28, 34]. The goal of this paper is
to analyze the time dependence of the second-order cor-
relator that characterizes fluctuations of the emission
intensity from the cavity. They are described by the
correlator ¢(2) (t) determining the probability to regis-
ter two photons with the time delay ¢ [5]:

1

(2)t -

(c1(0)ct (t)e(t)e(0)) - (5)
Equation (5) presents the simplest definition of the cor-
relation function, suitable for the analytic treatment in
what follows. A more general expression, taking the
finite response rate and spectral window of the photon
detector for two- and multiple-photon correlations into
account is given in Ref. [6]. The calculation of ¢(*)(t)

is based on the quantum regression theorem [5]

@ (p) = L Tylete
9(0) = 5 Tletex(0) ()

where the evolution of the operator y(t) = e“![cpocl] is
governed by the dynamic equation

dx

o (7)

=L[x], x(0) = epoc'.
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Fig.1. The sketch of (a) an incoherently pumped quantum dot in a microcavity system and () a resonantly pumped 3-level

atomic cavity system. Panels ¢ and d show the comparison of the luminescence spectra for these systems, while panels ¢ and

f present the ¢(®)(t) dependence. The parameters chosen are g/T'c = 10, T'x = 0.1T¢, and W/T'c = 0.1 for the quantum

dot in the microcavity system (panels c,e) and ¢/T'c = 10, I'x = I'rx = I'r¢ = 0.1T¢ and ©2/2g = 0.01 for the atomic
cavity system (panels d,f)

For zero time delay, Eq. (6) assumes the form

1
=—=Tr

2 5)

g2(0) (ctefeepo).

For large time delays, the correlator tends to unity,
g® (t = 00) = 1, because the probabilities of detection
of two photons become independent.
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3. COMPARISON OF INCOHERENT AND
COHERENT PUMPING

In this section, we compare the characteristics of
emitted photons in the cases of coherent and incoher-
ent pumping. We focus on the strong-coupling regime,
when the light—exciton coupling g is stronger than the
decay rates of the exciton and photon. We demon-
strate below that these two pumping schemes are qual-
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itatively different even at a small pumping rate. The
incoherent pumping scheme is used for the quantum
dot in a microcavity as sketched in Fig. 14 and was de-
scribed in Sec. 2. The density matrix equations can be
conveniently analyzed using the basis of eigenstates of
Hamiltonian (1), which are well defined in the strong-
coupling regime (¢ > I'c,T'x). The eigenstates are
given by [35]

_ |m7G>i|m_17X>

|0> = |0vG>7 | \/5 )

m, £)

(9)

m>1,

where |m, G) and |m, X) are the respective states with
m photons and no excitons or one exciton. The energy
spectrum forms the Jaynes—Cummings ladder

Ey =0, Ep+=mhw£/mhg. (10)

Each rung of the ladder contains two states split by the
Rabi frequency 2/myg, increasing with the rung num-
ber m. In the limit of vanishing pumping W < T'¢,
the luminescence spectrum is determined by transitions
from the lowest occupied excited levels |1,+) to the
ground state |0), and therefore contains two peaks at
the frequencies wp £ g (vacuum Rabi splitting [12]), see
Fig. 1¢c. The detailed study of the luminescence spectra
at higher pumping intensities can be found in Ref. [34].
The presence of the split level |1,+) also results in os-
cillations of the photon—photon correlator, see Fig. 1e.
The frequency of the oscillations is 2g, which allows
interpreting them as Rabi oscillations between photon
and exciton states.

To illustrate the difference between these emission
characteristics and those in the case of resonant pump-
ing, we consider the simplest 3-level scheme, see Fig. 1b.
Such a scheme may be used for atomic cavity sys-
tems [4,27]. For this, we add a new ground state |I) to
the system, while the transition between levels | X') and
|G) remains strongly coupled to the cavity mode. The
pumping is performed by the coherent external field
that resonantly excites the system from the state |I)
to the state |X). This can be described by adding the
term

V= S0X) U1+ 1D (X)) (1)
to Hamiltonian (1), where Q is the Rabi frequency cor-
responding to the pumping field. We also introduce the
decay rates I'yx and I';¢ from the respective states | X)
and |G) to the state |I). They are taken into account
by adding the terms FIXL\I)(X\ [p] and F](;L|[><G‘ [p] to
Liouvillian (2). The eigenstates of the total Hamilto-
nian taking pumping term (11) into account are
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_m—=1,1) —ap |m,G)

_ 1 |m7G>+am|m_1aI>
|m7i>_7§< m i|m_1aX> )

where a,, = Q/(2y/mg) describes the pumping-induced
state intermixture strength. The energy spectrum
forms the Jaynes—Cummings ladder with each rung now
consisting of three states,

0, FEm,c=mhuwo,
Em,i = mth + h\/ m92 + (9/2)2

In the case of low pumping Q < g, the state |1,C),
which is close to the ground state |0, I'), is occupied with
a probability close to unity. The luminescence spec-
trum is determined by transitions from the state |1, C)
to |0) (due to an admixture of |1,G) to |1,C)), and
from |2,C) to |1,C). Contributions from both these
transitions are linear in the pumping intensity. Since
both transitions occur at the frequency wp, the lumi-
nescence spectrum has the only peak at wy, see Fig. 1d.
The dependence g(® (t) is plotted in Fig. 1f. We can see
that the oscillations with the frequency of the vacuum
Rabi splitting 2¢g are strongly suppressed in contrast to
the case of incoherent pumping considered above.

Thus, we have shown that both the luminescence
spectrum and the ¢(2) (t) dependence are crucially
different for the incoherent and coherent pumping
regimes. More complex atomic cavity systems with
more atomic levels and more complicated resonance
pumping schemes have been studied in experimental
and theoretical works [4,21,22,27]. To the best of our
knowledge, despite the strong-coupling regime, oscilla-
tions of the correlator g(? () with the frequency of the
vacuum Rabi splitting 2g have not been observed in
any of these systems.

(13)

4. EFFECT OF PUMPING INTENSITY

In this section, we analyze the time dependence
g (t) for the incoherently pumped quantum dot
strongly coupled to the cavity mode. We first present
a general overview of the results and then provide a
detailed analytic description in different regimes, de-
termined by the pumping strength.

Our main calculation results are summarized in
Fig. 2. Panel a shows the dynamics of the correlator
g® (t), and panels b and ¢ present the average lifetime
of the correlations
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Fig.2. a) Time dependence of the correlation function g® () in the strong-coupling regime, g/T'c = 10. The curves are
plotted for I'x = 0.1T'¢ and various pumping rates W/I'c: shown in the graph. Solid lines are obtained numerically. The
dotted line corresponds to the low pumping regime and is plotted in accordance with Eq. (15). Dashed lines represent
analytic results in the case of moderate pumping and are plotted in accordance with Eq. (19). Panels b and c respectively
show the correlation function decay time calculated in accordance with Eq. (14) and the stationary correlator ¢(®(0) as
functions of the pumping. The titles correspond to the regimes analyzed in Sec. 4. The dotted vertical line indicates the
value of the critical pumping W* = 4¢?/T'c = 400 T'c, where the sharp peak of the correlation lifetime 7(* occurs. The
asymptotic behavior of the time 7(?) near the critical point plotted in accordance with Eq. (22) is shown by the dash-dotted

curve

@ = [atlg® ) -1t/ [ dtlg® () -1 (14)
oo |

and the stationary value ¢ (0). Figure 2 demonstrates
that the dependence of the time-resolved correlations
on pumping is not trivial. In Secs. 4.1-4.3, the follow-
ing qualitatively different regimes are described:

A. Low pumping, W <« T'¢. In this case, the corre-
lation function ¢(®)(t) is less than unity at t = 0 (anti-
bunching) and demonstrates Rabi oscillations with the
frequency 2¢g. The decay rate of the oscillations is equal
to the average of the exciton and photon decay rates.

B. Moderate pumping, Tc < W < ¢*>/T'c. Growth
of the pumping intensity leads to the decrease in both
the period and the lifetime of the oscillations. In a wide
range of higher pumping intensities ' < W < ¢%/T'¢,
the emission statistics is Gaussian and the correlation
function is close to unity and almost time-independent.
This can be understood as a lasing regime for the dot
strongly coupled to the cavity mode.

C. High pumping. The pumping value W* =
= 492 /T¢ corresponds to the transition from the lasing
regime to the so-called self-quenching regime [27]. As
the pumping rate crosses the critical point W*, the sta-
tionary correlator g(?) (0) exhibits an abrupt growth,
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while the correlation lifetime 7(2) demonstrates non-
monotonic behavior with a sharp peak. It increases as
72 o 1/|W — W*| near the critical point W = W*.
The peak height is of the order of g/T'%, and much
larger than the value of the correlation time in all other
regimes.

At large pumping W > W*, the strong-coupling
regime is destroyed: the emission statistics is thermal
[92(0) = 2] and the decay time of the correlations is
equal to the empty-cavity mode lifetime 1/T¢.

We now proceed to a more detailed analysis of
regimes (A)—(C).

4.1. Low pumping, W K< I'e

In the limit of vanishing pumping W <« T'¢, it is
sufficient to take only the rungs of Jaynes—Cummings
ladder (10) with m < 2 particles into account. This
yields the correlation function

B e —T'x — (T + T'x) cos2gt "
2(3T¢c +T'x)

X exp {—w} (15)

9P =1
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Equation (15) shows oscillations of the photon—photon
correlator. This is a direct manifestation of the strong-
coupling regime. Due to the photon—exciton interac-
tion ¢, the photon is fully converted into the exci-
ton and vice versa every period 7/(2¢) (Rabi oscilla-
tions). This results in the contribution to the corre-
lator, oscillating with the Rabi frequency of the first
rung (Ey + — Ey,—)/h = 2g. The decay rate of the Rabi
oscillations is the mean of the photon and exciton de-
cay rates (I'c + I'x)/2. This is also a manifestation
of strong coupling and shows formation of the exciton
polaritons. For realistic cavities, I'c > I'x [12] which
means that ¢(*) ~ 2/3 < 1 (antibunching) [29]. The
black-dotted curve in Fig. 2a is plotted in accordance
with Eq. (15) and well reproduces the numerical results
for a low pumping rate (the black solid curve).

4.2. Moderate pumping, I'c S W « ¢g?/T¢c

For moderate pumping, in contrast to the low
pumping case (Sec. 4.1), it is necessary to take all the
rungs into account. First, we must determine the sta-
tionary density matrix p(®. As shown in Appendix A,
this matrix p(©) is diagonal in the basis of states (9) and

has the elements p(()?[)) = féo)» pgg?:l:;m,

the distribution function f7§$ ) is

LS w
2E(w) +1 T(m+1/2)

R f,(,?), where

m

(0) —
m

(16)

Here, w = W/2l'¢ is the dimensionless pumping, and
E(w) = e¥\/mwerf/w, ['(z) and erf(x) are the gamma
and error functions. For simplicity in this section, the
exciton decay rate I'x is neglected, because 'y < '
for typical microcavities [12, 36]. Equation (16) gener-
alizes the analytic result for the distribution function
obtained in Ref. [34].

Distribution Eq. (16) yields the following expres-
sions for the particle numbers and the stationary cor-
relator g(2)(0):

FE F+1
YToE+1 T p 41 (17)
. 2F + D[dw?(E + 1)+ E — 2w
g(z)(o):( )[4w?( ) ]

Sw?(E + 1)2

Solid curves in Figs. 3a,b,c show the dependence of
Nx, N¢, and g®(0) on the pumping rate. The curves
are presented at different values of the exciton—photon
coupling strength g. The results in Figs. 3a,b,c agree
with those obtained numerically in Ref. [28]. Here, we
focus on the strong-coupling regime (black curves); the
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Fig.3. Dependence on the pumping rate W of (a) the
exciton number Nx, (b) the photon number N¢, (¢) the
correlation function ¢ (0), and (d) the correlation de-
cay time 7(?, plotted for various coupling strengths ¢
and I'x = 0.1T'¢. Solid lines are obtained from the nu-
merical calculation. Dashed lines in panels a—c represent
the weak-coupling regime and are plotted in accordance
with Egs. (23) and (24), while dotted lines correspond to
the strong-coupling limit, Eqs. (17). Dash-dotted lines
in panels a—d show the analytic results obtained in high
pumping regime (20) and (22) and valid outside the pat-
terned region |W —W*| ~ 4g = 40I'¢ for the parameters
chosen. Thin dotted lines in panel d correspond to the
range of pumping where the function ¢(®(¢) is close to
unity and the definition of 7(* according to Eq. (14)
fails

weak coupling case is analyzed in Sec. 5. The dot pop-
ulation Nx (see Fig. 3a) monotonically increases at
low pumping as Ny = W/« and reaches a plateau
Nx =1/2 at W ~ '¢. The plateau Nx = 1/2 reflects
the half-exciton—half-photon nature of polariton eigen-
states Eq. (9) with m > 1. The photon number N¢
(see Fig. 3b) linearly increases for low and moderate
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pumping as No = W/T'¢ and N = W/(2T'¢) respec-
tively. The second-order correlator ¢(* (0) (see Fig. 3¢)
increases with the pumping and reaches the plateau
g?(0) =1 at W ~ T¢ (the lasing regime [27, 34]). In
the moderate pumping regime, all the curves Nx, N¢,
and ¢®(0) are well described by Eq. (17) (see black
dotted curves).

We now proceed to the discussion of the dynamics of
g (t). Two independent contributions can be singled
out in the time dependence (see Fig. 2a): (i) the oscil-
latory contribution and (ii) the monotonically decaying
contribution. As shown in Appendix A, the oscillatory
term demonstrates a superposition of the Rabi beatings
between the split states inside different rungs of the
Jaynes—Cummings ladder with the frequencies 2\/mg.
The weight of the term corresponding to the rung m
is determined by the distribution function fr(,?)ﬂ. The
damping of the oscillations is due to the stimulated
photon decay and exciton pumping and is equal to
I'c(m — 1/2) + W/2. The nonoscillating term decays
in time toward unity on the time scale of I'c. Calcula-
tion shows that this decay can be approximated as an
exponential one with the rate

2w — 1 w-1)?2 1"
dw(E+1) 4w(2E+1)

I =T¢|1- (18)
For small pumping W <« ', Eq. (18) reduces to I'y =
= T'¢/2, whereas for moderate pumping W > ', we
obtain I'y = I'¢. The resulting expression for the cor-
relator ¢()(t) assumes the form

1

(2)t - 1= —I'it
Y ES T
1 < 40
+ 2N(2; mZ:lme cos (2\/mgt) X

co{~[re (m- 1) +wr] e} 0o

For low pumping, the sum in Eq. (19) is determined by
the first term with m = 1 and the result agrees with
Eq. (15) assuming that T'x = 0.

Analytic results plotted in accordance with Eq. (19)
are shown in Fig. 2a by dashed curves. The difference
from the exact calculation at small pumping is due to
the neglected exciton decay rate I'x. Equation (19)
well reproduces the main features of the numerically
calculated dependence: for larger pumping, the oscil-
lations amplitude significantly decreases and the oscil-
lations decay faster. This is a characteristic feature of
the two-level system, distinct from the boson system
where the lifetime of fluctuations increases with pum-
ping [37, 38].
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4.3. High pumping, W ~ 4¢2/T'¢

When the pumping rate increases to W ~ ¢2/T¢,
the exciton level broadening caused by pumping be-
comes comparable to the rung splitting. This re-
sults in saturation of the exciton number at unity (see
Fig. 3a) and a drastic decrease in the photon number
(see Fig. 3b).

A detailed description of the stationary density
matrix and correlator dynamic equations is given in
Appendix B. Tt is shown that the emission statistics
changes qualitatively when the pumping rate crosses
the critical value W* = 4¢?/T¢. For lower-than-
critical pumping, the distribution function is Gaussian,
while for larger pumping it becomes thermal. The
transition occurs in the vicinity of the critical point
[W — W*| < 4g. Below, we present analytic expres-
sions for emission characteristics valid outside this nar-
row region.

The static characteristics for |W — W*| > 4g are
given by

(1 *
LW
Ny =
S PR vCRR .
W/ W —1)’ ’
(L W), W<
Ne=q" 7, (20)
(W =1’ w>wr
T
1 *
WAy WS
@) (o) =
97(0) I
PP B
wa—wemwe

Dash-dotted lines in Figs. 3a,b,c present the depen-
dence of Ny, N¢, and ¢ (0) on the pumping rate
near the critical point W* plotted in accordance with
Eq. (20). We can see a perfect agreement of the analytic
results with the numerical calculation (the black solid
curve) outside the narrow patterned transition region.

The time dependence of the correlator ¢(®(t) is
mono-exponential,

PNGCS
g () =1+ [g®(0) 1], (21)
where the correlation lifetime is given by
1
—, W< W,
1 | 1-w/w=

2 = = . (22)

c *

e I
4*
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Equation (22) shows that the correlation lifetime dras-
tically increases near the critical point W = W*. Its
maximum value can be estimated from Eq. (22) by
substituting |W — W*| = 4g¢, which gives the value
r2hmaz — ¢ /T2 which is larger than the correlation
lifetime in all other regimes by the factor g/T'c. The
dependence of the lifetime 7(2) on the pumping rate
near the critical point W* is shown in Fig. 3d by the
dash-dotted line.

The origin of the peak in the correlation lifetime at
W = W* can be qualitatively understood as follows.
At W > W*, the strong-coupling regime is already
destroyed due to the self-quenching. But if W —W* <«
& W*, then the number of photons in the cavity is
still large (see Eq. (20)). Hence, this system can be
viewed as a conventional weakly coupled laser, where
the fluctuation lifetime is increased due to the boson
stimulation factor, 7?) = (N¢ + 1)/T¢ [37, 38]. For
a single dot in the cavity, such a decay time enhance-
ment can be realized only at strong coupling, because
in the weak coupling case, the number of photons re-
mains small at any pumping (see Fig. 3b and Sec. 5
below).

5. WEAK COUPLING REGIME

In this section, we analyze quantum dot microcavi-
ties where the strong-coupling condition g > ', I'x is
violated. Figures 3a,b,c,d show the dependence of the
particle numbers, the stationary two-photon correlator,
and the correlation lifetime on the coupling strength. A
decrease in the coupling strength parameter g/I'¢ sup-
presses the maximal number of photons and the peak
value of 7(?)| and also shifts the self-quenching transi-
tion to lower values of the pumping (curves (¢/T'c = 2)
in Fig. 3). As soon as the coupling strength g becomes
smaller than ', the regime of weak coupling between
the photon and the exciton is realized. At weak cou-
pling, the number of photons is much less than unity
at any pumping, as can be clearly seen from the curve
(9/Tc =0.1) in Fig. 3b.

The smallness of the photon number allows consid-
ering only the lowest levels of the system when deriving
analytic results. Hence, we take states with no more
than one photon into account when calculating photon
number and dot occupation, and states with up to two
photons for the photon—photon correlator. Analytic ex-
pressions for the particle numbers in the weak-coupling
regime are [39]
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Widg? + To(W +T¢c +T'x)]
(W +Tc +Tx)4g2 +Te(W +Tx)]’
4g*°W )
(W +T¢ +Tx)[4g2 + Te(W + I'yx)]

Ny =

(23)

N¢ =

At low pumping, both Ny and N¢ increase lin-
early with pumping. At large pumping, the dot is
completely populated, Nx = 1, while the cavity is
empty (N¢ — 0) due to the self-quenching effect (see
Figs. 3a,b).

An analytic expression for ¢(®(0) in the “bad” cav-
ity regime (¢ < ['¢) is

_5 W +Tx +4¢%/T¢
N W +T'x +3T¢

9 (0) (24)
In the limit of wvanishing pumping and Ty <
< I'c,g?/Te, the value of ¢(*)(0) is smaller than the
strong-coupling limit 2/3. With a decrease in the
coupling strength ¢, antibunching becomes stronger
due to a smaller admixture of photons to the exciton
state.

With an increase in the pumping rate the initial
value ¢(®(0) increses from zero (antibunching) to 2
(thermal regime) (see Fig. 3¢). The lasing regime with
a plateau at ¢»(0) = 1 is destroyed in the weak-
coupling case. Shown in the Figs. 3a,b,c by the dashed
lines is the analytic dependence plotted in accordance
with Eqgs. (23) and (24). We can see a perfect agree-
ment with the numerical calculation shown by the solid
lines.

The time dependence ¢(®)(t) is calculated in accor-
dance with the procedure defined by Eq. (7). For sim-
plicity, we neglect the exciton damping (I'x = 0) and
consider only the two limit cases of low and high pump-
ing compared with the spontaneous decay rate of the
exciton 4¢g%/T¢. At the low pumping, we obtain

g () =1— e 4t/Te, (25)
The system demonstrates antibunching similar to the
case of the quantum dot without a cavity. The only
effect of the cavity is the enhancement of the exciton
decay rate due to the Purcell effect. In the opposite
case of high pumping, W > ¢*/T'¢, we obtain

gD () =1— i >
(W —T¢)?
2W(W — 5FC)6—(W+1"C)t/2 +
TFe(W +3C¢)
W(2F2C +3WTeo — W?) —Tot Wt
26
TZ(W +3T¢) e (26)
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g?
2

10 15

Te

Fig.4. Time dependence of the correlation function
g@(t) in the weak-coupling regime, g/Tc = 0.1.
Curves are plotted for 'x = 0.1T'¢ and various pump-
ing rates W/T'c. Solid lines are obtained from the
numerical calculation. Dashed lines represent the mod-
erate pumping case and are plotted in accordance with
Eq. (26). The inset shows the pumping dependence
of the correlation lifetime 7(*). The dashed region
corresponds to the unphysical divergence in 7 near
W/Tc = 3 when g (t) 1 and the lifetime in
Eq. (14) loses its meaning

~
~

We note that Eq. (26) is finite at W = ['c and re-
duces to 1 — e~Tet(T2t? 4 2Tt + 2) /4 for this partic-
ular value of pumping. In Fig. 4, the dependence de-
fined by Eq. (26) is plotted by dashed curves. For the
high pumping W > I'¢, Eq. (26) reduces to g?(t) =
= 1+4e¢~Tet. This corresponds to a low number of cav-
ity photons and to thermal statistics. The decay time
) decreases from I'c/(4g%) to 1/T¢ as the pump-
ing increases (see Fig. 3d and the inset in Fig. 4). Al-
though the behavior of the decay time at weak coupling
is generally monotonic, there is a region of pumping val-
ues where ¢( (t) is close to unity (see the wine-colored
curve for W/T'¢ = 3). In this case, the correlation life-
time 7(2) defined in accordance with Eq. (14) has no
sense. Thin dotted lines in Fig. 3d and in the inset of
Fig. 4 correspond to this region.

6. SUMMARY

We have developed a theory of time-resolved
second-order correlations of photons emitted from an
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incoherently stationary pumped microcavity with a
single quantum dot strongly coupled to the photon
mode. Explicit analytic expressions for the photon
number, exciton number, and photon—photon correla-
tor g(® (t) have been obtained. We have shown that the
incoherent pumping scheme, typical for semiconductor
systems, leads to qualitatively different correlation
dynamics than the resonant pumping scheme. In
the case of incoherent pumping, the function g(z)(t)
demonstrates oscillations at the frequency of the
vacuum Rabi splitting, while such oscillations are
strongly suppressed in the case of coherent pumping.

Both the frequency and the decay rate of these os-
cillations increase as the pumping rate increases. At
larger pumping, the dynamics of the correlations is mo-
noexponential. The decay time nonmonotonically de-
pends on the pumping and has a sharp peak at the crit-
ical pumping value corresponding to the self-quenching
transition between the lasing regime [where g (0) = 1]
and the thermal regime [¢(*)(0) = 2|. The peak value
strongly exceeds the lifetime of the empty cavity mode.
Such a nonmonotonic behavior of the correlation life-
time is a characteristic feature of the cavity with a sin-
gle dot in the strong-coupling regime.

In the weak-coupling regime, the correlation func-
tion almost monotonically changes from the initial
value at ¢ = 0 to unity at large delays. The value of
the zero-delay correlator ¢ (0) in the weak-coupling
regime is smaller than unity at low pumping (photon
antibunching) and tends to 2 at large pumping (ther-
mal bunching). The increase in pumping shortens the
decay time of the photon—photon correlations.

The authors acknowledge numerous fruitful discus-
sions with M. M. Glazov. This work was supported
by the RFBR, RF President Grants MD-2062.2012.2
and NSh-5442.2012.2, EU projects SPANGL4Q and
POLAPHEN, and the “Dynasty” Foundation.

APPENDIX A

Dynamic equations in the strong-coupling
regime

In this Appendix, we present the details of the
derivation of analytic answers (16)—(19) for the station-
ary density matrix and for the time-dependent two-
photon correlator. We focus on the strong-coupling
regime and the moderate pumping W < 4¢%/T¢.

The key simplification in the strong-coupling regime
is the smallness of the nondiagonal components of the
stationary density matrix. This is so because the en-
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ergy width of polariton eigenstates (9) is of the order
of max(T'c, W) and much less than the splitting 2/mg
between these states, where m is the relevant rung num-
ber of the Jaynes—Cummings ladder. Estimating the
typical values of m as W/T'¢, we obtain the small pa-
rameter max(I'c,/WT¢)/g for the nondiagonal den-
sity matrix elements. We note that for a sufficiently
high pumping W ~ ¢%/T'¢, this parameter is no longer
small. The nondiagonal density matrix elements in this
case are given by Eq. (B.3) and their effect is discussed
in detail in Appendix B.

Thus, in the regime of moderate pumping, we
can consider the dynamics of diagonal and nondiag-
onal density matrix elements separately. The kinetic
equation for the diagonal elements f,, = pm,+im,+
= Pm,—m,—, fo = po;o is obtained from Liouvillian (2)
and is given by

dfm w r

% :_?(fm_fmfl)_%(fm_fm+l) -
—Tol(m=1/2) frn—(m~41/2) frni1], (A1)

% =—Wfo+ (Tx +Tc)f1.

A stationary solution of this equation can be found us-
ing the fact that the probability flow between the two
adjacent rungs m and m + 1 should be zero, i.e.,

W

—5 I+ —f(‘” +Tc ( ) 9 =0. (A2)

This yields the probability distribution

(0) (w/2Lc)™ A
S’ T+ 1/2 4 Tx f2T0)’ (A.3)
which should be normalized as
A +23 f (A4)
m=1

Hereinafter, we neglect the exciton damping for sim-
plicity, 'x = 0. In this case, Eqs. (A.3) and (A.4) lead
to Eq. (16). The stationary photon (N¢) and exciton
(Nx) numbers and the two-photon correlator g(?)(0)

are readily found from the distribution fy, ),

x = fj 9, Ne= fjf,@)(zm—l),

Z FO

which yields Eqs. (17).

The time dynamics of ¢(*)(t) is governed by Eq. (7).
We must determine the time dependence of the oper-
ator x(t) = e“*[cpoct]. This operator can be split into

(A.5)

(A.6)
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diagonal and nondiagonal parts in the basis of polariton
eigenstates: xo,0 = X(()d), Xm, £im,+ = ng) (diagonal
% (nd) .
part), and Xm,4im,— = Xy, —;m,+ = Xm ~ (nondiago-
nal part). These two parts evolve independently in the
strong coupling and moderate pumping regime. Cor-
relation function (6) can be expressed in terms of the

matrix elements as

g?(t) =

x i [(Qm_ DD (#) + RexZ ()| . (A7)

The initial conditions at ¢t = 0 is

(0)

20) = £O, D) = (m +1/2) 19, s
X%Ld)(o) = fm+1/27 m Z 1.

Below, we first consider the time dynamics of the diago-
nal matrix elements, and then analyze the nondiagonal
ones.

Diagonal elements satisfy Eqs.
should be replaced with ng).
dependence, we analyze the eigenvectors and eigenval-
ues of this linear system. The largest eigenvalue is zero
and corresponds to the stationary distribution function
f,(,? ). All other eigenvalues are negative and describe so-
lutions decaying with time. Our goal is to provide an
estimation for the nonzero eigenvalue with the smallest
absolute value T';. Comparison with the numerical cal-
culation demonstrates that this single eigenvalue satis-
factorily describes the dynamics of the diagonal matrix
elements y (% (t).

The Lindblad-type matrix corresponding to the
right-hand side of Eqs. (A.1) is not Hermitian. The
problem can be still reduced to a Hermitian one by
the procedure adopted for kinetic and Fokker—Planck
equations [40]. In our case, this procedure is formally
equivalent to defining the scalar product of two distri-
butions u,, and v,, as

where f,

(A1),

To determine their time

Upvo
(0)

UmUm

(0) '

22

In terms of scalar product (A.9), the operator corre-
sponding to the right-hand side of Egs. (A.1), denoted
by a dot in what follows, turns out to be self-adjoint,
(u,v) = (u,v) for any distributions w,, and v,,. This
allows analyzing kinetic equations (A.1) by the stan-
dard approaches of quantum mechanics. For instance,
normalization condition (A.4) takes the compact form

(f,fO) = 1.

(A.9)

(u,v) =
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From the considered distribution X%), it is con-

venient to single out the stationary contribution
(FO XD f 7(7? ) that corresponds to the zero eigenvalue.
This yields

X (8) = Ne £ +oxi) (1) (A.10)

Initial conditions for the new variables 6)(%) (t) are
given by

(0)

W Jm

2E+1°

_ 2Bwf”
- 2E+1°

ox (0) (A.11)
Since the projection of dy(? onto the stationary
solution (6x(9, f(©) is zero, 6x(¥(t) vanishes at
large times, which allows verifying that ¢(®(t) — 1
as t — oo0. Approximating the time decay as
XD (t) = oxD(0)e Tt and substituting Eqs. (A.10)
and (A.11) in Eq. (A.7), we obtain the first two terms
in the right-hand side of Eq. (19). Here, T’y is the de-
sired eigenvalue governing the time decay of dy(?. Tt
can be estimated using the following variational ansatz
for the corresponding eigenvector:

f'r(nl) = fé?)(l +am), m>0. (A.12)

The constant « is found by imposing the orthogonality
condition (f), f(©)) = 0. Once a is found, the value
of T'y is given by

(70, f0)

(F0, fm)°
The result of calculations reduces to Eq. (18).
We now turn to the evolution of the nondiagonal
matrix elements xy, '. In the strong-coupling regime,
this procedure is quite simple. We can assume that
each matrix element ngf 9 (t) oscillates in time with its
own frequency (Ep, + — Em,—)/h = 2y/mg and decays
exponentially. The intermixing of different rungs can
be neglected if the frequency difference between the
adjacent rungs Ept1,4+ — Em+ ~ g(vVm+1—ym)
is smaller than the coupling term, which is of the or-
der of the pumping strength W. This is realized for
W < g2/3[‘10/3, i.e., below the transition to the las-
ing regime [34]. We note that in the polariton lasing
regime, ¢(*(0) = 1 (see Eq. (17)) and the photon cor-
relator dynamics is trivial, g(® (¢) = 1. Therefore, this
case does not need any special consideration. Hence,
the desired time dependence of X("d) is described as
(nd)

(t) = Xm

X exp{—

I, (A.13)

(nd)

Xim (0) e 2Vmat x

e (m- 1) e} qang
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Substituting the nondiagonal component dynamics de-
fined by Eq. (A.14) in Eq. (A.7), we recover the last
term in Eq. (19).

APPENDIX B

Dynamic equations in the self-quenching
regime

Here, we present the details of the ¢(*)(t) correlator
dynamics for the system in the strong-coupling regime
and under high pumping. We focus on the transition
from lasing to the self-quenching regime (W ~ 4¢*/T'¢)
when the correlation lifetime turns out to be extremely
long.

Despite the strong coupling, sufficiently high pump-
ing leads to the intermixing of eigenstates of Hamilto-
nian (1). Therefore, the density matrix is no longer
diagonal in the polariton basis. Inside the mth rung of
the Jaynes—Cummings ladder, it can be written as

Tm

, :<fm )
" fm

m

in the basis of eigenstates in Eq. (9). Liouvillian (2)
does not mix the intra-rung and inter-rung density ma-
trix components. Hence, the stationary density matrix,
as well as the operator Y(t) that describes the g(®)(¢)
dynamics, do not contain inter-rung components.

In the considered regime of high pumping, the den-
sity matrix equations for the rung m are given by

(B.1)

dé—;n = %[fmfl - fm + Re(xmfl - xm)] +

+FC’ <m+ %) fm+1 - (m_ %) fm:| ) (BQ)
drp, . 3xm ),
7_—21\/ngm—W(fm+T+ 1 )

The diagonal components f,, change with the rate of
the order of I'¢, as is proved later. The nondiago-
nal component x,, relaxes to its quasistationary value
with a much larger rate, of the order of W. Hence,
we assume that z,, adiabatically follows the diagonal
components f,, i.e.,

2%\ /mgW — W2 /2
Ty =
" dmg? + W?2/2
After substituting expression (B.3) for the nondiagonal
components in Eq. (B.2), we obtain

dfmm W
% = 7(£m—1fm—1 - fmfm) +

+Te [(m+ %) fnt1 — <m - %) fm] , (B4)

fm- (B.3)
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where &, = m/(m+q) and ¢ = W?/(8¢?). In the mod-
erate pumping case, &, is close to unity and Eq. (B.4)
reduces to Eq. (A.1).

Since we consider high rungs, we can replace the dis-
crete rung number m with a continuous variable, which
yields

af (m,t) N 9j(m,t)
ot om

w—qg—m
m—+q

=0,
of(m.n] (B

j(m,t) =T
](m7 ) Om 8m 9

f(m,t)

where j(m, t) is the probability current. The stationary
solution found from the condition j(m) =0 is

FO(m) o< (m + q)¥e ™. (B.6)
As the pumping increases, the maximum of station-
ary distribution function (B.6) behaves as w — ¢. It
increases linearly at low pumping, reaches a maxi-
mum at W = 2¢?/T¢, then decreases, reaches zero
at the critical pumping value W* = 4¢%/T'¢ when
w = q = 2¢*/T'%, and remains zero for higher pumping.

We first consider the subcritical pumping, W <
< W*. Stationary distribution function (B.6) can then
be approximated as a Gaussian,

O () = L oy [ (M0 +a)?

We use distribution function (B.7) for w — ¢ > v/2w to
calculate Nx, N¢, and ¢(®(0) according to Egs. (3)
and (8) and taking both diagonal and nondiagonal
components of stationary density matrix (B.1) into ac-
count. This yields the results presented in the upper
parts of Eqs. (20). Time-dependent equation (B.5) re-
duces to

af(m,t)
ot
0 —-m 0
= Temm— {m — f(mt) + %] , (BS)

where M = w — ¢ is the mean rung number. The dy-
namics of the correlator ¢ (t) according to Eq. (7) is
given by

(B.9)

where x(m, t) satisfies dynamic equation (B.8) with the
initial condition x(m,0) = mfo(m). This initial con-
dition can be represented as a sum of two contribu-
tions: mf(®) (m) and (m —m) f(© (m). The first does
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not, evolve with time and provides the correct limit
g (t) = 1 as t = 0o, while the second turns out to
be the eigenfunction of the right-hand side of Eq. (B.8)
with the eigenvalue —I'c7/w. Hence, this eigenvalue
describes the decay of the correlator ¢(®(t) to unity,
given in Eq. (21) and the upper part of Eq. (22).

In the opposite case of the pumping rate larger than
the critical, w — ¢ > 2w (W > W*), stationary dis-
tribution function (B.6) reduces to a thermal one,

1 —-m/m

FO(m) = = , (B.10)
where the mean rung number is now given by
m = q/(q¢ — w). Using distribution function (B.10),
we calculate the analytic expressions for Nx and N¢
presented in the lower parts of Eqs. (20). However,
in order to obtain a correction to ¢(®(0) = 2, it is
indispensable to take a deviation of the static distri-
bution from thermal into account. This can be done
by introducing the factor 1 + (m? — m?/2)w/q? into
Eq. (B.10). The dynamic equation for the pumping
higher than critical then reduces to

Af(m,t)

ot

m,t)

= om

[rom (2202, 21

om

)| @

It can be easily verified that (m —m) f(©)(m) is again
an eigenfunction of the right-hand side of Eq. (B.11).
Thus, the decay of the correlator ¢( (t) is governed by
the corresponding rate I':/m, which leads to Eq. (21)
and the lower part of Eq. (22).

REFERENCES

. A.Kavokin, J. Baumberg, G. Malpuech, and F. Laussy,
Microcavities, Clarendon Press, Oxford (2006).

A. Muller, W. Fang, J. Lawall, and G. S. Solomon,
Phys. Rev. Lett. 103, 217402 (2009).

A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs,
A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and
P. Senellart, Nature 466, 217 (2010).

A. Kuhn and D. Ljunggren, Contemp. Phys. 51, 289
(2010).

H. Carmichael, An Open Systems Approach to Quan-
tum Optics, Springer, New York (1993).

E. del Valle, A. Gonzalez-Tudela, F. P. Laussy, C. Teje-
dor, and M. J. Hartmann, Phys. Rev. Lett. 109,
183601 (2012).



MKITD, Tom 145, Bhm. 2, 2014

Time-dependent photon correlations . ..

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson,
G. F. Strouse, and S. K. Buratto, Nature 406, 968
(2000).

Z. Yuan, B. E. Kardynal, R. M. Stevenson,
A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie,
D. A. Ritchie, and M. Pepper, Science 295, 102 (2002).

M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir,
A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona et
al., Phys. Rev. Lett. 106, 227402 (2011).

C. A. Kessler, M. Reischle, F. Hargart, W.-M. Schulz,
M. Eichfelder, R. Rofshach, M. Jetter, P. Michler,
P. Gartner, M. Florian et al., Phys. Rev. B 86, 115326
(2012).

M. Abbarchi, T. Kuroda, T. Mano, M. Gurioli, and
K. Sakoda, Phys. Rev. B 86, 115330 (2012).

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and
A. Scherer, Nature Phys. 2, 81 (2006).

S. Reitzenstein and A. Forchel, J. Phys. D 43, 033001
(2010).

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and
Y. Arakawa, Nature Phys. 6, 279 (2010).

A. Tandaechanurat, S. Ishida, D. Guimard, M. No-
mura, S. Iwamoto, and Y. Arakawa, Nature Photon.
5,91 (2011).

C. Schneider, T. Heindel, A. Huggenberger, T. A. Nie-
derstrasser, S. Reitzenstein, A. Forchel, S. Hofling, and
M. Kamp, Appl. Phys. Lett. 100, 091108 (pages 4)
(2012).

H. J. Kimble, Phys. Scripta 1998, 127 (1998).

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova,
H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and
D. G. Deppe, Nature 432, 200 (2004).

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann,
S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Ku-
lakovskii, T. L. Reinecke, and A. Forchel, Nature 432,
197 (2004).

M. O. Scully and M. S. Zubairy, Quantum Optics,
Cambridge University Press, Cambridge, UK (1997).

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and
H. J. Kimble, Nature 425, 268 (2003).

249

22

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

A. D. Boozer, A. Boca, J. R. Buck, J. McKeever, and
H. J. Kimble, Phys. Rev. A 70, 023814 (2004).

H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev.
Lett. 39, 691 (1977).

D. Walls, Nature 280, 451 (1979).

M. Hennrich, A. Kuhn, and G. Rempe, Phys. Rev.
Lett. 94, 053604 (2005).

H. Jabri and H. Eleuch, Commun. in Theor. Phys. 56,
134 (2011).

Y. Mu and C. M. Savage, Phys. Rev. A 46, 5944
(1992).

E. del Valle, F. P. Laussy, and C. Tejedor, Phys. Rev.
B 79, 235326 (2009).

E. del Valle and F. P. Laussy, Phys. Rev. A 84, 043816
(2011).

D. Press, S. Gotzinger, S. Reitzenstein, C. Hofmann,
A. Loffler, M. Kamp, A. Forchel, and Y. Yamamoto,
Phys. Rev. Lett. 98, 117402 (2007).

E. Illes and S. Hughes, Phys. Rev. B 81, 121310 (2010).

N. S. Averkiev, M. M. Glazov, and A. N. Poddubnyi,
JETP 108, 836 (2009).

A. N. Poddubny, M. M. Glazov, and N. S. Averkiev,
New J. Phys. 15, 025016 (2013).

A. N. Poddubny, M. M. Glazov, and N. S. Averkiev,
Phys. Rev. B 82, 205330 (2010).

E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89
(1963).

S. Reitzenstein and A. Forchel, J. Phys. D: Appl. Phys.
43, 033001 (2010).

H. Haken, Z. Physik 181, 96 (1964).

M. M. Glazov, M. A. Semina, E. Y. Sherman, and
A. V. Kavokin, Phys. Rev. B 88, 041309(R) (2013).

F. P. Laussy, E. del Valle, and C. Tejedor, Phys. Rev.
B 79, 235325 (2009).

H. Risken, The Fokker—Planck Equation. Methods of
Solution and Applications, Springer, Berlin (1989).



