РАСЧЕТЫ РЕНТГЕНОВСКИХ ЭМИССИОННЫХ *К*- И *L*_{2,3}-ПОЛОС МЕТАЛЛОВ МАГНИЯ И АЛЮМИНИЯ С УЧЕТОМ МНОГОЭЛЕКТРОННЫХ ЭФФЕКТОВ

Р. Е. Овчаренко^а^{*}, И. И. Тупицын^{а**}, Е. П. Савинов^а,

Е. Н. Волошина^с, Ю. С. Дедков^b, А. С. Шулаков^{a***}

^а Научно-исследовательский институт физики Санкт-Петербургского государственного университета 198504, Санкт-Петербург, Россия

> ^b SPECS Surface Nano Analysis GmbH 13355, Berlin, Germany

^cPhysikalische und Theoretische Chemie, Freie Universität Berlin 14195, Berlin, Germany

Поступила в редакцию 25 декабря 2012 г.

Предложена схема расчета формы характеристических рентгеновских эмиссионных полос металлов с учетом многоэлектронных эффектов. Учтены эффекты динамического экранирования остовной вакансии электронами проводимости и оже-эффект в валентной зоне. Динамическое экранирование остовной вакансии, которое принято называть эффектом MND (Mahan-Nozieres-De Dominicis) учтено *ab initio* с использованием метода PAW (Projected Augmented Waves) расчета зонной структуры кристаллов. Ожеэффект учтен полуэмпирическим способом, в приближении квадратичной зависимости ширины уровня валентной зоны от разности между энергией уровня и энергией Ферми. Предложенная схема расчета применена для описания K- и L_{2,3}-рентгеновских эмиссионных полос кристаллов металлических магния и алюминия. Полученные теоретические спектры во всех случаях хорошо согласуются с экспериментальными полосами как вблизи уровня Ферми, так и в низкоэнергетической части спектра.

DOI: 10.7868/S0044451014010027

1. ВВЕДЕНИЕ

Методы спектроскопии рентгеновского излучения являются уникальными по информативности и чрезвычайно популярными современными методами исследования электронной структуры и атомного строения ближнего порядка сложных материалов и наноструктур (см., например, [1]). Поэтому остаются актуальными работы, посвященные увеличению достоверности интерпретации экспериментальных данных в этом направлении спектроскопии. Как известно, характеристические рентгеновские эмиссионные полосы (РЭП) содержат информацию о локальных характеристиках распределения электронной плотности в кристаллах. Несмотря на значительные успехи одночастичных методов при описании электронной структуры металлов, для надежной интерпретации особенностей экспериментальных РЭП необходимо использовать теоретические методы, позволяющие наряду с одноэлектронными вкладами в форму РЭП учесть многоэлектронные эффекты. Среди них важную роль играют динамические процессы, сопровождающие излучение фотона. В частности, $L_{2,3}$ -рентгеновские эмиссионные полосы простых металлов Na, Mg и Al содержат особенности, которые плохо описываются в одноэлектронной модели и являются атрибутами многоэлектронных процессов.

Впервые теоретическое описание особенностей РЭП металлов вблизи уровня Ферми, обусловленных многоэлектронными процессами, было предпринято в работах [2,3]. В них было показано, что в характеристических $L_{2,3}$ -рентгеновских эмиссионных

^{*}E-mail: r.e.ovcharenko@gmail.com

^{**}E-mail: tup@pcqnt1.phys.spbu.ru

^{***}E-mail: shulak@paloma.spbu.ru

полосах и L_{2,3}-спектрах поглощения простых металлов в узком интервале энергий вблизи уровня Ферми должен присутствовать пик, в то время как в К-спектрах эта особенность отсутствует. В работе [2] этот эффект был связан с динамическим экранированием остовной вакансии в процессе рентгеновского радиационного перехода. Эта вакансия возникает в начальном состоянии эмиссионного перехода или в конечном состоянии процесса поглощения. Модель, предложенная в работе [2], была затем обобщена в работе [4] и получила название теории MND (Mahan-Nozieres-De Dominicis). MND-теория качественно описывала поведение рентгеновских спектров эмиссии и поглощения вблизи уровня Ферми, в интервале порядка одного электронвольта. Однако для сопоставления теоретических спектров с экспериментальными приходилось подбирать значения для целого ряда полуэмпирических параметров. Затем в работах [5, 6] была предложена численная однозонная схема MND-расчета, описывающая поведение спектра на всей энергетической шкале. Однако расчеты были выполнены лишь для модельной плотности состояний валентной зоны. И только в последнее время, в работах [7, 8], удалось объединить MND-теорию с неэмпирическими ab initio методами расчета зонной структуры кристаллов в базисе плоских волн, основанными на теории функционала плотности (Density Functional Theory, DFT) и теории псевдопотенциала [9–11]. Необходимость учета эффектов динамического рассеяния при анализе формы краев рентгеновских спектров поглощения становится общепризнанной [12–14]. Использование ab initio методов учета MND-эффекта при расчете РЭП в литературе практически не встречается и наша работа в какой-то степени ликвидирует этот пробел.

Согласно оригинальной MND-теории в приближении свободных электронов динамическая экранировка вакансии электронами зоны проводимости должна влиять на форму *L*-РЭП, но не должна заметно искажать К-спектры эмиссии и поглощения [15, 16]. В случае К-спектров MND-сингулярность вблизи уровня Ферми подавляется за счет ортогональности многоэлектронных волновых функций электронов валентной зоны до и после рентгеновского перехода (теорема Андерсона [3]). Однако в работах [7, 8] показано, что MND-эффект вносит существенный вклад в спектральное распределение коэффициента поглощения графита вблизи К-порога углерода. При этом экспериментальный эмиссионный К-спектр углерода в графите [17] не обнаруживает явных признаков наличия MND-сингулярностей.

Другая особенность РЭП металлов, обусловленная многоэлектронными процессами, проявляется в виде затянутого «хвоста» в низкоэнергетической области эмиссионного спектра [18, 19]. Причиной этого эффекта считается безрадиационный оже-процесс в валентной зоне. Действительно, вакансия, возникающая в валентной зоне при рентгеновском переходе, может распадаться вследствие оже-процесса, характеризующегося возбуждением еще одного электрона в зону проводимости выше уровня Ферми. При этом при движении от уровня Ферми ко дну валентной зоны время жизни вакансии в конечном состоянии эмиссионного перехода уменьшается, а энергетическая ширина уровня увеличивается. К настоящему моменту неэмпирический ab initio pacчет этого эффекта является слишком сложным и трудоемким. Поэтому в данной работе мы использовали полуэмпирический метод, описанный в работе [20], который позволяет корректно воспроизвести форму РЭП металлов в низкоэнергетической области спектра.

В настоящей работе мы представляем результаты ab initio расчетов К- и L_{2,3}-РЭП металлов Мg и Al с учетом MND-эффекта с использованием схемы расчета, развитой в работах [5-8]. Мы также учитываем поправку формы спектра в низкоэнергетической области, связанную с оже-процессами в валентной зоне. Расчеты зонных энергий и зонных волновых функций в настоящей работе были выполнены методом PAW (Projected Augmented Waves) [11] с использованием пакета программ VASP [21-23]. Здесь и далее заполненные состояния мы называем валентной зоной металла, а незаполненные электронами состояния — зоной проводимости. Экранировать внутреннюю вакансию могут только подвижные электроны, поэтому такие электроны являются электронами проводимости, попавшими в эту зону из валентной зоны при возбуждении (встряски при образовании вакансии, электрон-электронного, электрон-фононного взаимодействия и т. д.). Упомянутый оже-переход осуществляется в валентной зоне с инжекцией оже-электрона в зону проводимости.

Проведено сравнение рассчитанных РЭП с экспериментальными спектрами. Экспериментальные эмиссионные $L_{2,3}$ -полосы металлов Mg и Al были получены в настоящей работе с высоким разрешением. В расчетах формы РЭП рассматривались переходы из состояний валентной зоны на 2p-вакансию Mg или Al без учета ее спин-орбитального расщепления. Поэтому получаемые распределения интенсивности можно называть 2p-полосами, или $L_{2,3}$ -РЭП, хотя по существу они представляют собой одинаковые по форме L_3 - или L_2 -полосы. В эксперименте спин-орбитальное расщепление $2p_{1/2}-2p_{3/2}$ оказывает влияние на форму спектра. Поэтому для сопоставления с данными расчетов мы выделяли из экспериментальных спектров наиболее интенсивные L_3 -РЭП в предположении идентичности формы L_3 и L_2 -полос.

2. ФОРМА РЕНТГЕНОВСКОГО СПЕКТРА С УЧЕТОМ MND-РАССЕЯНИЯ

Рассмотрим рентгеновские эмиссионные переходы из состояний $n\mathbf{k}$ зоны с номером n на остовную вакансию, локализованную на атоме A с орбитальным квантовым числом l_c . Если в приближении сильной связи пренебречь вкладом в интенсивность полосы так называемых «перекрестных» переходов, то интенсивность I(E) РЭП можно представить в виде суммы произведений вероятностей W_{μ} электрического дипольного (E1) внутриатомного перехода из атомного состояния μ на остовную вакансию и парциальной плотности состояний $N_{\mu}(E)$ атома с вакансией во внутренней оболочке:

$$I(E) = \sum_{\mu} W_{\mu} N_{\mu}(E).$$
 (1)

Вероятность внутриатомного перехода W_{μ} выражается через силу линии S_{μ} следующим образом:

$$W_{\mu} \sim E^3 S_{\mu}, \quad S_{\mu} = \sum_{m_c,\alpha} |A^{\alpha}_{\mu m_c}|^2,$$
 (2)

где m_c — проекция орбитального момента дырки, индекс α нумерует циклические компоненты вектора **г**, а $A^{\alpha}_{\mu m_c}$ — амплитуда *E*1-перехода, которая определяется выражением

$$A^{\alpha}_{\mu m_c} = e \langle \varphi_{\mu} | r_{\alpha} | \varphi_c \rangle. \tag{3}$$

Здесь φ_{μ} и φ_{c} — атомные волновые функции соответственно валентного электрона и остовной дырки, e — заряд электрона.

В одночастичном приближении парциальную плотность состояний (Partial Density of States, PDOS) можно выразить через мнимую часть опережающей функции Грина $G^{-}(E)$:

$$N_{\mu}(E) = \frac{1}{\pi} \operatorname{Im} G_{\mu\mu}^{-}(E).$$
 (4)

Если полностью пренебречь влиянием остовной вакансии на состояния электронов проводимости, то функцию Грина $G_A^-(E)$ можно представить в виде

$$G_{\mu\nu}^{-}(E) = \sum_{n,\mathbf{k}} \frac{\langle \mu | \psi_{n\mathbf{k}} \rangle \langle \psi_{n\mathbf{k}} | \nu \rangle}{E - E_n(\mathbf{k}) - i\delta},$$
(5)

где $E_n(\mathbf{k})$ и $\psi_{n\mathbf{k}}$ — соответственно невозмущенные зонные энергии и волновые функции. Этот случай имеет место при полном экранировании потенциала остовной дырки (приближение конечного состояния).

Другой крайний случай реализуется тогда, когда можно полностью пренебречь экранировкой остовной дырки (приближение начального состояния). В этом случае зонные волновые функции меняются под влиянием кулоновского потенциала дырки и выражение для функции Грина принимает вид

$$\tilde{G}^{-}_{\mu\nu}(E) = \sum_{n,\mathbf{k}} \frac{\langle \mu | \tilde{\psi}_{n\mathbf{k}} \rangle \langle \tilde{\psi}_{n\mathbf{k}} | \nu \rangle}{E - \tilde{E}_n(\mathbf{k}) - i\delta},\tag{6}$$

где $\tilde{E}_n(\mathbf{k})$ и $\tilde{\psi}_{\mathbf{k}}$ — соответственно возмущенные зонные энергии и волновые функции. Для парциальной плотности состояний в присутствии дырки получим

$$\tilde{N}_{\mu}(E) = \frac{1}{\pi} \operatorname{Im} \tilde{G}^{-}_{\mu\mu}(E).$$
(7)

МND-теория [2, 4] описывает динамический процесс заполнения вакансии, в результате которого многоэлектронные эффекты могут проявляться как особенности эмиссионного спектра вблизи уровня Ферми. Конкретная схема расчета, реализующая MND-теорию в однозонной модели, представлена в работе [5]. В работах [7, 8] дано обобщение этой схемы расчета на случай многих зон. Следуя обозначениям работ [5, 7] и пренебрегая шириной остовной дырки, запишем выражение для интенсивности эмиссионного спектра с учетом MND-рассеяния в виде

$$I_{MND}(E) \sim E^{3} \operatorname{Re} \sum_{\mu,\nu,m_{c},\alpha} A^{\alpha}_{\mu m_{c}} A^{\alpha^{*}}_{\nu m_{c}} \times \int_{-\infty}^{E_{f}} dE' \, \tilde{N}_{\mu\nu}(E') \int_{0}^{\infty} dt \, e^{-i \, (E-E') \, t} \, \varphi_{\nu\mu}(E',t), \quad (8)$$

где матрица $\varphi(E,t)$ удовлетворяет системе интегральных уравнений

$$\mu_{\mu}(E,t) = \delta_{\mu,\nu} - \sum_{\mu',\nu'} V_{\mu\mu'} \times \\ \times \int_{-\infty}^{E_f} dE' K_{\mu'\nu'}(E,E',t) \varphi_{\nu'\nu}(E',t), \quad (9)$$

где E_f — энергия уровня Ферми. Ядро $K_{\mu\nu}(E, E', t)$ интегрального оператора определяется выражением

 φ

 2^{*}

$$K_{\mu\nu}(E, E', t) =$$

$$= \sum_{\mu'} \frac{\hat{I}_{\mu\mu'}(E', t) - e^{i(E'-E)t} \hat{I}_{\mu\mu'}(E, t)}{E' - E} \tilde{N}_{\mu'\nu}(E'), \quad (10)$$

где

$$I_{\mu\nu}(E,t) = \delta_{\mu\nu} - \sum_{\mu'} V_{\mu\mu'} \times \int_{-\infty}^{\infty} dE' \left\{ \frac{e^{i(E-E')t} - 1}{E - E'} N_{\mu'\nu}(E') \right\}.$$
 (11)

Матричные элементы $V_{\mu\nu}$ потенциала взаимодействия электронов зоны проводимости с полем остовной вакансии определяются выражением [7, 8]

$$V_{\mu\nu} = \sum_{n,\mathbf{k}} \left(\langle \mu | \psi_{n\mathbf{k}} \rangle \langle \psi_{n\mathbf{k}} | \nu \rangle E_n(\mathbf{k}) - \langle \mu | \tilde{\psi}_{n\mathbf{k}} \rangle \langle \tilde{\psi}_{n\mathbf{k}} | \nu \rangle \tilde{E}_n(\mathbf{k}) \right). \quad (12)$$

В приведенных выше выражениях матрицы $N_{\mu\nu}$ и $\tilde{N}_{\mu\nu}$ имеют вид

$$N_{\mu\nu} = \frac{1}{\pi} \operatorname{Im} G^{-}_{\mu\nu}(E), \quad \tilde{N}_{\mu\nu} = \frac{1}{\pi} \operatorname{Im} \tilde{G}^{-}_{\mu\nu}(E). \quad (13)$$

Отметим, что диагональные элементы матриц N и \tilde{N} совпадают с парциальными плотностями, определенными выше (см. (4) и (7)) для системы электронов валентной зоны соответственно в отсутствие и при наличии остовной вакансии.

3. ОЖЕ-ЭФФЕКТ В ВАЛЕНТНОЙ ЗОНЕ

Оже-процесс (безрадиационный распад дырки) в валентной зоне может проявляться в эмиссионных K- и L-полосах металлов. Он приводит к подавлению интенсивности у дна зоны и к образованию затянутого низкоэнергетического «хвоста» РЭП. Понять, почему происходит такое сильное искажение спектра под влиянием оже-процессов, можно из следующих рассуждений. Начальное состояние металлической системы непосредственно перед процессом эмиссии характеризуется наличием вакансии в остовной оболочке. Пусть эта вакансия заполняется в результате радиационного перехода электрона из состояний, локализованных у дна валентной зоны кристалла. Тогда образовавшаяся вакансия с большой долей вероятности может быть заполнена в результате оже-перехода электрона из лежащих выше состояний, при этом происходит передача высвободившейся энергии третьему валентному электрону,

который возбуждается в свободное состояние выше уровня Ферми в зону проводимости. Подобные механизмы распада вакансии в валентной зоне особенно вероятны в металлических системах, где нет запрещенной зоны.

Наличие дополнительного канала распада приводит к уменьшению времени жизни дырки, а следовательно, к увеличению естественной ширины этого возбужденного (дырочного) состояния. Увеличение ширины уровня формально можно учесть сверткой спектра с кривой Лоренца, описывающей распределение по энергиям квазидискретных состояний валентной зоны. Это приводит к подавлению интенсивности спектра и к образованию длинноволнового хвоста РЭП. Очевидно, что ширина на половине высоты $\gamma(E)$ уровня с энергией E растет при увеличении разности $E_f - E$. Обычно эту зависимость аппроксимируют квадратичной функцией [20]:

$$\gamma(E) = \beta(E_f - E)^2, \tag{14}$$

где β — полуэмпирический параметр. Таким образом, рассматриваемый многоэлектронный эффект в спектрах эмиссии можно учесть посредством свертки спектра I(E) с лоренцевским распределением L(E), ширина $\gamma(E)$ которого зависит от энергии по закону (14)

$$J_{Auger}(E) = \int_{-\infty}^{\infty} dE' I(E') L(E', E), \qquad (15)$$

где

$$L(E', E) = \frac{1}{\pi} \frac{\gamma(E')/2}{(E' - E)^2 + \gamma^2(E')/4}.$$
 (16)

Подбирая значение параметра β , которое дает наилучшее согласие теории с экспериментом, из выражения (14) можно получить зависимость ширины состояния валентной зоны как функцию его энергии.

4. ДЕТАЛИ РАСЧЕТА

Для учета многоэлектронных эффектов были выполнены DFT-расчеты методом PAW [11] в приближении GGA (Generalized Gradient Approximation) и параметризации PBE (Perdew–Burke–Ernzerhof) [24] для функционала с использованием пакета программ VASP [21–23]. В расчетах зонной структуры металлического магния была взята расширенная ячейка (Large unit cell, LUC) размером 3 × 3 × 3, содержащая 54 атома Mg. Для металлического алюминия использовалась LUC размером 4 × 4 × 4, которая содержала 64 атома Al. Кристаллические волновые функции были представлены в виде разложения по базису плоских волн с энергией обрезания 400 эВ. Точки k были получены методом расширенной ячейки с параметрами 9 × 9 × 15 и 22 × 22 × 22 в случае соответственно металлических магния и алюминия.

Для моделирования стационарного поля вакансии в остовном уровне было использовано (Z + 1)-приближение для центрального атома расширенной ячейки. Локальная плотность состояний \tilde{N}_{μ} , возмущенная потенциалом дырки, была получена для атома, находящегося в центре расширенной ячейки. Невозмущенная плотность состояний N_{μ} была получена с использованием того же зонного расчета путем проектирования на валентную орбиталь атома, находящегося на границе LUC и не содержащего остовной вакансии.

Коэффициенты разложения $c_{\mu n}(\mathbf{k})$ кристаллической орбитали $\psi_{n\mathbf{k}}$ по атомным функциям φ_{μ} , которые определяются выражением

$$c_{\mu n}(\mathbf{k}) = \langle \varphi_{\mu} | \psi_{n \mathbf{k}} \rangle, \qquad (17)$$

были вычислены с использованием приближенной формулы [11]:

$$c_{\mu n}(\mathbf{k}) \approx \langle p_{\mu}^{ps} | \psi_{n\mathbf{k}}^{ps} \rangle.$$
 (18)

Здесь $\psi_{n\mathbf{k}}^{ps}$ — кристаллическая псевдоволновая функция, а p_{μ}^{ps} — так называемая проекционная функция метода РАW [11].

Полученные коэффициенты $c_{\mu n}(\mathbf{k})$ использовались для построения функций Грина и парциальных плотностей состояний в расчетах формы эмиссионного спектра I(E) с учетом MND-рассеяния. Затем была рассчитана свертка спектра с лоренцевским распределением с постоянной полной шириной на половине высоты (ПШПВ) для учета естественной ширины остовного уровня и с лоренцевским распределением, ПШПВ которого подчиняется закону (14), для учета оже-процессов в валентной зоне металлов и с гауссианой для учета аппаратурной функции искажения. Величины естественных ширин К-и *L*-уровней заимствовались из работы [25]. Естественные ширины *L*-оболочек металлов (≤ 0.004 эВ) оказались малы по сравнению с аппаратурной функцией и поэтому не учитывались. В остальных случаях ПШПВ гауссиан бралась равной энергетическому разрешению экспериментальных спектров, полученных цитируемыми авторами. Для удобства сопоставления с данными экспериментов, а также для наглядного представления энергетического распределения электронов в валентной зоне рассматриваемых кристаллов все спектры были сдвинуты по

энергетической шкале таким образом, чтобы уровень Ферми находился в нуле.

5. ДЕТАЛИ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ

L_{2.3}-РЭП поликристаллов магния и алюминия были получены по стандартной методике на модернизированном спектрометре РСЛ-1500 [26] с возбуждением ультрамягких рентгеновских спектров электронным пучком с энергией 2.0 кэВ. Поверхности образцов механически очищались для удаления слоя оксидов, спектры которых могли бы исказить РЭП чистых металлов. Толщина этих слоев по завышенной оценке не превышала 3 нм. По данным работ [27, 28] излучение $L_{2,3}$ -РЭП магния и алюминия, формирующееся почти целиком в слое такой толщины, возникает при энергии возбуждающих электронов 250 эВ. При использованной энергии электронов пучка 2 кэВ вклад интенсивности слоя толщиной 3 нм в полную интенсивность РЭП не превышает 0.1 %. Кроме того, спектральное проявление РЭП оксидов отсутствовало, что свидетельствует о достаточной чистоте поверхности для получения качественных спектров металлов. Об отсутствии других загрязнений поверхности свидетельствовало отсутствие характеристических линий других элементов. Вторичный электронный умножитель ВЭУ-6М с фотокатодом из CsJ в импульсном режиме регистрации сигнала использовался в качестве детектора. Второй детектор с фотокатодом из бериллиевой бронзы был расположен на нулевом (зеркальном) пучке отражения дифракционной решетки и служил монитором интенсивности пучка. Спектры регистрировались при постоянном волновом разрешении и после учета показаний монитора переводились в режим постоянного энергетического разрешения

Эффективность детектора (спектральная зависимость квантового выхода CsJ) определялась относительно квантового выхода золота, который считался примерно постоянным в спектральной области 25–80 эВ. Энергетическое разрешение получаемых спектров составляло 0.06 эВ и 0.04 эВ в высокоэнергетической части спектров соответственно алюминия и магния.

Полученные $L_{2,3}$ -полосы имеют очень высокую контрастность (отношение интенсивности в пике к интенсивности тормозного излучения составляло более 50). После вычета тормозного излучения

Интенсивность, отн. ед.

Рис.1. L_3 -РЭП в металлическом магнии. Экспериментальная L_3 -полоса (точки), теоретические L_3 -спектры в одноэлектронном приближении конечного состояния (штриховая линия) и с учетом многоэлектронных эффектов (сплошная линия)

 $L_{2,3}$ -спектры разлагались на составляющие L_3 - и L_2 -РЭП в предположении идентичности их формы.

6. РЕНТГЕНОВСКИЕ ЭМИССИОННЫЕ ПОЛОСЫ МЕТАЛЛОВ

На рис. 1, 2 представлены экспериментальные L_3 -РЭП металлического магния и алюминия, а также теоретические кривые в одноэлектронном приближении и с учетом многочастичных поправок.

Приведенные одноэлектронные спектры Mg и Al (штриховые линии на рис. 1, 2) рассчитаны с использованием формулы (1) в приближении полной статической экранировки остовной вакансии и фактически отражают *s*-парциальную плотность состояний валентной зоны.

Как видно из рис. 1, 2, для L₃-полосы одноэлектронное приближение плохо описывает особенности и форму экспериментального спектра. Экспериментальная кривая в низкоэнергетической области убывает медленнее теоретической, образуя затянутый «хвост». Такое поведение объясняется оже-распадом вакансии в валентной зоне металлов [18, 19]. Кроме того, экспериментальный спектр имеет узкий пик вблизи уровня Ферми, являющийся следствием многоэлектронного эффекта рассеяния электронов зоны проводимости на вакансии во внутренней оболочке металла (MND-сингулярность [4, 19]). На рис. 1, 2 Интенсивность, отн. ед.

Рис.2. L_3 -РЭП в металлическом алюминии. Экспериментальная L_3 -полоса (точки), теоретические L_3 -спектры в одноэлектронном приближении конечного состояния (штриховая линия) и с учетом многоэлектронных эффектов (сплошная линия)

также приведены теоретические спектры с многоэлектронными поправками (сплошные линии). Очевидно, что в данном случае согласие с экспериментом значительно лучше. Многоэлектронная теория хорошо описывает поведение спектра как в области энергии Ферми (интенсивность пика, его энергетическое положение, полуширина), так и в низкоэнергетической области (форма хвоста, его протяженность).

Хорошей проверкой корректности наших вычислений является применение MND-формализма для вычисления *K*-эмиссионных полос. Из классической MND-теории [2, 4] в приближении однородного электронного газа следует, что MND-сингулярности в *K*-РЭП проявляться не должно. Интенсивность *K*-эмиссионных полос вблизи уровня Ферми должна быть значительно подавлена [3] и плавно убывать до нуля. В наших расчетах учитывается *ab initio* MND-эффект и специфика данного материала, поэтому проверка совпадения MND-спектра с одноэлектронным и с экспериментальной полосой может рассматриваться в качестве теста корректности наших расчетов.

Как видно из рис. 3, 4, для K-РЭП обоих металлов Mg и Al, в отличие от L_3 -РЭП, одноэлектронные спектры и спектры, рассчитанные с учетом MND-эффекта, хорошо совпадают друг с другом и с экспериментальными полосами. Очевидно, что учет

Интенсивность, отн. ед.

Рис. 3. К-РЭП в металлическом магнии. Экспериментальная полоса (точки), теоретические спектры в одноэлектронном приближении конечного состояния (штриховая линия) и с учетом MND-эффекта (сплошная линия)

Интенсивность, отн. ед.

Рис. 4. К-РЭП в металлическом алюминии. Экспериментальная полоса (точки), теоретические спектры в одноэлектронном приближении конечного состояния (штриховая линия) и с учетом MND-эффекта (сплошная линия)

искажений, вызываемых оже-эффектом в валентной зоне, не требуется.

7. УЧЕТ ВЛИЯНИЯ ШИРИНЫ УРОВНЯ В ВАЛЕНТНОЙ ЗОНЕ МЕТАЛЛОВ НА ФОРМУ РЭП

Для того чтобы учесть влияние оже-эффекта в валентной зоне металлов мы вычислили свертку (15) MND-спектра с функцией Лоренца (16), которая учитывает уширение уровней из-за дополнительного канала оже-распада. Зависимость ПШПВ от энергии уровня аппроксимировалась квадратичной функцией (14) с коэффициентом пропорциональности β . Этот коэффициент подбирался таким образом, чтобы результирующий теоретический спектр как можно лучше совпадал с экспериментальной полосой. Очевидно, что подобная простая зависимость ширины уровня от его энергии корректна только вдали от энергии Ферми.

Для магния и алюминия оже-эффект был учтен для состояний, лежащих в интервале $(E_B, E_f - 2 \ \text{sB}),$ где E_B — энергия дна валентной зоны металла. Такой выбор интервала, с одной стороны, позволял исключить из рассмотрения MND-пик, а с другой стороны, обеспечивал гладкое поведение многоэлектронного спектра в точке «включения» оже-эффекта. Значения феноменологического параметра β для L₃-эмиссионной полосы металлических Al и Mg равны $0.05 \ 3B^{-1}$ и $0.06 \ 3B^{-1}$, а ПШПВ вблизи дна валентной зоны принимает значения 6 и 3 эВ соответственно. Вероятность оже-процесса в валентной зоне металлического магния больше, чем в металлическом алюминии для состояний с той же энергией, однако за счет значительно большей ширины РЭП в алюминии оже-эффект оказывает большее влияние на форму его «низкоэнергетического хвоста».

Предложенная оценка ширины уровней корректна только для s-состояний валентной зоны, так как именно они формируют дно зоны [29]. Вклад *d*-состояний в полную интенсивность в той области, где оже-процессы значительно искажают спектр, пренебрежимо мал. Из рис. 1-4 следует, что оже-процессы значительно искажают форму *L*-спектров металлов, а их влияние на К-РЭП незначительно. Это может объясняться малой плотностью р-состояний у дна валентной зоны [29]. Одноэлектронные К-полосы сами образуют затянутый «хвост» в низкоэнергетической области спектра (~ $E^{3/2}$), поэтому влияние дополнительного оже-уширения приводит лишь к небольшому затягиванию «хвоста», в то время как низкоэнергетическая область L-спектров значительно деформируется.

Тем не менее, практическое отсутствие признаков протекания оже-процесса в валентной зоне при формировании К-РЭП позволяет усомниться в универсальности этого механизма распада конечных состояний РЭП металлов и требует дополнительного изучения.

8. ЗАКЛЮЧЕНИЕ

Для учета влияния на форму характеристических РЭП металлов многоэлектронного процесса динамического экранирования остовной вакансии электронами проводимости мы объединили MND-теорию с ab initio методом расчета электронной структуры кристаллов. Влияние оже-эффекта на РЭП было учтено в рамках феноменологического подхода. Мы применили развитый нами метод для расчета K- и L₃-РЭП в кристаллах металлов Mg и Al. Было получено хорошее согласие теоретических кривых с экспериментальными спектрами. Эффект динамического экранирования остовной вакансии значительно искажает форму РЭП металлов в области энергии Ферми, в то время как оже-процессы в валентной зоне приводят к появлению затянутого «хвоста» в низкоэнергетической области L₃-РЭП. Предложено лишь качественное объяснение отсутствия влияния оже-эффекта на К-РЭП, поэтому этот вопрос требует дальнейшего изучения.

Работа выполнена при финансовой поддержке СПбГУ (грант № 11.37.24.2011), РФФИ (№ 12-03-01140-а) и G-RISC (№ С-2011b-3).

ЛИТЕРАТУРА

- 1. X-Rays in Nanoscience, ed. by Jinghua Guo, John Willey&Sons (2011).
- 2. G. D. Mahan, Phys. Rev. 163, 612 (1967).
- 3. P. W. Anderson, Phys. Rev. Lett. 18, 1049 (1967).
- P. Nozieres and C. T. De Dominicis, Phys. Rev. 178, 1097 (1969).
- V. I. Grebennikov et al., Phys. Stat. Sol. b 79, 423 (1977).
- V. I. Grebennikov et al., Phys. Stat. Sol. b 80, 73 (1977).
- O. Wessely, M. I. Katsnelson, and O. Eriksson, Phys. Rev. Lett. 94, 167401 (2005).
- O. Wessely, O. Eriksson, and M. I. Katsnelson, Phys. Rev. B 73, 075402 (2006).

- M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).
- 10. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
- 11. P. E. Blöchl, Phys. Rev. B 50 17953 (1994).
- Shang-Peng Gao, C. J. Pickard, A. Perlov, and V. Milman, J. Phys.: Condens. Matter 21, 104203 (2009).
- E. Lindroth and P. Indelicate, Phys. Scripta T 46, 139 (1993).
- 14. Teruyasu Mizoguchi, Isao Tanaka, Masato Yoshiya, Fumiyasu Oba, Kazuyoshi Ogasawara, and Hirohiko Adachi, Phys. Rev. B 61, 2180 (2000).
- 15. Y. Mizuno and K. Ishikawa, J. Phys. Soc. Jpn. 25, 627 (1968).
- K. Ohtaka and Y. Tanabe, Rev. Mod. Phys. 62, 929 (1990).
- 17. P. Bruhwiler et al., Phys. Rev. Lett. 74, 614 (1995).
- 18. P. T. Landsberg, Proc. Phys. Soc. A 62, 806 (1949).
- 19. В. В. Немошкаленко, В. Г. Алешин, Теоретические основы рентгеновской эмиссионной спектроскопии, Наук. думка, Киев (1974).
- 20. P. Livins and S. E. Schnatterly, Phys. Rev. B 37, 6731 (1988).
- 21. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
- 22. G. Kresse and J. Furthmüller, Comput. Mat. Sci. 6, 15 (1996).
- 23. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
- 24. J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- 25. M. O. Krause and J. H. Oliver, J. Phys. Chem. Ref. Data 8, 329 (1979).
- 26. А. П. Лукирский, В. А. Фомичев, А. В. Руднев, в сб. Аппаратура и методы рентгеновского анализа, Машиностроение, Ленинград (1970), вып. VI, с. 89. [А. Р. Lukirsky, V. А. Fomichev, and А. V. Rudnev, in Apparatus and Methods for X-Ray Analysis [in Russian] VI, 89 (1970).
- **27**. А. С. Шулаков, С. Ю. Тверьянович, О. В. Цыгулин, ФТТ **52**, 1824 (2010).
- 28. А. С. Шулаков, ЖСХ 52, 7 (2011).
- 29. Р. Е. Овчаренко, И. И. Тупицын, В. Г. Кузнецов, А. С. Шулаков, Опт. и спектр. 111, 984 (2011).