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We investigate the time evolution of filling numbers of localized electrons in the system of two coupled single-level
quantum dots (QDs) connected with the continuous-spectrum states in the presence of Coulomb interaction.
We considered correlation functions of all orders for electrons in the QDs by decoupling higher-order correlations
between localized and band electrons in the reservoir. We analyze different initial charge configurations and
consider Coulomb correlations between localized electrons both within the dots and between the different dots.
We reveal the presence of a dynamical charge trapping effect in the first QD in the situation where both dots
are occupied at the initial instant. We also find an analytic solution for the time-dependent filling numbers of
the localized electrons for a particular configuration of the dots.
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1. INTRODUCTION

The control and manipulation of localized charge
in small-size systems is one of the most important is-
sues in nanoelectronics [1,2]. Single semiconductor
quantum dots (QDs), which are referred to as “ar-
tificial” atoms [3,4], and coupled QDs — “artificial”
molecules [5,6] — are promising structures to serve
for creation of extremely small devices. Several cou-
pled QDs can be used in manufacturing electronic de-
vices dealing with quantum kinetics of individual lo-
calized states [7—9]. Therefore, the behavior of cou-
pled QDs in different configurations is currently under
careful experimental [10,11] and theoretical investiga-
tion [12,13].

During the last decade, vertically aligned QDs (for
example, indium arsenide QDs in gallium arsenide)
have been fabricated and widely studied with great suc-
cess [14-16]. Such an experimental realization allows
organizing a strongly interacting system of QDs with
only one of them coupled to the continuous-spectrum
states. Consequently, vertically aligned QDs give an
opportunity to analyze nonstationary effects in various
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charge and spin configurations formation in small-size
structures [17].

Lateral QDs seems to be better candidates for con-
trollable electronic coupling between two or several
QDs by applying individual lateral gates. That is why
they are intensively studied during the last several years
both experimentally and theoretically [18,19].

Investigation of relaxation processes, nonequilib-
rium charge distribution and nonstationary effects in
the electron transport through a system of QDs are
vital problems that have to be solved in order to inte-
grate QDs in small quantum circuits [20-26]. Electron
transport in such systems is strongly governed by the
Coulomb interaction between localized electrons and,
of course, by the ratio between the tunneling transfer
amplitudes and the QD coupling. Correct interpreta-
tion of quantum effects in nanoscale systems gives an
opportunity to create high-speed electronic and logic
devices [27,28]. In some of the recent realizations,
Coulomb interaction is weak [29], but for small-size
QDs, the on-site Coulomb repulsion is in general strong
[30], and it is therefore important to take it into ac-
count. In some cases, Coulomb correlations can de-
termine time-dependent phenomena [31]. Hence, the
problem of time evolution of charge in coupled QDs
connected with continuous-spectrum states in the pres-
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ence of Coulomb correlations between localized elec-
trons is indeed quite topical.

Time evolution of charge states in a semiconductor
double quantum well in the presence of Coulomb inter-
action was experimentally studied in [32]. The authors
manipulated the localized charge by the initial pulses
and observed pulse-induced tunneling electron oscilla-
tions. Localized charge relaxation in the single and
coupled quantum wells in the absence of Coulomb inter-
action was theoretically analyzed by Gurvitz [33, 34].
The author took only two time scales governing the
charge time evolution into account and neglected the
third time scale that is responsible for charge redistri-
bution between different wells. Time dependence of the
accumulated charge and the tunneling current through
a single QD in the presence of Coulomb interaction were
theoretically analyzed in [35]. The authors described
relaxation processes and revealed three time rates for
localized charge relaxation in the QD coupled to a ther-
mostat. Several different time rates were also found in
the system of two and three interacting QDs coupled to
the reservoir [36-38]. For simplicity, on-site Coulomb
repulsion was considered only in a single QD. Such a
model is suitable in the case where one of the dots is
narrow and the second is rather wide. In [39, 40], the
authors derived rate equations to analyze the case of
resonant transport in QDs linked by ballistic channels
with high density of states and revealed the role of in-
terference effects.

In this paper, we consider charge relaxation in dou-
ble QDs due to the coupling to the continuous spectrum
states. Tunneling from the first QD to the continuum
is possible only through the second dot. We obtain
a closed system of equations for the time evolution of
the localized-electron filling numbers that exactly takes
all-order correlation functions for localized electrons
into account. We decouple the higher-order correlation
functions between conduction electrons in the reservoir
(band electrons) and electrons localized in the QDs.
In such an approximation, the electron distribution in
the reservoir is not influenced by changing the elec-
tronic states in the coupled QDs. For QDs weakly cou-
pled to the reservoir, the proposed decoupling scheme
is a good approximation. We consider different initial
charge configurations and take Coulomb correlations
into account both within QDs and between electrons
localized in different dots. We find some peculiarities
in the dynamics of electron filling numbers arising due
to the Coulomb correlation effects. We demonstrate
that depending on the initial charge configurations, the
effect of dynamical charge trapping can be observed in
the proposed system.
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Fig.1. Scheme of the proposed model. The system of
interacting QDs is coupled to the continuous-spectrum
states by the tunneling rate vy = wvt?

2. THE PROPOSED MODEL

We consider a system of coupled QDs with the
single-particle levels ; and €5 coupled to an electronic
reservoir (Fig. 1). We discuss three different initial
charge configurations that are possible in the proposed
system. The first deals with the initial charge localized
in the first QD on the energy level &1 (n11,(0) = 1).
The second corresponds to the situation where local-
ized charge is accumulated in the second QD on the
energy level £2 (n22,(0) = 1). And the last possible
initial charge configuration refers to the case where the
initial charge is localized on both electron levels equally
(n115(0) = n22,(0) = 1). The second QD with the en-
ergy level £, is connected with the continuous spectrum
states (). Relaxation of the localized charge is gov-
erned by the Hamiltonian

g:ﬁD'Fﬁtun'i‘ﬁres- (1)

The Hamiltonian Hp of interacting QDs,

Hp =
= 67102"0—02’0+U11n110'n1170+U22n220n2270'+
i=1,20
+ Ur2(n11s + n11-5) (N220 +N22-5) +
+ Z T(CIUCQO— + ch,c;g), (2)
o
contains the spin-degenerate levels ; (indices i = 1

and 7 = 2 correspond to the first and second QDs), the
on-site Coulomb repulsion for the double occupation of
the QDs, and Coulomb interaction between electrons in
different dots. The creation/annihilation of an electron
with spin ¢ = +1 within a dot is denoted by c;fa/ci,,
and n, is the corresponding filling number operator.
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The coupling between the dots is described by the tun-
neling transfer amplitude 7', which is assumed to be
independent of momentum and spin.

The continuous-spectrum states are modeled by the
Hamiltonian

ﬁres = ngc;r,gcpfra (3)
po

where c;fw /cpo creates/annihilates an electron with spin
o and momentum p in the lead. The coupling between
the second dot and the continuous-spectrum states is
described by the Hamiltonian

FItun = Z t(CLO_CQO- + CPO'C;O')7 (4)

po

where t is the tunneling amplitude, which we assume
to be independent of momentum and spin. With a con-
stant density of states, vy assumed in the reservoir, the
tunnel rate v is defined as v = 7ryt?.

Because we are interested in the specific features of
the nonstationary time evolution of the initially local-
ized charge in coupled QDs, we consider the situation
where the condition (g; —ep)/y > 1 is fulfilled. Tt
means that the initial energy levels are situated well
above the Fermi level and stationary occupation num-
bers in the second QD in the absence of coupling be-
tween the QDs is of the order of v/(e3 —ep) < 1 and
can be omitted. Consequently, the Kondo effect is also
negligible in the proposed model.

Our investigation deals with the low-temperature
regime where the Fermi level is well defined and the
temperature is much lower than all typical relaxation
rates in the system. Consequently, the distribution
function of electrons in the leads (band electrons) is
a Fermi step.

We set i = 1, and therefore the kinetic equations for
bilinear combinations of Heisenberg operators c:fcr /Cics

which describe time evolution of the filling numbers for
the electrons, can be written as

. 9 N N Ao
Z5”11 =T (g — 1),
- 9 Ao Ao ~T N
Zanm =T (ng; — niy) — 2iyng,,
. 9 N N AT
Z5”21 =T(ngy —nf;) +
+[§+ (Unn = Un)ng 103G, — (6)

io Ao g
= (Uzz = Ur2)03y 01557 — iyngy,

— [+ (Ui = Uan)n"ngy +
+ (U2 — Ur2) gy — iy07,,

where { = g1 — g2 is the detuning between the energy
levels in the QDs. System of equations (6) contains ex-
pressions for the pair correlators 1 °ng, and ny“ng,,
which also determine relaxation of the localized charge
and consequently have to be evaluated. In this sys-
tem, we neglect higher-order correlation functions be-
tween localized and continuous-spectrum (band) elec-
trons and perform averaging over electron states in the
reservoir.

We introduce the notation K;’j‘{,’j, = (e} cigch _cjigr)
for the pair correlators and consider only the param-
agnetic case (n7) = (n; 7). Then the relations

K37 = (Aging)7) = (y” ney),
K5 = (fsn17) = (Rgy 1Y), o
K355 = (31795 ) = (N 13,),
Kf2_2c2r = <ﬁ12ﬁ2_20> = <ﬁ1_2gﬁgz>

hold. The system of equations for pair correlators
can be written in the compact matrix form (symbol
[] means commutation and the symbol { } — anticom-
mutation)

9 ~ PP
. > > i >
zalx=[lx,H]+{B,F}+T, (®)

where
FO—0 ro—0 FO—0 FO—0
K557 Kinl Kool Kipg
rO—0 ro—0 rO—0 rO—0

R= K51 Kl Kool Kipo) _
0 —0 0 —0 s0—0 0 —0
K355 Kiys K3y Ky
0 —0 70 —0 ~0—0 ~0—0
K355 Kins K3y K

= ||l (9)

is the pair correlators matrix,
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=
0 T T 0
T €+U11—U21 0 T
= , (10)
T 0 —E+Uz—Usa T
0 T T 0
and
0 KT
o —UQA:%EZQ}: 0
Ui K757 0
0 UsK751755"

—iv 0 0 0
~ 0 0 0 0
T = (11)
0 0 -2y 0
0 0 0 —iy

are the tunneling coupling matrices.

We can easily see that Eqs. (8) contain expressions
for the higher-order correlators K7,,755” and K395 -
Their contribution can be easily written in the matrix

form

Ut K375 0
A LT (12)
0 —Ur1K75755

U K311725 0

where U1 = U11 - U21 and U2 = U22 - U12.

When evolution starts from the state with the
charge in the first QD and with the second QD empty,
system of equations (8) for pair correlators satisfies the

initial conditions K7{;7(0) = 1, KJ,,5(0) = 0, and
(ii(0) = 0 for the other combinations of indices

i, 7. If we are interested in the case where all the
initial charge in the system is localized in the second
QD, system of equations (8) for pair correlators satis-
fies the initial conditions K35,5(0) = 1, K{77(0) = 0,
and K7, % (0) = 0 for the other combinations of indices
i, j. In the case where the initial charge is equally dis-
tributed between the dots, system of equations (8) for

pair correlators satisfies the initial conditions

K717(0) = K355 (0) = K7155(0) = 1, K735(0) =0

ji' j

for the other combinations of indices i, j.

The higher-order correlators K7,,{5y" and K35, ,7,5
are exactly equal to zero because they are the solution
of a linear homogeneous system of equations with zero
initial conditions. Consequently, system of equations
(6), (8), which determines the localized charge evolu-
tion in coupled QDs connected with the reservoir, can
be solved numerically. The obtained results for all the

initial conditions are discussed in Sec. 3.
2.1. Analytic solution for time-dependent
filling numbers

We now focus on the specific configuration of the
proposed system, which allows obtaining an analytic

solution. In this section, we discuss only the situation
where at the initial time two electrons with opposite
spins are localized only in the first QD on the energy
level 1 (n1,(0) = no = 1). Moreover, we consider the
Coulomb interaction only in the first QD for simplicity.
Such a model is suitable in the case where the first QD
is narrow and the second is rather wide [37,41]. Be-
sides, if electrons are initially located in the first QD
and the second dot is empty, then filling numbers for
the electrons in the second QD remain rather small
during the time evolution of the charge and Coulomb
effects in the second QD are not so important as in the
first one. Moreover, Coulomb interaction in the second
QD does not lead to an essentially new physics. It can
be treated by a rather simple renormalization of detun-
ing: ¢ has to be substituted by £ = £ — Uss + Uy2 and
the Coulomb coupling in the first QD, Uiy, has to be
substituted by Uy = Uy + Uss — 2U35.

The formal solution of the system for pair correla-
tors (see Eq. (8)) can be written using the evolution
operator. Time evolution of the matrix elements Kj;
(see Eq. (9)) is given by the expression

Kij(t) = > (e )i K (0)(¢''1),5, (13
where H = H' +T.
We introduce the evolution operator
®;(t) = (e7h);;. (14)

The time evolution of the pair correlators can then be
found from the expressions
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K31 = (e Ht)12K(0)22(6 )22 =

S teta. (15)
K517 = (7 )90 K (0)an (e )9y =

= B> (1) D1 (1),

since K(0)22 in the matrix (see Eq. (9)) is equal to
K759(0) = 1. The evolution operator ®»,(t) can be
obtained from the operator ®22(¢) by the substitutions
t - —t and v = —v. The pair correlator K77 is a
complex conjugate of KJ7.

Finally, the evolution operators ®;;(¢) are deter-

mined by the equations

0

ia‘ﬁm(t)
G, ®12(1)
5 - H Do () , (16)
32

| —Dgo(t

i e () B0 (1)

e,

25‘1342 (t)

with the initial conditions

The characteristic equation for the eigenvalues \; of
the evolution operator ®;;(¢) has the form

(Hi1 — A)(Haz — A)(Hzg — \)(Has — A) —
—T2[(H11—/\)(HQQ—)\)+(H11—/\)(H33—)\) +

+ (H33—/\)(H44—)\)+(H22—/\)(H44—)\)] =0, (18)
where
Hyy = Hyy = —ivy,
Hy =&+ Uy, (19)

Hs3 = =€ — 2iy.

Each eigenvalue \; determines the corresponding eigen-
vector

Yi (20)

We have to obtain expressions for the evolution op-
erators ®15(t) and Poo(t) with the initial conditions
‘1322(0) =1 and ‘13”(0) =0.

160

The solution of the system of equations for ®;5(¢)
and ®95(t) can be written as

4
®15(t) = Y Ciaexp(—iAit),

i=1

] (21)
Bos(t) =Y Cifiexp(—iit),
i=1

where the constants C; can be obtained from the initial
conditions for the system of equations:

> Cia; =0,
Zchﬂi =1,
S =0

(22)

2.2. Equations for time-dependent filling
numbers

The time-dependent filling numbers nq(t) can be
found from the inhomogeneous part of Egs. (6), which

gives
. a . 2 2 . 8 . ? 2
{l(za +z’y) +7 [(za -|-z'y> -&| -
o 2 o
a2 (Y _(;9 .
4T <z 5 + z’y) } ny (t) (z 5% + 2@7) X
x T [U(G5 K5y ] + G KSRT) -
— Us(Gy ' K307 + GUUKSRS)], (23)
where
0
Gyt =i6— + &+,
7 (24)
Gt =ia —&+iy.

The solution of the Eq. (23) describes localized charge
relaxation and consists of the two parts: the first is
the general solution of the homogeneous equation n/(t)
(the right-hand side is equal to zero) and the second is a
particular solution, 711 (), of the inhomogeneous equa-

tion:

ni(t) = nt(t) + i (t) =
— b () +/G(t—t’)P(t’)dt’, (25)
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where G(t — t') is the Green’s function of Eq. (23)
with §(¢t — ') in the right-hand side and P(¢') is the
right-hand side of Eq. (23), which appears due to the
Coulomb correlations.

The general solution of the homogeneous equation
has the form [36]

h

nf(t) = ni[A" exp (—i(Ey, — EP)t) +

+ 2Re(B' exp(—i(E; — E3)t)) +

+ C'exp(—i(E> — E5)t)],  (26)
where
g Bmal? B el
B e c
g - (B2 —c)(Ef — 1)
B> — Ex]>
The eigenfrequencies E; can be found from the equa-
tion
(E—&1)(E—es+iy)—T? =0, (28)

and are given by

El,g = (51 + &2 — 7/)/) +

DO | =

1
+ 5\/(61 —eo +i7)2 + 472 (29)

The Green’s function G(t — t') of Eq. (23) can be
written as

4
G(t—t) = ajexp(—iX(t—t') Ot —t'), (30)

i=1
and consequently, the particular solution of the inho-
mogeneous equation has the form

ﬁl(t) = ZaiCJ- exp(—)\it) —7,()\ _1)\* — /\) X
ijk J k v
% [exp (—i(\j — AL — A)t) — 1], (31)

where Ay can be found from Eq. (18) and \; are
the roots of the characteristic equation arising from

Eq. (23):
iyt {

1 1/2
SVUT? + 2 =2 148292 |

:—i’yi{

1 1/2
SVUT? + 2 =22 4292 |

4T2 +€2 _,)/2
2

AL2 +

+
4AT? 4 2 — 42 (82)

A3,4 5

11 ZKBT®, Beim. 1
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These roots are related to the eigenfrequencies E; as

— *
Ao = Ei2— EY,,

A3 = Ey — Ej, (33)
)\4 = E2 — Ef
The coefficients a; are
1
ap = )
(A2 = A1) (A3 = Ar) (A — A1)
1
az = 9
(A1 = A2)(A3 = A2) (Mg — A2)
: (34)
as = )
(A1 = A3)(A2 = A3) (Mg — A3)
1
ay =

(A=A (A2 = M)Az = M)

We now focus on the two limit cases where the ex-
pressions that determine the dynamics of the filling
numbers have a rather compact form. The first case
is where the detuning between the empty energy levels
in the QDs is equal to zero: £/v < 1. The second case
deals with the situation where the sum of the detun-
ing and half the Coulomb coupling value is equal to
zero. This means that the resonance between the half-
occupied energy level in the first QD and the empty
level in the second QD occurs:

2
§+Un/2

Y

We also assume that the condition 77 <« v < Uy is
fulfilled in both cases.

2.3. £/y < 1

The eigenvalues of the characteristic equation in the
first case (£/y < 1), to within T2 /U2, have the form

272
A =Un — ZU—J7
272
o = —in — i
(35)

277

g = iy — i
v

)\4 = —i"y.
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Hence, the evolution operators can be written as

and time dependence of the pair correlators K37 and
K7,,7 is determined by the product

70 —0

K371 (t) = ®12(t) @3,(1),

(1) = (Kg9)" 0

0 —0

K751

Th expression for P(t) (see Eq. (25)) in the case of
the resonance between empty levels, £/ = 0, has the

form
9 4
P(t) =4Tyexp | — t)+

+ 272Uy, exp (—7t) cos(Up1t),

T2n

(38)

where n = v2/(U% +~+?%). For n = 1/2, the inhomoge-
neous part of the time evolution of the filling numbers

71 (t) can be written as
2772 ))
——1 X
v

(-

277
X exp <_Tt> + exp(—27t) +

2

ni (t) >

277
+ 4exp <—Tt> — 4exp(—7t)} +

272Uy exp(—~t)
+ 73

[cos(Uyit) — 1] +

20 (g ). 69

For n <« 1, the time evolution of the filling numbers
71 () is given by

T2 vy
U, Un

m(t) = 1—1277 [eXp (—4T72nt> —exp <—QTTQ75>} +
o). w

162

2.4. (€+Unn/2)/7<1

In the second case of interest ((§ + U11/2)/y < 1
but Uyy /v > 1), the eigenvalues are

U .8T%y
A= — —
1 ) ? U121 }
T2
Ay = —iy + —,
? T (41)
. U11 18T2’)/ 4T2
Az = —2 — = —
ST T T
)\4 = —i’y.
Th evolution operators take the form
2T
Di5(t) = — X
o=,
U 872
X {exp <—iit— 27t> —exp(—vt)] ,
2 Uiy 9
Bos (1) (1 8T2>exp( iUy 8T27t> + )
22(t) = | 1=~ —i——t—
Uty 2 Uy
+8T2e (—~t)
—— eXpl— .
oy

When the condition (§ + Uy /2)/v = 0 is fulfilled, P(¢)
is determined by the expression

T°U}, <exp <z%t - 'yt) + h.c.) —

1 2
— 4T~ exp <— 0 t) (43)

P(t)

Ty
Uz,

to within 72 /U3, and +*/U},.
The inhomogeneous part of the time evolution of
the filling numbers 71, (¢), to within 7%/U%, has the

form
~ 4 T2y T2y
ny(t) = —= [l—exp <—14—t)} exp (— t) —
7 Uz, Uz,
: 1) +o(zz)
-2 exp(—yt)sin | —t | +0 | —= ). (44
i exp(-n)sin (4 7).

We note that relaxation of the filling numbers in
the proposed model can be analyzed by means of a
simpler method, the self-consistent mean-field approx-
imation [37,42,43]. In this approximation, the correla-
tion functions Uy (f; “ng;) in Eqs. (6) are substituted
by the expressions Ui1(n; 7)(f7;). This substitution is
valid in the case where filling numbers for the localized
electrons n; 7 change their values rather slowly. The
calculation scheme consists of two steps. In the first
step, the initial energy level position ¢; is replaced by
the expression

gi=¢c; + U11<’fli_g>



MITD, Tom 145, Bem. 1, 2014

Nonstationary effects in the system ...

and the time-dependent filling numbers are evaluated.
The second step deals with the self-consistent calcula-
tion of the time-dependent filling numbers for the elec-
trons. For some ranges of the system parameters, the
mean-field approximation reveals qualitatively good re-
sults [37]. But in general case, the mean-field approx-
imation is insufficient to describe relaxation processes
in systems with correlations.

3. MAIN RESULTS AND DISCUSSION

Time evolution of the electron filling numbers
strongly depends on the initial charge configuration of
the system and on the relations between the system
parameters (energy levels positions, the difference of
Coulomb interaction between various localized states,
and the relations between tunneling rates). We con-
sider the situation where T' < v < Uj;.

We first analyze the situation where all the charge
in the system is localized in the first QD at the initial
time instant and the second QD is empty (see Fig. 2 and
Fig. 3a,d). In what follows, we discuss the case of both
positive (see Fig. 2) and negative (see Fig. 3a,d) initial
detunings £&. We start from the energy level configu-
ration with positive detuning. Figure 2a demonstrates
the decrease in the localized charge relaxation rate in
the first QD with the increase in the Coulomb cou-
pling values (the grey line and the black dashed line)
in comparison with the case where Coulomb interac-
tion is absent (black line). This effect occurs because
the presence of strong Coulomb repulsion results in an
increase in the initial detuning value. Simultaneously,
the increase in Coulomb coupling values leads to a de-
cease in the filling number amplitudes in the second
QD (see Fig. 2b). Time evolution of the filling num-
bers demonstrates several typical time intervals with
extremely different values of relaxation rates if /v < 1.
At the first stage, relaxation occurs with the rate very
close to Vres = 277/v. This stage also demonstrates
the increase in the filling number amplitudes in the sec-
ond dot (see Fig. 2b). Further time evolution in both
dots reveals a decrease in the charge amplitude, which
occurs with the typical relaxation rate very close to

2
Ynonres — Yres 72 + 62 .

The energy-level configuration that corresponds to
the negative initial detuning reveals much more inter-
esting results (see Fig. 3a,d). It can be found that crit-
ical Coulomb coupling values exist in the system for a
given set of parameters that corresponds to the relax-
ation regime changing. For the values smaller than the
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ry

Fig.2. Time evolution of filling numbers in the pres-
ence of Coulomb interaction in the case of a positive
initial detuning &£/+ in the first (a¢) and the second
(b) QD. The initial charge is localized in the first QD
(n1(0) = 1, n2(0) = 0). The black line corresponds
to the case where Uii/y = 0, Ur2/y = Uar/y = 0,
and Usz2/y = 0; the grey line describes the situation
where U11/’}/ = 20, U12/’}/ = U21/’Y = 12, and
Us2/y = 1.5; and the black dashed line, the case
where U11/’y = 10.0, U12/’y = U21/’y = 4.0, and
Us2/y = 8.0. For all figures the parameter values
T/v=0.6, y=1.0, and {/v = 0.8 are the same

critical one, Coulomb interaction results in an increase
in the localized charge relaxation rate in the first QD
and leads to an increasing in filling number amplitudes
in the second dot in comparison with the case where
Coulomb interaction is absent (see Fig. 3a,d black and
grey lines).

For the on-site Coulomb repulsion values larger
than the critical one, the localized charge time evo-
lution reveals a decrease in both the localized charge
relaxation rate in the first QD and the filling-number

11*
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Fig.3. Time evolution of filling numbers in the presence of Coulomb interaction in the case of a negative initial detuning £/~:

in the first (a—c) and in the second QD (d—f). The black line corresponds to the case where U11 /vy =0, U1z /vy = Ua1 /7y =0,

and Uszz/~ = 0; the grey line describes the situation where U1 /v = 1.8, Uiz/y = Ua1 /v = 1.3, and Uzz/~y = 1.5, and

the black dashed line, the case where Ui /v = 10.0, U12/y = Ua1 /v = 4.0, and Usz2/~v = 8.0. a and d: the initial charge

is localized in the first QD (n1(0) = 1, n2(0) = 0); b and e: the initial charge is localized in the second QD (n1(0) = 0,

n2(0) = 1); c and f: the initial charge is localized in the both QDs (n1(0) = 1, n2(0) = 1). For all figures, the parameter
values T/y = 0.6, v = 1.0, and £/~ = —0.8 are the same

amplitudes in the second one in comparison with the
case where Coulomb repulsion is absent (see Fig. 3a,d
black and black dashed lines). This is the result of the
positive effective detuning formation; consequently, for
large values of Coulomb interaction, relaxation reveals
a behavior very similar to the case with a positive ini-
tial detuning (Fig. 2). Moreover, the typical relaxation
rates are very close to the rate obtained for the energy-
level configuration with positive detuning.

We now focus on the situation where all the ini-
tial charge in the system is localized in the second QD
at the initial time instant and the first dot is empty
(see Fig. 3b,e). The system behavior is then very sim-
ilar for positive and negative detunings, and we there-
fore focus only on the case of negative initial detuning.
The influence of Coulomb interaction on the localized
charge relaxation in the case of both positive and neg-
ative initial detunings is negligible in comparison with
the case where Coulomb repulsion is absent. Coulomb
correlations modify the filling number time evolution
only slightly, and relaxation occurs with the typical rate
value close to 7. Due to the possibility of direct tun-

neling from the second QD to the continuous-spectrum
states, the localized charge amplitude decreases faster
than in the case where all the charge is localized in the
first dot (see Fig. 3a,e).

The most interesting situation is shown in Fig. 3¢, f.
Calculation results correspond to the case where the lo-
calized charge is equally distributed between the dots
at the initial time instant. We first describe the most
interesting features of relaxation process that are valid
both in the presence and in the absence of on-site
Coulomb repulsion and occur for both values of the
initial detuning.

Time evolution of the localized charge in both QDs
reveals three typical time intervals with different values
of the relaxation rate. The first time interval in the first
QD demonstrates a plateau on the time interval of the
order of . This interval demonstrates that the charge
is still entirely localized in the first QD, because the
second dot is occupied. The charge starts to flow from
the first dot to the second one only when the second-
dot energy level becomes nearly half empty due to the
direct tunneling from the second dot to the continuous-

164



MITD, Tom 145, Bem. 1, 2014

Nonstationary effects in the system ...

ny ny
1.0 1.0
c
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
e 1
0 0 6 8
ty

Fig.4. Different time evolution regimes of the filling numbers ny () in the first QD in the presence of Coulomb interaction.

a) (E+UL —Ua)/y=0 (U —Uz)/y =10 and £/~ = —10, black line; (U1 — Uz)/y =5 and /v = —5, grey dashed line;

(U —Usz)/y =3 and &/ = —3, black dashed line; (U1 — Uz)/y =1 and {/y = —1, grey line); b) ((+ U1 —Us)/y ~ 1

((Uw = Uz)/y = 10 and &/v = —7, black line; (U — Uz)/y = 5 and /v = —4, grey dashed line; (U1 — Uz)/v = 3

and £/ = —2.5, black dashed line; (U1 — Uz)/y = 1 and /v = —0.75, grey line); ¢) £/v = 0 (U/~ = 10, black line;

(U — Us)/y = b5, grey dashed line; (Ui — Uz)/y = 3, black dashed line; (U — Uz)/y = 1, grey line). The parameters
T/~ = 0.6 and v =1 are the same for all figures

spectrum states. When both QDs are occupied by two
electrons with opposite spins, charge transfer between
the dots is forbidden due to the Pauli principle. Hence,
at the first stage of relaxation, the charge in the first
QD is trapped even in the absence of Coulomb cor-
relations. On-site Coulomb repulsion results in a more
dramatic charge redistribution between the QDs, which
can be seen in Fig. 3¢,f. The charge time evolution in
the second QD occurs with the typical relaxation rate
very close to 7.

The second time interval is connected with the for-
mation of a plateau in the filling-number time evolu-
tion in the second QD. The time interval that deter-
mines the plateau is of the order of 4. This interval
corresponds to the process of relaxation, and the rates
consequently change in both dots. The next time in-
terval demonstrates localized charge relaxation in both
QDs with the typical relaxation rate very close to

2
7 +E
This time interval corresponds to the situation where
both dots are nearly empty. Consequently, filling num-
ber relaxation in both QDs occurs with strongly differ-
ent relaxation rates when the charge is mostly confined
in the dots.

We next discuss the localized charge time evolution
in the regime where the condition (£ 4+ Uy —Us)/y < 1
is fulfilled. In this case, the increasing in the Coulomb
coupling value leads to a decrease in the filling-number
relaxation rate (see Fig. 4a). For large U; — Us, the
relaxation rate is rather low and is of the order of

Ynonres — VYres

165

T2~
nonres — 2%7
! (U1 = Uy)?

which is typical for the system of two coupled QDs
without Coulomb interaction and with |{] ~ U; — Us.
By the decreasing the Coulomb coupling value U; — Us,
we achieve the situation of resonant tunneling between
the localized states, and consequently the relaxation
rate increases. In Fig. 4¢, the situation of resonant tun-
neling between empty energy levels £/ = 0 is demon-
strated. In this case, the relaxation of the localized
charge occurs with the typical rate very close to the
value Yo, = 2772 /v and is almost independent of the
Coulomb interaction value. We note that relaxation
processes are governed not only by the typical expo-
nentials exp(—~t) and exp(—2T%t/v) but also by the
preexponential factor, which linearly increases in time
in the resonant case (see Eq. (39)).

A very special relaxation regime exists in the system
if the condition

§+U -0y
Y

holds (see Fig. 4b). In this regime, Coulomb correla-
tions result in formation of a dip in the time evolution
of the localized charge. At the initial relaxation stage,
the charge in the first QD rapidly decreases due to the
almost resonant relation between the level in the sec-
ond QD and the effective single-electron energy in the
first dot. It follows from the third and the fourth equa-
tions in (6) that changing of the effective energy level
detuning is determined by
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(ny(t)) ] ’

Ny
which differs from the typical mean-field expression
(U, - Ua) (7 (1)) [42].

At a certain instant of time the effective single-elect-
ron level falls down below the level in the second QD. At
this instant, the inverse charge begins to flow from the
second QD to the first one. The occupation in the first
QD demonstrates a significant increase after reaching
the minimum value (the dip formation). Filling num-
bers almost reach the initial value for large values of
Coulomb interaction. After the dip formation, the typ-
ical time scale that determines relaxation of the filling
numbers is sufficiently close to the value

(U, — Uy) Re [

T2
Tnonres = 25—2

This explanation gives a qualitative picture of the dip
formation. The exact solution shows that Coulomb cor-
relations are responsible for such nonmonotonic behav-
ior. This effect is determined by the inhomogeneous
part of the exact solution for time evolution of the
filling numbers in the first QD (see the first term in
Eq. (44)). And this inhomogeneous part appears be-
cause time dependence of the higher-order correlators
(P(t) in Eq. (23) and Eq. (25)) is completely taken into
account. That is why time evolution of the filling num-
bers for the electrons differs considerably from that in
the mean-field approximation. The width of the dip
can be roughly estimated as (1/8)7,mres-

Comparison between the exact solution and the
mean-field approximation is demonstrated in Figs. 5,
6. It is clear that both methods reveal similar peculiar-
ities of the system behavior such as several time ranges
with considerably different relaxation rates. For some
ranges of the system parameters, formation of the dip
can also be reproduced in the mean-field approxima-
tion (see Fig. 5). Figure 5 also demonstrates similar
behavior of the exact and mean-field solutions at the
initial stage of relaxation. But the dip is reproduced
incorrectly in the mean-field approximation.

In the case of resonant tunneling between the en-
ergy levels in the QDs ({/v = 0), the exact solution and
the mean-field approximation reveal a strong mismatch
(see Fig. 6a). The exact solution demonstrates rather
smooth time evolution of the localized charge, while the
solution obtained by means of the mean-field approxi-
mation reveals abrupt changes in the localized charge
amplitude. As the Coulomb repulsion decreases, the
correspondence between the exact and the mean-field
solutions improves (see Fig. 60).
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Fig.5. Time dependence of the filling numbers for

the electrons ny(t) in the presence of Coulomb interac-
tion: comparison of the exact solution and the mean-
field approximation. The black lines correspond to the
exact solution, the black dashed lines correspond to
the mean-field approximation. The grey lines demon-
strate relaxation of the localized charge in the absence
of Coulomb interaction. a) (U; — Uz)/y = 5 and
&/y=-3;b) (U1 —Us)/y=3and {/y = —2. The
parameters T'//y = 0.6 and v = 1 are the same for all
figures

4. CONCLUSION

We have studied time evolution of the filling num-
bers in the system of two interacting QDs coupled with
continuous-spectrum states in the presence of Coulomb
interaction for a wide range of the system parameters.
Different initial charge configurations were considered.
The solution describing the system dynamics was an-
alyzed under the assumption that the band and local-
ized filling numbers for the electrons are uncoupled.
This solution exactly takes all-order correlators for the
localized electrons in the QDs into account.
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Fig.6. Relaxation of the filling numbers ny(t) in the
presence of Coulomb interaction in the case of reso-
nant tunneling between the empty energy levels in the
QDs. The black lines correspond to the exact solution,
the black dashed lines correspond to the mean-field ap-
proximation. The grey lines demonstrate relaxation of
the localized charge in the absence of Coulomb inter-
action. a) /vy =0and (Ui —U2)/v=3;b)&/v=0
and (U; —Uz)/v = 1. The parameters T/~ = 0.6 and
~ =1 are the same for all figures

We found strongly different relaxation regimes in
the system of coupled QDs depending on the ratios
between the system parameters. An interesting mani-
festation of Coulomb correlations is the formation of a
dip in the time evolution of the localized charge. Such
reentrant charge behavior is not the result of simple
quantum oscillations between the two energy levels.

We compared our results with the mean-field
approximation. The mean-field approximation can in
some cases give qualitatively similar peculiarities of the
system behavior: several time ranges with considerably

167

different, relaxation rates and dip formation. But the
mean-field approximation results do not coincide
with the exact solution in many regimes. Even if
the mean-field approximation qualitatively correctly
predicts the appearance of the dip, its shape and width
strongly differ from those given by the exact solution.
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