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NONSTATIONARY EFFECTS IN THE SYSTEM OF COUPLEDQUANTUM DOTS INFLUENCED BY COULOMB CORRELATIONSV. N. Mantsevi
h a*, N. S. Maslova a, P. I. Arseev baLomonosov Mos
ow State University119991, Mos
ow, RussiabLebedev Physi
al Institute, Russian A
ademy of S
ien
es119991, Mos
ow, RussiaRe
eived May 6, 2013We investigate the time evolution of �lling numbers of lo
alized ele
trons in the system of two 
oupled single-levelquantum dots (QDs) 
onne
ted with the 
ontinuous-spe
trum states in the presen
e of Coulomb intera
tion.We 
onsidered 
orrelation fun
tions of all orders for ele
trons in the QDs by de
oupling higher-order 
orrelationsbetween lo
alized and band ele
trons in the reservoir. We analyze di�erent initial 
harge 
on�gurations and
onsider Coulomb 
orrelations between lo
alized ele
trons both within the dots and between the di�erent dots.We reveal the presen
e of a dynami
al 
harge trapping e�e
t in the �rst QD in the situation where both dotsare o

upied at the initial instant. We also �nd an analyti
 solution for the time-dependent �lling numbers ofthe lo
alized ele
trons for a parti
ular 
on�guration of the dots.DOI: 10.7868/S00444510140101671. INTRODUCTIONThe 
ontrol and manipulation of lo
alized 
hargein small-size systems is one of the most important is-sues in nanoele
troni
s [1; 2℄. Single semi
ondu
torquantum dots (QDs), whi
h are referred to as �ar-ti�
ial� atoms [3; 4℄, and 
oupled QDs � �arti�
ial�mole
ules [5; 6℄ � are promising stru
tures to servefor 
reation of extremely small devi
es. Several 
ou-pled QDs 
an be used in manufa
turing ele
troni
 de-vi
es dealing with quantum kineti
s of individual lo-
alized states [7�9℄. Therefore, the behavior of 
ou-pled QDs in di�erent 
on�gurations is 
urrently under
areful experimental [10; 11℄ and theoreti
al investiga-tion [12; 13℄.During the last de
ade, verti
ally aligned QDs (forexample, indium arsenide QDs in gallium arsenide)have been fabri
ated and widely studied with great su
-
ess [14�16℄. Su
h an experimental realization allowsorganizing a strongly intera
ting system of QDs withonly one of them 
oupled to the 
ontinuous-spe
trumstates. Consequently, verti
ally aligned QDs give anopportunity to analyze nonstationary e�e
ts in various*E-mail: vmantsev�spmlab.phys.msu.ru


harge and spin 
on�gurations formation in small-sizestru
tures [17℄.Lateral QDs seems to be better 
andidates for 
on-trollable ele
troni
 
oupling between two or severalQDs by applying individual lateral gates. That is whythey are intensively studied during the last several yearsboth experimentally and theoreti
ally [18; 19℄.Investigation of relaxation pro
esses, nonequilib-rium 
harge distribution and nonstationary e�e
ts inthe ele
tron transport through a system of QDs arevital problems that have to be solved in order to inte-grate QDs in small quantum 
ir
uits [20�26℄. Ele
trontransport in su
h systems is strongly governed by theCoulomb intera
tion between lo
alized ele
trons and,of 
ourse, by the ratio between the tunneling transferamplitudes and the QD 
oupling. Corre
t interpreta-tion of quantum e�e
ts in nanos
ale systems gives anopportunity to 
reate high-speed ele
troni
 and logi
devi
es [27; 28℄. In some of the re
ent realizations,Coulomb intera
tion is weak [29℄, but for small-sizeQDs, the on-site Coulomb repulsion is in general strong[30℄, and it is therefore important to take it into a
-
ount. In some 
ases, Coulomb 
orrelations 
an de-termine time-dependent phenomena [31℄. Hen
e, theproblem of time evolution of 
harge in 
oupled QDs
onne
ted with 
ontinuous-spe
trum states in the pres-156
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ts in the system : : :en
e of Coulomb 
orrelations between lo
alized ele
-trons is indeed quite topi
al.Time evolution of 
harge states in a semi
ondu
tordouble quantum well in the presen
e of Coulomb inter-a
tion was experimentally studied in [32℄. The authorsmanipulated the lo
alized 
harge by the initial pulsesand observed pulse-indu
ed tunneling ele
tron os
illa-tions. Lo
alized 
harge relaxation in the single and
oupled quantum wells in the absen
e of Coulomb inter-a
tion was theoreti
ally analyzed by Gurvitz [33, 34℄.The author took only two time s
ales governing the
harge time evolution into a

ount and negle
ted thethird time s
ale that is responsible for 
harge redistri-bution between di�erent wells. Time dependen
e of thea

umulated 
harge and the tunneling 
urrent througha single QD in the presen
e of Coulomb intera
tion weretheoreti
ally analyzed in [35℄. The authors des
ribedrelaxation pro
esses and revealed three time rates forlo
alized 
harge relaxation in the QD 
oupled to a ther-mostat. Several di�erent time rates were also found inthe system of two and three intera
ting QDs 
oupled tothe reservoir [36�38℄. For simpli
ity, on-site Coulombrepulsion was 
onsidered only in a single QD. Su
h amodel is suitable in the 
ase where one of the dots isnarrow and the se
ond is rather wide. In [39, 40℄, theauthors derived rate equations to analyze the 
ase ofresonant transport in QDs linked by ballisti
 
hannelswith high density of states and revealed the role of in-terferen
e e�e
ts.In this paper, we 
onsider 
harge relaxation in dou-ble QDs due to the 
oupling to the 
ontinuous spe
trumstates. Tunneling from the �rst QD to the 
ontinuumis possible only through the se
ond dot. We obtaina 
losed system of equations for the time evolution ofthe lo
alized-ele
tron �lling numbers that exa
tly takesall-order 
orrelation fun
tions for lo
alized ele
tronsinto a

ount. We de
ouple the higher-order 
orrelationfun
tions between 
ondu
tion ele
trons in the reservoir(band ele
trons) and ele
trons lo
alized in the QDs.In su
h an approximation, the ele
tron distribution inthe reservoir is not in�uen
ed by 
hanging the ele
-troni
 states in the 
oupled QDs. For QDs weakly 
ou-pled to the reservoir, the proposed de
oupling s
hemeis a good approximation. We 
onsider di�erent initial
harge 
on�gurations and take Coulomb 
orrelationsinto a

ount both within QDs and between ele
tronslo
alized in di�erent dots. We �nd some pe
uliaritiesin the dynami
s of ele
tron �lling numbers arising dueto the Coulomb 
orrelation e�e
ts. We demonstratethat depending on the initial 
harge 
on�gurations, thee�e
t of dynami
al 
harge trapping 
an be observed inthe proposed system.

U12 = U21 
 EF"1U11 "2U22
T

Fig. 1. S
heme of the proposed model. The system ofintera
ting QDs is 
oupled to the 
ontinuous-spe
trumstates by the tunneling rate 
 = ��0t22. THE PROPOSED MODELWe 
onsider a system of 
oupled QDs with thesingle-parti
le levels "1 and "2 
oupled to an ele
troni
reservoir (Fig. 1). We dis
uss three di�erent initial
harge 
on�gurations that are possible in the proposedsystem. The �rst deals with the initial 
harge lo
alizedin the �rst QD on the energy level "1 (n11�(0) = 1).The se
ond 
orresponds to the situation where lo
al-ized 
harge is a

umulated in the se
ond QD on theenergy level "2 (n22�(0) = 1). And the last possibleinitial 
harge 
on�guration refers to the 
ase where theinitial 
harge is lo
alized on both ele
tron levels equally(n11�(0) = n22�(0) = 1). The se
ond QD with the en-ergy level "2 is 
onne
ted with the 
ontinuous spe
trumstates ("p). Relaxation of the lo
alized 
harge is gov-erned by the HamiltonianĤ = ĤD + Ĥtun + Ĥres: (1)The Hamiltonian ĤD of intera
ting QDs,ĤD == Xi=1;2� "i
yi�
i�+U11n11�n11��+U22n22�n22��++ U12(n11� + n11��)(n22� + n22��) ++X� T (
y1�
2� + 
1�
y2�); (2)
ontains the spin-degenerate levels "i (indi
es i = 1and i = 2 
orrespond to the �rst and se
ond QDs), theon-site Coulomb repulsion for the double o

upation ofthe QDs, and Coulomb intera
tion between ele
trons indi�erent dots. The 
reation/annihilation of an ele
tronwith spin � = �1 within a dot is denoted by 
yi�=
i�and n� is the 
orresponding �lling number operator.157
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h, N. S. Maslova, P. I. Arseev ÆÝÒÔ, òîì 145, âûï. 1, 2014The 
oupling between the dots is des
ribed by the tun-neling transfer amplitude T , whi
h is assumed to beindependent of momentum and spin.The 
ontinuous-spe
trum states are modeled by theHamiltonian Ĥres =Xp� "p
yp�
p� ; (3)where 
yp�=
p� 
reates/annihilates an ele
tron with spin� and momentum p in the lead. The 
oupling betweenthe se
ond dot and the 
ontinuous-spe
trum states isdes
ribed by the HamiltonianĤtun =Xp� t(
yp�
2� + 
p�
y2�); (4)where t is the tunneling amplitude, whi
h we assumeto be independent of momentum and spin. With a 
on-stant density of states, �0 assumed in the reservoir, thetunnel rate 
 is de�ned as 
 = ��0t2.Be
ause we are interested in the spe
i�
 features ofthe nonstationary time evolution of the initially lo
al-ized 
harge in 
oupled QDs, we 
onsider the situationwhere the 
ondition ("i � "F )=
 � 1 is ful�lled. Itmeans that the initial energy levels are situated wellabove the Fermi level and stationary o

upation num-bers in the se
ond QD in the absen
e of 
oupling be-tween the QDs is of the order of 
=("2 � "F ) � 1 and
an be omitted. Consequently, the Kondo e�e
t is alsonegligible in the proposed model.Our investigation deals with the low-temperatureregime where the Fermi level is well de�ned and thetemperature is mu
h lower than all typi
al relaxationrates in the system. Consequently, the distributionfun
tion of ele
trons in the leads (band ele
trons) isa Fermi step.We set ~ = 1, and therefore the kineti
 equations forbilinear 
ombinations of Heisenberg operators 
yi�=
i� ,
y1�
1� = n̂�1 (t); 
y2�
2� = n̂�2 (t);
y1�
2� = n̂�12(t); 
y2�
1� = n̂�21(t); (5)whi
h des
ribe time evolution of the �lling numbers forthe ele
trons, 
an be written as

i ��tn̂�11 = �T (n̂�21 � n̂�12);i ��t n̂�22 = T (n̂�21 � n̂�12)� 2i
n̂�22;i ��t n̂�21 = T (n̂�22 � n̂�11) ++ [� + (U11 � U21)n̂��11 ℄n̂�21 �� (U22 � U12)n̂�21n̂��22 � i
n̂�21;i ��t n̂�12 = �T (n̂�22 � n̂�11)�� [� + (U11 � U21)n̂��11 ℄n̂�12 ++ (U22 � U12)n̂�12n̂��22 � i
n̂�12;
(6)

where � = "1 � "2 is the detuning between the energylevels in the QDs. System of equations (6) 
ontains ex-pressions for the pair 
orrelators n̂��1 n̂�21 and n̂��1 n̂�12,whi
h also determine relaxation of the lo
alized 
hargeand 
onsequently have to be evaluated. In this sys-tem, we negle
t higher-order 
orrelation fun
tions be-tween lo
alized and 
ontinuous-spe
trum (band) ele
-trons and perform averaging over ele
tron states in thereservoir.We introdu
e the notationK��0iji0j0 = h
yi�
j�
yi0�0
j0�0ifor the pair 
orrelators and 
onsider only the param-agneti
 
ase hn̂�i i = hn̂��i i. Then the relationsK���2111 = hn̂�21n̂��11 i = hn̂��21 n̂�11i;K���1211 = hn̂�12n̂��11 i = hn̂��12 n̂�11i;K���2122 = hn̂�21n̂��22 i = hn̂��21 n̂�22i;K���1222 = hn̂�12n̂��22 i = hn̂��12 n̂�22i (7)hold. The system of equations for pair 
orrelators
an be written in the 
ompa
t matrix form (symbol[ ℄ means 
ommutation and the symbol f g � anti
om-mutation) i ��t bK = [ bK; bH 0℄ + f bK; b�g+ b�; (8)wherebK = 0BBBB� K���2211 K���1211 K���2221 K���1221K���2111 K���1111 K���2121 K���1121K���2212 K���1212 K���2222 K���1222K���2112 K���1112 K���2122 K���1122 1CCCCA == jjKij jj (9)is the pair 
orrelators matrix,158
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ts in the system : : :bH 0 == 0BBBBBBB� 0 T T 0T �+U11�U21 0 TT 0 ��+U22�U12 T0 T T 0
1CCCCCCCA ; (10)

and
b� = 0BBBB� �i
 0 0 00 0 0 00 0 �2i
 00 0 0 �i
 1CCCCA (11)are the tunneling 
oupling matri
es.We 
an easily see that Eqs. (8) 
ontain expressionsfor the higher-order 
orrelators K�����121122 and K�����211122 .Their 
ontribution 
an be easily written in the matrixformb� = 0BBBB� 0 U2K�����121122 U1K�����211122 0�U2K�����211122 0 0 �U2K�����211122�U1K�����121122 0 0 �U1K�����1211220 U2K�����121122 U1K�����211122 0 1CCCCA ; (12)where U1 = U11 � U21 and U2 = U22 � U12.When evolution starts from the state with the
harge in the �rst QD and with the se
ond QD empty,system of equations (8) for pair 
orrelators satis�es theinitial 
onditions K���1111 (0) = 1, K���2222 (0) = 0, andK���iji0j0(0) = 0 for the other 
ombinations of indi
esi, j. If we are interested in the 
ase where all theinitial 
harge in the system is lo
alized in the se
ondQD, system of equations (8) for pair 
orrelators satis-�es the initial 
onditions K���2222 (0) = 1, K���1111 (0) = 0,and K���iji0j0(0) = 0 for the other 
ombinations of indi
esi, j. In the 
ase where the initial 
harge is equally dis-tributed between the dots, system of equations (8) forpair 
orrelators satis�es the initial 
onditionsK���1111 (0) = K���2222 (0) = K���1122 (0) = 1; K���iji0j0 (0) = 0for the other 
ombinations of indi
es i, j.The higher-order 
orrelators K�����121122 and K�����211122are exa
tly equal to zero be
ause they are the solutionof a linear homogeneous system of equations with zeroinitial 
onditions. Consequently, system of equations(6), (8), whi
h determines the lo
alized 
harge evolu-tion in 
oupled QDs 
onne
ted with the reservoir, 
anbe solved numeri
ally. The obtained results for all theinitial 
onditions are dis
ussed in Se
. 3.2.1. Analyti
 solution for time-dependent�lling numbersWe now fo
us on the spe
i�
 
on�guration of theproposed system, whi
h allows obtaining an analyti


solution. In this se
tion, we dis
uss only the situationwhere at the initial time two ele
trons with oppositespins are lo
alized only in the �rst QD on the energylevel "1 (n1�(0) = n0 = 1). Moreover, we 
onsider theCoulomb intera
tion only in the �rst QD for simpli
ity.Su
h a model is suitable in the 
ase where the �rst QDis narrow and the se
ond is rather wide [37; 41℄. Be-sides, if ele
trons are initially lo
ated in the �rst QDand the se
ond dot is empty, then �lling numbers forthe ele
trons in the se
ond QD remain rather smallduring the time evolution of the 
harge and Coulombe�e
ts in the se
ond QD are not so important as in the�rst one. Moreover, Coulomb intera
tion in the se
ondQD does not lead to an essentially new physi
s. It 
anbe treated by a rather simple renormalization of detun-ing: � has to be substituted by e� = � � U22 + U12 andthe Coulomb 
oupling in the �rst QD, U11, has to besubstituted by eU11 = U11 + U22 � 2U12.The formal solution of the system for pair 
orrela-tors (see Eq. (8)) 
an be written using the evolutionoperator. Time evolution of the matrix elements Kij(see Eq. (9)) is given by the expressionKij(t) =Xmn (e�i bHt)imKmn(0)(ei bHyt)nj ; (13)where bH = bH 0 + b�.We introdu
e the evolution operator�ij(t) = (e�i bHt)ij : (14)The time evolution of the pair 
orrelators 
an then befound from the expressions159
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h, N. S. Maslova, P. I. Arseev ÆÝÒÔ, òîì 145, âûï. 1, 2014K���2111 = (e�i bHt)12K(0)22(ei bHyt)22 == �12(t)e�22(t);K���1211 = (e�i bHt)22K(0)22(ei bHyt)21 == �22(t)e�21(t); (15)sin
e K(0)22 in the matrix (see Eq. (9)) is equal toK���1111 (0) = 1. The evolution operator e�22(t) 
an beobtained from the operator �22(t) by the substitutionst ! �t and 
 ! �
. The pair 
orrelator K���1211 is a
omplex 
onjugate of K���2111 .Finally, the evolution operators �ij(t) are deter-mined by the equations0BBBBBBBBBBBB�
i ��t�12(t)i ��t�22(t)i ��t�32(t)i ��t�42(t)

1CCCCCCCCCCCCA = bH0BBBB� �12(t)�22(t)�32(t)�42(t) 1CCCCA ; (16)
with the initial 
onditions�ij(0) = Æij : (17)The 
hara
teristi
 equation for the eigenvalues �i ofthe evolution operator �ij(t) has the form(H11 � �)(H22 � �)(H33 � �)(H44 � �)��T 2[(H11��)(H22��)+(H11��)(H33��)++ (H33��)(H44��)+(H22��)(H44��)℄ = 0; (18)where H11 = H44 = �i
;H22 = � + U11;H33 = �� � 2i
: (19)Ea
h eigenvalue �i determines the 
orresponding eigen-ve
tor  i = 0BBBB� �i�i
iÆi 1CCCCA : (20)We have to obtain expressions for the evolution op-erators �12(t) and �22(t) with the initial 
onditions�22(0) = 1 and �ij(0) = 0.

The solution of the system of equations for �12(t)and �22(t) 
an be written as�12(t) = 4Xi=1 Ci�i exp(�i�it);�22(t) = 4Xi=1 Ci�i exp(�i�it); (21)where the 
onstants Ci 
an be obtained from the initial
onditions for the system of equations:Xi Ci�i = 0;Xi Ci�i = 1;Xi Ci
i = 0;Xi CiÆi = 0: (22)
2.2. Equations for time-dependent �llingnumbersThe time-dependent �lling numbers n1(t) 
an befound from the inhomogeneous part of Eqs. (6), whi
hgives("�i ��t + i
�2 + 
2#"�i ��t + i
�2 � �2# �� 4T 2�i ��t + i
�2)n1(t) = �i ��t + 2i
��� T �U1(G�12 K���1211 +G�11 K���2111 ) �� U2(G�12 K���2111 +G�11 K���2122 )� ; (23)where G�12 = i ��t + � + i
;G�11 = i ��t � � + i
: (24)The solution of the Eq. (23) des
ribes lo
alized 
hargerelaxation and 
onsists of the two parts: the �rst isthe general solution of the homogeneous equation nh1 (t)(the right-hand side is equal to zero) and the se
ond is aparti
ular solution, en1(t), of the inhomogeneous equa-tion:n1(t) = nh1(t) + en1(t) == nh1 (t) + tZ0 G(t� t0)P (t0) dt0; (25)160
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ts in the system : : :where G(t � t0) is the Green's fun
tion of Eq. (23)with Æ(t � t0) in the right-hand side and P (t0) is theright-hand side of Eq. (23), whi
h appears due to theCoulomb 
orrelations.The general solution of the homogeneous equationhas the form [36℄nh1 (t) = n01[A0 exp (�i(E1 �E�1 )t) ++ 2Re(B0 exp(�i(E1 �E�2 )t)) ++ C 0 exp(�i(E2 �E�2 )t)℄; (26)where A0 = jE2 � "1j2jE2 �E1j2 ; C 0 = jE1 � "1j2jE2 �E1j2 ;B0 = � (E2 � "1)(E�1 � "1)jE2 �E1j2 : (27)The eigenfrequen
ies Ei 
an be found from the equa-tion (E � "1)(E � "2 + i
)� T 2 = 0; (28)and are given byE1;2 = 12("1 + "2 � i
)�� 12p("1 � "2 + i
)2 + 4T 2: (29)The Green's fun
tion G(t � t0) of Eq. (23) 
an bewritten asG(t� t0) = 4Xi=1 ai exp (�i�i(t� t0))�(t� t0); (30)and 
onsequently, the parti
ular solution of the inho-mogeneous equation has the formen1(t) =Xijk aiCj exp(��it) 1�i(�j � ��k � �i) �� [exp (�i(�j � ��k � �i)t)� 1℄ ; (31)where �j(k) 
an be found from Eq. (18) and �i arethe roots of the 
hara
teristi
 equation arising fromEq. (23):�1;2 = �i
 � �4T 2 + �2 � 
22 ++ 12p(4T 2 + �2 � 
2)2 + 4�2
2 �1=2 ;�3;4 = �i
 � �4T 2 + �2 � 
22 �� 12p(4T 2 + �2 � 
2)2 + 4�2
2 �1=2 : (32)

These roots are related to the eigenfrequen
ies Ei as�1;2 = E1;2 �E�1;2;�3 = E1 �E�2 ;�4 = E2 �E�1 : (33)The 
oe�
ients ai area1 = 1(�2 � �1)(�3 � �1)(�4 � �1) ;a2 = 1(�1 � �2)(�3 � �2)(�4 � �2) ;a3 = 1(�1 � �3)(�2 � �3)(�4 � �3) ;a4 = 1(�1 � �4)(�2 � �4)(�3 � �4) : (34)
We now fo
us on the two limit 
ases where the ex-pressions that determine the dynami
s of the �llingnumbers have a rather 
ompa
t form. The �rst 
aseis where the detuning between the empty energy levelsin the QDs is equal to zero: �=
 � 1. The se
ond 
asedeals with the situation where the sum of the detun-ing and half the Coulomb 
oupling value is equal tozero. This means that the resonan
e between the half-o

upied energy level in the �rst QD and the emptylevel in the se
ond QD o

urs:� + U11=2
 � 1:We also assume that the 
ondition T � 
 � U11 isful�lled in both 
ases.2.3. �=
� 1The eigenvalues of the 
hara
teristi
 equation in the�rst 
ase (�=
 � 1), to within T 2=U211 have the form�1 = U11 � i2T 2
U2 ;�2 = �i
 � i2T 2
 ;�3 = �2i
 � i2T 2
 ;�4 = �i
: (35)

11 ÆÝÒÔ, âûï. 1 161
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e, the evolution operators 
an be written as�12(t) = TU11 �exp��iU11t� 2T 2
U211 t� �� exp��
t� 2T 2
 t�� ;�22(t) = �1� 2T 2U2 � exp��iU11t� 2T 2
U211 t�++ 2T 2U211 exp��
t� 2T 2
 t� ; (36)
and time dependen
e of the pair 
orrelators K���2111 andK���1211 is determined by the produ
tK���2111 (t) = �12(t)��22(t);K���1211 (t) = (K���2111 )�: (37)Th expression for P (t) (see Eq. (25)) in the 
ase ofthe resonan
e between empty levels, �=
 = 0, has theformP (t) = 4T 2
 exp��4T 2�
 t�++ 2T 2U11 exp (�
t) 
os(U11t); (38)where � = 
2=(U211 + 
2). For � = 1=2, the inhomoge-neous part of the time evolution of the �lling numbersen1(t) 
an be written asen1(t) = T 2
2 ���2
t� exp��2T 2
 t�� �� exp��2T 2
 t�+ exp(�2
t) ++ 4 exp��2T 2
 t�� 4 exp(�
t)�++ 2T 2U11 exp(�
t)
3 [
os(U11t)� 1℄ ++O� T 2U211 
U11� : (39)For � � 1, the time evolution of the �lling numbersen1(t) is given byen1(t) = 11�2� �exp��4T 2�
 t�� exp��2T 2
 t��++O�T 2
2 � : (40)

2.4. (�+U11=2)=
� 1In the se
ond 
ase of interest ((� + U11=2)=
 � 1but U11=
 � 1), the eigenvalues are�1 = U112 � i8T 2
U211 ;�2 = �i
 + 8T 2U11 ;�3 = �2i
 + U112 � i8T 2
U211 + 4T 2U11 ;�4 = �i
: (41)
Th evolution operators take the form�12(t) = 2TU11 �� �exp��iU112 t�8T 2
U211 t�� exp(�
t)� ;�22(t) = �1�8T 2U211 � exp��iU112 t�8T 2
U211 t�++ 8T 2U211 exp(�
t): (42)
When the 
ondition (�+U11=2)=
 = 0 is ful�lled, P (t)is determined by the expressionP (t) = �T 2U211�exp�iU112 t� 
t�+ h.
.��� 4T 2
2 exp��16T 2
U211 t� (43)to within T 3=U311 and 
2=U211.The inhomogeneous part of the time evolution ofthe �lling numbers en1(t), to within T 2=U211, has theformen1(t) = �47 �1� exp��14T 2
U211 t�� exp��2T 2
U211 t��� 2 T 2
U11 exp(�
t) sin�U112 t�+O� T 2U211� : (44)We note that relaxation of the �lling numbers inthe proposed model 
an be analyzed by means of asimpler method, the self-
onsistent mean-�eld approx-imation [37; 42; 43℄. In this approximation, the 
orrela-tion fun
tions U11hn̂��i n̂�iji in Eqs. (6) are substitutedby the expressions U11hn̂��i ihn̂�iji. This substitution isvalid in the 
ase where �lling numbers for the lo
alizedele
trons n��i 
hange their values rather slowly. The
al
ulation s
heme 
onsists of two steps. In the �rststep, the initial energy level position "i is repla
ed bythe expression e"i = "i + U11hn̂��i i162
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ts in the system : : :and the time-dependent �lling numbers are evaluated.The se
ond step deals with the self-
onsistent 
al
ula-tion of the time-dependent �lling numbers for the ele
-trons. For some ranges of the system parameters, themean-�eld approximation reveals qualitatively good re-sults [37℄. But in general 
ase, the mean-�eld approx-imation is insu�
ient to des
ribe relaxation pro
essesin systems with 
orrelations.3. MAIN RESULTS AND DISCUSSIONTime evolution of the ele
tron �lling numbersstrongly depends on the initial 
harge 
on�guration ofthe system and on the relations between the systemparameters (energy levels positions, the di�eren
e ofCoulomb intera
tion between various lo
alized states,and the relations between tunneling rates). We 
on-sider the situation where T < 
 < Uij .We �rst analyze the situation where all the 
hargein the system is lo
alized in the �rst QD at the initialtime instant and the se
ond QD is empty (see Fig. 2 andFig. 3a,d). In what follows, we dis
uss the 
ase of bothpositive (see Fig. 2) and negative (see Fig. 3a,d) initialdetunings �. We start from the energy level 
on�gu-ration with positive detuning. Figure 2a demonstratesthe de
rease in the lo
alized 
harge relaxation rate inthe �rst QD with the in
rease in the Coulomb 
ou-pling values (the grey line and the bla
k dashed line)in 
omparison with the 
ase where Coulomb intera
-tion is absent (bla
k line). This e�e
t o

urs be
ausethe presen
e of strong Coulomb repulsion results in anin
rease in the initial detuning value. Simultaneously,the in
rease in Coulomb 
oupling values leads to a de-
ease in the �lling number amplitudes in the se
ondQD (see Fig. 2b ). Time evolution of the �lling num-bers demonstrates several typi
al time intervals withextremely di�erent values of relaxation rates if �=
 < 1.At the �rst stage, relaxation o

urs with the rate very
lose to 
res = 2T 2=
. This stage also demonstratesthe in
rease in the �lling number amplitudes in the se
-ond dot (see Fig. 2b ). Further time evolution in bothdots reveals a de
rease in the 
harge amplitude, whi
ho

urs with the typi
al relaxation rate very 
lose to
nonres = 
res 
2
2 + �2 :The energy-level 
on�guration that 
orresponds tothe negative initial detuning reveals mu
h more inter-esting results (see Fig. 3a,d). It 
an be found that 
rit-i
al Coulomb 
oupling values exist in the system for agiven set of parameters that 
orresponds to the relax-ation regime 
hanging. For the values smaller than the
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Fig. 2. Time evolution of �lling numbers in the pres-en
e of Coulomb intera
tion in the 
ase of a positiveinitial detuning �=
 in the �rst (a) and the se
ond(b ) QD. The initial 
harge is lo
alized in the �rst QD(n1(0) = 1, n2(0) = 0). The bla
k line 
orrespondsto the 
ase where U11=
 = 0, U12=
 = U21=
 = 0,and U22=
 = 0; the grey line des
ribes the situationwhere U11=
 = 2:0, U12=
 = U21=
 = 1:2; andU22=
 = 1:5; and the bla
k dashed line, the 
asewhere U11=
 = 10:0, U12=
 = U21=
 = 4:0, andU22=
 = 8:0. For all �gures the parameter valuesT=
 = 0:6, 
 = 1:0, and �=
 = 0:8 are the same
riti
al one, Coulomb intera
tion results in an in
reasein the lo
alized 
harge relaxation rate in the �rst QDand leads to an in
reasing in �lling number amplitudesin the se
ond dot in 
omparison with the 
ase whereCoulomb intera
tion is absent (see Fig. 3a,d bla
k andgrey lines).For the on-site Coulomb repulsion values largerthan the 
riti
al one, the lo
alized 
harge time evo-lution reveals a de
rease in both the lo
alized 
hargerelaxation rate in the �rst QD and the �lling-number163 11*
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tγFig. 3. Time evolution of �lling numbers in the presen
e of Coulomb intera
tion in the 
ase of a negative initial detuning �=
:in the �rst (a�
) and in the se
ond QD (d�f). The bla
k line 
orresponds to the 
ase where U11=
 = 0, U12=
 = U21=
 = 0,and U22=
 = 0; the grey line des
ribes the situation where U11=
 = 1:8, U12=
 = U21=
 = 1:3, and U22=
 = 1:5, andthe bla
k dashed line, the 
ase where U11=
 = 10:0, U12=
 = U21=
 = 4:0, and U22=
 = 8:0. a and d: the initial 
hargeis lo
alized in the �rst QD (n1(0) = 1, n2(0) = 0); b and e: the initial 
harge is lo
alized in the se
ond QD (n1(0) = 0,n2(0) = 1); 
 and f: the initial 
harge is lo
alized in the both QDs (n1(0) = 1, n2(0) = 1). For all �gures, the parametervalues T=
 = 0:6, 
 = 1:0, and �=
 = �0:8 are the sameamplitudes in the se
ond one in 
omparison with the
ase where Coulomb repulsion is absent (see Fig. 3a,dbla
k and bla
k dashed lines). This is the result of thepositive e�e
tive detuning formation; 
onsequently, forlarge values of Coulomb intera
tion, relaxation revealsa behavior very similar to the 
ase with a positive ini-tial detuning (Fig. 2). Moreover, the typi
al relaxationrates are very 
lose to the rate obtained for the energy-level 
on�guration with positive detuning.We now fo
us on the situation where all the ini-tial 
harge in the system is lo
alized in the se
ond QDat the initial time instant and the �rst dot is empty(see Fig. 3b,e). The system behavior is then very sim-ilar for positive and negative detunings, and we there-fore fo
us only on the 
ase of negative initial detuning.The in�uen
e of Coulomb intera
tion on the lo
alized
harge relaxation in the 
ase of both positive and neg-ative initial detunings is negligible in 
omparison withthe 
ase where Coulomb repulsion is absent. Coulomb
orrelations modify the �lling number time evolutiononly slightly, and relaxation o

urs with the typi
al ratevalue 
lose to 
. Due to the possibility of dire
t tun-

neling from the se
ond QD to the 
ontinuous-spe
trumstates, the lo
alized 
harge amplitude de
reases fasterthan in the 
ase where all the 
harge is lo
alized in the�rst dot (see Fig. 3a,e).The most interesting situation is shown in Fig. 3
,f.Cal
ulation results 
orrespond to the 
ase where the lo-
alized 
harge is equally distributed between the dotsat the initial time instant. We �rst des
ribe the mostinteresting features of relaxation pro
ess that are validboth in the presen
e and in the absen
e of on-siteCoulomb repulsion and o

ur for both values of theinitial detuning.Time evolution of the lo
alized 
harge in both QDsreveals three typi
al time intervals with di�erent valuesof the relaxation rate. The �rst time interval in the �rstQD demonstrates a plateau on the time interval of theorder of 
. This interval demonstrates that the 
hargeis still entirely lo
alized in the �rst QD, be
ause these
ond dot is o

upied. The 
harge starts to �ow fromthe �rst dot to the se
ond one only when the se
ond-dot energy level be
omes nearly half empty due to thedire
t tunneling from the se
ond dot to the 
ontinuous-164
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2Fig. 4. Di�erent time evolution regimes of the �lling numbers n1(t) in the �rst QD in the presen
e of Coulomb intera
tion.a) (�+U1 �U2)=
 = 0 ((U1 � U2)=
 = 10 and �=
 = �10, bla
k line; (U1 �U2)=
 = 5 and �=
 = �5, grey dashed line;(U1 � U2)=
 = 3 and �=
 = �3, bla
k dashed line; (U1 � U2)=
 = 1 and �=
 = �1, grey line); b ) (� + U1 � U2)=
 � 1((U1 � U2)=
 = 10 and �=
 = �7, bla
k line; (U1 � U2)=
 = 5 and �=
 = �4, grey dashed line; (U1 � U2)=
 = 3and �=
 = �2:5, bla
k dashed line; (U1 � U2)=
 = 1 and �=
 = �0:75, grey line); 
) �=
 = 0 (U=
 = 10, bla
k line;(U1 � U2)=
 = 5, grey dashed line; (U1 � U2)=
 = 3, bla
k dashed line; (U1 � U2)=
 = 1, grey line). The parametersT=
 = 0:6 and 
 = 1 are the same for all �guresspe
trum states. When both QDs are o

upied by twoele
trons with opposite spins, 
harge transfer betweenthe dots is forbidden due to the Pauli prin
iple. Hen
e,at the �rst stage of relaxation, the 
harge in the �rstQD is trapped even in the absen
e of Coulomb 
or-relations. On-site Coulomb repulsion results in a moredramati
 
harge redistribution between the QDs, whi
h
an be seen in Fig. 3
,f. The 
harge time evolution inthe se
ond QD o

urs with the typi
al relaxation ratevery 
lose to 
.The se
ond time interval is 
onne
ted with the for-mation of a plateau in the �lling-number time evolu-tion in the se
ond QD. The time interval that deter-mines the plateau is of the order of 
. This interval
orresponds to the pro
ess of relaxation, and the rates
onsequently 
hange in both dots. The next time in-terval demonstrates lo
alized 
harge relaxation in bothQDs with the typi
al relaxation rate very 
lose to
nonres = 
res 
2
2 + �2 :This time interval 
orresponds to the situation whereboth dots are nearly empty. Consequently, �lling num-ber relaxation in both QDs o

urs with strongly di�er-ent relaxation rates when the 
harge is mostly 
on�nedin the dots.We next dis
uss the lo
alized 
harge time evolutionin the regime where the 
ondition (�+U1�U2)=
 � 1is ful�lled. In this 
ase, the in
reasing in the Coulomb
oupling value leads to a de
rease in the �lling-numberrelaxation rate (see Fig. 4a). For large U1 � U2, therelaxation rate is rather low and is of the order of


nonres = 2 T 2
(U1 � U2)2 ;whi
h is typi
al for the system of two 
oupled QDswithout Coulomb intera
tion and with j�j � U1 � U2.By the de
reasing the Coulomb 
oupling value U1�U2,we a
hieve the situation of resonant tunneling betweenthe lo
alized states, and 
onsequently the relaxationrate in
reases. In Fig. 4
, the situation of resonant tun-neling between empty energy levels �=
 = 0 is demon-strated. In this 
ase, the relaxation of the lo
alized
harge o

urs with the typi
al rate very 
lose to thevalue 
res = 2T 2=
 and is almost independent of theCoulomb intera
tion value. We note that relaxationpro
esses are governed not only by the typi
al expo-nentials exp(�
t) and exp(�2T 2t=
) but also by thepreexponential fa
tor, whi
h linearly in
reases in timein the resonant 
ase (see Eq. (39)).A very spe
ial relaxation regime exists in the systemif the 
ondition � + U1 � U2
 � 1holds (see Fig. 4b ). In this regime, Coulomb 
orrela-tions result in formation of a dip in the time evolutionof the lo
alized 
harge. At the initial relaxation stage,the 
harge in the �rst QD rapidly de
reases due to thealmost resonant relation between the level in the se
-ond QD and the e�e
tive single-ele
tron energy in the�rst dot. It follows from the third and the fourth equa-tions in (6) that 
hanging of the e�e
tive energy leveldetuning is determined by165
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h di�ers from the typi
al mean-�eld expression(U1 � U2)hn̂��i (t)i [42℄.At a 
ertain instant of time the e�e
tive single-ele
t-ron level falls down below the level in the se
ond QD. Atthis instant, the inverse 
harge begins to �ow from these
ond QD to the �rst one. The o

upation in the �rstQD demonstrates a signi�
ant in
rease after rea
hingthe minimum value (the dip formation). Filling num-bers almost rea
h the initial value for large values ofCoulomb intera
tion. After the dip formation, the typ-i
al time s
ale that determines relaxation of the �llingnumbers is su�
iently 
lose to the value
nonres = 2T 2
�2 :This explanation gives a qualitative pi
ture of the dipformation. The exa
t solution shows that Coulomb 
or-relations are responsible for su
h nonmonotoni
 behav-ior. This e�e
t is determined by the inhomogeneouspart of the exa
t solution for time evolution of the�lling numbers in the �rst QD (see the �rst term inEq. (44)). And this inhomogeneous part appears be-
ause time dependen
e of the higher-order 
orrelators(P (t) in Eq. (23) and Eq. (25)) is 
ompletely taken intoa

ount. That is why time evolution of the �lling num-bers for the ele
trons di�ers 
onsiderably from that inthe mean-�eld approximation. The width of the dip
an be roughly estimated as (1=8)
�1nonres.Comparison between the exa
t solution and themean-�eld approximation is demonstrated in Figs. 5,6. It is 
lear that both methods reveal similar pe
uliar-ities of the system behavior su
h as several time rangeswith 
onsiderably di�erent relaxation rates. For someranges of the system parameters, formation of the dip
an also be reprodu
ed in the mean-�eld approxima-tion (see Fig. 5). Figure 5 also demonstrates similarbehavior of the exa
t and mean-�eld solutions at theinitial stage of relaxation. But the dip is reprodu
edin
orre
tly in the mean-�eld approximation.In the 
ase of resonant tunneling between the en-ergy levels in the QDs (�=
 = 0), the exa
t solution andthe mean-�eld approximation reveal a strong mismat
h(see Fig. 6a). The exa
t solution demonstrates rathersmooth time evolution of the lo
alized 
harge, while thesolution obtained by means of the mean-�eld approxi-mation reveals abrupt 
hanges in the lo
alized 
hargeamplitude. As the Coulomb repulsion de
reases, the
orresponden
e between the exa
t and the mean-�eldsolutions improves (see Fig. 6b ).
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Fig. 5. Time dependen
e of the �lling numbers forthe ele
trons n1(t) in the presen
e of Coulomb intera
-tion: 
omparison of the exa
t solution and the mean-�eld approximation. The bla
k lines 
orrespond to theexa
t solution, the bla
k dashed lines 
orrespond tothe mean-�eld approximation. The grey lines demon-strate relaxation of the lo
alized 
harge in the absen
eof Coulomb intera
tion. a) (U1 � U2)=
 = 5 and�=
 = �3; b ) (U1 � U2)=
 = 3 and �=
 = �2. Theparameters T=
 = 0:6 and 
 = 1 are the same for all�gures4. CONCLUSIONWe have studied time evolution of the �lling num-bers in the system of two intera
ting QDs 
oupled with
ontinuous-spe
trum states in the presen
e of Coulombintera
tion for a wide range of the system parameters.Di�erent initial 
harge 
on�gurations were 
onsidered.The solution des
ribing the system dynami
s was an-alyzed under the assumption that the band and lo
al-ized �lling numbers for the ele
trons are un
oupled.This solution exa
tly takes all-order 
orrelators for thelo
alized ele
trons in the QDs into a

ount.166
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Fig. 6. Relaxation of the �lling numbers n1(t) in thepresen
e of Coulomb intera
tion in the 
ase of reso-nant tunneling between the empty energy levels in theQDs. The bla
k lines 
orrespond to the exa
t solution,the bla
k dashed lines 
orrespond to the mean-�eld ap-proximation. The grey lines demonstrate relaxation ofthe lo
alized 
harge in the absen
e of Coulomb inter-a
tion. a) �=
 = 0 and (U1 � U2)=
 = 3; b ) �=
 = 0and (U1 �U2)=
 = 1. The parameters T=
 = 0:6 and
 = 1 are the same for all �guresWe found strongly di�erent relaxation regimes inthe system of 
oupled QDs depending on the ratiosbetween the system parameters. An interesting mani-festation of Coulomb 
orrelations is the formation of adip in the time evolution of the lo
alized 
harge. Su
hreentrant 
harge behavior is not the result of simplequantum os
illations between the two energy levels.We 
ompared our results with the mean-�eldapproximation. The mean-�eld approximation 
an insome 
ases give qualitatively similar pe
uliarities of thesystem behavior: several time ranges with 
onsiderably

di�erent relaxation rates and dip formation. But themean-�eld approximation results do not 
oin
idewith the exa
t solution in many regimes. Even ifthe mean-�eld approximation qualitatively 
orre
tlypredi
ts the appearan
e of the dip, its shape and widthstrongly di�er from those given by the exa
t solution.We a
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