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ON LOW-TEMPERATURE PROPERTIES OF UNIAXIALDIELECTRICS WITH A SOFT OPTIC MODED. E. Khmelnitskii *Cavendish Laboratory, University of CambridgeCB3 0HE, Cambridge, UKRe
eived September 9, 2013Diele
tri
 properties, thermal expansion, and the rate of spin�latti
e relaxation at low temperatures in uniaxialdiele
tri
s with a soft opti
al mode are dis
ussed.DOI: 10.7868/S00444510140101551. A uniaxial diele
tri
 with a 
harge separationamong the 
onstituent atoms has an opti
 phononmode, whi
h 
orresponds to os
illation of the diele
-tri
 polarization Pz along the z axis. The frequen
y ofsu
h a mode at small wave ve
tors k is des
ribed bythe relation !2(k) = !2(0) + sk2 + �k2zk2 ; (1)where � =Xj 4�z2jmjv0 :The 
oe�
ient � re�e
ts the degree of 
harge separa-tion among the 
onstituent atoms. The parameters zjand mj respe
tively represent the 
harge and the massof the ion of kind j, and v0 is the volume of the ele-mentary 
ell. In typi
al ioni
 
rystals, the parameter �(the square of the plasma frequen
y of ions) is of theorder of the square !2D of the Debye frequen
y. It fol-lows from Eq. (1) that as k ! 0, the frequen
y !(k)depends on the angle between the dire
tion of the waveve
tor k and z axis. This re�e
ts the long-range 
har-a
ter of dipole�dipole intera
tion between polarizationsat di�erent points in spa
e1).2. The dipole�dipole modi�
ation of the phononspe
trum presented in Eq. (1) plays an important role ifthe frequen
y !(0) in the 
entre of the Brillouin zone is*E-mail: dek12�
am.a
.uk1) Stri
tly speaking, dispersion of the frequen
y !(k) dependson the dire
tion of the wave ve
tor k. For simpli
ity, we negle
tthis anisotropy as not leading to a qualitative di�eren
e and re-pla
e the tensor ŝ by a s
alar 
oe�
ient s.

espe
ially small (soft opti
 mode !(0)� !D). In su
ha 
ase, anharmoni
ity plays an important role, whi
hresults in a temperature dependen
e of the frequen
y!(0) of the soft mode. As was shown in Ref. [1℄,!2(0; T )� !2(0; 0) / Z (dk)n(k)!(k) ;n(k) = �exp�~!(k)T �� 1��1 : (2)Cal
ulating the integral in Eq. (2) with dispersionlaw (1), we obtain!2(0; T ) = !2(0; 0) +AT 3: (3)The parameter !2(0; 0) in Eq. (3) 
an, in prin
iple, benegative2). This means that the 
rystal undergoes adispla
ement-type phase transition at the temperatureT
 that 
an be found from the relation!2(0; T
) = 0 = !2(0; 0) +AT 3
 :At T � T
, a spontaneous polarization P along z axisappears.Thermal dependen
e of the frequen
y of the softmode (3) results in a modi�
ation of the Curie�Weisslaw for diele
tri
 sus
eptibility �(T ),�(T ) = C3T 3 � T 3
 ; T � T
: (4)The parameter T
 
an be positive or negative. IfT
 > 0, the diele
tri
 sus
eptibility �(T ) diverges ata �nite temperature, indi
ating a transition into the2) In the 
ase where !2(0; 0) < 0, it is assumed in Eq. (3) thatA T 3 � j!2(0)j.153
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tri
 phase at T � T
. If T
 < 0, �(T ) remains�nite at all temperatures. The di�eren
e from the re-sults in Ref. [1℄ is in appearan
e of a T 3 dependen
e inEqs. (3) and (4).3. As was mentioned in Ref. [1℄, the presen
e ofa soft opti
 mode in the phonon spe
trum results in amodi�
ation of the thermal expansion in the tempera-ture range ~j!(0; 0)j < T < !D:Modi�
ation of this result for a uniaxial 
rystal goesalong the same line as in the analysis of diele
tri
 sus-
eptibility: the thermal expansion 
oe�
ient �(T ) isproportional to the derivative of the number of ther-mally ex
ited opti
 phonons with respe
t to the tem-perature, and therefore�(T ) / � ��T �p Z (dk)n(k)!(k) / T 2: (5)4. As was shown in Ref. [2℄, the phase diagram inthe temperature�pressure plane (T; p) is determined bythe number N(T ) of thermally ex
ited opti
 phononsat low temperatures. Sin
e the modi�
ation of thephonon spe
trum due to dipole�dipole intera
tion leadsto a redu
tion in N(T ), the phase diagram undergoesa 
hange: the 
riti
al pressure p
 of the ferro-ele
tri
transition depends on the temperature T asp
(T )� p
(0) / �T 3: (6)5. The spin�latti
e relaxation rate 1=�1(T ) in di-ele
tri
s is determined by the spin �ips due to Raman-like s
attering of phonons (see, e. g., Ref. [3℄). At lowtemperatures T � �D, in most of diele
tri
s, the lead-ing 
ontribution arises from the Raman s
attering ofa
ousti
 phonons [4℄ 1�1(T ) / T 7:Here, the high power of temperature arises from the to-tal number of thermal phonons N / T 3 and the fourthpower of the wave ve
tor3). The situation 
hanges if thediele
tri
 has a soft opti
 mode4). The 
ontribution ofthese phonons in 
ubi
 
rystals is [5℄1�1(T ) / T 3; ~!(0) < T � �D: (7)3) An a
ousti
 displa
ement u� enters any equation not itselfbut in the form of its gradient u�� .4) An opti
 displa
ement x� itself is allowed by the symmetryto enter equations.

The situation 
hanges on
e again in uniaxial 
rystals ifthe soft opti
 mode 
orresponds to os
illations of thepolarization along the z axis. Due to dispersion law (1),1�1(T ) / T 4; ~!(0) < T � �D: (8)6. Finally, the 
rystal might belong to one of piezo-ele
tri
 
rystalline 
lasses (see, e. g., [6℄). In this 
ase,even for small wave ve
tors, we 
annot separate theopti
 mode 
orresponding to os
illations of the polar-ization P along the z axis and the transverse a
ousti
mode. The Lagrangian of 
oupled vibrations of thepolarization P and the elasti
 deformationsuij = 12 ��ui�rj + �uj�ri �in the long-wavelength limit has the formL = Z dr���m2 _P 2�m!2(0)2 P 2�ms2 (rP )2� b4 P 4 ++ M2 _u2i � �2u2ii � �u2ij � dP uxy� : (9)Here, m is the redu
ed mass 
hara
teristi
 for the modeof opti
 vibrations, M is the mass of all atoms in theunit 
ell, s 
hara
terises the long-wave dispersion of op-ti
 mode, � and � are elasti
 moduli, and d is the piezo-ele
tri
 
oe�
ient. Diagonalizing quadrati
 form (9),we obtain the following expression for the frequen
y!(k) of the mode, whi
h does not vanish as k! 0 (seeRefs. [6; 7℄):!2 = !2(0)� d4m� + sk2 ++ d4m� "k2zk2 + 4 �+ ��+ 2� k2xk2yk4 # : (10)Equation (10) shows that similarly to the in�uen
e ofdipole�dipole intera
tion, the piezoele
tri
 
oupling re-sults in introdu
ing, into the dependen
e of the opti
vibration frequen
y, a dependen
e on the dire
tion ofthe wave ve
tor k, whi
h does not vanish at k ! 0.In the spirit of the foregoing, this leads to the temper-ature dependen
e of the frequen
y !2(0). Cal
ulatingthe an-harmoni
 
orre
tion, we obtain!2(0; T ) = !2(0; 0) +A0T 4: (11)Thermal expansion is also modi�ed:�(T ) / T 3: (12)154



ÆÝÒÔ, òîì 145, âûï. 1, 2014 On low-temperature properties : : :Equation (6) for the 
riti
al pressure p
(T ) of the fer-roele
tri
 transition undergoes the modi�
ationp
(T )� p
(0) / �T 4; (13)and the spin�latti
e relaxation rate5),1�1(T ) / T 5; ~!(0)� d4m� < T � �D: (14)7. Cubi
 
rystals with soft opti
 modes are a sub-je
t of a
tive resear
h for nearly 50 years. As regardsto uniaxial 
rystals, there are very few examples ofthis kind. In re
ent experiments [8℄, the propertiesof brominated tris-sar
osine 
al
ium 
hloride (TSCC)were studied. These experiments showed that TSCChas a weak 
harge separation, the parameter � inEq. (1) is anomalously small, and therefore the e�e
tsof dipole�dipole intera
tion are negligible. I am grate-ful to S. E. Rowley and S. F. S
ott for the opportunityto familiarize myself with the results of these experi-ments and for the instru
tive dis
ussions. I hope thatthis paper will help to �nd a material in whi
h thementioned e�e
ts are stronger.8. Many years ago, in 1970�72, two graduatestudents in Chernogolovka, late V. L. Shneerson and I,embarked on the studies of the displa
ement type tran-

5) The di�eren
e between Waller's T 7 and T 3 in Ref. [5℄ seemsvery signi�
ant, while the di�eren
e between T 7 and T 5, per-haps, is not so easy to dete
t.

sitions at low temperatures. This short 
omment isdedi
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