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1. A uniaxial dielectric with a charge separation
among the constituent atoms has an optic phonon
mode, which corresponds to oscillation of the dielec-
tric polarization P, along the z axis. The frequency of
such a mode at small wave vectors k is described by
the relation
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w?(k) = w?(0) + sk? + nk—g, (1)
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The coefficient & reflects the degree of charge separa-
tion among the constituent atoms. The parameters z;
and m; respectively represent the charge and the mass
of the ion of kind j, and vg is the volume of the ele-
mentary cell. In typical ionic crystals, the parameter
(the square of the plasma frequency of ions) is of the
order of the square w? of the Debye frequency. It fol-
lows from Eq. (1) that as k — 0, the frequency w(k)
depends on the angle between the direction of the wave
vector k and z axis. This reflects the long-range char-
acter of dipole—dipole interaction between polarizations
at different points in space').

2. The dipole—dipole modification of the phonon
spectrum presented in Eq. (1) plays an important role if
the frequency w(0) in the centre of the Brillouin zone is
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1) Strictly speaking, dispersion of the frequency w(k) depends
on the direction of the wave vector k. For simplicity, we neglect
this anisotropy as not leading to a qualitative difference and re-
place the tensor § by a scalar coefficient s.

especially small (soft optic mode w(0) € wp). In such
a case, anharmonicity plays an important role, which
results in a temperature dependence of the frequency
w(0) of the soft mode. As was shown in Ref. [1],

n(k)

w?(0,T) — w?(0,0) /(dk)m,

a0 = o [229] 1)

Calculating the integral in Eq. (2) with dispersion
law (1), we obtain

(2)

w?(0,T) = w?(0,0) + AT?. (3)

The parameter w?(0,0) in Eq. (3) can, in principle, be
negative?). This means that the crystal undergoes a
displacement-type phase transition at the temperature
T. that can be found from the relation

w?(0,T.) = 0 = w?(0,0) + AT2.

At T < T, a spontaneous polarization P along z axis
appears.

Thermal dependence of the frequency of the soft
mode (3) results in a modification of the Curie-Weiss
law for dielectric susceptibility x(7'),
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The parameter T, can be positive or negative. If
T, > 0, the dielectric susceptibility y(7') diverges at
a finite temperature, indicating a transition into the

2) In the case where w?(0,0) < 0, it is assumed in Eq. (3) that
AT3 > [22(0)].
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ferroelectric phase at T' < T... If T.. < 0, x(T') remains
finite at all temperatures. The difference from the re-
sults in Ref. [1] is in appearance of a T® dependence in
Eqgs. (3) and (4).

3. As was mentioned in Ref. [1], the presence of
a soft optic mode in the phonon spectrum results in a
modification of the thermal expansion in the tempera-
ture range

hlw(0,0)| < T < wp.

Modification of this result for a uniaxial crystal goes
along the same line as in the analysis of dielectric sus-
ceptibility: the thermal expansion coefficient «(T) is
proportional to the derivative of the number of ther-
mally excited optic phonons with respect to the tem-

perature, and therefore
) Ji
»

4. As was shown in Ref. [2], the phase diagram in
the temperature—pressure plane (7', p) is determined by
the number N(T') of thermally excited optic phonons
at low temperatures. Since the modification of the
phonon spectrum due to dipole—dipole interaction leads
to a reduction in N(T'), the phase diagram undergoes
a change: the critical pressure p. of the ferro-electric
transition depends on the temperature T' as

9
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n(k)

(k) ox T~

Mﬂu( (5)

Pe(T) = pe(0) o< =T°. (6)

5. The spin-lattice relaxation rate 1/7(T") in di-
electrics is determined by the spin flips due to Raman-
like scattering of phonons (see, e.g., Ref. [3]). At low
temperatures T' < O p, in most of dielectrics, the lead-
ing contribution arises from the Raman scattering of
acoustic phonons [4]

1

xT".
m(T)

Here, the high power of temperature arises from the to-
tal number of thermal phonons N o 7% and the fourth
power of the wave vector?). The situation changes if the
dielectric has a soft optic mode® . The contribution of
these phonons in cubic crystals is [5]

1

& T,
i (T)

hw(0) < T < Op. (7)

3) An acoustic displacement 1, enters any equation not itself
but in the form of its gradient u,g.

1) An optic displacement z, itself is allowed by the symmetry
to enter equations.
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The situation changes once again in uniaxial crystals if
the soft optic mode corresponds to oscillations of the
polarization along the z axis. Due to dispersion law (1),

1

o T4,
m(T)

hw(0) < T < Op. (8)
6. Finally, the crystal might belong to one of piezo-
electric crystalline classes (see, e.g., [6]). In this case,
even for small wave vectors, we cannot separate the
optic mode corresponding to oscillations of the polar-
ization P along the z axis and the transverse acoustic
mode. The Lagrangian of coupled vibrations of the
polarization P and the elastic deformations

87‘]' 87‘2’
in the long-wavelength limit has the form

Ez/drx

1
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Here, m is the reduced mass characteristic for the mode
of optic vibrations, M is the mass of all atoms in the
unit cell, s characterises the long-wave dispersion of op-
tic mode, A and pu are elastic moduli, and d is the piezo-
electric coefficient. Diagonalizing quadratic form (9),
we obtain the following expression for the frequency
w(k) of the mode, which does not vanish as k — 0 (see
Refs. [6,7]):

d
2 _ 200 _ K2
w® =w”(0) 1 M+8 +
2 27.2
d |k A+ Kk - (10)
dmyp | k2 A+2p k4

Equation (10) shows that similarly to the influence of
dipole—dipole interaction, the piezoelectric coupling re-
sults in introducing, into the dependence of the optic
vibration frequency, a dependence on the direction of
the wave vector k, which does not vanish at k — 0.
In the spirit of the foregoing, this leads to the temper-
ature dependence of the frequency w?(0). Calculating
the an-harmonic correction, we obtain

w*(0,T) = w?(0,0) + A'T*. (11)
Thermal expansion is also modified:
aT) o T3 (12)
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Equation (6) for the critical pressure p.(7T") of the fer-
roelectric transition undergoes the modification

pc(T) _pc(o) X _T47 (13)
and the spin—lattice relaxation rate®,
L o) - - <r<0 (14)
n(r Ay v

7. Cubic crystals with soft optic modes are a sub-
ject of active research for nearly 50 years. As regards
to uniaxial crystals, there are very few examples of
this kind. In recent experiments [8], the properties
of brominated tris-sarcosine calcium chloride (TSCC)
were studied. These experiments showed that TSCC
has a weak charge separation, the parameter s in
Eq. (1) is anomalously small, and therefore the effects
of dipole—dipole interaction are negligible. I am grate-
ful to S. E. Rowley and S. F. Scott for the opportunity
to familiarize myself with the results of these experi-
ments and for the instructive discussions. I hope that
this paper will help to find a material in which the
mentioned effects are stronger.

8. Many years ago, in 1970-72, two graduate
students in Chernogolovka, late V. L. Shneerson and I,
embarked on the studies of the displacement type tran-

5) The difference between Waller’s T7 and T in Ref. [5] seems
very significant, while the difference between T7 and T%, per-
haps, is not so easy to detect.
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sitions at low temperatures. This short comment is
dedicated to the memory of V. L. Shneerson.
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