КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ, УПРУГИЕ, ПЬЕЗОЭЛЕКТРИЧЕСКИЕ И МАГНИТОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ HoFe₃(BO₃)₄ И HoAl₃(BO₃)₄

В. И. Зиненко^{*}, М. С. Павловский, А. С. Крылов, И. А. Гудим, Е. В. Еремин

Институт физики им. Л. В. Киренского Сибирского отделения Российской академии наук 660036, Красноярск, Россия

Поступила в редакцию 21 июня 2013 г.

Для кристаллов HoFe₃ (BO₃)₄ и HoAl₃ (BO₃)₄ были получены спектры комбинационного рассеяния света при различных температурах, из которых были определены частоты колебаний кристаллической решетки в центре зоны Бриллюэна, а также было установлено наличие фазового перехода в кристалле HoFe₃ (BO₃)₄ при $T_c \approx 366$ K. Экспериментально исследован магнитоэлектрический эффект в парамагнитной фазе рассматриваемых соединений. В рамках метода функционала плотности вычислены частоты колебаний решетки, упругие и пьезоэлектрические модули, динамические заряды Борна и высокочастотная диэлектрическая проницаемость. Обнаружено необычное поведение поперечной акустической ветви колебаний в направлении $\Gamma \rightarrow Z$ зоны Бриллюэна кристалла HoFe₃ (BO₃)₄. Проведена оценка величины индуцированной внешним полем электрической поляризации с использованием вычисленных значений пьезоэлектрических модулей и экспериментальных величин магнитострикции.

DOI: 10.7868/S0044451013120067

1. ВВЕДЕНИЕ

Семейство кристаллов RM₃(BO₃)₄ (R — редкоземельный ион, M = Al, Sc, Fe, Ga) в последнее десятилетие активно исследуется благодаря своим интересным физическим свойствам и их разнообразию при различных комбинациях R- и М-элементов. Кристаллическая структура с пространственной группой симметрии R32 и с одной молекулой в элементарной ячейке принадлежит структурному типу природного минерала хантита [1]. Параметры элементарной ячейки и относительные координаты атомов приведены в табл. 1. В зависимости от химического состава в некоторых кристаллах данного семейства при изменении температуры наблюдается необычный структурный фазовый переход $R32 \rightarrow P3_121$ с изменением только трансляционной симметрии кристалла. Точечная симметрия D₃ при этом переходе сохраняется. В соединениях RFe₃(BO₃)₄ наблюдается фазовый переход из парамагнитного в антиферромагнитное состояние. Подробное обсуждение магнитных свойств ферроборатов приведено в обзорах [3, 4].

В последнее время в этом семействе кристаллов обнаружено возникновение электрической поляризации в результате перехода в антиферромагнитное состояние [4] (авторы работы [4] называют эту поляризацию «спонтанной») или под действием приложенного к кристаллу внешнего магнитного поля [5]. В частности, в соединении HoFe₃(BO₃)₄ исследовано поведение поляризации ниже температуры Нееля [4], а в соединении $HoAl_3(BO_3)_4$, в котором никакого магнитного порядка не наступает вплоть до очень низких температур, обнаружены появление поляризации и ее зависимость от величины приложенного магнитного поля в достаточно широкой области температур [5]. Следует отметить, что величина индуцированной магнитным полем электрической поляризации в HoAl₃(BO₃)₄ на два порядка больше величины «спонтанной» поляризации в $HoFe_3(BO_3)_4$ [4,5]. Экспериментальные фононные спектры и упругие свойства некоторых представителей семейства RM₃(BO₃)₄ исследованы в работах [6–8]. Для рассматриваемых в этой работе кристаллов НоFe₃(BO₃)₄ и HoAl₃(BO₃)₄ информации о колебательных спектрах и упругих свойствах в литературе мы не обнаружили.

^{*}E-mail: zvi@iph.krasn.ru

Таблица 1. Параметры решетки и относительные координаты атомов кристаллов HoFe₃(BO₃)₄ [1] и HoAl₃(BO₃)₄ [2] в фазе *R*32

		${\rm Fe}$	Al
$a, \mathrm{\AA}$		9.5337	9.2900
$c, \mathrm{\AA}$		7.5711	7.231
Но	x	0	0
(3a)	y	0	0
(- /	z	0	0
М	x	0.4508	0.44333
(9d)	y	0	0
(- /	z	0	0
B1	x	0	0
(3b)	y	0	0
(0-)	z	1/2	1/2
B2	x	0.55070	0.55836
(9e)	y	0	0
	z	1/2	1/2
01	x	0.1446	0.14947
(9e)	y	0	0
× /	z	1/2	1/2
02	x	0.4074	0.40883
(9e)	y	0	0
	z	1/2	1/2
03	x	0.5444	0.55053
(9e)	y	0.8531	0.85035
(- /	z	0.4842*	0.47802

Примечание. Звездочкой отмечена свободная координата, которая варьировалась при расчете, см. текст.

Целью настоящей работы является экспериментальное определение предельных частот колебаний кристаллов HoFe₃(BO₃)₄ и HoAl₃(BO₃)₄, измерение электрической поляризации, индуцируемой внешним магнитным полем в парамагнитной фазе кристаллов HoFe₃(BO₃)₄ и HoAl₃(BO₃)₄, теоретические расчеты динамики кристаллической решетки, упругих и пьезоэлектрических постоянных кристаллов HoFe₃(BO₃)₄ и HoAl₃(BO₃)₄ и оценка магнитоэлектрического эффекта с использованием вычисленных значений пьезоэлектрических модулей и экспериментальных значений магнитострикционных постоянных для рассматриваемых кристаллов.

2. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Монокристаллы HoFe₃(BO₃)₄ и HoAl₃(BO₃)₄ выращивались из раствора-расплава по методике, описанной в работе [9], и достигали размеров 5 мм. Ориентирование образцов осуществлялось рентгеновским методом. Исследование поляризационных спектров комбинационного рассеяния света было проведено в области температур 8-400 К на спектрометре Т64000 при возбуждении аргоновым лазером с длинами волн 514 нм (HoFe₃(BO₃)₄) и 488 нм (HoAl₃(BO₃)₄). Экспериментальные спектры этих соединений для двух значений температур (8, 380 К для HoFe₃(BO₃)₄ и 8, 300 К для HoAl₃(BO₃)₄) показаны на рис. 1, 2. Как видно на этих рисунках, в случае кристалла HoAl₃(BO₃)₄ спектры колебаний решетки при высокой и низкой температурах существенно не различаются (во всяком случае, при низкой температуре не появляются дополнительные частоты колебаний), в то же время в случае НоFe₃(BO₃)₄ спектр колебаний при низкой температуре существенно отличается от спектра при температуре 380 К. Как видно на рис. 1, в спектре $HoFe_3(BO_3)_4$ при T < 380 К появляются новые моды колебаний, подтверждающие наличие структурного фазового перехода в этом соединении, обнаруженного ранее при экспериментальном исследовании теплоемкости [10]. Из исследования температурной зависимости мягкой моды в фазе $P3_121$ (вставка на рис. 1) определена температура $T_c \approx 366 \text{ K}$ структурного фазового перехода $R32 \rightarrow P3_121$. Определенная в работе [10] температура этого перехода составила 427 К. Причины такого сильного расхождения в температурах фазового перехода по измеренным данным фононных спектров и теплоемкости для соединения $HoFe_3(BO_3)_4$ неясны.

Следует отметить, что спектры исследованных здесь соединений качественно очень похожи на спектры других редкоземельных боратов, для которых эти спектры известны [6].

В табл. 2 приведены экспериментальные значения активных в спектрах комбинационного рассеяния частот колебаний для соединений $\mathrm{HoFe}_3(\mathrm{BO}_3)_4$ и $\mathrm{HoAl}_3(\mathrm{BO}_3)_4$ и их сравнение с результатами расчета, о котором будет сказано в разд. 3.

Магнитоэлектрические исследования проводились путем измерения заряда между двумя контактами (нанесенными эпоксидной смолой с проводящим наполнителем), приложенными к противоположным сторонам плоскопараллельной пластинки, электрометром Keithley 6517B. Температура и магнитное поле регулировались с помощью

Рис. 1. Спектры комбинационного рассеяния кристалла $HoFe_3(BO_3)_4$ при T = 380 К и T = 8 К. На вставке показана зависимость положений линий от температуры: a — жесткая мода, b — мягкая мода при структурном фазовом переходе

PPMS-9 (Quantum Design).

На рис. З изображены полевые зависимости продольной $\Delta P_{bb}(H_b)$ электрической поляризации соответственно HoAl₃(BO₃)₄ и HoFe₃(BO₃)₄, снятые при различной температуре. Зависимости для HoAl₃(BO₃)₄ качественно совпадают с зависимостями, полученными для направления *ab* (электрическая поляризация снимается вдоль направления *a*, магнитное поле приложено вдоль направления *b*), приведенными в работе [5], и количественно совпадают с полученными ранее зависимостями для того же направления [11].

3. РЕЗУЛЬТАТЫ РАСЧЕТА СПЕКТРА КОЛЕБАНИЙ КРИСТАЛЛИЧЕСКОЙ РЕШЕТКИ, УПРУГИХ И ПЬЕЗОЭЛЕКТРИЧЕСКИХ МОДУЛЕЙ

Расчет динамики кристаллической решетки, компонент тензоров высокочастотной диэлектрической проницаемости, динамических зарядов Борна, упру-

гих и пьезоэлектрических модулей для кристаллов $HoFe_3(BO_3)_4$ и $HoAl_3(BO_3)_4$ проведен в рамках неэмпирической модели поляризуемых ионов. Детали модели описаны в обзоре [12]. Все расчеты проведены на экспериментальных значениях параметров решетки и координат атомов, которые приведены в табл. 1. В табл. 2 приведены значения частот колебаний в центре зоны Бриллюэна для HoFe₃(BO₃)₄ и HoAl₃(BO₃)₄ в ромбоэдрической фазе и их сравнение с экспериментальными величинами. Разложение колебательного представления по неприводимым представлениям имеет вид $\Gamma = 7A1 + 13A2 + 20E$, включая акустические моды A2 + E. Моды типа A1 активны в спектрах комбинационного рассеяния (КР), моды типа A2 активны и в ИК-спектрах, а двукратно вырожденные моды типа Е активны и КР-, и в ИК-спектрах. Как следует из табл. 2, для обоих рассматриваемых соединений предельные частоты колебаний в области низких (не больше 200 см⁻¹) и высоких частот (около 1100-1400 см⁻¹) удовлетворительно согласуются с

Рис.2. Спектры комбинационного рассеяния кристалла $HoAl_3(BO_3)_4$ при T=300 K и T=8 K

экспериментальными величинами, а в средней области частот (200–1000 см⁻¹) согласие между вычисленными и экспериментальными значениями частот колебаний менее удовлетворительное.

В табл. 3 приведены вычисленные значения компонент тензора высокочастотной диэлектрической проницаемости и динамических зарядов Борна. Как следует из табл. 3, для Но и Fe(Al) тензор динамических зарядов Борна Z_{ik} практически изотропен, а для ионов бора и кислорода имеется сильная анизотропия в величинах компонент Z_{ik}. В частности, величина компоненты Z_{zz} для ионов бора, которая связана с колебаниями бора в направлении, перпендикулярном плоскости треугольника ВО₃, аномально мала. К сожалению, мы не обнаружили в литературе ни экспериментальных, ни расчетных данных о динамических зарядах для кристаллов данного семейства. Что касается величин компонент ε_{∞} , для рассматриваемых здесь соединений мы также не обнаружили экспериментальных данных по показателям преломления, однако приведенные в табл. 3 значения ε_{xx} , ε_{yy} , ε_{zz} удовлетворительно согласуются с этими величинами, например, для кристал $\varepsilon_{xx} = \varepsilon_{yy} = 3.35, \, \varepsilon_{zz} = 3.06 \, [13].$

эдрической установке) кристаллов $HoFe_3(BO_3)_4$ и $HoAl_3(BO_3)_4$ в структуре с пространственной группой симметрии R32, вычисленных по экспериментальным значениям параметров ячейки и координат атомов (см. табл. 1).

ла того же семейства LaSc₃(BO₃)₄, для которого

решетки (в направлениях $\Gamma \to Z \to A \to Z' \to X \to$

На рис. 4 и 5 показана часть спектров колебаний

В кристалле HoFe₃(BO₃)₄ имеется структурный фазовый переход R32 $(n = 1) \rightarrow P3_121$ (n = 3)(n - число молекул в элементарной ячейке) с изменением только трансляционной симметрии кристалла.По литературным данным температура этого фазового перехода <math>T = 427 K [10], по данным, приведенным здесь в разд. 2, этот переход происходит при $T_c \approx 366$ K. Как видно на рис. 4, 5, в спектрах колебаний HoFe₃(BO₃)₄ и HoAl₃(BO₃)₄, вычисленных по экспериментальным значениям координат атомов, нестабильные моды отсутствуют. Однако проведен-

 $[\]rightarrow$ Г зоны Бриллюэна, где Z = 1/2 ($\mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3$), $A = 1/2\mathbf{b}_1, Z' = 1/2$ ($\mathbf{b}_1 - \mathbf{b}_2 - \mathbf{b}_3$), X = 1/2 ($\mathbf{b}_1 - \mathbf{b}_3$), $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$ — векторы обратной решетки в ромбо-

⁵ ЖЭТФ, вып. 6 (12)

Экспер	римент	Расчет		Эксперимент		Расчет			
${ m HoFe}_3$	$(BO_3)_4$	$HoFe_3(BO_3)_4$		$\mathrm{HoAl}_{3}(\mathrm{BO}_{3})_{4}$		$\mathrm{HoAl}_{3}(\mathrm{BO}_{3})_{4}$			
A1	E	A1	A2	E	A1	E	A1	A2	E
181	84	133	72	64	259	115	193	62	64
315	160	261	127	125	301	402	279	80	157
474	199	353	129	159	525	553	332	152	183
634	229	494	201	182	768	625	497	187	200
995	271	820	205	202	888	972	780	216	212
1237	327	852	217	219	1201	923	827	222	244
	351	1253	248	243		956	1159	240	250
	392		261	255		1023		265	267
	446		479	285		1169		450	276
	580		578	302		1166		527	298
	675		652	321		1294		630	313
	737		1292	461				1307	446
	910			468					454
	1405			491					475
				645					627
				847					811
				1201					1112
				1245					1162
				1311					1331

Таблица 2.	Предельные частоты	колебания ([см−1)	кристаллов	$HoFe_3(BO_3)_4 \nu$	⊢HoAl3(BO3)4 E	$_3$ фазе $R32$
------------	--------------------	-------------	--------	------------	----------------------	----------------	-----------------

ные нами расчеты показывают, что поведение одной из поперечных акустических ветвей колебаний с волновым вектором $\lambda = \mu(\mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3) \ (0 \le \mu \le 1/2)$ очень чувствительно к значению свободной координаты z иона кислорода O3 (в табл. 1 эта координата помечена звездочкой).

На рис. 6 показано поведение ветви λ_3 (двукратная акустическая мода в центре зоны Бриллюэна расщепляется на две однократные моды $E = \lambda_2 + \lambda_3$) для нескольких значений свободной координаты zиона ОЗ. Там же для сравнения показано поведение акустических ветвей λ_1 и λ_2 для трех значений z. Из рис. 6 следует, что продольная λ_1 и одна из поперечных λ_2 акустических ветвей практически не чувствительны к изменению значения координаты z, в то же время с изменением координаты z кислорода ОЗ наблюдается аномалия в дисперсионной зависимости моды λ_3 , а именно, частоты колебаний этой моды в области волнового вектора $q \approx 1/3$ ($\mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3$) стремятся к нулю с увеличением z. экономии места показаны только ионы гольмия и железа) моды λ_3 (q = 1/3 ($\mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3$)). Искажение в фазе R32 по этому собственному вектору приводит к пространственной группе $P3_121$ с тремя молекулами в элементарной ячейке, что соответствует экспериментально наблюдаемой структуре ниже T_c в некоторых редкоземельных ферроборатах и, в частности, в HoFe₃(BO₃)₄ [1] и согласуется с результатами теоретико-группового анализа (см., например, программу ISOTROPY [14]), согласно которому фазовый переход R32 (n = 1) $\rightarrow P3_121$ (n = 3) связан с одной компонентой двумерного полного представления Λ_3 (звезда представления Λ_3 содержит два вектора $q_1 = \mu(\mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3)$ и $q_2 = -\mu(\mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3)$ [15]).

В данном расчете квадрат частоты моды λ_3 ($q = 1/3(\mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3)$) становится отрицательным при значительном искажении экспериментально определенной структуры в фазе R32 (значение координаты z кислорода O3 ≈ 0.53 и это соответствует смещению кислорода O3 из экспериментально определенной позиции примерно на 0.3 Å, что представляет-

	$\mathrm{HoFe_{3}(BO_{3})_{4}}$			$\mathrm{HoAl}_3(\mathrm{BO}_3)_4$		
	$Z_{ik} \ (i = x, y, z; k = x, y, z)$			$Z_{ik} \ (i = x, y, z; k = x, y, z)$		
	3.37	0.00	0.00	3.39	0.00	0.00
Но	0.00	3.36	-0.03	0.00	3.39	-0.03
	0.00	0.01	3.27	0.00	0.00	3.28
	3.47	-0.05	0.03	3.51	-0.11	0.07
${ m Fe}/{ m Al}$	0.01	3.49	0.15	-0.03	3.60	0.11
	0.01	0.01	3.89	0.00	0.00	3.47
	4.20	0.00	0.00	4.14	0.00	0.00
B1	0.00	4.25	-0.05	0.00	4.16	-0.05
	0.00	0.02	0.74	0.00	0.00	0.93
	3.52	-0.32	0.08	3.50	-0.34	0.28
B2	-0.21	3.90	0.01	-0.23	3.87	0.14
	0.29	0.20	1.05	0.30	0.19	1.23
	-2.11	1.07	-0.48	-2.03	1.16	-0.46
O1	1.01	-3.10	-0.30	1.17	-3.16	-0.30
	-0.32	-0.21	-1.59	-0.26	-0.16	-1.57
	-1.99	1.17	-0.38	-1.96	1.28	-0.41
O2	1.20	-3.31	-0.22	1.32	-3.35	-0.22
	-0.30	-0.18	-1.48	-0.24	-0.14	-1.40
	-1.69	-0.66	-0.07	-1.68	-0.82	-0.21
O3	-0.96	-2.76	-0.59	-1.03	-2.79	-0.68
	-0.18	-0.51	-1.62	-0.21	-0.47	-1.57
	ε_{xx}	ε_{yy}	ε_{zz}	ε_{xx}	ε_{yy}	ε_{zz}
ε	4.05	4.05	2.93	4.30	4.30	3.04

Таблица 3. Компоненты тензора динамических зарядов Борна в единицах заряда электрона, высокочастотная диэлектрическая проницаемость кристаллов $\mathrm{HoFe}_3(\mathrm{BO}_3)_4$ и $\mathrm{HoAl}_3(\mathrm{BO}_3)_4$ в фазе R32

ся маловероятным). Таким образом, по результатам данного расчета мы можем говорить только о качественном поведении нестабильной моды колебаний λ_3 . Здесь следует отметить, что, как следует из наших расчетов, дипольные и квадрупольные взаимодействия, учитываемые в используемой нами модели, стабилизируют моду λ_3 : без учета этих взаимодействий (модель жесткого иона) аномальная дисперсионная зависимость моды λ_3 более чувствительна к значению координаты *z* кислорода O3, как это показано на рис. 7.

Результаты расчета упругих и пьезоэлектрических модулей HoFe₃(BO₃)₄ и HoAl₃(BO₃)₄ приведены в табл. 5. К сожалению, мы не обнаружили экспериментальных данных по упругим свойствам рассматриваемых соединений, однако мы можем провести сравнение полученных здесь значений упругих постоянных с экспериментальными величинами известными для других кристаллов данного семейства, в частности, для кристаллов TbFe₃(BO₃)₄ [7] и PrFe₃(BO₃)₄ [8]. Расхождение между вычисленными здесь модулями упругости и известными экспериментальными значениями находится в пределах 15%. Обращает на себя внимание вычисленное высокое значение модуля C_{11} . Экспериментальные значения этого модуля составляют для TbFe₃(BO₃)₄

Рис. 3. Зависимость продольной электрической поляризации ΔP_{bb} от величины приложенного магнитного поля H_b при различных температурах кристаллов $HoFe_3(BO_3)_4$ и $HoAl_3(BO_3)_4$

272 ГПа [7], а для PrFe₃(BO₃)₄ 335 ГПа [8].

Что касается пьезоэлектрических модулей, то их экспериментальные значения для рассматриваемых здесь кристаллов нам также неизвестны. Мы можем провести сравнение с экспериментально измеренным для кристалла GdFe₃(BO₃)₄ модулем $d_{11} =$ = $(0.10 \pm 0.05) \cdot 10^{-11}$ Kл/H [16], вычисленное в настоящей работе значение этого пьезомодуля для HoFe₃(BO₃)₄ составило $d_{11} = 0.47 \cdot 10^{-11}$ Kл/H, что, по крайней мере, по порядку величины согласуется с экспериментальным значением.

Обсудим теперь магнитоэлектрический эффект, экспериментальные результаты которого приведены на рис. 3. Мы исходим из предположения, что этот эффект определяется магнитострикцией и пьезоэлектричеством: при приложении внешнего магнитного поля *H* (или при возникновении магнитного упорядочения, если оно происходит) возникает де-

Таблица 4. Компоненты собственного вектора моды λ_3

	x	y	z
	-0.11694	-0.11694	0.00000
Ho	0.10911	0.00785	0.00000
	0.00785	0.10911	0.00000
	-0.02878	-0.02878	0.00000
Fe	0.02687	0.00192	0.00000
	0.00192	0.02687	0.00000
	-0.04728	-0.06232	-0.05888
	-0.06232	-0.04728	0.05888
	0.06038	0.02043	-0.05890
	0.02043	0.06038	0.05890
	-0.01309	0.04186	-0.05889
	0.04186	-0.01309	0.05889

Таблица 5. Модули упругости (ГПа) и пьезоэлектрические модули (Кл/м²) кристаллов HoFe₃(BO₃)₄ и HoAl₃(BO₃)₄ в фазе *R*32

	$\mathrm{HoFe_{3}(BO_{3})_{4}}$	$\mathrm{HoAl}_{3}(\mathrm{BO}_{3})_{4}$
C ₁₁	370	395
C ₃₃	159	173
C_{12}	125	131
C_{13}	72	61
C_{44}	68	64
C_{14}	30	10
<i>e</i> ₁₁	0.99	1.75
e ₁₄	0.11	0.50

формация кристаллической решетки $u_i = \gamma_{ikl} H_k H_l$ (использованы обозначения Фогта), γ_{ikl} — тензор магнитоупругого взаимодействия. В свою очередь, при возникновении деформации в пьезоэлектрическом кристалле появляется поляризация $P_k = e_{ki}u_i$, где e_{ki} — тензор пьезоэлектрических модулей. Следовательно, при приложении внешнего магнитного поля в парамагнитной фазе кристалла в нем возникает электрическая поляризация $P \propto H^2$ (эта зависимость действительно наблюдается, как это видно на рис. 3). Для оценки величины индуцируемой внешним магнитным полем поляризации в об-

Рис. 5. Вычисленный фононный спектр кристалла HoAl₃(BO₃)₄

Рис. 6. Дисперсионные зависимости акустических мод колебаний кристалла $\operatorname{HoFe}_3(\operatorname{BO}_3)_4$ в фазе R32, вычисленные при различных значениях координаты z кислорода O3, $\Lambda = 1/3(\mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3)$, $\blacksquare - z = 0.4842$, $\Box - z = 0.5200$, $\times - z = 0.5280$

Рис.7. Дисперсионная зависимость поперечной акустической моды кристалла $\operatorname{HoFe_3(BO_3)_4}$ в фазе R32 при различных значениях координаты z кислорода O3, вычисленная в модели жесткого иона, $\Lambda = 1/3(\mathbf{b_1} + \mathbf{b_2} + \mathbf{b_3}), \blacksquare - z = 0.4842, \square - z = 0.5100$. Мнимые моды показаны отрицательными значениями

суждаемых здесь кристаллах мы используем вычисленные значения пьезоэлектрических модулей (см. табл. 5) и экспериментальные данные о величинах магнитоупругой связи. Для кристалла HoAl₃(BO₃)₄ из работы [5] было взято значение магнитострикции равное $8 \cdot 10^{-5}$. Для кристалла HoFe₃(BO₃)₄ в литературе экспериментальных измерений величины магнитострикции мы не обнаружили, поэтому для оценки поляризации в этом кристалле мы использовали значение магнитострикции $5 \cdot 10^{-6}$, полученное в работе [17] для кристалла GdFe₃(BO₃)₄. Вычисленные здесь значения поляризации кристаллов HoFe₃(BO₃)₄ и HoAl₃(BO₃)₄ составили соответственно 4.95 мкKл/м² и 140 мкKл/м², а полученные экспериментально в данной работе значения поляризации кристаллов HoFe₃(BO₃)₄ и HoAl₃(BO₃)₄ составили соответственно 40 мкКл/м² и 1200 мкКл/м².

4. ЗАКЛЮЧЕНИЕ

В Заключении перечислим кратко результаты работы.

 В кристаллах НоFe₃(ВO₃)₄ и HoAl₃(ВO₃)₄ измерены спектры комбинационного рассеяния света и проведен неэмпирический расчет спектров колебаний кристаллической решетки, динамических зарядов Борна, упругих и пьезоэлектрических модулей. Вычисленные предельные частоты колебаний более менее удовлетворительно согласуются с измеренными величинами.

2) В результате расчета получено, что на экспериментальных значениях параметров элементарной ячейки и координат атомов в спектрах колебаний кристаллической решетки нестабильная мода колебаний отсутствует. Однако показано, что величины частот колебаний поперечной акустической ветви в направлении $\Gamma \to Z$ зоны Бриллюэна очень чувствительны к значению свободной координаты z кислорода ОЗ и при определенном значении z (как отмечено в разд. 3, полученное в расчете значение представляется маловероятным) частота колебаний решетки при $q \approx 1/3(\mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3)$ становится мнимой. К сожалению, нам не известны экспериментальные фононные спектры для кристаллов данного семейства, а исследования дисперсии поперечной акустической ветви в направлении $\Gamma \rightarrow Z$ были бы интересны. С этой нестабильностью кристаллической решетки связан структурный фазовый переход R32 $(n = 1) \rightarrow P3_121$ (n = 3), который наблюдается в кристалле $HoFe_3(BO_3)_4$ и в некоторых других кристаллах этого семейства.

3) Экспериментально исследован магнитоэлектрический эффект в парамагнитной фазе в кристаллах HoFe₃(BO₃)₄ и HoAl₃(BO₃)₄ и показано, что величина индуцированной внешним магнитным полем электрической поляризации в соединении с алюминием в тридцать раз превышает величину поляризации в соединении с железом при одной и той же величине внешнего магнитного поля. Проведена оценка величины индуцированной внешним полем электрической поляризации с использованием вычисленных значений пьезоэлектрических модулей и взятых из литературных данных экспериментальных величин магнитострикции. Полученные величины поляризации для обоих соединений примерно на порядок меньше экспериментальных значений, однако из этих оценок следует, что в соответствии с экспериментом в соединении HoAl₃(BO₃)₄ величина поляризации примерно в тридцать раз превышает эту величину в НоFe₃(BO₃)₄ и это различие обусловлено, главным образом, различием в величинах магнитострикции в этих соединениях.

Работа выполнена при финансовой поддержке гранта Президента РФ «Ведущие научные школы» (НШ.4828.12.2), РФФИ (грант № 12-02-00025-а), а также Министерства образования и науки Российской Федерации (соглашение № 8365).

ЛИТЕРАТУРА

- C. Ritter, A. Vorotynov, A. Pankrats et al., J. Phys.: Condens. Matter 20, 365209 (2008).
- 2. М. С. Молокеев, частное сообщение.
- **3**. А. Н. Васильев, Е. А. Попова, ФНТ **32**, 968 (2006).
- А. М. Кадомцева, Ю. Ф. Попов, Г. П. Воробьев и др., ФНТ 36, 640 (2010).

- K.-C. Liang, R. P. Chaudhury, B. Lorenz et al., Phys. Rev. B 83, 180417R (2011).
- D. Fausti, A. A. Nugroho, P. H. M. van Loosdrecht et al., Phys. Rev. B 74, 024403 (2006).
- Г. А. Звягина, К. Р. Жеков, Л. Н. Безматерных и др., ФНТ 34, 1142 (2008).
- Г. А. Звягина, К. Р. Жеков, А. А. Звягин и др., ФНТ 36, 376 (2010).
- L. N. Bezmaternykh, V. L. Temerov, I. A. Gudim et al., Crystall. Rep. 50, Suppl. 1, 97 (2005).
- Y. Hinatsu, Y. Doi, K. Ito et al., J. Sol. St. Chem. 172, 438 (2003).
- 11. А. И. Бегунов, А. А. Демидов, И. А. Гудим, Письма в ЖЭТФ 97, 611 (2013).
- **12**. Е. Г. Максимов, В. И. Зиненко, Н. Г. Замкова, УФН **174**, 1145 (2004).
- J. Cho, S. Lee, and Y. M. Yu, J. Korean Phys. Soc. 50, 1090 (2007).
- 14. H. T. Stokes, D. M. Hatch, and B. J. Campbell, ISOTROPY, stokes.byu.edu/isotropy.html (2007).
- 15. О. В. Ковалев, Неприводимые и индуцированные представления и копредставления федоровских групп, Наука, Москва (1986).
- 16. Б. П. Сорокин, Д. А. Глушков, А. В. Кодяков, Вестник КрасГУ, Вып. 5, 49 (2004).
- 17. А. М. Кадомцева, Ю. Ф. Попов, С. С. Кротов и др., ФНТ 31, 1059 (2005).