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In derivating Bell's inequalities, the probability distribution is supposed to be a function only of a hidden vari-
able. We point out that the true implication of the probability distribution of Bell's correlation function is the
distribution of joint measurement outcomes on the two sides. It is therefore a function of both the hidden
variable and the settings. In this case, Bell's inequalities fail. Our further analysis shows that Bell's locality
holds neither for dependent events nor for independent events. We think that the measurements of EPR pairs
are dependent events, and hence violation of Bell's inequalities cannot rule out the existence of the local hidden
variable. To explain the results of EPR-type experiments, we suppose that a polarization-entangled photon pair
can be composed of two circularly or linearly polarized photons with correlated hidden variables, and a couple
of experiments of quantum measurement are proposed. The first uses delayed measurement on one photon of
the EPR pair to demonstrate directly whether measurement on the other could have any nonlocal influence on
it. Then several experiments are suggested to reveal the components of the polarization-entangled photon pair.
The last one uses successive polarization measurements on a pair of EPR photons to show that two photons

with the same quantum state behave the same under the same measuring conditions.
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1. INTRODUCTION

Quantum theory gives only probabilistic predictions
for individual events based on the probabilistic inter-
pretation of the wave function, which leads to the sus-
picion of the incompleteness of quantum mechanics and
the puzzle of nonlocality of the measurement of EPR
pairs [1]. Indeed, if hidden-variable theory is not in-
troduced into quantum measurement, we can hardly
understand the distant correlation of EPR pairs, e. g.,
quantum teleportation and quantum swapping [2, 3].
Bell pointed out that any theory that is based on
the joint assumptions of locality and realism conflicts
with the quantum mechanical expectation [4]. Since
then, various local and nonlocal hidden-variable mod-
els against Bell’s inequalities have been proposed (see,
e.g., [5-10]), among which the most attractive one
is the time-related and setting-dependent model sug-
gested by Hess and Philipp [10], but it was criticized
in [11] and [12] for being nonlocal. As a matter of
fact, there is an assumption regarding the probability

*E-mail: zhlzyj@126.com

distribution in derivating Bell’s inequalities. Bell sup-
posed that it is a function of a hidden variable and
irrelevant to the measuring condition. But the valid-
ity of this assumption is dubious. It has been pointed
out by many authors that if this assumption does not
hold, then Bell’s inequalities fail [13-15]. On the other
hand, it has been shown that even if nonlocality is
taken into account, Bell’s inequalities can also be vi-
olated [16,17]. We therefore focus on Bell’s probability
distribution and discuss its validity. We point out that
its true implication is the probability distribution of
the joint measurement outcomes. Because the measure-
ment outcomes are related to settings, the probability
distribution is also related to settings. In this case,
Bell’s inequalities do not hold. We explore the physical
meaning of the hidden variable and suggest the uncer-
tainty of the spatial distribution of the particle as a
hidden variable.

In terms of quantum entanglement, the spin (po-
larization) of a pair of EPR particles is indefinite and
interdependent for the two particles. By analyzing the
existing experiments of polarization entanglement [18—
31], we show that polarization-entangled Bell states
(maximally entangled states) can be formed by circu-
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larly or linearly polarized photon pairs with correlated
hidden variables. If the hidden variable does exist, then
the quantum state of one of the EPR particles does
not change when a measurement is made on the other,
and the outcomes of a pair of particles with the same
quantum state are the same under the same circum-
stances. We propose three types of experiments to test
the above hypotheses. The experiments are easy to re-
alize because the experimental setups are very simple.

2. ON BELL’S PROBABILITY DISTRIBUTION
AND SUGGESTED HIDDEN VARIABLES

In local hidden-variable theories, Bell’s inequalities
play an important role. Bell regarded that his corre-
lation function was founded on the crucial assumption
of Einstein that the result of B is independent of the
setting of the measuring device a, and similarly A is
independent of b, whence [4]

Plab) = / Ala, \)B(b, \)p(N) dA, (1)

where A(a,\) = +1, B(b,\) = %1, and p(\) is the
probability distribution of the hidden variable accord-
ing to Bell. It was suggested in [13] that p can de-
pend on measuring conditions. In [14], this idea was
expressed using a modified definition of locality. But
many researchers insist on the locality of Eq. (1) and
believe that the probability distribution of the hidden
variable cannot be influenced by the measuring process.
Thus, the arguments in [13] and [14] are not widely ac-
cepted. If p actually represents the probability distri-
bution of the hidden variable, then Eq. (1) seems rea-
sonable. We now analyze mathematical implications of
p. Equation (1) includes four joint probabilities:

P++(A:173:1)7 P+—(A:17B:_1)7

P—+(A:_17B:1)7 P——(A:_laB:_1)~

Then we have
P(a,b):P++—P+,—P,++P,,.

Because P(a,b) actually implies the joint probabilities
of the measurement outcomes of A and B, p must be
the joint probability density function with respect to
the results of A and B, i.e., p = p(A = £1,B = £1).
Because the results of A and B depend on the set-
tings of measuring devices and hidden variables of the
pair, we have p = p(a,b,\). If it does not vary with
measuring conditions, then we have the case consid-
ered by Bell. For a pair of EPR particles, it is easy

pla,b,\)

pla’, b, )

Fig.1. Possible probability distributions under different
measuring conditions

to understand that they share the same hidden vari-
able. But there is no prior reason that the probability
distribution of measurement outcomes is irrelevant to
the settings. Two curves plotted in Fig. 1 represent the
possible probability distributions under different mea-
suring conditions a, b and a', b'.

We emphasize that p should not be regarded as the
probability distribution of the hidden variable. Instead,
it is the probability distribution of the results A and B.
Because the joint measurement outcomes are related to
a, b and ), it is natural that the joint probability dis-
tribution is a function of a, b, and A. This is the key
to understanding Bell’s correlation function. It seems
that Bell misunderstood mathematical implications of
the probability distribution.

We proceed with the analysis of Bell’s correlation
function. Bell considered the case of a pair of EPR
particles. We extend this to the general case where
particles A and B have respective hidden variables A4
and \g. Because the measurement outcome is related
to the local condition and the hidden variable, we have
A= A(a,\4) and B = B(b, \g). In the case where A4
and A\p are mutually independent, we obtain

P = [[ A A0 BOAR(a ) x
% p(b, Ap) dAadp =

= /A(a,/\A)p(a,)\A)d)\A/B(b, Ap)p(b, Ag) dAp =
=P.P, (2)

i.e., the joint probability is equal to the product of in-
dividual probabilities, which shows that the two events
are independent. If there exists a definite relation be-
tween A4 and Ap, the two events are dependent. In
that case, the joint probability density is not equal
to the product of individual probability densities. We
can only write p(a,b, A4, Ag) for it. Assuming that
Ag = f(a,b,\4), we eliminate the integral variable Ag
to obtain
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P(a,b) = /A(a,)\A)B(b,/\B)p(a,b,)\A,/\B)d)\A =
- / A(a, ) B(a,b, Np(a,b, N A, (3)

where B(a,b,\) = B(b,\p) denotes the result of B.
For a pair of EPR particles, assuming that A4 = Ap,
we obtain

Pab) = / Ala, B, plab, N dN.  (4)

We see that in this case, Eq. (1) should be modified as
Eq. (4). Similarly, we have

Pla,c) = / A(a, )Ble, pla,e, NV dX,  (5)

P(b,c) = / A, NB(e, Np(be, N dN. (6)

With the above expressions, Bell’s inequalities cannot
be obtained. We do not discuss the detailed derivation
process.

We see from above analysis that Bell’s correlation
function is valid neither for dependent events nor for
independent events. For a pair of EPR particles, their
hidden variables can be correlated because they are
born from the same particle, and hence their measure-
ment outcomes are correlated, i.e., the measurements
on the two sides are dependent events. Thus, viola-
tion of Bell’s inequalities with EPR-type experiments
cannot rule out the existence of local hidden variables.

In what follows, we discuss the problem of quan-
tum measurement based on the assumption that the
local hidden variable exists. We first explore the phys-
ical meaning of the hidden variable. Due to the wave—
particle duality and uncertainty principle, a micro-
scopic particle can be regarded as a wave packet, which
occupies a certain spatial volume. The hidden variable
represents the intrinsic fluctuating state of a particle.
Hence, any parameter that can represent the character-
istics of the spatial distribution of the particle can be
used as a hidden variable. At present, only the uncer-
tainties of position, momentum, and angular momen-
tum can be used this way, and we might as well bor-
row them to represent hidden variables. We note that
intrinsic quantum fluctuations of the particle are not
random, they also obey certain laws that are unknown
to us.

We take spin (polarization) of a particle as an ex-
ample. In classical theory, the angular momentum is a
vector, whose magnitude and projections on three di-
rections are all well-defined. In quantum mechanics,

the angular momentum magnitude is well-defined, and
we can determine its projection [, on one direction.
But the angular position ¢ and the other two projec-
tions, [, and [,, are all indefinite; ¢ and [, satisfy the
uncertainty relation

AGAL > k2.

Both A¢ and Al, indicate quantum fluctuations of a
particle around the projection (measurement) direc-
tion, and they can therefore be used as hidden vari-
ables. Because spin (polarization) is a relativistic quan-
tum effect, it is likely that the corresponding hidden
variables are irrelevant to time. We test this hypothe-
sis in the following experiment.

The hidden variables of spin (polarization) repre-
sent quantum fluctuations of the degree of freedom of
spin (polarization) in three-dimensional space, which
should be independent of external circumstances. But
the measurement on the particle always projects the
spin (polarization) on a specific direction. The quan-
tum fluctuation of spin (polarization) can be different
in different directions, i. e., the hidden variable is multi-
valued. In this sense, we may also think that the hid-
den variable varies with the measuring conditions. We
now try to explore the measuring process. In classical
mechanics and quantum field theory, we have the prin-
ciple of least action. We can introduce this principle
into quantum measurement. We define ApAl, as the
action for the spin (polarization) of a particle in the
projection (measurement) direction. When a photon
is incident on a polarizer, it has two choices. Conse-
quently, there are two possible collapsed polarization
directions and two corresponding actions. We suppose
that the photon always chooses the direction with the
smaller action. For a linearly polarized photon, its po-
larization direction can be regarded as the direction
with the least action, i.e., we have ApAl, = /2 in
this direction. Thus, when the polarization direction
of a photon is parallel to the orientation of a polarizer,
the photon passes through the polarizer with certainty.
Similarly, we define the product of the uncertainties of
position and momentum as the action for the motion
of the center of mass of a photon.

In the general case, when a measurement is made
on a particle, its quantum state collapses into another
state, and the collapsing process is nonlinear and irre-
versible. A small change in the external circumstances
or the hidden variable may lead to a different result,
i.e., the measurement outcome is sensitive to the ex-
ternal circumstances and hidden variables. Hence, the
collapse of the quantum state is chaotic. From this
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Fig.2. Experimental test of Bell's inequalities: S is a
source; D; are the counters; C'C' are the coincidence
counters

standpoint, the evolutions of microcosm and macro-
cosm, and even of the universe are chaotic in essence.

3. INTERPRETATION OF EPR-TYPE
EXPERIMENTS

The experiment used to test Bell’s inequalities with
the polarization state of photon pairs is shown in Fig. 2.
A pair of EPR photons is incident on a pair of polariza-
tion analyzers a and b. We let “4” and “—" respectively
denote the transmitted and reflected channels. The re-
sults for the |¢) state in quantum mechanics are [24]

Py(a) = P(a) =1/2, (7)

Py(b) = P-(b) = 1/2, ®)
Pii(ah) =P (ab)=gco(a—b), (9

P, _(a,b)=P_,(a,b) = %sinQ(a —b). (10)

In terms of quantum entanglement, the polarization of
a pair of EPR photons is indefinite. If the hidden vari-
able exists, the polarization of each photon should be
well-defined. We consider the experiment with pho-
ton pairs emitted by the J =0 —- J =1 —= J =0
cascade of atomic calcium [18,19]. According to the
classical theory, the two photons are circularly polar-
ized. For the experiment of J =1 —=J=1—J=0
cascade of atomic mercury [20], one photon is linearly
polarized and the other is circularly polarized. In the
case of down-conversion of a nonlinear crystal [21-31],
the wave packets of two orthogonally polarized photons
overlap at the crystal or beam splitter. They form two
circularly polarized photons under appropriate condi-
tions. The combination of a half-wave plate and a

quarter-wave plate can transform the Bell state into
other three Bell states [24]. From these facts, we be-
lieve that the Bell state can be composed of circularly
(or circularly/linearly) polarized photon pairs. For the
twin photons generated in cascade radiation or down-
conversion, their hidden variables can be regarded as
correlated, such that measurements on the two photons
are dependent events. To obtain the joint probabilities,
we use projective geometry to calculate the conditional
probabilities.

We first consider the Bell state composed of circu-
larly polarized photon pairs. For a circularly polarized
photon, the probabilities of being transmitted and re-
flected are both 1/2, irrespective of the orientatition of
the polarizer. For single probabilities, we thus obtain
the results in Eqs. (7) and (8). For a pair of correlated
photons, we can use conditional probability to obtain

P.(B)Py(alp), (1)

where P, (bla) and Py (a|b) are conditional probabili-
ties, which can be calculated by the projective method.
For the |¢T) state, we suppose that

Pii(a,b) = Py(a)Py(bla) =

Py (bla) = Py (a|b) = cos*(a — b).

We can understand above method as follows. If the
photon on the left-hand side can pass through polarizer
a, then the photon on the right-hand side can certainly
pass through a polarizer with the same orientation. If
the orientation of the polarizer on the right is set at b,
the probability that the photon on the right can pass
through the polarizer is cos?(a — b). Then we have

1
P++(a7b) = 5 COS2(a - b)a

which agrees with Eq. (9). We note that only for a pair
of circularly polarized photons with maximally corre-
lated or anticorrelated hidden variables (A4 = Ap or
A4 = —Ap) can we use this projective method. For cir-
cularly polarized photon pairs with independent hidden
variables, we have

Pyy(a,b) = Py(a)Py(b) = 1/4.

As regards the Bell state composed of circu-
larly /linearly polarized photon pairs, we suppose the
circularly polarized photons are incident on polarizer
a and linearly polarized photons are incident on polar-
izer b. We first project a onto b. Because Py (a) =1/2
and the angle between the orientations of the two po-
larizers is a — b, we use projective geometry to obtain
Py (a,b) = (1/2) cos®(a—b). We then project b onto a.
We suppose that the polarization directions of linearly
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polarized photons are distributed uniformly in space
and the angle between the polarization direction of the
photon and the orientation of polarizer b is . The
probability that the photon can pass through polarizer
b is cos?(b — x) according to Malus’ law, and then the
joint probability is

2m
1
Py (a,b) = o /cos2(b —z)cos?(a — b) dr =
0

L
= 5 cos (a—10). (12)

If the polarization directions of linearly polarized
photon are distributed only in two orthogonal direc-
tions, we have

1
Pii(a,b) = 3 cos® x cos®(a — b) +
1
+ 3 sin? z cos*(a — b) = 3 cos’(a—b), (13)

which also agrees with the result of quantum mechan-
ics. Additionally, if the linearly polarized direction of
photons is set at the angle +45° to the orientation of
the polarizer, the probabilities that the linearly and
circularly polarized photons can pass through their re-
spective polarizers are both 1/2. In this case, we also
obtain the same result as in quantum mechanics using
projective method.

In the general case, linearly polarized photon pairs
cannot form a Bell state (which we discuss in detail in
the next section). But in a special case, their joint prob-
ability can also agree with the result of quantum me-
chanics. We suppose that two photons have the same
polarization direction and the polarization directions
of photon pairs are distributed in two orthogonal di-
rections with equal probability, and the orientation of
polarizer a is in the 2z (or y) direction, while the ori-
entation of polarizer b can vary arbitrarily. When the
polarization of the pair of photons is in the z (or y)
direction, the photon incident on polarizer a can pass
through it with certainty, and the probability that the
photon incident on polarizer b can pass through it is
cos?(a — b) according to Malus’ law. When the polar-
ization of a pair of photons is in the y (or x) direction,
the photon incident on polarizer a cannot pass through.
Hence, the joint probability for the photon pair to pass
through the polarizers is Py (a,b) = (1/2) cos®(a —b).
In this case, linearly polarized photon pairs can also
form a Bell state.

We summarize as follows: (i) circularly polarized
photon pairs with correlated hidden variables form
a Bell state; (ii) circularly/linearly polarized photon

pairs with correlated hidden variables can form a Bell
state under the condition that the polarization direc-
tions of linearly polarized photons are distributed uni-
formly in space or in two orthogonal directions, or the
direction of linearly polarized photons is set at the angle
+45° to the orientation of the polarizer; and (iii) lin-
early polarized photon pairs with correlated hidden
variables can form a Bell state only when the polariza-
tion directions of photon pairs are distributed in two
orthogonal directions with equal probability and the
orientation of one of the polarizers is parallel to one of
the polarization directions of the photon pair.

We have supposed above that the measurement out-
come of a photon is determined by the external condi-
tions and hidden variable. In fact, it can also be deter-
mined by other properties of the photon. We consider
the Bell state composed of circularly polarized photon
pairs. Even if the polarization uncertainties of the two
photons are the same, their rotation directions can be
different. We let A4 and Ap respectively denote the
hidden variables of the two photons, and ds and dp
respectively denote the rotation directions of the pair.
Then the four Bell states can be denoted by the combi-
nation of A and d. We suppose that for the |¢™) state,
we have Ay = Ap and d4 = dp, while for the |¢7)
state, we have \y = —Ap and d4 = dp. The respec-
tive coincidence rates of Py, for the four Bell states

|¢+>7 |¢7>7 |¢+>7 and |¢7> are

L L 2
5 cos (a =), 5 cos (a+0),

% sin?(a + b), % sin?(a — b)

[24]. Then we can infer that the rotation direction
determines the plus or minus sign, while the hidden
variable determines the expression of sine or cosine.
For the [¢/") state, we therefore have Ay = —\p and
da = —dp, and for the |¢~) state, we have Ay = Ap
and d4 = —dp. Because the rotation direction of the
photon is a measurable quantity, we do not regard it as
a hidden variable.

As regards the Bell states composed of circu-
larly/linearly (or linearly) polarized photon pairs, we
can use the polarization uncertainty and one of the po-
larization components (e.g., horizontal or vertical po-
larization) of the pair to denote the four Bell states. For
example, the |¢T) state can be denoted by A4 = \p
and Hy = Hp (or V4 = V). For the |¢ ) state, we
have Ay = Agp and Hq = —Hp (or V4 = =Vp).

We now use the above theory to explain the exper-
imental results. The atomic cascade radiation exper-
iments in Refs. [18-20] can be explained by circularly
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polarized photon pairs or circularly /linearly polarized
photon pairs. For the down-conversion of the crystal,
the wave packets of a pair of orthogonally polarized
photons overlap at the crystal or beam splitter. If their
phases are the same in the case when they are sepa-
rated from each other at the output port, they tend to
convert into a pair of circularly polarized photons with
different rotation directions. Because the two photons
have anti-correlated hidden variables, the experiment
generates the [¢)") state. If the two photons obtain a
phase shift of +7/2 during the propagation process in
the crystal due to their different phase velocities, they
form a pair of circularly polarized photons with the
same rotation direction. Then the experiment gener-
ates the |¢)~) state. This can explain the experimental
results in Refs. [21-27]. As regards the Bell state com-
posed of four photons, a pair of orthogonally polarized
photons can form a pair of circularly polarized pho-
tons with the same rotation direction. The Bell state
is then obtained. Even if each pair of photons forms
a pair of linearly polarized photons with polarization
directions at £45°, we can turn them into circularly
polarized photons by inserting two quarter-wave plates
into the optical paths. This can explain the experi-
mental results in Refs. [28-31]. Because the quantum
states of two photons in the same path are the same,
even if one photon is lost during the detection process,
the coincidence rate remains unaffected. This type of
experiments can increase the detection efficiency of cor-
related photon pairs.

We have supposed that two linearly polarized pho-
tons are decomposed into a pair of circularly polarized
photons with different rotation directions when their
wave packets are separated from each other. Certainly,
they can also convert into a pair of linearly polarized
photons with the polarization direction of £45°. In this
case, if one of the orientations of the polarizers is set at
+45°, the Bell state is also obtained based on our anal-
ysis above. Because one of the polarizers is oriented at
+45° in most of the experiments, this possibility cannot
be ruled out. To test which assumption is correct, we
let the orientation of the fixed polarizer deviate from
+45°, e.g., be £20°, while the orientation of the other
polarizer can vary arbitrarily. If the Bell state can still
be obtained in this case, then the first assumption is
correct; otherwise, the second is correct. Because some
experiments have already indicated that a Bell state
can be obtained when the fixed polarizer is oriented at
0° or 90° [25,26], it is likely that the first assumption
is correct. This experiment also provides a method for
discriminating between quantum theory and our the-
ory. In the experimental setups in Refs. [21-26], we

3 ZKOT®, Bem. 6 (12)

insert a quarter-wave plate into each output path. Ac-
cording to quantum theory, the Bell state then remains
unaffected. In our theory, by contrast, linearly polar-
ized photon pairs can be obtained by inserting quarter-
wave plates, and the Bell state cannot be obtained in
the general case. Then we can decide which theory is
correct based on the experimental results.

4. PROPOSED EXPERIMENTS OF QUANTUM
MEASUREMENT

4.1. Experimental test of the locality of the
measurement of EPR pairs

One of the questions raised by the EPR paradox
is: if we have measured one particle of the EPR. pair,
what is the quantum state of the other? For example,
we suppose that the |¢T) state is composed of circu-
larly polarized photon pairs. According to quantum
entanglement, when we measure one photon and find
it linearly polarized, the other instantaneously collapses
into linear polarization. In terms of the hidden-variable
theory, the other remains circularly polarized until we
analyze it with a polarizer. Does this violate the angu-
lar momentum conservation? If we only consider the
system composed of a pair of photons, the angular mo-
mentum of the system is certainly not conserved. In
the measuring process, a third component — the mea-
suring device — is involved. If the measuring device
is included, the momentum and angular momentum of
the system are still conserved.

To discriminate between the two hypotheses, we
must seek a material that can exhibit different effects
when circularly and linearly polarized photons respec-
tively pass through it. We note that the usual method
of inserting a quarter-wave plate into the optical path
cannot be used here because the circularly polarized
photons in one optical path may have two rotation di-
rections, and we therefore use the roto-optic effect (or
the Faraday effect). This is because a linearly polar-
ized photon can be regarded as a combination of left-
handed and right-handed circularly polarized compo-
nents. When it passes through a roto-optic material,
the velocities of the two components are different ac-
cording to Fresnel’s roto-optic theory. Then there ex-
ists a phase shift between the two components. The
polarization plane of the photon rotates and the polar-
ization quantum state changes. As a circularly polar-
ized photon passes through the roto-optic material, its
polarization quantum state does not change because it
has only one rotation direction.

The experimental setup is shown in Fig. 3, where
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Fig.3. Experimental test of the locality of the mea-

surement of EPR pairs: S is a source; Dy and D» are

the counters; Ro is a roto-optic material; Co is a com-

pensator; CC is a coincidence counter; | and Il are po-
larizers

I and IT are two polarizers with the same orientation
and Ro is a roto-optic material that rotates the po-
larization plane of a linearly polarized photon by /2.
The |¢T) state composed of circularly polarized photon
pairs can be generated by down-conversion of a nonlin-
ear crystal. When the wave packets of two orthogo-
nally polarized photons overlap at the beam splitter
or crystal [21,22, 24], we can think that the |[¢)T) state
generated in the experiments is composed of circularly
polarized photon pairs. Then the |¢T) state can be
obtained by inserting a half-wave plate into one of the
optical paths. A circularly polarized photon remains
circularly polarized after it passes through a half-wave
plate. The |¢T) state obtained in this way is therefore
composed of circularly polarized photon pairs. If we
adopt the method of cascade radiation, then the exper-
iments in [18,19] just generate the |¢T) state. Let the
distance between source S and Ro be longer than the
distance between S and polarizer I (Ly > Ly). Then
the left-traveling photon is analyzed first. An opti-
cal path length compensator Co is used to guarantee
the simultaneous detection of two photons within the
coincidence time window of counters Dy and Ds. If
the roto-optic material is the Faraday rotator, then the
compensator can be used with another identical one
that is power-off. As a matter of fact, if the optical
path length difference between the two sides is appro-
priately adjusted, the compensator Co can be removed.

We now discuss the expectations of the two theo-
ries. According to quantum entanglement, when the
left-traveling photon passes through polarizer I, the
polarization direction of the right-traveling photon in-
stantaneously collapses to the orientation of polarizer
I. Its polarization plane is then rotated by m/2 when
it passes through Ro. Hence, it will be reflected by
polarizer II. If the left-traveling photon is reflected by
polarizer I, the coincidence rate is zero, irrespective of
whether the right-traveling photon is transmitted or

reflected. Therefore, the expected coincidence rate is
zero in terms of quantum entanglement. According to
the hidden-variable theory, measurement on one pho-
ton does not affect the other. On the other hand, a
roto-optic material does not change the polarization
quantum state of a circularly polarized photon. There-
fore, the coincidence rate remains unchanged and is
always 1/2. If the hidden variable varies with time, as
suggested in [10], then the coincidence rate varies with
the position of polarizer II. Similar experiments can be
performed for the other three Bell states.

If one does not agree with the assumption of wave
packet reduction of the EPR pair and supposes that
the roto-optic material does not change the polariza-
tion quantum state of the EPR pair, then one obtains
the same result as ours. To see whether the roto-optic
material can change the polarization quantum state of
the EPR pair, we make the above experiment with the
|¢pT) state composed of circularly and linearly polar-
ized photon pairs. Then the question arises: how to
obtain this quantum state? When the wave packets of
two orthogonally polarized photons overlap at a beam
splitter, the |/ T) state is generated. Then the two pho-
tons are circularly polarized. In the experimental setup
in Ref. [23], the rotation direction of one photon is re-
versed by a mirror, and then the experiment generates
the |[¢)~) state. We can then change it into the |¢T)
state with a half-wave plate and a quarter-wave plate.
A quarter-wave plate transforms circular polarization
into linear polarization, and in this case the |¢T) state
is therefore composed of circularly and linearly polar-
ized photon pairs. Similarly, in the experimental setup
in Ref. [24], we let the experiment generate the |¢p7)
state by adjusting the birefringent phase shifter. We
then use a half-wave plate and a quarter-wave plate to
change the [1)™) state into the |¢T) state. In this case,
the |¢T) state is composed of circularly and linearly po-
larized photon pairs. If a roto-optic material is inserted
into the optical path without a quarter-wave plate (the
photons in this path are circularly polarized), then both
theories predict the coincidence rate to be 1/2. But if a
roto-optic material is placed into the optical path with
the quarter-wave plate, the expectations of the two the-
ories are different. If the roto-optic material does not
change the polarization quantum state, the coincidence
rate remains unchanged. According to our theory, the
roto-optic material acts as a half-wave plate because it
rotates the polarization plane by 7/2, which transforms
|¢T) into | T), and we therefore expect the coincidence
rate to be (1/2)sin?(a + b).

In Wheeler’s delayed-choice experiments (see, e. g.,
[32-34]), which-way measurements are made with a
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Fig.4. Generation of the |¢¥) state by type-l non-

collinear down-conversion: NC is a nonlinear crystal;

IF are the interference filters; QWP are quater-wave

plates; Pol are polarizers; other notations are as in the
upper figures

two-path interferometer that is chosen after a single-
photon pulse entered it. The experiments support
Bohr’s statement that the behavior of a quantum
system is determined by the type of measurement,
but cannot answer the question of whether measure-
ment on one particle of the EPR pair can affect the
other. The above experiments can unambiguously an-
swer it and help understand the EPR paradox (and the
Greenberger—Horne—Zeilinger theorem and the Hardy
theorem as well), which supposes that a particle quan-
tum state can be predicted with certainty by measuring
its partner. The above experiments show that this is
not always possible. For example, if we measure pho-
ton A with a polarizer and find it to be in the |H)
state, then photon B can be in neither the |H) state
nor the |V) state. Instead, it can remain in the su-
perposition state, i. e., circular polarization. Only after
measurement with a polarizer can we obtain its defi-
nite polarization state (|H) or |V') state), and different
measurements lead to different results. Hence, the hy-
pothesis of the EPR. paradox is not correct.

4.2. Experimental test of the components of
polarization-entangled photon pairs

We have supposed above that polarization-
entangled Bell states can be composed of circularly
polarized photon pairs. To test this assumption, we use
a pair of linearly polarized photons generated by type-I
noncollinear down-conversion. The experimental setup
is shown in Fig. 4. Because the two photons are
generated from a single photon, their hidden variables
should be correlated. Two quarter-wave plates are
inserted into the optical paths to convert the linearly
polarized photons into circular polarized ones. If the
optical axes of the two quarter-wave plates are parallel,
the experiment should generate the |¢T) state. If the
optical axes are oriented orthogonally, i.e., one is set

Dy
IF CcC

Pol
QWP

QWP Pol IF 1

Pump laser
—— > NC |—>

Type-II PBS

Fig.5. Generation of the [¢)*) state by type-Il collinear
down-conversion: PBS is a polarizing beam splitter;
other notations are the same as in Fig. 4

at 45° and the other at —45°, the rotation directions
of the two circularly polarized photons are opposite,
then the |¢~) state should be obtained. A similar
experiment can be made with type-II noncollinear
down-conversion.

For type-II collinear down-conversion, the hidden
variables of the two photons can be regarded as max-
imally anticorrelated. In this case, a polarizing beam
splitter can be used to separate the two orthogonally
polarized photons. Then the |1)*) state can be obtained
with two quarter-wave plates after the polarizing beam
splitter (the [¢)T) state is to be generated when the op-
tical axes of the two quarter-wave plates are parallel).
The experimental setup is shown in Fig. 5.

To verify the assumption that circularly and lin-
early polarized photon pairs can form the Bell state,
we remove the quarter-wave plate in the experiment
in Fig. 4 or 5, and set the orientation of the polarizer
at £45° to the linearly polarized direction of photons,
while the other orientation of the polarizer can vary
arbitrarily. In this case, we still obtain the |¢T) state
in Fig. 4 and the [¢T) state in Fig. 5.

In other down-conversion experiments [21-31], the
wave packets of two orthogonally polarized photons
overlap at the beam splitter or crystal. The above ex-
periments do not overlap the wave packets of photons
and the polarizations of photons are definite. If the
Bell states can be generated in this way, then quantum
entanglement will not remain a mystery.

The following experiment uses the overlap of multi-
photon wave packets to generate the Bell state. The
experimental setup is shown in Fig. 6. A beam of lin-
early polarized laser enters the Mach—Zehnder interfer-
ometer, which can be a continuous-wave laser or pulsed
laser. A half-wave plate is inserted into one of the arms
to rotate the polarization plane by 7/2. If we replace
the first (or the second) beam splitter with a polarizing
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Fig.6. The |¢™) state obtained by the overlap of multi-

photon wave packets: BS is a beam splitter; HWP is

a half-wave plate; M; are the mirrors; other notations
are as in upper figures

beam splitter, then the half-wave plate can be removed,
and the polarization of the input laser should be set at
+45°. If the relative phase of the photons in the two
arms is chosen correctly, the output is circularly polar-
ized. On the other hand, because the photons are co-
herent or indistinguishable within the coherence length,
we can think that the polarization hidden variables of
a bunch of photons are correlated within the coherence
length. Hence, these photons must behave in the same
way when analyzed by a polarizer, i.e., if one photon
is transmitted, then all the photons are also be trans-
mitted. In the case where all the photons within the
coincidence time window of the detectors are coherent,
the Bell state is thus obtained. We note that the ex-
periment adopts the multi-photon wave packet overlap,
and therefore, similarly to the experimental results of
the overlap of two biphoton wave packets at a beam
splitter or a crystal [28-31], we expect the experiment
to generate the |¢*) state. A glass plate can be inserted
into the other arm or we can scan one of the mirrors
to change the relative phase of the photons in the two
arms, and the optical path length difference should be
shorter than the coherence length of the laser. The key
to the experiment is that we must ensure that the po-
larization quantum states of the photons be identical
within the detection time of the detectors; otherwise,
the behavior of a bunch of photons would be different.
For a continuous-wave laser, the coincidence time win-
dow of the photon detectors should be shorter than the
coherence time of the laser. For a pulsed laser, on the
other hand, the coherence time of photons should be
longer than (or equal to) the pulse duration, which can
be realized by inserting an interference filter in front
of each of the detectors. Compared with other beam-
splitter schemes to obtain Bell states, the experiment is

D2

Laser

Pol CcC
BS

D.

Fig.7. The simplest way to generate the polarization-
entangled Bell state (the notations are the same as in
upper figures)

much simpler because it does not use down-conversion
of the crystal.

In fact, there is the simplest way to generate a
polarization-entangled Bell state. We have supposed
that the polarization hidden variables of a bunch of
photons are correlated within the coherence length, and
therefore, if we split a beam of circularly polarized light
into two beams and detect them within the coherence
time of the laser, then the Bell state should be ob-
tained. The experimental setup is shown in Fig. 7. A
50/50 beam splitter is used to split the circularly po-
larized laser. The two beams of light are then analyzed
by polarizers. We note that if a half-silvered mirror
is used as the beam splitter, then different placements
of the mirror result in different Bell states. If reflec-
tion occurs at the front of the mirror, a phase shift of
m accompanies the reflected beam, the rotation direc-
tions of the two beams of light are opposite, and the
experiment in Fig. 7 should generate |¢~) state. The
|¢pT) state can be obtained in the case of rear surface
reflection, because the medium behind the mirror (air)
has a lower refractive index than the medium the light
is traveling in (glass). If our above prediction is true,
then an arbitrary number of correlated photons can be
obtained using a couple of beam splitters as desired.
For comparison, the current maximum number of en-
tangled photons is eight [35, 36].

Under ideal conditions, all the photons within the
coherence length must behave in the same way under
the same measuring condition, i.e., they act as one
photon. But there exists a major difficulty for the ex-
periments in Figs. 6 and 7. Due to the imperfectness of
the correlated photons, the experimental setup and the
external circumstances, most of the photons would be-
have in the same way, but a few of them may not. This
would blur the experimental results. To overcome this
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Fig.8. Two successive polarization measurements on
EPR photon pairs: I, I and Il, 1" are the polarizers; the
other notations are as in the previous figures

problem, single-photon detectors D; and D, may be
replaced with photoelectric detectors. We note that in
this case, our concern is not the specific values of the
intensities of the laser but their relative values com-
pared to the threshold value. When all the photons
pass through the polarizer, the detection intensity be-
comes half that of the input laser. Hence, the thresh-
old value can be set at one-fourth of the input laser
intensity. If both luminosities in the two channels are
greater (or less) than the threshold value, we obtain a
coincident count.

We note that the above experiment differs from that
in Ref. [37]. The former detects the polarization cor-
relation, while the latter detects the intensity correla-
tion of the input laser. It is interesting to compare
our experiment with that in Refs. [38] and [39], where
a PBS is used to separate a beam of monochromatic
light (or two orthogonally polarized photons generated
by type-II down-conversion) and the relation between
intensity correlation (or coincidence count) and the ro-
tation angle of the half-wave plate placed in front of
the polarizing beam splitter is recorded. To explain the
correlated results that cannot be explained in classical
theory, hidden polarization or higher-order polarization
is introduced [38-40]. We think that they are equiva-
lent to the polarization hidden variable we introduce
here. In fact, if two quarter-wave plates are inserted
after the polarizing beam splitter in the experiments
in Refs. [38] and [39] to convert linearly polarized pho-
tons into circularly polarized photons, as is the case
in Fig. 5, the two experiments would also generate the
polarized Bell state.

4.3. Successive polarization measurements on
EPR photon pairs

If quantum measurement is deterministic, then the
experimental result is determined by the measuring
conditions and intrinsic properties of a particle, and

there are no random disturbances during the measuring
process. We can further infer that the collapsed quan-
tum states of a pair of particles with the same quantum
state must be the same under the same measuring con-
dition. We now test this assumption. We add another
pair of polarizers IT and IT' in the transmitted channels
in Fig. 2, as shown in Fig. 8. Polarizer I has the same
orientation as polarizer I', and the orientations of polar-
izers IT and IT' are also identical. The source generates
circularly polarized |¢*) state photon pairs. According
to Eq. (9), half of the photon pairs pass through the
first pair of polarizers and reach the second pair of po-
larizers. When they are analyzed again, their behaviors
are still correlated, i.e., if one photon is transmitted,
then the other is also transmitted. For the second pair
of polarizers, we have

P,, =cos’f, P__=sin’f, P,_=P_, =0,

where 6 is the angle between the orientations of the
two pairs of polarizers. According to quantum theory,
a pair of photons is not in an entangled state after
the first measurement because their polarizations are
definite. In this case, we do not know how to calcu-
late the joint probability in quantum mechanics. But
if our predictions are correct, there must exist a con-
ceptual difficulty for quantum mechanics to explain the
total correlation of a pair of particles without entan-
glement, which can be readily understood in a deter-
ministic hidden-variable theory. We note that we can
also perform the experiment in the reflected channels of
polarizers T and T', with similar results. The joint mea-
surements between transmitted and reflected channels
are not needed because the probabilities must be zero
according to Eq. (10). Hence, the experiment is a com-
plete measurement.

Because the collapsed quantum states of a pair of
photons after the first measurement are the same, they
can be restored into the |¢T) state by inserting two
quarter-wave plates with parallel-oriented optical axes
into the optical paths between the two pairs of polar-
izers.

We now discuss the coincidence counting results
when the orientations of the second pair of polarizers
are different. We suppose that the orientation of the
first pair of polarizers is along the x axis, and the orien-
tations of the second pair of polarizers are respectively
along the directions of a and b. For simplicity, we let
a, b, and z lie in one plane, and @ and b be the direc-
tions respectively perpendicular to a and b, as shown
in Fig. 9.

For circularly polarized photon pairs, the single
probabilities Py (a) and Py (b) are equal, we can ob-
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Fig.9. Orientations of two pairs of polarizers

tain the same joint probability Py 4 (a,b) either by pro-
jecting a onto b or by projecting b onto a. For a pair
of linearly polarized photons, the single probabilities
that the two photons pass through the second pair of
polarizers are not equal. Then different projective se-
quences lead to different results. If we project a onto b,
we obtain Py (a,b) = cos? acos® ), where # = a — b. If
we project b onto a, we obtain Py, (a,b) = cos? bcos? 6.
Because the joint probability cannot be larger than sin-
gle probabilities, and the latter cannot satisfy this re-
quirement, we choose Py (a,b) = cos?acos? f for the
moment.

We now consider the expression for Py_(a,b). Ac-
cording to the rule of projecting from one channel with
a smaller probability onto another with a larger prob-
ability, we obtain

2

cos?asin?f, cos?a < sin?b,

P+—(a’7b) = {

sin®bsin®f, cos?a > sin’b.

Because the requirement
P++(a7b) + PJr*(aab) = P+(a) =cos’a

must be satisfied, and considering the smooth joining
of probability formula, we take

Pii(a,b) =

{ cos? a cosZ 6, cos? a < sin? b,

(14)

cos? a — sin® bsin? 6,

cos? a > sin? b.

It can be verified that in addition to satisfying
the projective relation in the instances of 6 = 0 and
0 = w/2, Eq. (14) also meets the expectations of
Py (a,b) = cos®>a for b = 0 and Py (a,b) = 0 for
a = 7/2. Tt is therefore a reasonable probability for-
mula. With Eq. (14), we can calculate the other three
joint probabilities using the relations

Py (a,b) + Py (a,b) = cos’ a,

Py (a,b) + P_,(a,b) = cos? b,
P, (a,b) + P__(a,b) =sin’b.

In fact, there can exist other projective relations
for the calculation of joint probability. When b rotates
between 0 and a, the joint probability P (a,b) can
remain unchanged and be always cos? a, i.e., the joint
probability is the smaller of two single probabilities.
This implies that for two dependent events under cer-
tain conditions (for example, when a and b lie in the
same quadrant), if one event with the smaller probabil-
ity occurs, then the other event with the larger proba-
bility would occur with certainty. Then the four joint
probabilities can be written as

P, (a,b) = cos®a,
Py _(a,b) =0,
+—(a,b) 2 i (15)
P_,(a,b) = cos® b — cos” a,
P__(a,b) = sin®b

It can be seen that in the instance of § = 0 we
obtain the same result as in Eq. (14), i.e.,

P, (a,b) = Py(a) = Py (b) = cos>a.

In other cases, we cannot decide whether Eq. (14) or
(15) is correct, which can only be tested by experiment.
No matter which formula is correct, we believe that for
a deterministic measurement theory, the requirement
that the joint probability be equal to the single proba-
bilities must be satisfied in the case 6§ = 0.

If we suppose that the polarization direction of pho-
ton pairs (the x axis in Fig. 9) is distributed uniformly
in space and then average over it to obtain the aver-
age joint probability, we find that none of the results
in Eqs. (14) or (15) agrees with that of quantum me-
chanics. If the polarization direction of photons is dis-
tributed in two orthogonal directions, the result also
disagrees with that of quantum mechanics. We do not
present the detailed calculation process. We conclude
that linearly polarized photon pairs cannot form a Bell
state in the general case.

5. DISCUSSION AND CONCLUSION

We show that the true implication of the proba-
bility distribution of Bell’s correlation function is the
probability distribution of the joint measurement out-
comes, and it can therefore vary with experimental con-
ditions. In addition, we show that Bell’s locality holds
neither for two independent events nor for two depen-
dent events. The results of EPR-type experiments can

1150



MIOT®, Tom 144, Bem. 6 (12), 2013

On the implication of Bell's probability distribution ...

be explained with the projective relation of the quan-
tum state composed of a circularly or linearly polarized
photon pair whose hidden variables are maximally cor-
related or anticorrelated. We also explore the physical
meaning of the hidden variable and the measuring pro-
cess.

The hidden-variable theory does not conflict with
the current formalism of quantum mechanics, which
can be viewed as holding for the statistic description of
behavior of a large number of independent particles but
not for the deterministic description of the behavior of
individual particles or EPR pairs. Currently, there is no
experiment suggested to distinguish between the local-
ity and nonlocality assumptions. Our first experiment
is aimed at this purpose, which we think can verify
whether collapse of the wave packet of the EPR pair
is true. All our expectations for above experiments are
based on the assumptions that the local hidden vari-
able exists and the behavior of microscopic particles is
also deterministic. But it should be noted that even if
all our theoretical expectations are verified by experi-
mental results, we could only abandon the concept of
quantum entanglement and Bell’s locality assumption.
Although the starting point of our theory is local hid-
den variable, the above experiments cannot adequately
prove that local hidden variable does exist. Only when
the experimental results cannot be explained by the
current theory of quantum mechanics can we say that
it is incomplete and a hidden variable should be in-
troduced. More experiments and theoretical analyses
are therefore needed in order to solve the problem of
hidden variables.
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