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The influence of e—h scattering on the conductivity and magnetotransport of 2D semimetallic HgTe is studied
both theoretically and experimentally. The presence of e—h scattering leads to the friction between electrons
and holes resulting in a large temperature-dependent contribution to the transport coefficients. The coefficient
of friction between electrons and holes is determined. The comparison of experimental data with the theory
shows that the interaction between electrons and holes based on the long-range Coulomb potential strongly
underestimates the e—h friction. The experimental results are in agreement with the model of strong short-range

e—h interaction.
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1. INTRODUCTION

Recently a 2D semimetal has been shown to be
present in undoped 18-21 nm HgTe quantum wells with
an inverted energy spectrum and various surface orien-
tations (013), (112) and (100) [1-3]. Tt has been shown
that this semimetallic state is due to the overlap, of
the order of several meVs, of the conduction band min-
imum in the center of the Brillouin zone and several
valence band maxima situated at some distance away
from the Brillouin zone center (the exact number and
configuration of the maxima depend on the well sur-
face orientation). The Fermi energy residing inside the
energy interval corresponding to this overlap results in
the simultaneous existence of 2D electrons and holes in
the QW. The technology of low-temperature growth of
a composite (SiO2/SizNy) dielectric layer on top of the
QWs has allowed the fabrication of an electrostatic top
gate. Using this gate allows obtaining and studying 2D
semimetal states with any desired ratio of electron and
hole densities. The study conducted in (013)-oriented

*E-mail: eolsh@isp.nsc.ru

HgTe wells has revealed certain features that are pe-
culiar to the transport in a 2D semimetal and may
be attributed to the electron—hole scattering inside the
QW [4]. The present work presents a detailed theoret-
ical and experimental study of electron—hole scattering
in a 2D semimetal.

It is well known that in monopolar systems, the in-
terelectron scattering does not affect the low-field con-
ductivity. Scattering between particles of the same
kind preserves the total momentum of the system.
The momentum generated by an external electric field
does not dissipate unless impurities or phonons are in-
volved. As a result, in a system with a simple elec-
tronic spectrum, the conductivity does not depend on
the electron—electron scattering. This is not the case
in a multi-component system [5,6]. In the absence of
mutual collisions, the components drift in an external
electric field with different velocities. The scattering
between particles of different sorts leads to the addi-
tional friction in the whole system. In a semimetal,
electrons and holes are accelerated by the electric field
in the opposite directions, and collisions between parti-
cles slow the motion of both electrons and holes. At low
temperatures, the e—h scattering is limited (for both

1068



MKIT®, Tom 144, Bom. 5 (11), 2013

The effect of electron—hole scattering . ..

electrons and holes) to the kT interval near the Fermi
surface, resulting in the temperature dependence of the
probability of e-h scattering and of the corresponding
corrections to conductivity oc T2 [4]. (However, in sys-
tems with a degenerate spectrum, e.g., in a 2D system
in quantizing magnetic fields, the e—h scattering is not
frozen out down to zero temperature; see [7]). This
paper is organized as follows. Section 2 contains the
theory of electron—hole scattering in a 2D semimetal.
Section 3 deals with the experimental details. In Sec-
tion 4, the comparison between theory and experiment
is discussed.

2. THE THEORY OF ELECTRON-HOLE
SCATTERING

2.1. Kinetic equation solution

We consider a 2D semimetal with the g. equivalent
electron valleys and g;, equivalent hole valleys centered
at respective points pe,; and pp;. In particular, as is
discussed in the next section, the (013) HgTe QW stud-
ied in the experiment has a single conductance band
valley in the center of the Brillouin zone and two va-
lence band valleys situated along the [031] direction, as
we show in Fig. 1. The conduction bands with energy
spectra 5, = (p — Pe.i)?/2m, overlap with the valence
bands Ey — ep_p, ., €h = p?/2my, (Ey > 0). The hole
mass my, is assumed to be much larger than the elec-
tron mass m.. The distances between electron and hole
extrema |pn,; — Pe,;| are supposed to be large to sup-
press the electron—hole recombination. At the same
time, scattering between electrons and holes changing
the momenta near the extrema is permitted. With-
out the loss of generality in what follows, the momenta
are referenced to the band extrema, and we replace
P —Phj = P, P — Pe;i = P-

The system of kinetic equations for the electron and
hole distribution functions f;’h is given by

e,,Evpf; +[p x wt/]vpf; = ZL/,V’ +Jy, (1)

where the index v = (+, —) labels holes (h) and elec-

Fig.1.

The energy band structure in a 20 nm (013)
HgTe quantum well

trons (e) ex = =e, —e is the electron charge, J,
is the collision integral of holes (electrons) with im-
purities, [, ,. are the interparticle collision integrals,
w, = e,H/m,ec, and w, are cyclotron frequencies. In
the linear conductivity problem, the collision integrals
for particles of the same sort ([,,,) make no contribu-
tion to the conductivity. Hence, the summation over v’
can be omitted, with v’ replaced by 7 = —v.
The hole—electron collision integral has the form

2T
_ 2
Ihe = 52298 E |tgl|"0p' ptq X
p’,q.k’

h h e e
X Ok ktqd(Ep — €pr + 6k — €)X

x [fo(=fo) fio A= fO)—f A=) fe1=fi)] - (2)

where uy is the Fourier transform of the electron—hole
interaction potential u(r) and S is the system area.
The quantity I., can be obtained from Eq. (4) by ex-
changing e < h.

We study transport that is linear in E. Introduc-
ing linear corrections @7 to the equilibrium distribution
functions fg’” and linearizing the kinetic equations, we
obtain

ev(E- Vp)fg"-l-([P X wy]-Vp)og = 61,5401, (3)

where 61, 5 and §.J, are linearized collision integrals:

2 .
6lyp = §29:7 Z |ug|*dpr pra
p’ .k

X G serad (e — ol — ) x
x {8510~ FOVP O~ R + 1 R - )] -
— O [fo i/ (L= ) + (L= ) K= F)] +
+of [ (L= £ (= RO + £ (L= fa 7] —
Ok [(L= 19 R S+ 13 (= F) (=] |- ()

The solution of the system of kinetic equations can
be sought in the form ¢y = AY(ep)p, A”(ep) ox E.
This substitution results in a system of integral equa-
tions for A¥(ep). Instead of solving this system, we use
the approximation

o4~ —p - V¥ [, (5)

where V¥ are the average velocities of particles. To find
the V¥, we should integrate the kinetic equations with
the momentum p. The impurity collision term gives
the rate of irretrievable momentum loss. The h—e col-
lision term determines the rate of momentum transfer
between holes and electrons (the force between subsys-
tems of holes and electrons)
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F=2gn Z Plhe. (6)

The considered procedure is equivalent to the alge-
braization of the collision terms
5JV__¢_ sI D:¢__¢_

v, )
Tv Tov Tvp

where 7, is the transport relaxation for elastic scat-
tering on impurities. Relaxation times 73, and 7¢; of
interparticle scattering satisfy the relation

mp o Mme
NsThe

Pstep

The quantity 7 can be regarded as the coefficient of
liquid friction between the subsystems of holes and

(% 5)
—(=+= we
Te Teh
< 1 1
— W, =4+ —
0= 1 Te Teh
— 0
The
1
0 P
The

Using the solution V' = Q1€ of Eq. (9), we obtain
jz = e(V'Py = VEN,), jy = e(V,) Ps — VEN,), and

Ua:x:Nl/Dv ny:N2/D7 (10)

Ny =¢? (memh (mePymh (T2wz +1) +
+ mp Ny (Tiwpy + 1)) +
+n(2memarrn((Ns = P22
+ NP (tetpwewn + 1)) + Ny Py (mir2 (rhwy +1) +
£ mi (2wl 4 1)) ) +

(N . AR (mp Ps7e + me Ny Th))

N, = —¢? (memh (thswe (Tgwi + 1) 7'2 +

+ mePs Th (T 2+ 1) wh) + 2nMeMmpTeTh X
(Ns - Ps) (NsTewe - PsThwh) +

+ P27 (N, = Po)? (mo Ny, +miPaon) ),

electrons: the force between electrons and holes is
SNyPyn(Ve —Vh),

As a result, we obtain the system of hydrodynamic
equations [5, 6] for V¥,

BV, W] - — — (VY =V =0, ()

my Tv my
System (7) can be written in the matrix form as
Q-vV=¢, (8)

where
_ h 1/h

V= (VE,VE VI VM,

E =e(Ey/me, Ey/me,

—Ey/mp, _Ey/mh)v

0
Teh
1
0 I
Teh

D =mZmj(1+wir?)(1 +wiry) +
+2nmempy (me Nomp (14w T2)+myp, Pyt (14w 77)) +
+02 (M PsTe+me Noh )2 7277 (Mo Nswe +my Pswe )?).

Components of the resistivity tensor can be written
as

N\ D -
NZ+Ng P T

N>D

—_—. 11
vy

Prx =

At the zero magnetic field, p,, = 0 and the tempe-
rature-dependent correction to the resistivity is simpli-
fied:

mpNsTe + Me Py y

3p(T)/p(T = 0) = T D

memp + n (thsTe + meNsTh)
mpNsTe + mePsth + nreth (Ps — Ni) 2

-1. (12)

2.2. Electron—hole relaxation time

The mean force f acting between the electron and

hole subsystems, Eq. (6), is determined in the Born

approximation by the substitution of the distribution

functions of Eq. (5) in Eq. (4). We arrive at
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)t / /dp /dk/dk'|up o |7 %

x6(p —p+k—K)5(eh — el +ef — <) x
x {(p — P, P)Vi (=0 fi™) x

x [A0 = BN +

A= BN =5 - (3)
— (k — K, k) V(=0 ) x
x [ @ — 19 A8 +

+ ISP = fY = 18]} ()
The integral over p can be presented as

[dp = my, [dep [dpp, and similarly for the integral
over other momenta. Calculating the integrals over en-
ergies in the low-temperature limit, we obtain the fol-
lowing expression for the mean free time between col-
lisions of holes with electrons:

27

¢? / '
ST dodpdp” x
0

N
h

1

The

_ T?m2my
o (4m?)

X (1 —cos@)d(¢(cos ¢ — 1) + cosp — cos ') x

x 0(¢sin ¢ + sin ¢ — sin <p')|uth(1,Cos ¢)|2, (15)

where ( = ppp/pre, and ppp and pp. are the Fermi
momenta of holes and electrons. Expression (15) can
be transformed to

i _ mg T_2 d x|u2thx| (16)
The  12m3gnh? 6Fh Vi=22\/1-222’
where 2p = min(1,1/().

The Fourier transform of the Coulomb e—h interac-
tion uq depends on the structure of the system and the
screening. In the simple 2D model of electron gas, the
Coulomb interaction with linear screening is given by

2re? 1

X q¢+&

Uqg = (17)
where the screening constant is collected from the in-
dividual screening constants of the electron and hole
gases, Kk = ke + kp = 2(gn/aB,n + ge/aBe), aBe =
= h%x/mpe? and ap,, = h?x/m.e? are the Bohr radii
of electrons and holes and y is the effective dielectric
constant.

The above expression is valid in the linear screening
approximation that requires x to be small compared to
the transmitted momentum min(pre,pr.). Besides,
we here neglect the width of the quantum well. As a
result, the potential becomes independent of the HgTe
dielectric constant. This 2D consideration loses appli-
cability in the specific system under consideration with
the quantum well width d 2 1/. In fact, the screening
radius 1/« should be limited from below by d.

Accounting for a finite width of the quantum well
leads to the replacement of the 2D potential by

_ 2me? F(qd)
X q+KF(qd)’

q < 2(pre,prn),  (18)
where the function F(qd) follows from the solution
of the electrostatic interaction problem of two singly
charged particles placed inside a layer of width d be-
tween two semi-infinite dielectrics. Using the pla-
nar Fourier transform, we express the interaction
of two point charges located at the points z,z’,
dj2>z>z">—d/2, as

|

e=aG+2) (eda(r 4 1) — €203 (r

—1)) (—r + et @220 (r 1) 1)

2nq (@ H0(r 1 1)? -

For z < 2/, we must replace z + z' in Eq. (19).
Here, r = x/xmugre and x is the dielectric con-
stant of external layers (CdTe). To find the func-
tion F'(x), we must integrate potential (19) with the
squares of electron and hole transverse wave functions
[Ve(2)|?> and |p(2")[?. For a well with hard walls,

Ye.n(2) = /2/dcos(mz/d). In this case, we find
- 2 2
F(x R <ac (327 +2077%) +
J(l+eM)z+r(e(x—2)+x+2)
+ 327 rretr ) =D ) (20)

=17 1

Assembling the previous expressions, we obtain the
The for the Coulomb scattering

(/dmx

" rF?(wx)
VI—a2y/1 - (2a?(22 + EF (wx))?

me T2

671')( ghh3 mn €2

Mmeé€

The
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where w = 2pppd and & = k/ppp. In the strictly 2D
case w = 0, the potential becomes that in Eq. (17), and
F(wz) must be replaced by 1. We emphasize that in
the real case, the parameter £ is large, and therefore the
mean free time ceases to depend on F. This conclusion
is valid in the linear screening theory. Careful exam-
ination shows the necessity of revising this approach.
The quantity 1/7. is proportional to 7?. This results
in a temperature dependence of the correction similar
to the dependence of the residual resistivity at low tem-
peratures.

2.3. Short-range interaction

Together with the long-range Coulomb part, the
interaction between electrons and holes also contains
the short-range kernel interaction. The large dielectric
constant of HgTe and CdHgTe leads to the dielectric
screening of the Coulomb contribution. In that case,
the on-site e—h interaction can prevail. To estimate the
kernel contribution, we can replace u,,,. by a con-

stant:

Mme + mp,
_ 2
U2pphz—ﬂhTm

e

MeMp, 1
_ dr.
me +my, 2w /U(T) t

The dimensionless quantity A describes the strength of
the contact e—e interaction. As a result, we find
_(me +mp)?A?T? |14
~ 2472R3N, P, 1-¢|’

In accordance with (15), the model of an isotropic en-
ergy spectrum leads to a logarithmic divergence of the
temperature corrections to the conductivity at equal
Fermi momenta of electrons and holes. The divergence
originates from the probability of two Fermi particle
backscattering with conservation of their individual en-
ergies. For isotropic Fermi surfaces, such processes oc-
cur for all electrons on the Fermi surface.

A;
(22)
A=

In

(23)

2.4. Anisotropic spectrum

In fact, the holes in the system under considera-
tion have anisotropy. Evidently, this kinematically lim-
its the possibility of backscattering and the divergence
and the hole spectrum anisotropy, neglected previously,
must therefore be taken into account. This can be done
in the relaxation-time approximation for the elliptic
hole spectrum in the case of zero magnetic field. The
anisotropy of the spectrum results in the anisotropy of
temperature corrections. In accordance with the exper-
imental situation, we consider the electric field applied
along the symmetry axis, i. In this case, Eq. (7) is
modified as

Fig.2. Dependence of the temperature correction in

the anisotropic case on the electron—to-hole concentra-

tion ratio and the hole mass ratio via the parameters ¢

and «. The parameter « ranges the values 0.2, 0.6, 1,

1.4, 1.8, 2.2, 2.6. The direction of o growth is shown
with an arrow

B -1t _pIsvh_vey=0 24
LB -tV =0, ()
where the subscript ¢ indicates the specific direction of
the field and the same component of the hole mass.
The friction coefficient n; for the same direction of
the electric field is given by

. omp TQ(mE + mh)2A2
B NsThe,i n 67T3h3NsPs

n; flai, ¢), (25)

where mj, = \/mims> is the mass of the hole density of

states, a; = \/m;/my, and

fla, Q) =

27
2
(6?2) /dcp de'de de¢' (cos o — cos ') x
0

X d(aC(cos " — cosp) + cosg — cos @) x
X 6((¢/a)(sing’ —sinp) + sing —sing’).  (26)

The integrals over three angles can be evaluated,
and we arrive at

1
4 22dx
ﬂmo_azll—ﬁﬂ+ﬁmh4»
a+(y/1+22(a* 1) (27)
a—CJ/1+22(f —1)|
Figure 2 shows the dependence of f(«,() on ( for

different ov. All curves contain the limited singularities
corresponding to the equality of the hole Fermi ellipse

X

x In
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CdTe 40 nm
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Fig.3. (a) The quantum well layer structure, (b) the quantum well energy diagram, and (c) the cross section of the samples
studied

axes to the diameter of the electron Fermi circle. The
exception is the case o = 1, where f(1,({) o —In |( —1|
as ( — 1. In this case, the divergence can be limited
by the finite temperature or collision widening.

3. EXPERIMENT

3.1. Samples

The Hgp.3Cdg.7Te/HgTe/Hgg 3Cdo.rTe quantum
wells with the (013) surface and the thickness of
20.5 nm were prepared by molecular beam epitaxy.
The details of the structure growth process are de-
scribed in [8, 9]. The QW cross section and the energy
diagram of the structures investigated are shown
in Figs. 3a and 1b. To perform magnetotransport
measurements, the samples based on these quantum
wells were prepared by standard photolithography in
the form of 50 pum wide Hall bars with the voltage
probes spaced 100 um apart. The ohmic contacts to
the two-dimensional gas were formed by the in-burning
of indium. To change and control the electron and hole
densities in the QW, the electrostatic top gate was

supplied. For this purpose, a dielectric layer containing
100 nm SiO5 and 200 nm SigN4 was first grown on the
structure using the plasma-chemical method. Then,
the TiAu gate was deposited. The schematic drawing
of the devices prepared in this way is shown in Fig. 3c.
The magnetotransport measurements in the described
structures were performed in the temperature range
0.2—4.1 K in magnetic fields up to 5 T by the standard
four-point circuit at the 12-13 Hz ac signal with the
current of 1-10 nA through the sample, which is
sufficiently low to avoid the overheating effects.

3.2. Experimental results

To gather information about the structure proper-
ties and to determine the main transport parameters of
the system corresponding to different gate voltages, the
magnetic field dependences of the diagonal p,,(B) and
Hall p,,(B) components of the resistance tensor were
measured. These functions show a strong dependence
on the magnitude and sign of the gate voltage applied
to the sample. Figure 4a,b,c presents the curves mea-
sured at gate voltages —3, —1.84, —0.5 V. We see that
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Pz, kQ
1.5

—-0.4 —0.2 0 0.2 0.4

Fig.4. Magnetic field dependences p..(B) and p.y(B) for the 2D electron—hole system in the HgTe quantum well at
T = 0.19 K for three gate voltages: ¢ —V;, = -3 V; b —V, = —-1.84 V, and ¢ — V; = —0.5 V; d — the energy band
diagrams with approximate positions of the Fermi energy corresponding to the curves on the left side

an alternating-sign Hall effect and strong positive mag-
netoresistance are observed at V, = 3, —1.84 V (see
Fig. 4a,b). At V; = —0.5 V (see Fig. 4¢), there is a
weak negative magnetoresistance at low fields and pos-
itive magnetoresistance at higher fields, and the mag-
netic field dependence of the Hall resistance is linear,

with its slope opposite to that of p,,(B) at V, = 3,
—1.84 Vand |B| > 0.1 T and |B| > 0.4 T, respectively.

The described behavior suggests that by varying the
gate voltage, we change the carrier type content in the
quantum well. This conclusion is further supported by
the pg.(Vy) and pay(Vy) traces measured at the con-
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Fig.5. Gate voltage dependences p..(B) and p.,(B)
for the 2D electron—hole system in the HgTe quantum
well at T'=0.19 K and the magnetic field B=2T

stant magnetic field B = 2 T corresponding to the
quantum Hall effect regime, Fig. 5. The quantum Hall
plateaux in p,,(V;) and minima in p,,(V;) are well de-
veloped for filling factors v = 1-10 on the electron side
and v = 1-4 on the hole side, indicating a very high
quality of the samples investigated. At V, ~ —1.8 V,
a dramatic change of the sign of p,, occurs, signify-
ing a change of the predominant carrier type in the
well. This transformation in p,,(V;) is accompanied
by a sharp peak in p,.(V,). The behavior of our sys-
tem in the quantum Hall effect regime has been studied
earlier [10].

By fitting the dependences similar to those pre-
sented in Fig. 4a,b,c using the formulas of the standard
classical transport model in the presence of two groups
of carriers of opposite signs [11], we can determine the
types of charge carriers involved in the transport and
their mobilities and densities. Figure 6 presents these
parameters as functions of the gate voltage. We first
consider the gate voltage dependences of the electron
and hole densities shown in Fig. 6a. For V, > -1V,
the experimental curves (see, e. g., Fig. 4¢) are well de-
scribed by the transport model involving only electrons
as charge carriers. Although holes can be present in
this case with a density much lower than the electron
density, their contribution to the transport is immate-
rial due to their lower mobility. As would be expected,
the gate voltage dependence of the electron density is
linear, with the slope 8.12 - 10 m=2-V—! correspond-
ing to the capacitance of the dielectric. An absolutely
different pattern is observed for V; < —1.5 V. To de-
scribe the dependences similar to those presented in
Fig. 4a,b, two types of carriers, electrons and holes,

N., P, 10" m~?2
4.0 i T T T T T i
351 O Electrons

® Holes
3.0L i

251 J

2.0} J
CNP

15 4 i

1.0 L l i

0.5} i
0 i . . . .

fin, pp, m*/ Vs
50 L T T T T O ]

20 r b
O Electrons

0l —@— Holes |

—6 —4 -2 0 2 4
Vi, V

Fig.6. o) The electron N, and hole P, densities versus
gate voltage; b) the electron p, and hole i, mobilities
versus gate voltage; 7= 0.19 K

should be taken into account. Figure 6a shows the elec-
tron and hole densities as functions of the gate voltage
for V, < —1.5 V obtained from the processing of the
experimental data. Clearly, as the negative gate bias
increases, the hole density increases and the electron
density decreases linearly, with the respective slopes
7.9-10' and 0.7- 10" m2.V!. We note that the sum of
the magnitudes of these slopes is about the magnitude
of the slope of N,(Vy) for V, > —1 V, as would be ex-
pected, because electrons are the only observable type
of carriers for V, > —1 V. Moreover, the slope ratio
P,(Vy)/Ns(Vy) = 11.3 for V; < —1.5 V should corre-
spond to the ratio of the densities of states of holes
and electrons. Then, if holes fill two valleys (as ex-
pected for a (013) 20 nm HgTe QW) and electrons fill
only one valley, then the hole mass is my &~ 0.15my if
we take the electron mass m,. ~ 0.025mg. These val-
ues are close to those determined from the cyclotron
resonance measurements [12].

Processing the diagonal p,,(B) and Hall p,,(B) de-
pendences in the vicinity of the gate voltages where the
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electron and hole densities are close is rather difficult.
However, extrapolating the linear dependences Ng(Vj)
and P, (V;), we find their crossing point, where the elec-
tron and hole densities are equal, V;, ~ —1.3 V — the
so called charge neutrality point (CNP).

Using the obtained dependences of the electron and
hole density on the gate voltage, we can plot the qual-
itative energy band diagrams opposite to Fig. 4a,b,c,
with the corresponding Fermi level positions and the
conduction and valence band occupation, Fig. 4d. As
mentioned above, for the (013) HgTe QWs, we have
a single conductance band minimum in the center of
the Brillouin zone and two valence band maxima situ-
ated along the [013] direction. According to the CNP
electron and hole densities and their mass values deter-
mined above, the conductance and the valence bands
overlap in our samples at about 10 meV.

Now, we consider the behavior of the electron and
hole mobilities as V, varies (see Fig. 6b). The lines
are drawn through the experimental points for visu-
alization. In the range —1.5V <V, < 43 V, a
decrease in the electron density is accompanied by a
marked decrease in their mobility, roughly as ~ N, N 2,
A similar dependence of mobility on density is also fre-
quently observed in other two-dimensional structures
where the carrier density is controlled by the electro-
static gate. It occurs because the transport time for
impurity scattering depends on the carrier density as
Tir & N, where a@ = 1-2. In the gate voltage range
-2V <V, < —1.5V corresponding to the approxi-
mate equality of the electron and hole densities, a sharp
jump in the electron mobility is observed (see the dot-
ted line in Fig. 6b). A further increase in the magnitude
of the negative gate bias slightly reduces the electron
mobility and weakly increases the hole mobility. Of
the greatest interest is the jump in the electron mo-
bility at =2 V < V, < —1.5 V. This jump coincides
with the gate voltage range where the hole density first
equals and then begins to exceed the electron density:
P; > N;. We suggest that this jump may be accounted
for by the hole screening and, therefore, by reducing
impurity scattering of electrons.

Ag shown in Sec. 2, in a bipolar system with two
types of charge carriers of the opposite sign, momentum
relaxation can be caused, in addition to other factors,
by their mutual scattering (friction) [5]. Since only the
particles of both kinds that fall into the T interval in
the vicinity of the Fermi level are involved in this mo-
mentum relaxation mechanism, the corresponding re-
laxation time is expected to change with temperature
as ~ T2
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Fig.7. Gate voltage dependences p(V,) at B =0 and

various temperatures 7' = 0.2 K, 0.5 K, 1 K, 1.5 K,

2K, 25K,3K,36K,41K,5K,6K,7K (from
bottom up)

Figure 7 presents the gate voltage dependences of
our sample resistance in the zero magnetic field for a
number of temperatures in the interval 7" = 0.19-7 K.
Each p(V;) curve has a pronounced maximum. At the
lowest temperature T = 0.19 K, the position of this
maximum almost coincides with the gate voltage at
which the hole and electron densities are equal (CNP).
Another interesting feature of the curves in Fig. 7 is
their asymmetric temperature dependence with respect
to the gate voltage. We can see that for V, > -1V,
i.e., when the electrons are the only detectable carri-
ers in the system, there is only a weak dependence of
resistance on temperature. But at V;, < —1 V, when
the holes begin to populate the valence band, a con-
siderable increase (by a factor of 1.5-3) in resistance
is observed as the temperature increases from 0.2 K to
7 K. It is maximal in the range of -3 V<V, < -1V
and decreases for higher negative gate biases. Also, as
the temperature increases, the maximum of the p(V;)
curve shifts by about 0.5 V to negative gate voltages.
In the next section, we analyze the observed behavior
using the theory of electron—hole scattering developed
in Sec. 2.

4. THEORY VERSUS EXPERIMENT

Due to the electron—hole scattering, there should be
a stronger temperature dependence of the resistivity in
the gate voltage range where both holes and electrons
are present, V, < -1V, compared to V;, > -1V, where
the electrons are the only charge carriers (see Fig. 6a).
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To analyze the system behavior at V;, < —1 V, we use
Eq. (12) in Sec. 1, describing the temperature depen-
dence of resistance in a system with two types of charge
carriers when the momentum relaxation is due to their
mutual scattering, which we rewrite in the form

p(T) =
1+ (n/e) (NSMP + Pin)
1+ (n/e)(Ns - Ps)Qanip/(Nslin + Ps,up) .

= Po (28)
Here, pg, Ng, Ps, pn, and pu, are respectively the sys-
tem resistance, the electron and hole densities and mo-
bilities at 7" = 0, and 7 is the electron-hole friction
coefficient defined in Sec. 1. At specified values of the
electron and hole densities irrespective of the details of
the scattering mechanism, the probability of electron—
hole scattering decreases as the square of temperature,
n = O©T?, where O is a certain T-independent function
of Ny and P, to be determined.

In Fig. 8a, we use closed circles to plot the p(T')
dependences obtained from the experimental curves in
Fig. Tat V, = =184V, -2V, -3V, -45V, -6V
(in Fig. 7, these gate voltages are marked with arrows).
For all these gate voltages, the resistivity temperature
dependence saturates at 7' < 0.5 K. This allows us to
use the values of the electron and hole mobilities and
densities at these temperatures as zero-T quantities in
Eq. (28) when fitting it to the experimental data in
Fig. 8a. For each of the specified gate voltages, these
zero-T parameters were independently obtained from
the magnetotransport data, as described in the above
discussion of the curves in Fig. 4a,b,c. Therefore, the
fitting procedure for each value of the gate voltage in
Fig. 8a depends on a single parameter © in the expres-
sion for 1. The fitting of Eq. (28) to the data is shown
in Fig. 8a by lines. The temperature range for fitting
was chosen as 0.19-4.1 K. It was found that Eq. (28)
does not fit well the experimental points for the tem-
peratures higher than 4.1 K, possibly because of other
temperature-dependent scattering mechanisms emerg-
ing at these temperatures. The points in Fig. 85 show
the fitting parameter © as a function of the gate volt-
age. In the inset, for statistics, we show a similar data
for another sample that was published previously [4].

We now apply the theoretical results obtained in
Sec. 1 for the analysis of the gate voltage dependence
of © = n/T?. Before we begin, it is vital to note that
the parameter © gives a first-hand information about
the interparticle interaction, which makes our situation
rather unique. Indeed, in the general case of a 2D elec-
tron system with o > €?/h, this information can only
be obtained from the study of quantum corrections,

p, Q
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0 1 2 3 4
T, K
©,107% Js/K?
30 T T T T T
[ ]
o5 | 35 i
30
25
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15+ 10 .
—3.0 -2.5 —2.0-1.5 —1.0
10 + i
5L o b 4
0 1 1 1 1 1
—6 -5 —4 -3 —2
Vy, V
Fig.8. a) Temperature dependences p(7T') obtained

from Fig. 7 for V, =184 V,2V,3V, —45V, -6V
(marked with arrows in Fig. 7). The lines are the fit-
ting by Eq. (28); b) the parameter © obtained from
fitting the experimental data in Fig. 7 with Eq. (28).
The solid line represents the theory given by Eqs. (25)—
(27) with o = 1.2 and the contact interaction con-
stant A = 1.36. Inset: similar experimental data from
another sample published previously [4], the line corre-
sponds to Eqs. (25)—(27) with a = 1.2 and the contact
interaction constant A = 1.64

which, apart from being only a few percent of the total
conductivity, depend on the interaction in an indirect
and complicated form [13-15].

We first note that the weak e—h interaction approx-
imation of our theory, given by Eq. (21), does not seem
to be applicable in our case. Indeed, a direct calcu-
lation of © using Eq. (21) for our system parameters
and the corresponding values of Ny and Ps yields ©
about two orders of magnitude less than that observed
experimentally (Fig. 80). The reason for this is proba-
bly related to the following fact. In the carrier density
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range investigated, the ratio of the screening constant
to the Fermi wave vector x/min(ppp, pre) &~ 20 > 1,
and therefore treating the e—h interaction as weak be-
comes unjustified. Besides, 1/k = 1.3 nm < d, where
d= 20 nm is the QW width, and the 2D consideration
loses applicability.

We have taken a variety of factors affecting the e-h
interaction into theoretical consideration, except the
large strength of the interaction. Besides the general
difficulties associated with the consideration of strong
interaction in a simple 2D case, there are complications
due to the specificity of HgTe QWs.

In fact, the individual electron energy levels and
wave functions in a narrow-gap semiconductor are ob-
tained from the size quantization of a many-component
wave function, which results in a complicated space de-
pendence of the electron density. Owing to the large
strength of the e—h interaction, its essential part is ac-
cumulated on distances comparable to the well width.
This factor strongly modifies the Coulomb interaction.
The long-range components of the Coulomb interaction
are suppressed, while a short-range 2D scattering am-
plitude is formed on the scale of the well width.

Under these circumstances, we can consider the e—e
scattering in the simplest way, and turn to the short-
range potential model represented by Eq. (23) in the
isotropic case and by its extension (Eqgs. (25)—(27)) for
the anisotropic spectrum. Then we have only a single
fitting parameter A, whose value cannot be found in
the 2D model developed here.

The solid lines in Fig. 8b and the inset are the fit-
ting of Eqs. (25)—(27) to the experimental dependences
of ©(V,) with A = 1.36 (1.64 for the data in the in-
set) and the hole mass anisotropy coefficient « = 1.2 in
both cases. A more universal way to present the data

. . Oh3N, P, ;
is to plot the quantity ST (motmn)7AZ 45 2 function of

¢ = v/ Ps/2Ng, in which case the experimental points
for both samples should fall on the same curve f(«, ().
As we can see in Fig. 9, this is indeed the case.

The values of A obtained from the fitting in Fig. 8b
appear to be too large if we assume that it repre-
sents Coulomb interaction with the dielectric constant
of HgTe equal to 12-15. At the same time, these val-
ues are in good agreement with the short-range model
considerations.

We next discuss the origin of the short-range inter-
action in more detail. In QWs of conventional semi-
conductors, the subbands are formed from the simple
envelope-function states. On the contrary, in a HgTe
quantum layer, the size quantization and the forma-
tion of a gap occur simultaneously. The e—h interac-

’17 ’27 f
4 T T T T
O sample Ne1
® sample Ne2
3 o ——theory f(a=1.23;()
6)
21 i
[ )
O
1t i
0 I I I I
1.0 1.5 2.0 2.5 3.0
(P,/2N.)*
Fig.9. The dimensionless quantity O’ =

= Oh3N;sPs/2kE(me +my)?A*  plotted as  a

function of ( = \/P;/2N, for the data of two samples

in Fig. 80. The solid line represents the theory,
Eq. (27)

tion modifies the bands, and the value of the effective
e—h interaction is inevitably related to the structure
of the states. This determines the characteristic en-
ergy and spatial scales of the e—h interaction: the gap
as the characteristic energy scale and the width of the
quantum layer as the length scale. This results in a
value of A comaparble with the one extracted from the
experimental data.

We emphasize that a large e—e interaction constant
means the inapplicability of the Born approximation for
the electron—hole pair scattering and of the Fermi-gas
concept. However, the constant A can be treated as
a low-energy limit of a dimensionless scattering ampli-
tude that preserves the above-mentioned estimates. In
fact, our results constitute an evidence that even in the
case 0 >> €2 /h, the 2D e—h system in HgTe QW should
be considered a strongly correlated 2D e—h liquid rather
than a 2D e-h gas.

5. CONCLUSIONS

We have developed the theory of temperature-
dependent corrections to the conductivity and mag-
netotransport coefficients in a 2D semimetal. These
corrections are caused by friction between electrons and
holes. The corrections obey the quadratic temperature
dependence in the low-temperature limit. The friction
coefficients are found for the linear-screened Coulomb
electron—hole interaction and the real spatial structure
of the system. In addition, calculations have been
made for the core electron—hole scattering under the
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assumption that the Coulomb potential is completely
screened. The experiments were performed in a 20 nm
(013) HgTe QW. We found that the conductivity vari-
ation with temperature due to electron-hole scattering
is very large (2-3 times higher than the conductivity
in the zero-temperature limit). This allows obtaining
a direct information about the interparticle interaction
in a 2D electron—hole system with a high (o > e?/h)
conductivity value. It has proved impossible to explain
the observed strong temperature-dependent variation
of conductivity as a consequence of the electron—hole
scattering due to Coulomb interaction. Instead, the
short-range e—h scattering model was found to sat-
isfactorily explain the observed large friction strength.
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