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SPATIAL STRUCTURE OF A COLLISIONALLY INHOMOGENEOUSBOSE�EINSTEIN CONDENSATEFei Li a;b*, Dongxia Zhang 
, Shiguang Rong 
, Ying Xu 
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ation S
ien
e, Hunan First Normal University410205, Changsha, ChinabKey Laboratory of Low-Dimensional Quantum Stru
tures and Quantum Control,Ministry of Edu
ation, Hunan Normal University410081, Changsha, China
 Department of Physi
s, Hunan University of S
ien
e and Te
hnology411201, Xiangtan, ChinaRe
eived April 28, 2013The spatial stru
ture of a 
ollisionally inhomogeneous Bose�Einstein 
ondensate (BEC) in an opti
al latti
e isstudied. A spatially dependent 
urrent with an expli
it analyti
 expression is found in the 
ase with a spatiallydependent BEC phase. The os
illating amplitude of the 
urrent 
an be adjusted by a Feshba
h resonan
e, andthe intensity of the 
urrent depends heavily on the initial and boundary 
onditions. In
reasing the os
illatingamplitude of the 
urrent 
an for
e the system to pass from a single-periodi
 spatial stru
ture into a very 
om-plex state. But in the 
ase with a 
onstant phase, the spatially dependent 
urrent disappears and the Melnikov
haoti
 
riterion is obtained via a perturbative analysis in the presen
e of a weak opti
al latti
e potential. Nu-meri
al simulations show that a strong opti
al latti
e potential 
an lead BEC atoms to a state with a 
haoti
spatial distribution via a quasiperiodi
 route.DOI: 10.7868/S00444510131100471. INTRODUCTIONEver sin
e Dahan et al. su

essfully loaded Bose�Einstein 
ondensates (BECs) in opti
al latti
es [1, 2℄,the ri
h and interesting phenomena of BECs in opti-
al latti
es attra
t more and more attention. This isbe
ause BECs in opti
al latti
es open up numerousnew resear
h aspe
ts for both fundamental and ap-plied problems in quantum me
hani
s. An opti
al lat-ti
e 
an be 
reated by the interferen
e of two or morelaser beams [3℄. Many important phenomena follow-ing from the intera
tions between BECs and opti
allatti
es have been profoundly investigated, both exper-imentally and theoreti
ally. A quantum phase transi-tion in a BEC with repulsive intera
tions, 
on�ned ina three-dimensional opti
al latti
e potential, was foundin [4℄. As the potential depth in
reases, a transition isobserved from a 
urrent to a Mott-insulator phase [4℄.In one-dimensional (1D) o�-resonan
e opti
al latti
es,*E-mail: wiself�gmail.
om

for small values of the latti
e well depth, Blo
h os
illa-tions were observed [5℄. Using the Holstein�Primako�(HP) transformation, Xie and 
oworkers theoreti
allyfound that the dark and bright magneti
 solitons 
anexist in spinor BECs in a 1D opti
al latti
es in di�er-ent parameter regions [6℄. Up to date, the intriguingBEC phenomena investigated experimentally or theo-reti
ally in opti
al latti
es in
lude 
urrent and dissi-pative dynami
s [7℄, arrays of Josephson jun
tions [8℄,Landau�Zener tunneling [2; 9�12℄, squeezed states [13℄,
haos [14�30℄, and so on. In re
ent years, BECs intraveling opti
al latti
es also re
eive 
onsiderable at-tention [29�39℄.It is undoubted that the spatial stru
ture ofBECs � the spatial distribution of 
ondensed atoms �is of great importan
e to various phenomena exhibitedby BECs. The spatial 
haos of a trapped BEC in a1D weak opti
al latti
e was studied in [19℄, followed bythe resear
h on spatial 
haos of BECs in a Wannier�Stark potential [20℄. In our previous works, the spatial
haos of BECs in a 
igar-shaped trap and an asym-metri
 periodi
 potential were investigated [21℄. The3 ÆÝÒÔ, âûï. 5 (11) 921
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haos dis
ussed in the above papers 
an be at-tributed to the same type, 
ontinuous spatial 
haos.Re
ently, a di�erent type of spatial 
haos de�ned as adis
rete 
haoti
 state was announ
ed [18℄. The authorspresented analyti
 eviden
e of this type of spatial 
haosin a 1D attra
tive BEC [18℄. In the study of the twotypes of spatial 
haos, both the amplitudes and signsof the nonlinearity parameters in the above referen
esare spa
e-independent [18�21℄. However, experimentshave demonstrated that the nonlinearity parameter 
anbe adjusted from large negative values to large posi-tive values via a te
hnique named the Feshba
h reso-nan
e [40�45℄. In early years, the time-dependent non-linearity parameters were usually 
onsidered [25; 40�44℄.Re
ently, the realization and the role of a spatiallyvarying nonlinearity were dis
ussed in [46�48℄ and thereferen
es therein. BECs with spatially varying nonlin-earities are usually 
alled 
ollisionally inhomogeneousones [45, 49, 50℄. To the best of our knowledge, therole of spatially varying nonlinearities in the spatialdistribution of 
ondensed atoms has not been reportedso far. In this paper, we address this problem. As isknown, many properties of BECs, in
luding the spatialdistribution of 
ondensed atoms, are badly in�uen
edby the nonlinearity parameter. Therefore, studies onthe role of the spatially varying nonlinearities in thespatial distribution of BEC atoms are ne
essary.This paper is organized as follows. In Se
. 2, the
ase with a spatially dependent phase is 
onsidered.We �nd that there exists a spatially varying 
urrentwith an expli
it analyti
 expression in the system, anda strong os
illation of the 
urrent indu
es a very 
om-plex spatial stru
ture in the systems. In Se
. 3, the
ase with a 
onstant phase is 
onsidered. A pertur-bative analysis is performed and the Melnikov 
haoti

riterion is obtained. Numeri
al simulations demon-strate that the system steps from a quasiperiodi
 stateinto a 
haoti
 one as the depth of the external opti
allatti
e potential in
reases. In Se
. 4, a brief 
on
lusionis presented.2. THE CASE WITH A SPATIALLYDEPENDENT PHASEIn the mean-�eld approximation, the dynami
s ofa quasi-1D BEC 
an be modeled by a 1D Gross�Pitaevskii equationi~� �t = � ~22m �2 �x2 + Vext(x) + gj j2 ; (1)

where m is the atom mass, ~ is the Plan
k 
onstant,Vext(x) is the external potential,  is the ma
ros
opi
quantum wave fun
tion 
hara
terizing the dynami
alevolution of BEC near zero temperature,g = 2~!?asis the nonlinearity parameter 
hara
terizing the two-parti
le intera
tion, and as is the s-wave s
atteringlength: as > 0 indi
ates a repulsive intera
tion andas < 0 
orresponds to an attra
tive intera
tion.In this paper, we 
onsider the sine opti
al latti
epotential Vext(x) = V1 sin(2Kx); (2)where K is the wave ve
tor of the lasers forming theopti
al potential. Su
h an opti
al potential 
an be 
re-ated by the interferen
e of two or more laser beams.For simpli
ity, we adopt the dimensionless variables~t = ~m [K℄2t; ~x = [K℄x; ~ =  pn;~V1 = m[K℄2~2 V1; ~K = K[K℄ ; ~g = mn[K℄2~2 g; (3)where n is the density of atoms in the BEC and [K℄is the unit of K. It is 
onvenient, and hopefully doesnot result in misunderstanding, to repla
e ~t with t, et
.Then the Gross�Pitaevskii equation in dimensionlessform be
omesi� �t = �12 �2 �x2 + V1 sin(2Kx) + gj j2 : (4)It has been pointed out that the spatial modulationof the s
attering length 
an be a
hieved via the Fesh-ba
h resonan
e te
hnique, whi
h means that the non-linearity parameter g 
an be spatially dependent [46�48℄. In this paper, we 
onsider the nonlinearity param-eter of the formg(x) = g0 + g1 sin2(�x); (5)where g0 is the value of the nonlinearity parameter inthe absen
e of modulation, and g1 and � are the am-plitude and wavenumber of the modulation.Performing the transformation� =pg(x) for g(x) 6= 0;we arrive at [45, 46℄i���t = �12 �2��x2+j�j2�+V1 sin(2Kx)�+V̂eff (x)�; (6)922
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ture of a 
ollisionally inhomogeneous : : :V̂eff (x) = 12pg �2pg�x2 � 1g ��pg�x �2 ++ 1pg �pg�x ��x : (7)For the weak modulation with g0 � g1, V̂eff (x) 
anbe expressed asV̂eff (x) = �3�2g2116g20 + �2g12g0 
os(2�x) ++ 3�2g2116g20 
os(4�x) + ��g12g0 sin(2�x)� ��x : (8)We take the wave fun
tion in the form�(x; t) = R(x) expfi[�(x)� �t℄gwith �(x) and � being respe
tively the phase and the
hemi
al potential. Substituting in Eq. (6) produ
esa hydrodynami
 version of the nonlinear S
hrödinger(NLS) equation expressed asd2Rdx2 + 2~�R� 2R3 �R� d�dx�2 � 2V1 sin(2Kx)R�� ��" 
os(2�x) + 38"2 
os(4�x)�R�� " sin(2�x)dRdx = 0; (9)ddx �R2 d�dx� = " sin(2�x)R2 d�dx : (10)In Eqs. (9) and (10), we have set2~� = 2�+ 3"2=8and the parameter " = �g1=g0 � 1is small due to the inequality g0 � g1. The �rstderivative d�=dx in Eq. (10) represents the velo
ity andR2 = n is the number density of atoms of the systemdes
ribed by Eq. (6) [46℄. Thereby, Eq. (10) suggeststhe existen
e of the spatially varying atomi
 
urrentJ = R2 d�dx = �exp ��" 
os(2�x)2� � (11)in the system des
ribed by Eq. (6). Here, � is an inte-gral 
onstant determined by the initial and boundary
onditions. We note that the true number density ofatoms is not R2 but j j2 [46℄. A

ordingly, J is not thetrue atomi
 
urrent of the BEC. But, obviously, R2
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Fig. 1. Spatial evolutions of the 
urrent with � = 3:5,� = 1, " = 0:002 (a) and 0:2 (b )and J are respe
tively proportional to the true numberdensity of atoms and atomi
 
urrent. As in Ref. [46℄,we treat R2 and J as the number density of atoms andthe atomi
 
urrent of system (6). Given the above dis-
ussion and after 
areful inspe
tion, we 
an �nd thatEqs. (9) and (11) are similar to the equations of motionof a 
lassi
al Newtonian parti
le in a 
entral �eld; the
oordinate x plays the role of time t, and J is propor-tional to the angular momentum.In Refs. [18�21℄, the nonlinearity parameters are�xed and the atomi
 
urrents are steady �ows. Butwhen the nonlinearity parameter is spatially depen-dent, the atomi
 
urrent is spatially modulated, as 
anbe judged from Eq. (11).Equation (11) implies that there exists a spatiallydependent atomi
 
urrent in the 
ondensate. The in-
lusion of � and " related to the spatially dependentnonlinear parameter in Eq. (11) means that the atomi

urrent 
an be adjusted via the Feshba
h resonan
e.923 3*
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Fig. 2. Phase portraits in the plane (R(x); _R(x)) for " = 0:002 (a) and " = 0:2 (b ), with ~� = 7, V1 = 0:001, � = 3:5,� = 1, K = 4:5, R(0) = 0:5, and _R(0) = 0Undoubtedly, the 
urrent exerts an important e�e
t onthe spatial distribution of BEC atoms due to the trans-portation of BEC atoms within the system itself. InFig. 1, we numeri
ally demonstrate the spatially depen-dent 
urrent with � = 3:5, � = 1, and di�erent valuesof ". We see from Fig. 1a that the os
illating ampli-tude of the 
urrent is small when " = 0:002. Keepingthe values of � and � �xed and in
reasing " to 0:2 leadsto a mu
h larger os
illating amplitude of the 
urrent inFig. 1b. A

ording to Eq. (11) and Fig. 1, we 
an 
on-
lude that irrespe
tive of the values of the other param-eters, the 
urrent always os
illates around the value �,namely the average intensity of the 
urrent is �. It hasbeen pointed out that � is determined by the initial andboundary 
onditions. This means that the initial andboundary 
onditions 
an exert very strong in�uen
e onthe intensity of the 
urrent. To summarize, the os
il-lating amplitude of the 
urrent 
an be adjusted by theFeshba
h resonan
e and the intensity of the 
urrent de-pends heavily on the initial and boundary 
onditions.To intuitively observe the e�e
t of the atomi
 
ur-rent on the spatial distribution of 
ondensed atoms, wenumeri
ally solve Eq. (9) in a spa
e interval from x = 0to x = 500 and plot the phase portraits in the plane(R(x), _R(x)) (see Fig. 2). We have set the parametersand initial 
onditions as ~� = 7, V1 = 0:001, � = 3:5,� = 1, K = 4:5, R(0) = 0:5, _R(0) = 0, " = 0:002 inFig. 2a, and " = 0:2 in Fig. 2b. When " = 0:002, weobserve from Fig. 2a that there is only one 
losed orbitin the phase spa
e, indi
ating that the system is in asingle-periodi
 state. But as " in
reases to 0:2, the sys-tem is in a very 
omplex or even 
haoti
 state, as shownin Fig. 2b. By 
ontrasting Figs. 2a and b, we 
an 
on-


lude that a strong enough os
illation of the 
urrent 
antake the system to a very 
omplex or even 
haoti
 state.In reality, a strong os
illation of the 
urrent means astrong modulation of the nonlinear intera
tion betweenatoms, whi
h must result in a 
omplex spatial distri-bution or even 
ompletely 
haoti
 spatial distributionof 
ondensed atoms.3. THE CASE WITH A CONSTANT PHASEThe 
omplexity of Eq. (9) indi
ates that it is dif-�
ult to �nd its exa
t solution by analyti
 methods.But when the phase is 
onstant, for example, in the
ase of a standing wave with � = 0, the atomi
 
urrentdisappears and we arrive atd2Rdx2 + 2~�R� 2R3 � 2V1 sin(2Kx)R�� ��" 
os(2�x) + 38"2 
os(4�x)�R �� " sin(2�x)dRdx = 0: (12)If the 
oordinate x is repla
ed with time t, Eq. (12)is just a driven Du�ng equation with damping. Toperform a perturbative analysis, we assume thatV1 = "v1and 
hange Eq. (12) into the perturbed form924
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ture of a 
ollisionally inhomogeneous : : :d2Rdx2 + 2~�R� 2R3 = 2"v1 sin(2Kx)R++ ��" 
os(2�x) + 38"2 
os(4�x)�R++ " sin(2�x)dRdx : (13)Expanding a solution of Eq. (13) to the �rst orderR = R0 + "R1; (14)and substituting it in Eq. (13), we obtain the zeroth-order unperturbed equationd2R0dx2 + 2~�R0 � 2R30 = 0 (15)and the �rst-order equationd2R1dx2 + 2~�R1 � 6R20R1 = 
1 (16)with
1 = dR0dx sin(2�x) + [� 
os(2�x) + 2v1 sin(2Kx)℄R0:Zeroth-order equation (15) is just the Du�ng equation,admitting the famous hetero
lini
 solutionR0 =p~� th hp~�(x� C)i ; (17)where C = x0 � th�1 hR0(x0)=p~�i =p~�is a 
onstant determined by the initial and boundary
onditions for ~� > 0. In the phase spa
e of unperturbedsystem (15), the separatrix is just formed by the het-ero
lini
 orbits 
orresponding to the hetero
lini
 solu-tions. In our theoreti
 analysis, what we are interestedin whether the system phase spa
e stru
ture is 
lose tothe separatrix. If the unperturbed system is subje
tto various for
es, 
ompli
ated and even 
haoti
 spa
estru
tures may appear in the vi
inity of the separatrix.A

ording to [16℄, when 
1 = 0, using hetero
lini
solution (17), we 
an easily obtain two linearly inde-pendent solutions of Eq. (16) asf1 = dR0dx = ~� se
h2 hp~�(x� C)i ; (18)f2 = dR0dx Z �dR0dx ��2 dx == 38~� (x� C) se
h2 hp~�(x� C)i++ 18~�3=2 nsh h2p~�(x�C)i+3 th hp~�(x�C)io : (19)

It is obvious that f2 is unbounded and exponentially in-
reases as x in
reases be
ause it involves the hyperboli
sine fun
tion. Using the two linearly independent solu-tions, we 
an 
onstru
t the general solution of Eq. (16)as [17℄ R1(x) = f2 xZC1 f1
1dx� f1 xZC2 f2
1dx; (20)where C1 and C2 are two arbitrary 
onstants deter-mined by initial 
onditions. This solution 
an be di-re
tly proved by 
omparing the se
ond derivative R1xxfrom Eq. (20) with that in Eq. (16). It is not di�
ultto verify that the general solution (20) is usually un-bounded due to the exponentially in
reasing fun
tionf2. In other words, the density of the 
ondensed atomsbe very large, similarly to the 
ase where the densityis very large at the origin of the verti
al 
oordinate [2℄.But if the 
onditionI� = limx!�1 xZC1 f1
1dx = 0 (21)is satis�ed, then this kind of unboundedness 
an be ef-fe
tively avoided. Inspe
ting Eq. (21) 
arefully, we �ndthat I+ � I� = 0
an eliminate the 
onstant C1 and produ
e the famousMelnikov fun
tionM(x0) = I+ � I� = 1Z�1 f1
1dx = 0: (22)Performing the integration in Eq. (22), we obtainM(x0) = 2�� �23(�2 + ~�)� �2� 
s
h� ��p~���� sin(2�C) + 4�v1K2
s
h��Kp~���� 
os(2KC) = 0: (23)As is well known, the Melnikov fun
tion is also 
alledthe Melnikov distan
e between the stable and unstablemanifolds in the Poin
aré se
tion at x0. If the Melnikovfun
tion M(x0) has simple zeros, there exists Smale-horseshoe 
haos in the system. Thereby a simple zeroMelnikov fun
tion M(x0) 
an lead to a 
haoti
 spatialstru
ture of the 
ondensate.Equations (22) and (23) indi
ate that boundedness
ondition (21) 
ontains the Melnikov 
haoti
 
riterionpredi
ting the onset of 
haoti
 spatial stru
ture. In925
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C = 5 C = 10 C = 20 C = 30Fig. 3. Stability 
urves for di�erent initial 
onditions; ~� = 1:0, � = 2:5other words, if Eq. (21) is satis�ed, then Eqs. (22)and (23) are satis�ed automati
ally. Consequently, thegeneral solution of Eqs. (22) and (23) must be boundedand 
haoti
. In fa
t, 
arefully inspe
ting the generalsolution (20), we 
an see that its �rst term is the un-bounded fun
tion f2 times an analyti
ally unsolvableintegration. The produ
t 
an be bounded if and only ifboundedness 
onditions (21) and (22) are stri
tly sat-is�ed, whi
h manifests that the 
haoti
 spatial stru
-ture of the system is extremely sensitive to the initial
onditions and system parameters. Any in�nitesimaldeviations from the 
onditions and system parametersunder Eqs. (21) and (22) are exponentially ampli�eddue to the exponential in
rease of f2 as x! �1. Un-fortunately, su
h deviations 
annot be avoided in 
al-
ulations anyhow, irrespe
tive of the adopted numer-i
al integration methods and steps and number pre-
isions. The unsolvable integration in Eq. (20) 
annotbe expressed in �nite form in elementary fun
tions, andEq. (23) shows the relevan
e of parameters to the ir-rational number � with an in�nite sequen
e of digits,whi
h would 
ause ina

ura
y in determining the valuesof parameters. In short, given the foregoing analysis,the spatial stru
ture of the 
ondensate is unpredi
table.That is a signi�
ant property of 
haos.Melnikov fun
tion (23) 
ontains the parameter Cdetermined by the initial 
onditions, showing that thestability of the system satisfying M(x0) = 0 is sensi-tively dependent on the initial 
onditions. This is oneof the leading features of strange 
haoti
 attra
tors. To
learly see the dependen
e on the initial 
onditions, inFig. 3 we plot the stability 
urves in the (K; V1) planefrom Eq. (23) for di�erent values of C with ~� = 1:0and � = 2:5. We see from Fig. 3, that as the valueof C in
reases, the stability 
urves be
ome greater innumber and denser. This signi�es the existen
e of a
haoti
 spatial stru
ture in the 
ondensate [16℄.In Fig. 4, we display the parameter regions in the

1
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Fig. 4. The regions of regular and 
haoti
 states for dif-ferent values of ~� = 4 (1 ), 3 (2 ), 2 (3 ). The regionsabove the 
urves 
orrespond to 
haoti
 states and theregions below 
orrespond to regular states; � = 1:9,C = 10(K; V1) plane for di�erent values of ~� with � = 1:9and C = 10 based on Eq. (23). The regions abovethe 
urves 
orrespond to the 
haoti
 states and thosebelow 
orrespond to the regular states. The values ofv1 on the 
urves are those of the thresholds. We 
ansee from Fig. 4 that as the dimensionless 
hemi
al po-tential ~� in
reases, the 
haoti
 region is redu
ed. Thismeans that a large 
hemi
al potential 
an lead to 
haossuppression.To verify the validity of the above analyses, after
arefully sele
ting parameters above the 
riti
al 
urve(
orresponding to ~� = 2) in Fig. 4, we numeri
ally solveEq. (12) in the spa
e interval from x = 0 to x = 500926
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haoti
 state; ~� = 2:0, V1 = 0:3, " = 0:15, � = 1:9, K = 1:95, R(0) = 0:1, and_R(0) = 0
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100Fig. 6. (a) Phase portrait in the plane (R(x); _R(x)); (b ) spatial evolution of R(x). Both the phase portrait and the spatialevolution show that the system is in a quasiperiodi
 state; ~� = 2:0, V1 = 4, " = 0:2, � = 3, K = 3:5, R(0) = 0:1, and_R(0) = 0and plot the results in Fig. 5 for ~� = 2:0, V1 = 0:3," = 0:15, � = 1:9, K = 1:95, R(0) = 0:1, and _R(0) = 0.From the phase portrait in Fig. 5a, we 
an see a typ-i
ally 
haoti
 attra
tor, whi
h implies that the systemis in a 
haoti
 state; this fa
t is also proved by the 
or-responding 
haoti
 spatial evolution of R(x) shown inFig. 5b. The numeri
al simulations are shown to agreewith our analyti
 results.As the value of V1 in
reases gradually, the aboveanalyti
 methods be
ome ina

urate, and even invalid.In su
h 
ases, we 
an resort to numeri
al simulations.After setting ~� = 2:0, " = 0:2, � = 3, K = 3:5,R(0) = 0:1, and _R(0) = 0, we numeri
ally solveEq. (12) with di�erent values of V1 and plot phase por-traits in the plane (R(x); _R(x)) and the 
orresponding

spatial evolutions of R(x) in Figs. 6 and 7 from x = 0to x = 500. When V1 = 4, from the phase portraitin Fig. 6a we 
an see typi
al quasiperiodi
 orbits in-di
ating that system is in a quasiperiodi
 state; the
orresponding spatial evolution of R(x) also indi
atesthat the system is in a quasiperiodi
 state (see Fig. 6b ).Both the phase portrait and spatial evolution of R(x)in Fig. 6 show that BEC atoms are in a quasiperiodi
spatial distribution. But as V1 in
reases to 8:2 andthe other parameters and initial 
onditions are �xed, atypi
ally 
haoti
 phase portrait appears, as 
an be seenin Fig. 7a; Fig. 7b is the 
orresponding 
haoti
 spatialevolution of R(x). This signi�es that BEC atoms arein a 
haoti
 spatial distribution. For visual 
larity, weonly plot the spatial evolutions of R(x) from x = 0927
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0.5−1.0Fig. 7. (a) Phase portrait in the plane (R(x); _R(x)); (b ) spatial evolution of R(x). Both the phase portrait and the spatialevolution show that the system is in a 
haoti
 state. Here, V1 = 8:2 and the other parameters and initial 
onditions are thesame as in Fig. 6to x = 100. Figures 6 and 7 illustrate that for a setof spe
i�
 parameters and initial 
onditions, in
reasingthe value of V1 
an lead BEC atoms to a 
haoti
 spatialdistribution via a quasiperiodi
 route.4. CONCLUSIONIn this work, we have investigated the spatial stru
-ture of a 
ollisionally inhomogeneous BEC. When theBEC phase is spatially dependent, a spatially varyingatomi
 
urrent with an expli
it analyti
 expression ap-pears in the system. Theoreti
al analyses reveal thatthe os
illating amplitude of the 
urrent 
an be adjustedvia the Feshba
h resonan
e. A strong os
illation of the
urrent 
an lead the system to a very 
omplex spatialdistribution of BEC atoms.For the 
ase with a 
onstant BEC phase, the above-mentioned 
urrent disappears and the equation of thesystem takes the form of a driven Du�ng equation withdamping. By a perturbative analyses, we obtain theMelnikov 
haoti
 
riterion predi
ting the existen
e ofa 
haoti
 spatial distribution of 
ondensed atoms. Nu-meri
al simulations show that the system 
an step froma quasiperiodi
 state into a 
haoti
 one with an in
reas-ing depth of the external opti
al latti
e.Chaos in a BEC system may have negative e�e
t onthe stability and manipulation of the system itself. Itwas shown in Ref. [14℄ that 
haos in BECs is 
onne
tedwith its 
ollapsing pro
ess. Therefore, studies of 
haosin BECs are very helpful in maintaining the stabilityof BECs. On the other hand, a BEC system is animportant 
andidate for quantum 
omputation [51℄.

However, 
haos is usually asso
iated with quantumentanglement, exerting great e�e
t on quantum 
om-putation [52, 53℄. Undoubtedly, studies on 
haos inBECs are of theoreti
al and experimental ne
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