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The spatial structure of a collisionally inhomogeneous Bose—Einstein condensate (BEC) in an optical lattice is
studied. A spatially dependent current with an explicit analytic expression is found in the case with a spatially
dependent BEC phase. The oscillating amplitude of the current can be adjusted by a Feshbach resonance, and
the intensity of the current depends heavily on the initial and boundary conditions. Increasing the oscillating
amplitude of the current can force the system to pass from a single-periodic spatial structure into a very com-
plex state. But in the case with a constant phase, the spatially dependent current disappears and the Melnikov
chaotic criterion is obtained via a perturbative analysis in the presence of a weak optical lattice potential. Nu-
merical simulations show that a strong optical lattice potential can lead BEC atoms to a state with a chaotic

spatial distribution via a quasiperiodic route.
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1. INTRODUCTION

Ever since Dahan et al. successfully loaded Bose—
Einstein condensates (BECs) in optical lattices [1, 2],
the rich and interesting phenomena of BECs in opti-
cal lattices attract more and more attention. This is
because BECs in optical lattices open up numerous
new research aspects for both fundamental and ap-
plied problems in quantum mechanics. An optical lat-
tice can be created by the interference of two or more
laser beams [3]. Many important phenomena follow-
ing from the interactions between BECs and optical
lattices have been profoundly investigated, both exper-
imentally and theoretically. A quantum phase transi-
tion in a BEC with repulsive interactions, confined in
a three-dimensional optical lattice potential, was found
in [4]. As the potential depth increases, a transition is
observed from a current to a Mott-insulator phase [4].
In one-dimensional (1D) off-resonance optical lattices,
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for small values of the lattice well depth, Bloch oscilla-
tions were observed [5]. Using the Holstein—Primakoff
(HP) transformation, Xie and coworkers theoretically
found that the dark and bright magnetic solitons can
exist in spinor BECs in a 1D optical lattices in differ-
ent parameter regions [6]. Up to date, the intriguing
BEC phenomena investigated experimentally or theo-
retically in optical lattices include current and dissi-
pative dynamics [7], arrays of Josephson junctions [§],
Landau—Zener tunneling [2, 9-12], squeezed states [13],
chaos [14-30], and so on. In recent years, BECs in
traveling optical lattices also receive considerable at-
tention [29-39].

It is undoubted that the spatial structure of
BECs — the spatial distribution of condensed atoms —
is of great importance to various phenomena exhibited
by BECs. The spatial chaos of a trapped BEC in a
1D weak optical lattice was studied in [19], followed by
the research on spatial chaos of BECs in a Wannier—
Stark potential [20]. In our previous works, the spatial
chaos of BECs in a cigar-shaped trap and an asym-
metric periodic potential were investigated [21]. The
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spatial chaos discussed in the above papers can be at-
tributed to the same type, continuous spatial chaos.
Recently, a different type of spatial chaos defined as a
discrete chaotic state was announced [18]. The authors
presented analytic evidence of this type of spatial chaos
in a 1D attractive BEC [18]. In the study of the two
types of spatial chaos, both the amplitudes and signs
of the nonlinearity parameters in the above references
are space-independent [18-21]. However, experiments
have demonstrated that the nonlinearity parameter can
be adjusted from large negative values to large posi-
tive values via a technique named the Feshbach reso-
nance [40-45]. In early years, the time-dependent non-
linearity parameters were usually considered [25,40-
44].

Recently, the realization and the role of a spatially
varying nonlinearity were discussed in [46-48] and the
references therein. BECs with spatially varying nonlin-
earities are usually called collisionally inhomogeneous
ones [45, 49, 50]. To the best of our knowledge, the
role of spatially varying nonlinearities in the spatial
distribution of condensed atoms has not been reported
so far. In this paper, we address this problem. As is
known, many properties of BECs, including the spatial
distribution of condensed atoms, are badly influenced
by the nonlinearity parameter. Therefore, studies on
the role of the spatially varying nonlinearities in the
spatial distribution of BEC atoms are necessary.

This paper is organized as follows. In Sec. 2, the
case with a spatially dependent phase is considered.
We find that there exists a spatially varying current
with an explicit analytic expression in the system, and
a strong oscillation of the current induces a very com-
plex spatial structure in the systems. In Sec. 3, the
case with a constant phase is considered. A pertur-
bative analysis is performed and the Melnikov chaotic
criterion is obtained. Numerical simulations demon-
strate that the system steps from a quasiperiodic state
into a chaotic one as the depth of the external optical
lattice potential increases. In Sec. 4, a brief conclusion
is presented.

2. THE CASE WITH A SPATIALLY
DEPENDENT PHASE

In the mean-field approximation, the dynamics of
a quasi-1D BEC can be modeled by a 1D Gross—
Pitaevskii equation
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where m is the atom mass, A is the Planck constant,
Veze(x) is the external potential, ¢ is the macroscopic
quantum wave function characterizing the dynamical
evolution of BEC near zero temperature,

g =2hwias

is the nonlinearity parameter characterizing the two-
particle interaction, and as is the s-wave scattering
length: as; > 0 indicates a repulsive interaction and
as < 0 corresponds to an attractive interaction.

In this paper, we consider the sine optical lattice
potential

Vest(x) = Vi sin(2K ), (2)

where K is the wave vector of the lasers forming the
optical potential. Such an optical potential can be cre-
ated by the interference of two or more laser beams.

For simplicity, we adopt the dimensionless variables

N_E 712 7 =Kz :i
~ m K _ mn
Vl = [}—{]—2’12‘/17 = [K’]’ g = [Kr]2h2g7

where n is the density of atoms in the BEC and [K]
is the unit of K. It is convenient, and hopefully does
not result in misunderstanding, to replace f with ¢, etc.
Then the Gross—Pitaevskii equation in dimensionless
form becomes
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It has been pointed out that the spatial modulation
of the scattering length can be achieved via the Fesh-
bach resonance technique, which means that the non-
linearity parameter ¢ can be spatially dependent [46—
48]. In this paper, we consider the nonlinearity param-

eter of the form

(5)

where go is the value of the nonlinearity parameter in
the absence of modulation, and g; and s are the am-
plitude and wavenumber of the modulation.

g(x) = go + g1 sin’*(kx),

Performing the transformation

¢=glx)y for g(z)#0,
we arrive at [45, 46]
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For the weak modulation with go > g1, Vesr(2) can
be expressed as

N 3k g% K> g1

Ve =— 2
err () 1692 + 500 cos(2kx) +
3297 0
+ 129%1 cos(4kr) + [Z—Z; sin(2ms)] e (8)

We take the wave function in the form

¢(x,t) = R(x) exp{i[f(x) — pt]}

with f(x) and p being respectively the phase and the
chemical potential. Substituting in Eq. (6) produces
a hydrodynamic version of the nonlinear Schrédinger
(NLS) equation expressed as

2R . do\ > o
= +2iR -2R* - R (%> —2V;sin(2Kx)R —

3
- {ns cos(2kx) + §52 cos(4ms)} R—

dR
— esin(2kr)— =
esin(2kx) T 0, (9)
d [ ,d0\ ,df
T <R %) = esin(2kz)R I (10)

In Egs. (9) and (10), we have set
241 = 21 + 3% /8
and the parameter
€ =kg1/g90 <1

is small due to the inequality go > ¢1. The first
derivative df/dx in Eq. (10) represents the velocity and
R? = n is the number density of atoms of the system
described by Eq. (6) [46]. Thereby, Eq. (10) suggests
the existence of the spatially varying atomic current

(11)

g R2d_9 —Texp [_scos(ch)}
dx

2K

in the system described by Eq. (6). Here, I' is an inte-
gral constant determined by the initial and boundary
conditions. We note that the true number density of
atoms is not R? but [)|? [46]. Accordingly, J is not the
true atomic current of the BEC. But, obviously, R?
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Fig.1. Spatial evolutions of the current with x = 3.5,
I'=1,e=0.002 (a) and 0.2 (b)

and J are respectively proportional to the true number
density of atoms and atomic current. As in Ref. [46],
we treat R? and J as the number density of atoms and
the atomic current of system (6). Given the above dis-
cussion and after careful inspection, we can find that
Egs. (9) and (11) are similar to the equations of motion
of a classical Newtonian particle in a central field; the
coordinate z plays the role of time ¢, and J is propor-
tional to the angular momentum.

In Refs. [18-21], the nonlinearity parameters are
fixed and the atomic currents are steady flows. But
when the nonlinearity parameter is spatially depen-
dent, the atomic current is spatially modulated, as can
be judged from Eq. (11).

Equation (11) implies that there exists a spatially
dependent atomic current in the condensate. The in-
clusion of x and e related to the spatially dependent
nonlinear parameter in Eq. (11) means that the atomic
current can be adjusted via the Feshbach resonance.

3*
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0.001, k = 3.5,

=1, K =45, R(0)=0.5, and R(0) =0

Undoubtedly, the current exerts an important effect on
the spatial distribution of BEC atoms due to the trans-
portation of BEC atoms within the system itself. In
Fig. 1, we numerically demonstrate the spatially depen-
dent current with k = 3.5, T' = 1, and different values
of e. We see from Fig. 1a that the oscillating ampli-
tude of the current is small when ¢ = 0.002. Keeping
the values of k and T fixed and increasing € to 0.2 leads
to a much larger oscillating amplitude of the current in
Fig. 1b. According to Eq. (11) and Fig. 1, we can con-
clude that irrespective of the values of the other param-
eters, the current always oscillates around the value T,
namely the average intensity of the current is I'. It has
been pointed out that I' is determined by the initial and
boundary conditions. This means that the initial and
boundary conditions can exert very strong influence on
the intensity of the current. To summarize, the oscil-
lating amplitude of the current can be adjusted by the
Feshbach resonance and the intensity of the current de-
pends heavily on the initial and boundary conditions.

To intuitively observe the effect of the atomic cur-
rent on the spatial distribution of condensed atoms, we
numerically solve Eq. (9) in a space interval from z = 0
to x = 500 and plot the phase portraits in the plane
(R(x), R(z)) (see Fig. 2). We have set the parameters
and initial conditions as i = 7, V3 = 0.001, k = 3.5,
=1, K =45, R(0) = 0.5, R(0) =0, ¢ = 0.002 in
Fig. 2a, and ¢ = 0.2 in Fig. 2b. When ¢ = 0.002, we
observe from Fig. 2a that there is only one closed orbit
in the phase space, indicating that the system is in a
single-periodic state. But as ¢ increases to 0.2, the sys-
tem is in a very complex or even chaotic state, as shown
in Fig. 2b. By contrasting Figs. 2a and b, we can con-
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clude that a strong enough oscillation of the current can
take the system to a very complex or even chaotic state.
In reality, a strong oscillation of the current means a
strong modulation of the nonlinear interaction between
atoms, which must result in a complex spatial distri-
bution or even completely chaotic spatial distribution
of condensed atoms.

3. THE CASE WITH A CONSTANT PHASE

The complexity of Eq. (9) indicates that it is dif-
ficult to find its exact solution by analytic methods.
But when the phase is constant, for example, in the
case of a standing wave with # = 0, the atomic current
disappears and we arrive at

2R

T+ 2jiR — 2R® — 2V} sin(2Kz)R —

— | ke cos(2kz) + %52 cos(4kx)| R —

- asin(?nx)% =0. (12)

If the coordinate z is replaced with time ¢, Eq. (12)
is just a driven Duffing equation with damping. To
perform a perturbative analysis, we assume that

Vi=en

and change Eq. (12) into the perturbed form
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Expanding a solution of Eq. (13) to the first order

(13)
R =Ry +¢Ry, (14)

and substituting it in Eq. (13), we obtain the zeroth-
order unperturbed equation

d’R
s 0 4 2fiRy — 2R} =0 (15)
and the first-order equation
d’R
3 L 4 2fiR) — 6R2R; = v (16)
with
dRy . . -
n= sin(2kx) + [k cos(2kz) + 2v;y sin(2K )| Ry.
x

Zeroth-order equation (15) is just the Duffing equation,
admitting the famous heteroclinic solution

Ry = \/ﬁth [\/ﬁ(x - O)] )

(17)
where

C =mg—th! [30(950)/\//3] /it

is a constant determined by the initial and boundary
conditions for i > 0. In the phase space of unperturbed
system (15), the separatrix is just formed by the het-
eroclinic orbits corresponding to the heteroclinic solu-
tions. In our theoretic analysis, what we are interested
in whether the system phase space structure is close to
the separatrix. If the unperturbed system is subject
to various forces, complicated and even chaotic space
structures may appear in the vicinity of the separatrix.

According to [16], when v, = 0, using heteroclinic
solution (17), we can easily obtain two linearly inde-
pendent solutions of Eq. (16) as

% = jisech’ {\/_(a/: - C)] )
C') sech? [\/ﬁ(x -

[ () o
— (o

813/2 {sh [2\/_1' C]-|-3th [\/_(1' c)}}. (19)

fi= (18)

dRo
=3

0)] +
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It is obvious that f> is unbounded and exponentially in-
creases as x increases because it involves the hyperbolic
sine function. Using the two linearly independent solu-
tions, we can construct the general solution of Eq. (16)
as [17]

=fo | fimdz —fi [ fomnde, (20)
Jrea]

where C7 and (5 are two arbitrary constants deter-
mined by initial conditions. This solution can be di-
rectly proved by comparing the second derivative R,
from Eq. (20) with that in Eq. (16). It is not difficult
to verify that the general solution (20) is usually un-
bounded due to the exponentially increasing function
f2. In other words, the density of the condensed atoms
be very large, similarly to the case where the density
is very large at the origin of the vertical coordinate [2].
But if the condition
/fl’}/l z =0

is satisfied, then this kind of unboundedness can be ef-
fectively avoided. Inspecting Eq. (21) carefully, we find
that

lim
r—+o0

(21)

I, -1 =0

can eliminate the constant C; and produce the famous
Melnikov function

M(l‘o) = I+ -1 = / fl’}/ldl‘ =0. (22)

Performing the integration in Eq. (22), we obtain

M(zo) = 27k E(ﬁ + i) — m2] csch (\7;—'2) x

K
x sin(2kC) + 4rv; K2esch <—~> X
Vi

x cos(2KC) = (23)

As is well known, the Melnikov function is also called
the Melnikov distance between the stable and unstable
manifolds in the Poincaré section at zg. If the Melnikov
function M (z9) has simple zeros, there exists Smale-
horseshoe chaos in the system. Thereby a simple zero
Melnikov function M (zg) can lead to a chaotic spatial
structure of the condensate.

Equations (22) and (23) indicate that boundedness
condition (21) contains the Melnikov chaotic criterion
predicting the onset of chaotic spatial structure. In
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Fig. 3. Stability curves for different initial conditions; i = 1.0, k = 2.5

other words, if Eq. (21) is satisfied, then Eqs. (22)
and (23) are satisfied automatically. Consequently, the
general solution of Eqs. (22) and (23) must be bounded
and chaotic. In fact, carefully inspecting the general
solution (20), we can see that its first term is the un-
bounded function f; times an analytically unsolvable
integration. The product can be bounded if and only if
boundedness conditions (21) and (22) are strictly sat-
isfied, which manifests that the chaotic spatial struc-
ture of the system is extremely sensitive to the initial
conditions and system parameters. Any infinitesimal
deviations from the conditions and system parameters
under Eqs. (21) and (22) are exponentially amplified
due to the exponential increase of fo as z — +oo. Un-
fortunately, such deviations cannot be avoided in cal-
culations anyhow, irrespective of the adopted numer-
ical integration methods and steps and number pre-
cisions. The unsolvable integration in Eq. (20) cannot
be expressed in finite form in elementary functions, and
Eq. (23) shows the relevance of parameters to the ir-
rational number 7 with an infinite sequence of digits,
which would cause inaccuracy in determining the values
of parameters. In short, given the foregoing analysis,
the spatial structure of the condensate is unpredictable.
That is a significant property of chaos.

Melnikov function (23) contains the parameter C'
determined by the initial conditions, showing that the
stability of the system satisfying M (z9) = 0 is sensi-
tively dependent on the initial conditions. This is one
of the leading features of strange chaotic attractors. To
clearly see the dependence on the initial conditions, in
Fig. 3 we plot the stability curves in the (K, V;) plane
from Eq. (23) for different values of C' with g = 1.0
and £ = 2.5. We see from Fig. 3, that as the value
of C' increases, the stability curves become greater in
number and denser. This signifies the existence of a
chaotic spatial structure in the condensate [16].

In Fig. 4, we display the parameter regions in the
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Fig.4. The regions of regular and chaotic states for dif-

ferent values of 1 =4 (1), 3 (2), 2 (3). The regions

above the curves correspond to chaotic states and the

regions below correspond to regular states; x = 1.9,
C=10

(K, Vi) plane for different values of ji with x = 1.9
and C' = 10 based on Eq. (23). The regions above
the curves correspond to the chaotic states and those
below correspond to the regular states. The values of
v1 on the curves are those of the thresholds. We can
see from Fig. 4 that as the dimensionless chemical po-
tential [i increases, the chaotic region is reduced. This
means that a large chemical potential can lead to chaos
suppression.

To verify the validity of the above analyses, after
carefully selecting parameters above the critical curve
(corresponding to ji = 2) in Fig. 4, we numerically solve
Eq. (12) in the space interval from = = 0 to z = 500
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Fig.5. (a) Phase portrait in the plane (R(z), R(z)); (b) spatial evolution of R(xz). Both the phase portrait and the spatial
evolution show that the system is in a chaotic state; i = 2.0, Vi = 0.3, ¢ = 0.15, k = 1.9, K = 1.95, R(0) = 0.1, and
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Fig.6. (a) Phase portrait in the plane (R(z), R(x)); (b) spatial evolution of R(z). Both the phase portrait and the spatial
evolution show that the system is in a quasiperiodic state; i = 2.0, Vi =4, ¢ =02, k = 3, K = 3.5, R(0) = 0.1, and
R(0)=0

and plot the results in Fig. 5 for g = 2.0, V; = 0.3,
e=0.15,k=1.9, K =1.95, R(0) = 0.1, and R(O) =0.
From the phase portrait in Fig. 5a, we can see a typ-
ically chaotic attractor, which implies that the system
is in a chaotic state; this fact is also proved by the cor-
responding chaotic spatial evolution of R(z) shown in
Fig. 5b. The numerical simulations are shown to agree
with our analytic results.

As the value of V] increases gradually, the above
analytic methods become inaccurate, and even invalid.
In such cases, we can resort to numerical simulations.

After setting i = 2.0, ¢ = 0.2, k = 3, K = 3.5,
R(0) = 0.1, and R(0) = 0, we numerically solve
Eq. (12) with different values of V; and plot phase por-
traits in the plane (R(z), R(z)) and the corresponding

spatial evolutions of R(z) in Figs. 6 and 7 from x = 0
to z = 500. When Vi = 4, from the phase portrait
in Fig. 6a we can see typical quasiperiodic orbits in-
dicating that system is in a quasiperiodic state; the
corresponding spatial evolution of R(z) also indicates
that the system is in a quasiperiodic state (see Fig. 6b).
Both the phase portrait and spatial evolution of R(x)
in Fig. 6 show that BEC atoms are in a quasiperiodic
spatial distribution. But as Vj increases to 8.2 and
the other parameters and initial conditions are fixed, a
typically chaotic phase portrait appears, as can be seen
in Fig. 7a; Fig. 7b is the corresponding chaotic spatial
evolution of R(x). This signifies that BEC atoms are
in a chaotic spatial distribution. For visual clarity, we
only plot the spatial evolutions of R(z) from x = 0

927
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Fig.7. (a) Phase portrait in the plane (R(z), R(z)); (b) spatial evolution of R(xz). Both the phase portrait and the spatial
evolution show that the system is in a chaotic state. Here, Vi = 8.2 and the other parameters and initial conditions are the
same as in Fig. 6

to x = 100. Figures 6 and 7 illustrate that for a set
of specific parameters and initial conditions, increasing
the value of V] can lead BEC atoms to a chaotic spatial
distribution via a quasiperiodic route.

4. CONCLUSION

In this work, we have investigated the spatial struc-
ture of a collisionally inhomogeneous BEC. When the
BEC phase is spatially dependent, a spatially varying
atomic current with an explicit analytic expression ap-
pears in the system. Theoretical analyses reveal that
the oscillating amplitude of the current can be adjusted
via the Feshbach resonance. A strong oscillation of the
current can lead the system to a very complex spatial
distribution of BEC atoms.

For the case with a constant BEC phase, the above-
mentioned current disappears and the equation of the
system takes the form of a driven Duffing equation with
damping. By a perturbative analyses, we obtain the
Melnikov chaotic criterion predicting the existence of
a chaotic spatial distribution of condensed atoms. Nu-
merical simulations show that the system can step from
a quasiperiodic state into a chaotic one with an increas-
ing depth of the external optical lattice.

Chaos in a BEC system may have negative effect on
the stability and manipulation of the system itself. It
was shown in Ref. [14] that chaos in BECs is connected
with its collapsing process. Therefore, studies of chaos
in BECs are very helpful in maintaining the stability
of BECs. On the other hand, a BEC system is an
important candidate for quantum computation [51].
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However, chaos is usually associated with quantum
entanglement, exerting great effect on quantum com-
putation [52, 53]. Undoubtedly, studies on chaos in
BECs are of theoretical and experimental necessity.
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