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STRUCTURAL ELEMENTS OF COLLAPSES IN SHALLOW WATERFLOWS WITH HORIZONTALLY NONUNIFORM DENSITYV. P. Gon
harov a*, V. I. Pavlov b**aObukhov Institute of Atmospheri
 Physi
s of A
ademy of S
ien
es109017, Mos
ow, RussiabUFR de Mathématiques Pures et Appliquées � LML UMR 8107, Université de Lille 159655, Villeneuve d'As
q, Fran
eRe
eived Mar
h 2, 2013The me
hanisms and stru
tural elements of instability whose evolution results in the o

urren
e of the 
ollapseare studied in the s
ope of the rotating shallow water model with a horizontally nonuniform density. The dia-gram stability based on the integral 
ollapse 
riterion is suggested to explain system behavior in the spa
e of
onstants of motion. Analysis of the instability shows that two 
ollapse s
enarios are possible. One s
enarioimplies anisotropi
 
ollapse during whi
h the 
onta
t area of a 
ollapsing drop-like fragment with the bottom
ontra
ts into a rotating segment. The other implies isotropi
 
ontra
tion of the area into a point.DOI: 10.7868/S00444510131001801. INTRODUCTIONThe shallow water approximation arises in manyphysi
al situations where the 
hara
teristi
 horizon-tal s
ale (perpendi
ular to the gravity a

eleration) ismu
h larger than the verti
al dimension of the �ow.In geophysi
al �uid dynami
s, many o
eani
 and at-mospheri
 large-s
ale gravity 
urrents, �ows in rivers,avalan
hes et
., 
an be investigated using layered mod-els, in whi
h the 
ontinuous verti
al stru
ture is ap-proximated by a small sta
k of layers with varyingthi
knesses [1℄.Besides geophysi
al �uid dynami
s, the shallow wa-ter models 
an be useful for studying 
ertain astrophys-i
al phenomena. For example, a shallow water analoguewas used to des
ribe the sho
k instability taking pla
ein the 
ollapsing inner 
ore prior to explosion of a pro-toneutron star [2℄. The shallow water model 
an alsodes
ribe the dynami
s of the ta
ho
line of a star, aswas done in [3; 4℄ for the ta
ho
line of the Sun.In the simplest approximation, the �uid variableswithin ea
h layer, su
h as density and the horizontal�ow velo
ity, are assumed to be verti
ally uniform, de-pending only on horizontal 
oordinates and time. The*E-mail: v.gon
harov�rambler.ru**E-mail: Vadim.Pavlov�univ-lille1.fr

simplest layer model is the shallow water model, de-s
ribing equations for a single layer of an in
ompress-ible �uid with a free surfa
e. Finer e�e
ts, for example,baro
lini
 e�e
ts due to unaligned density and pres-sure gradients in a 
ontinuously strati�ed �uid, 
anbe modeled using two or more layers. Inasmu
h aslayer models with 
onstant layer densities in generalhave di�
ulty representing thermodynami
 phenom-ena su
h as heating or fresh medium for
ing that 
anbe
ome important, Ripa [5℄ proposed to 
onsider a fam-ily of layered models that permitted horizontal varia-tions in �uid density within ea
h layer. These densityvariations may be attributed, for example, to horizon-tal temperature gradients. In the o
ean/atmosphere,gravity 
urrents are driven by temperature and salin-ity inhomogeneities, or 
onsidered as turbidity 
urrentswhose density derives from suspended mud or silt [6℄.One disadvantage of Ripa's models is that they 
an-not in
orporate e�e
ts of the Rayleigh�Taylor instabil-ity be
ause, by de�nition, buoyan
y is supposed to bepositive in ea
h layer. To over
ome these limitations,we have proposed a new one-layer model [7℄, whose dy-nami
s is des
ribed by a relative buoyan
y of alternat-ing sign. As is shown in [7℄, the 
ollapse (blow-up) ispossible in su
h a model only under 
ertain initial 
on-ditions when an integral 
riterion is ful�lled and thedistribution of density (temperature) is su
h that thepotential energy integral is nonpositive. This means867
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harov, V. I. Pavlov ÆÝÒÔ, òîì 144, âûï. 4 (10), 2013that the me
hanism responsible for initiating the 
ol-lapse is the Rayleigh�Taylor instability.Undoubtedly, the 
ollapse sooner or later leadsto small-s
ale pro
esses ignored in the simpli�edmodel [7℄. However, it is extremely unlikely that ina more 
omplete dissipation-free model, the solutions
hange so dramati
ally that 
ollapses are 
ompletelyeliminated. In parti
ular, as shown in [8, 9℄, a

ount-ing for the nonlinear dispersion due to nonhydrostati
pressure e�e
ts does not 
an
el 
ollapses in shallow wa-ter models. Even if the 
ollapsing solutions are elimi-nated or, what is more probable, the self-similarity islost, su
h solutions are still of a 
ertain value be
ausethey 
an be regarded as initial or intermediate asymp-totes [10℄.Paper [7℄ was limited to the study of only inte-gral 
riteria and power laws of 
ollapses. The ob-tained results therefore turn out to be in
omplete be-
ause the problem of �nding the spa
e stru
ture forself-similar solutions remained beyond the s
ope of thatwork. Here, we intend to �ll this gap. By analogywith [8; 9; 11�13℄, it is natural to expe
t that develop-ment of a large-s
ale instability in the model dis
ussedbelow also leads to disintegration of the strongly per-turbed �ow and to the o

urren
e of drop-like �uidfragments. It is these formations that play the roleof stru
tural elements from whi
h it is possible to 
om-pile an overall pi
ture of the instability up to the tur-bulen
e stage. Be
ause drop-like fragments produ
espa
e�time singularities responsible for power-law tailsin the short-wave range of the spe
trum, the study ofstru
tural elements provides the key to understandingstrong turbulen
e [14, 15℄.This arti
le is organized as follows. In Se
. 2, we
onstru
t the minimal model and formulate the gover-ning equations in the shallow water approximation withhorizontal density gradients. In Se
. 3, we dis
uss therigorous integral 
riterion for isotropi
 
ollapse. Weassume that this phenomenon arises at the �nal stagewhen the development of the instability has led to dis-integration of strongly perturbed �ows. After the for-mation of lo
alized �uid fragments, a time 
omes when�nite-time singularities form. The self-similar s
enariosof 
ollapses and their 
orresponding stru
tural elementsare 
onsidered in Se
. 4�6. We summarize our resultsin Se
. 7. 2. MINIMAL MODELWe 
onsider the simplest model that 
an be provedin the framework of the two-layer model (see the Ap-

pendix for more details). This model supposes thattwo in
ompressible �uids with densities % = 
onstand % + %0(x1; x2; t) are separated by the surfa
e z == h(x1; x2; t) and 
ontained between two rigid parallelplanes z = 0 and z = l under the a
tion of gravity g. Ifthe horizontally nonuniform density jump %0 betweenthe �uids is small and the lower layer is su�
ientlythin, su
h that the inequalities %0=% � 1 and h=l � 1hold, then the shallow water approximation leads tothe equations�tui + uk�kui � 2
eikuk = ��i(h�) + 12h�i�; (1)�th+ �k(huk) = 0; (2)�t� + uk�k� = 0: (3)These equations des
ribe the depth-averaged �owin the lower layer, and our notation is as follows:xi = (x1; x2) are the Cartesian 
oordinates; �t = �=�t,�i = �=�xi; eik is the unit antisymmetri
 tensor,e11 = e22 = 0, e12 = �e21 = 1; ui = (u1; u2) are hor-izontal 
omponents of the depth-averaged velo
ity inthe layer; and h is its thi
kness. Be
ause 
 is the 
on-stant angular velo
ity with whi
h the layer is rotatingabout the verti
al axis, the term 2
eikuk des
ribes theCoriolis a

eleration 
omponents. The �eld variable� = g%0=% has the meaning of the relative buoyan
yand 
an therefore take any sign.In the 
ases where density variations are produ
edonly by temperature ones, �T , and are linearly 
on-ne
ted, the relative buoyan
y 
an be 
omputed as� = �g��T , where � is thermal expansion 
oe�
ient.This parameterization allows studying the heating and
ooling e�e
ts in shallow water models [16, 17℄.We note that in the 
ase � = 1, Eqs. (1)�(3) re-du
e to the usual shallow water equations. The otherlimit 
ase � = �1 leads to the so-
alled �inverted� shal-low water model des
ribing the layer of a heavy �uidbounded above by a solid slab. The equilibrium in theunperturbed state is provided by the pressure of a light�uid or a gas lying below. Examples of using the in-verted shallow water model in various appli
ations arepresented in [18℄. Understandably, su
h equilibrium isunstable and short-lived. The heavier �uid eventuallyfalls down to the bottom. But initial and intermediatestages of the instability, when the system is far from the�nal state, are of the utmost importan
e. Their studyprovides a way for understanding the pro
esses of ver-ti
al mixing in many physi
al appli
ations, in
ludingatmospheri
 and o
ean s
ien
e.There is one more useful interpretation ofEqs. (1)�(3) as equations of hydrodynami
 typederived from �rst prin
iples (
onservation laws). As868
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tural elements of 
ollapses : : :
an be veri�ed dire
tly, if the variables h and � areregarded as densities of mass and entropy, Eqs. (1)�(3)follow from the Hamiltonian formulation [19, 20℄ oftwo-dimensional motion of a nonbarotropi
 rotatinggas with the HamiltonianH = Z dx �hu22 + �(h; �)� ;where �(h; �) is the internal energy density, whi
h inour 
ase is given by � = h2�=2, and dx = dx1dx2.In terms of the variables h, � , andm = ÆHÆu = hu(referred to as the hydrodynami
 momentum density),nontrivial Poisson bra
kets de�ning the dynami
s forthe given family of models take the formfmi;m0kg = �0i(m0kÆ)� �k(miÆ) + 2
heikÆ; (4)fh;m0kg = ��k(hÆ); f�;m0kg = �Æ�k�: (5)Primed �eld variables imply the dependen
e on theprimed spatial 
oordinates, and Æ = Æ(x � x0) is theDira
 delta fun
tion.Evolution (1)�(3) preserves the integrals of totalmass Q and total energy H ,Q = Z dxh; H = 12 Z dx �hu2 + h2�� : (6)In addition, any system with Poisson bra
kets (4), (5)automati
ally preserves the integrals (Casimirs)C = Z dx (�1u2 � �2u1 + 2
)F (�)for any fun
tion F (�). Among them, we note the 
on-servation lawn = Z dx � (�1u2 � �2u1 + 2
) : (7)As we see in what follows, this quantity together withother 
onstants of motion plays an important role in de-termining self-similar solutions 
onsidered in Se
s. 4�6.3. COLLAPSE CRITERIONIf the �uid moves as a whole, then it is 
onvenient topass from old 
oordinates x to new ones x0 
onne
tedwith the 
enter-of-mass referen
e frame. In this 
ase,the primed and unprimed 
oordinates and velo
ities arerelated by the transformationx = X+ x0; u = Q�1P+ u0; (8)

where 
oordinates of the 
enter of mass X and 
ompo-nents of the total momentum P are de�ned asX = Q�1 Z dxhx; P = Z dxhu;and, by virtue of Eqs. (1)�(3), are governed by theequations �tXi = Q�1Pi; �tPi = 2
eikPk:Be
ause the transformation (8) leaves Eqs. (1)�(3)invariant, we do not 
hange the notation and merelyset P = 0 and X = 0 from the very beginning.As shown in [7℄, the model in (1)�(3) admits a sim-ple me
hani
al redu
tion in terms of the variablesV = Z dxhxiui; M = Z dxh (x1u2 � x2u1) ;I = Z dxhx2: (9)The integrals I , M , and V have the respe
tive meaningof the moment of inertia, the kineti
 moment, and thevirial, and obey the 
losed system of equations�tI = 2V; �tV = 2H+2
M; �tM = �2
V: (10)Equations (10) give two more motion integralsm = M +
I; (11)V 20 = �M +
�1H�2 + V 2; (12)and 
an be easily integrated to obtainI = 
�2 (H +
m)� V0
 
os 2
 (t� t0) ; (13)M = �
�1H + V0 
os 2
 (t� t0) ; (14)V = V0 sin 2
 (t� t0) ; (15)where t0 is a 
onstant of integration.The integral I serves as an indi
ator of the isotropi

ollapse, in the 
ourse of whi
h this positive-de�nitequantity undergoes spe
i�
 temporal 
hanges: I de-
reases with in
reasing t and rea
hes the value I = 0at a �nite point t = t0 > 0. The 
ondition for su
hbehavior is the inequality(H +
m)2 � 
2V 20 : (16)We also note that this 
ondition 
an be written in theequivalent form2 �H +
m� 
2I� I � V 2 = 14(�tI)2; (17)if we eliminate V0 and M by using relations (11), (12).869
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Fig. 1. Stability diagram. The 
ollapse region is markedby dotsThese inequalities are 
riterions for 
ollapse in therotating shallow water model with horizontally nonuni-form density. Only under these 
onditions does thedevelopment of instability lead to the formation of asingularity in the point x = 0.A

ording to (16), the stability of the system is de-termined by four 
onstants of motion: H , m, V0, and
. In pla
e of them, it is more 
onvenient to use twonondimensional parameters� = Hm
 ; � = �V0m�2in terms of whi
h the possible s
enarios of stability andinstability 
an be analyzed with the diagram shown inFig. 1.From the diagram of stability, we see that in
reasingthe angular velo
ity j
j, su
h that � ! 0 as j
j ! 1,allows the system to leave the 
ollapse region only if� � 1, i. e., jV0j � jmj. But in the opposite 
ase � >> 1 (and hen
e jV0j > jmj), with the other parameters�xed, an analogous behavior of j
j does not lead to thesame result.In the 
ase of isotropi
 
ollapsing, h behaves as aself-similar fun
tion, su
h that h = ��2f(x=�), and we
an therefore write the relationI = �2C; (18)where �(t) is a fun
tion of time and C is a positive
onstant depending on the shape fa
tor f only.On the other hand, expanding the fun
tion I inpowers of t0 � t in the vi
inity of the 
ollapse timet0, we approximately obtainI � a1 (t0 � t) + a2 (t0 � t)2 + : : : ; (19)

where t0, the 
oe�
ients a1 and a2, and the integralsof motion are related asa1 = 2qV 20 � 
�2 (H +
m)2;a2 = 2 (H +
m) ;H +
m = V0

os(2
t0):The 
omparison of (18) with (19) allow us to make thefollowing 
on
lusions.1. If a1 6= 0, i. e., inequality (16) is stri
t, then theisotropi
 
ollapse obeys the laws� � (t0 � t)1=2 ; h � ��2 � (t0 � t)�1 : (20)2. If a1 = 0, i. e., inequality (16) turns into anequality, then, instead of (20), we obtain the laws� � (t0 � t) ; h � ��2 � (t0 � t)�2 :We note that system (10) 
an be viewed as a ge-neralization of the virial theorem, whi
h obtaining theVlasov�Petrish
hev�Talanov-type 
riterion for 
ollapsein the nonlinear S
hrödinger (NLS) equation. This 
ri-terion was �rst formulated for the two-dimensional NLSequation [21℄ and was later generalized to many othermodels. Among them is the NLS model in semi
lassi-
al limit [22℄, where the Zakharov equations transforminto a hydrodynami
-type system. In parti
ular, in theabsen
e of rotation, system (10) redu
es to the equa-tion �2t I = 4H; (21)whi
h 
oin
ides with that for the two-dimensional NLSequation, and after integration givesI = 2Ht2 + I 00t+ I0:Here, the initial data I0 = I jt=0 and I 00 = (�tI)jt=0 == 2V jt=0 are used as 
onstants of integration. In this
ase, 
riterion (17) be
omes2HI � V 2 = 14(�tI)2 (22)and enables us to make the following 
on
lusions.1. If H < 0, the isotropi
 
ollapse always o

urs.Be
ause H 
an be represented asH = K +�; K = 12 Z dxhu2; � = 12 Z dxh2�;the inequality H < 0 implies that �jt=0 < �Kjt=0.The only way to provide this 
ondition is by appropri-ately 
hoosing the initial distribution for the �eld � ,whi
h, unlike h, 
an be sign-alternating.870
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tural elements of 
ollapses : : :2. If H � 0, the ful�lment of 
riterion (22) dependson I0 and I 00, and hen
e at the initial time we have the
ondition 8HI0 � I 020 ; (23)where I 00 must be negative be
ause I de
reases withtime.On the other hand, based on the Cau
hy inequality,we 
an write (�tI)2 = 4V 2 � 8IK: (24)It is 
lear that inequalities (23) and (24) are 
onsistentonly if H � I 0208I0 � Kjt=0:As a 
onsequen
e, we arrive at the 
ondition �Kjt=0 �� �jt=0 � 0.Therefore, irrespe
tive of the sign of H , the 
ol-lapse be
omes possible if �jt=0 � 0. The negativequantity �Kjt=0 plays the role of a 
riti
al level. Forvalues �jt=0 below the 
riti
al level, no 
onditions arerequired, but above or at this level, the additional 
on-ditions must be satis�ed.4. STRUCTURAL ELEMENTS OF COLLAPSESIt is known [10℄ that self-similar solutions are in-termediate asymptoti
 regimes of nondegenerate prob-lems and are very useful in studying the �nal stagesof strongly nonlinear pro
esses, when the system for-gets about the details related to the initial data and itsbehavior depends on the motion integrals. For any dy-nami
al system, the existen
e of self-similar solutionsre�e
ts the existen
e of fundamental internal symme-tries and allows de
iding on the tenden
ies in the devel-opment of the instability at the �nal stage. This typeof solutions is of parti
ular importan
e for studying thephenomenon of 
ollapse � formation of a singularityin a �nite time [22�28℄.As a self-similar substitution for h and � , we 
on-sider the expressionsh = QjGj� (1 + 
)f
 ; � = �0f1�
 ; (25)f = 1� (GUx)2 ; (26)where 0 � 
 � 1, �0 is a magnitude-spe
i�ed parame-ter, G and U are delation and rotation matri
esG =  ��11 00 ��12 ! ; U =  
os' � sin'sin' 
os' ! ;

�1(t) and �2(t) are positive deformation parameters,and '(t) is the angle of rotation in the transformationx0 = Ux.The ansatz in (25) and (26) des
ribes a liquid drop
on
entrated on a 
ompa
t 
arrier of ellipti
 shapex012��21 + x022��22 = 1;and rotated with the angular speed �t'.Dire
t substitution in Eqs. (1)�(3) shows that ex-pressions (25) and (26) are exa
t solutions if the velo
-ity 
omponents u0 = dx0=dt in the rotating 
oordinatesystem x0 = Ux obey the relationsu01 = �1�1 x01 � ��1�2 x02; u02 = �2�2 x02 + ��2�1 x01: (27)Equations (27) 
orrespond to the uniform vorti
ity dis-tribution inside the domain with an ellipti
al liquid
ontour boundary. The variables �i, �i, �, and '0 == '� 
t as fun
tions of time satisfy the equations�t�i = ��i
2 + (�1)i2 (�2 � �1)��t'0 ++ �i (�� �t'0)2 + Q�0 (1 + 
)2��i�1�2 ; (28)�t�i = �i; (29)m0 = ��1�2 � 12 ��21 + �22� �t'0; (30)n0 = 12� ��21 + �22�� �1�2�t'0; (31)wherem0 and n0 are parameters 
onne
ted with motioninvariants m and n by the relationsm0 = (2 + 
) mQ; n0 = (2� 
) n2��0 :We note that Eqs. (30) and (31) 
an be alternativelyderived by substituting (25), (26), and (27) in the right-hand sides of (7), (11).After eliminating � and '0 from Eqs. (28)�(31), weobtain that variables �i and �i obey the 
anoni
al equa-tions of motion�t�i = ��H��i = ��i
2 + 2(n0 +m0)2(�1 + �2)3 �� (�1)i2(n0 �m0)2(�1 � �2)3 + Q�0 (
 + 1)2��i�1�2 ; (32)�t�i = �H��i = �i; (33)whi
h des
ribe a system with two degrees of freedomand the Hamiltonian871
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 + 2)Q (H +
m) = 12 ��21 + �22�++�n0 +m0�1 + �2�2 +�n0 �m0�1 � �2�2 ++ 
22 ��21 + �22�+ Q�0(1 + 
)2��1�2 : (34)On
e we know the variables �1 and �2, we 
an �nd� and �t' as� = 2n0 ��21 + �22�� 2m0�1�2(�21 � �22)2 ;�t' = 
+ 22n0�1�2 �m0 ��21 + �22�(�21 � �22)2 :Hen
e, the ansatz in (25), (26), and (27) redu
es theinitial in�nite-dimensional Hamiltonian system givenby Eqs. (1)�(3) to a two-dimensional 
anoni
al system.If motion invariants n and 
 are �nite, it is 
onve-nient to 
onvert the problem to dimensionless form by
hoosing the spatial s
ale L and 
hara
teristi
 time Tsu
h that T = j
j�1; L = jn0=
j1=2 :After nondimensionalizing, Hamiltonian (34) is rewrit-ten asH = 12 ��21 + �22 + �21 + �22�+ � � 1�1�2 ++� 1 + ��1 + �2�2 +� 1� ��1 � �2�2 ;where � and � are the nondimensional parameters� = m0n0 = 2� (2 + 
)(2� 
) �0mQn ;� = 1 + 4��1 + 
2� 
�2 Q�30n2 : (35)The 
orresponding equations of motion for �i, �i,and ' are given by�t�i = ��H��i = ��i + � � 1�i�1�2 ++ 2 (1 + �)2(�1 + �2)3 � (�1)i2 (1� �)2(�1 � �2)3 ; (36)�t�i = �H��i = �i; (37)�t' = 1 + 2 sign(n0)2�1�2 � � ��21 + �22�(�21 � �22)2 : (38)

5. ISOTROPIC SOLUTIONSBelow, we single out isotropi
 solutions of two types,rotating (
 = 1), and nonrotating (
 = 0).We let 
 = 1 and assume that solutions are radiallysymmetri
. Then�1 = �2 = �; �1 = �2 = �:As analysis shows, su
h solutions are degenerate andare possible only if � = 1 orm0 = n0. This is the reasonwhy the rotational e�e
t due to �t' loses theoreti
al le-gitima
y and Eq. (38) is no longer valid. Instead, we
an see dire
tly from (30) and (31) that the fun
tions' and � be
ome linearly dependent,� = 1 = �2 (1 + �� �t') :Hen
e, isotropi
 solutions are rotationally invariant.In this 
ase, Eqs. (36) and (37) redu
e to the form�t� = ��H1�� = ��3 � �; �t� = �H1�� = �; (39)where H1 = 12 ��2 + �2 + ��2� : (40)Analyti
 solutions of Eq. (39) 
an be written as� =qH1 � (H21 � �)1=2 
os 2(t0 � t);� = �H21 � ��1=2 sin 2t(t0 � t)qH1 � (H21 � �)1=2 
os 2(t0 � t) : (41)Relevant stru
tures look like radially symmetri
 drops.Without loss of generality, we 
an assume that �equals either 0 or 1, or �1. With 
 = 1, depending onthe parameter �, there are three di�erent bran
hes ofsolutions, hereafter referred to as the neutral (� = 0),
old (� = 1), and warm (� = �1) rotating regimes.The parameter � is 
hosen a

ording to the rule� = 8><>: 0; �0 = ��;1; �0 > ��;�1; �0 < ��;where the threshold value �� is determined from (35)with � = 0, whi
h yields�� = �� n24�Q�1=3�2� 
1 + 
�2=3 :1. In the neutral regime, when � = 0, the motion
an o

ur only if H1 > 0. As is shown in Fig. 2, the872
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0 4�4 �0
2
4�

Fig. 2. Phase portrait of the rotating isotropi
 modelin the neutral regime (� = 0)system moves along open traje
tories in the form ofsemi
ir
les. The arrows pla
ed along the phase traje
-tories show the dire
tion of motion in time. Relevantsolutions for h look like drops 
ollapsing a

ording tothe laws� � t0 � t; � � �p2H1; h � (t0 � t)�2:2. In the 
old regime, the motion 
an o

ur only ifH1 � 1. A

ording to Fig. 3, the typi
al traje
toriesof the dynami
al system are 
losed 
urves, whi
h 
or-respond to periodi
 solutions. Relevant solutions forh look like pulsating drops. The minimum H1 = 1 isattained at the point � = 0, � = 1 and 
orresponds toa stationary (nonpulsating) solution.3. In the warm regime, the system moves alongopen traje
tories shown in Fig. 4.The 
ollapse point is rea
hed for both positive andnegative values of H1 as � ! 1, and � ! 0. Inthis regime, the variables � and � asymptoti
ally (ast! t0) tend to zero and in�nity, respe
tively, a

ordingto the laws� � (t0 � t)1=2; � � (t0 � t)�1=2; h � (t0 � t)�1;where the 
ollapse timet0 = 12 ar

os H1p1 +H21is determined from (41) and the 
ondition �(t0) = 0.

0 4�4 �0
2
4�

Fig. 3. Phase portrait of the rotating isotropi
 modelin the 
old regime (� = 1)

0 4�4 �0
2
4�

Fig. 4. Phase portrait of the rotating isotropi
 modelin the warm regime (� = �1)We emphasize that in the 
ase 
 = 1, there are nospreading regimes for whi
h � ! 1 as t ! 1 amongsolutions of Eqs. (39). These regimes o

ur only innonrotating shallow water models with 
 = 0. Be-
ause the proper analyti
 treatment implies droppingthe term with �2 from Hamiltonian (40), Eqs. (39) re-du
e to the form13 ÆÝÒÔ, âûï. 4 (10) 873
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0 4−4

α

0

2

4

β

Fig. 5. Phase portrait of the nonrotating isotropi
model in the 
old regime (� = 1)

0 4�4 �0
2
4�

Fig. 6. Phase portrait of the nonrotating isotropi
model in the warm regime (� = �1)�t� = ��H0�� = ��3 ; �t� = �H0�� = �; (42)where H0 = 12 ��2 + ��2� :Phase traje
tories of Eqs. (42) are presented inFigs. 5 and 6 for both 
old and warm nonrotating

regimes. The steady-state 
ase � = 0 is of no inter-est be
ause of its triviality. Regardless of the sign of�, spreading regimes are realized only on traje
torieswith H0 > 0. In Fig. 6, the spreading (H0 > 0) and
ollapsing (H0 < 0) regimes are separated by a dashedline. Hen
e, if � = �1 (i. e., a regime is warm) andH0 < 0, the topology of phase traje
tories is indepen-dent of whether the shallow water model is rotating.6. ANISOTROPIC SOLUTIONSEquations (36) and (37) 
an have solutions thatviolate the radial symmetry. In su
h situations, us-ing positive-de�nite integral (9) to test the anisotropi

ollapse is not a good idea, sin
e this quantity rea
heszero only if �1 and �2 vanish simultaneously.We �rst 
onsider the anisotropi
 
ollapse s
enarioa

ording to whi
h the 
ross-se
tional area s = ��1�2tends to zero due to the unilateral 
ompression alongone of the semiaxes (e. g., �1), whereas the other semi-axis �2 remains �nite (Fig. 7). As a result, the ellipti

onta
t area of a 
ollapsing liquid fragment 
ontra
tsinto a line segment rather than into a point.Analysis of the anisotropi
 
ollapse solutions in thevi
inity of the point t = t0 results in the following

0 0:4 0:8 1:2 t04
812 �2

�1
�t'

Fig. 7. Anisotropi
 
ollapse. The 
al
ulation was per-formed for the parameters � = �4 and � = 2:8, andthe initial values �1(0) = 5:5, �2(0) = 13, �1(0) = 3,and �2(0) = �2874



ÆÝÒÔ, òîì 144, âûï. 4 (10), 2013 Stru
tural elements of 
ollapses : : :asymptoti
 forms of �1 and �2:�1 � b (t0 � t)2=3 + a (t0 � t)4=3 ; (43)�2 � �92b�3(� � 1) + b59(� � 1) (t0 � t)4=3 : (44)Here, b and a are 
onstants dependent on the initial
onditions and 
losely 
onne
ted with other 
onstantsof motion byH = 3423 (� � 1)2b6 + b6 2334 1 + �2(� � 1)2 + 109 ba:Asymptoti
 forms (43) and (44) signify two things.First, the anisotropi
 
ollapse is possible only if � < 1and, 
orrespondingly, requires a negative value of �0.Se
ond, be
ause h � (�1�2)�1, su
h a 
ollapse obeysthe law h � (t0 � t)�2=3 :By 
ontrast, the isotropi
 
ollapses follow the 
ompa-ratively faster laws h� (t0 � t)�1 or h � (t0 � t)�2.We note that as t! t0, the 
onta
t area s betweenthe liquid and the bottom shrinks into a line segmentthat rotates with the 
onstant angular velo
ity�t' = 1� 2���22 = 1� 2334 �b6(� � 1)2 :Collapsing solutions in the �at model have the same
hara
ter as in a two-dimensional model, with the onlydi�eren
e that the 
onta
t area s shrinks not into a linesegment but into an in�nite axis perpendi
ular to the�ow plane.The �at model for shallow water follows fromEqs. (32) and (33) if one of the semiaxes (e. g., �2)and, 
orrespondingly, the total mass Q tend to in�nitysu
h that Q=�2 ! 
onst, �2 ! 0, and 
 = n = m = 0.Collapses in the �at model therefore represent an ide-alization that ignores e�e
ts of rotation.In this 
ase, the nondimensional equations of mo-tion are written as�t�1 = ��H 0��1 = ��21 ; �t�1 = �H 0��1 = �1; (45)H 0 = 12�21 + ��1 ;where � = sign �0 is the only nondimensional parame-ter.Phase portraits of nonlinear system (45) haveno qualitative di�eren
es from the ones presented inFigs. 5, and 6. As analysis shows, depending on the pa-rameter �, there exist two kinds of 
ollapsing regimes.

∂tϕ
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−1s

β2

β1

0 2 4 6

t

0
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15

Fig. 8. Os
illation regime. The 
al
ulation was per-formed for the parameters � = 2 and � = 3:8, andthe initial values �1(0) = 5:5, �2(0) = 8, �1(0) = 3,�2(0) = �2If � < 0, the variables � and h asymptoti
ally (ast! t0) tend to zero and in�nity, respe
tively, a

ordingto the laws�1 � (t0 � t)2=3; h � (t0 � t)�2=3:But if � = 0, these variables obey the laws�1 � (t0 � t); h � (t0 � t)�1:In the absen
e of 
ollapses, system (36)�(38) de-s
ribes nonlinear os
illations. Su
h behavior of the sys-tem agrees 
ompletely with laws (13)�(15), a

ordingto whi
h the os
illatory period �=
 is indispensable forthe rotating shallow water model. Be
ause this periodde�nes the maximum time s
ale in the system, 
har-a
teristi
 times of all other feasible e�e
ts, in
luding
ollapse, should be smaller.A typi
al example of time behavior for basi
 fun
-tions is shown in Fig. 8.Although 
ollapse is physi
ally impossible (� > 1),the minimal and maximal values of the area s (heighth) 
an be very small and very large. Spe
i�
ally, thenumeri
al experiment in Fig. 8 gives smax = 137:76and smin = 0:095. Another notable fa
t is the periodi
bursts of the angular velo
ity �t' (marked by a dashedline) at the instant when the semiaxes �1 and �2 
ome
lose to ea
h other.875 13*



V. P. Gon
harov, V. I. Pavlov ÆÝÒÔ, òîì 144, âûï. 4 (10), 20137. CONCLUSIONSWe summarize the main results in the work. Themain goal of this paper was to study stru
tural ele-ments of 
ollapses in the shallow water model with hor-izontally nonuniform density. The diagram of stabilitybased on the rigorous integral 
riterion for isotropi

ollapse allows to making some qualitative 
on
lusionsabout the system behavior in the spa
e of 
onstantsof motion. In parti
ular, depending on the ratio be-tween two integrals of motion V0 and m, an ampli�
a-tion of rotation, i. e., an in
rease in the angular velo
ity
 leads both to stabilization of the �ow, if jV0j < jmj,and to destabilization, if jV0j � jmj.In our opinion, the 
ollapse phenomenon arises atthe �nal stage when the development of instability hasled to disintegration of the strongly perturbed �ows.On
e the �uid forms lo
alized (drop-like) fragments,the 
ollapse eventually o

urs and leads to the forma-tion of �nite-time singularities.Analysis of the instability shows that two 
ollapses
enarios are possible depending on whether the
onta
t area between the drop and the bottom is 
on-tra
tible into a segment or into a point. In the 
ourseof anisotropi
 
ollapsing, the 
onta
t area 
ontra
tsto a spinning segment and the drop height h obeysthe law h � (t0 � t)�2=3. By 
ontrast, the isotropi
s
enario implies that the 
onta
t area 
ontra
ts to apoint. Be
ause of this, the height h follows relativelyfaster laws h � (t0 � t)�1 and h � (t0 � t)�2 in warmand neutral regimes, respe
tively. In the absen
e of
ollapses, a drop-like fragment undergoes nonlinearos
illations with the period �=
. This period is thelargest time s
ale of the rotating shallow water system.This work was supported by the RFBR (grant� 12-05-00168), by the Presidium of the RussianA
ademy of S
ien
es (Program Fundamental Problemsof Nonlinear Dynami
s), and by the President of theRussian Federation (Program NSh-4166.2006.5).APPENDIXFormulation of modelWe 
onsider two layers of invis
id in
ompressible�uids that move under the a
tion of gravity g in theCartesian frame x; y; z rotating around the verti
alaxis z with a 
onstant angular velo
ity 
 = (0; 0;
).We suppose the layers are separated by a surfa
ez = h(x; y; t) and are 
ontained between two rigid par-allel planes z = 0 and z = l as shown in Fig. 9.

h2 = l� hh1 = h
z = l
z = 0

%2 = %%1 = %+ %0Fig. 9. Verti
al stru
ture of the two-layer modelOur purpose is to derive des
ription for this �ow inthe shallow water approximation taking into a

ountthat the density jump between the layers is small andhorizontally nonuniform. The 
orresponding motionequations 
an be obtained from the results in [5℄ ifthe free boundary 
ondition for the uppermost layerin Ripa's model is repla
ed with the rigid-lid approxi-mation.This modi�
ation does not 
hange Ripa's equationswhi
h, as before, are given by(�t + u � r)u� 2
� u+r~p = ~hr�; (46)�th+r�(hu) = 0; (�t + u � r) � = 0 (47)in ea
h layer, where h(x; y; t) is the thi
kness, u(x; y; t)is the velo
ity, and �(x; y; t) is the buoyan
y. We notethat the variables u(x; y; t) and �(x; y; t) must be in-terpreted as verti
ally layer-averaged quantities. Theother two variables ~h(x; y; t) and ~p(x; y; t) are treatedas the height of the 
enter of mass of the layer and thee�e
tive pressure in the absen
e of inhomogeneities.In the rigid-lid approximation, Ripa's de�nition of~h for the ith layer remains un
hanged,~hi = iXk=1 hk � 12hi; (48)but the de�nition for ~p must be modi�ed as~pi = �i iXk=1 hk + nXk=i+1 �khk + p0; (49)where p0(x; y; t) 6= 
onst is the rigid-lid pressure, andthe layer thi
knesses satisfy the 
onditionnXk=1hk = l; (50)where the total depth l is a 
onstant.876



ÆÝÒÔ, òîì 144, âûï. 4 (10), 2013 Stru
tural elements of 
ollapses : : :In the 
ase of two layers, assuming that %2 = % == 
onst and %1 = %+%0(x; y; t), we obtain in a

ordan
ewith (48)�(50) that~h1 = 12h1; ~h2 = h1 + 12h2 = l � 12h2; (51)~p1 = �1h1 + �2h2 + p0; ~p2 = l�2 + p0; (52)�1 = g�1 + %0% � ; �2 = g: (53)After substitution of relations (51)�(53) to Eqs. (46)and (47), these equations take the form(�t + u1 � r)u1 � 2
� u1 ++rp0 = � 12h1r(h21�); (54)(�t + u2 � r)u2 � 2
� u2 +rp0 = 0; (55)�th1 +r�(h1u1) = 0; (56)�th2 +r�(h2u2) = 0; (57)�t� + u1 � r� = 0; (58)where subs
ripts �1; 2� show layer numbers. We notethat the redu
ed gravity � = �1 � �2 = g%0=% 
an takeany sign depending on the di�eren
e between positive-de�nite quantities �1 and �2.Be
ause of the 
ondition h1+h2 = l, it follows fromEqs. (57) thatr� (h1u1 + (l � h1)u2) = 0: (59)Using (59) and 
ombining (54) and (55), it is easyto �nd the expression for the pressure gradient��lp0 + 12h21�� == r�r� (h1u1u1 + (l � h1)u2u2) : (60)Let U be the s
ale of the velo
ity u1, L be the hor-izontal length s
ale, and h1 � l, with " = h1=l beinga small parameter. Then, if O(h1�=U2) = 1, Eqs. (59)and (60) imply the estimationsu2 = O("U); p0 = O �"U2� :This result allows eliminating the pressure gradi-ent rp0 from Eq. (54). Thus, using the thin-layer ap-proximation and omitting the layer subs
ript, we ob-tain, in the leading order, the 
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