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The mechanisms and structural elements of instability whose evolution results in the occurrence of the collapse
are studied in the scope of the rotating shallow water model with a horizontally nonuniform density. The dia-
gram stability based on the integral collapse criterion is suggested to explain system behavior in the space of
constants of motion. Analysis of the instability shows that two collapse scenarios are possible. One scenario
implies anisotropic collapse during which the contact area of a collapsing drop-like fragment with the bottom
contracts into a rotating segment. The other implies isotropic contraction of the area into a point.
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1. INTRODUCTION

The shallow water approximation arises in many
physical situations where the characteristic horizon-
tal scale (perpendicular to the gravity acceleration) is
much larger than the vertical dimension of the flow.
In geophysical fluid dynamics, many oceanic and at-
mospheric large-scale gravity currents, flows in rivers,
avalanches etc., can be investigated using layered mod-
els, in which the continuous vertical structure is ap-
proximated by a small stack of layers with varying
thicknesses [1].

Besides geophysical fluid dynamics, the shallow wa-
ter models can be useful for studying certain astrophys-
ical phenomena. For example, a shallow water analogue
was used to describe the shock instability taking place
in the collapsing inner core prior to explosion of a pro-
toneutron star [2]. The shallow water model can also
describe the dynamics of the tachocline of a star, as
was done in [3,4] for the tachocline of the Sun.

In the simplest approximation, the fluid variables
within each layer, such as density and the horizontal
flow velocity, are assumed to be vertically uniform, de-
pending only on horizontal coordinates and time. The
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simplest layer model is the shallow water model, de-
scribing equations for a single layer of an incompress-
ible fluid with a free surface. Finer effects, for example,
baroclinic effects due to unaligned density and pres-
sure gradients in a continuously stratified fluid, can
be modeled using two or more layers. Inasmuch as
layer models with constant layer densities in general
have difficulty representing thermodynamic phenom-
ena such as heating or fresh medium forcing that can
become important, Ripa [5] proposed to consider a fam-
ily of layered models that permitted horizontal varia-
tions in fluid density within each layer. These density
variations may be attributed, for example, to horizon-
tal temperature gradients. In the ocean/atmosphere,
gravity currents are driven by temperature and salin-
ity inhomogeneities, or considered as turbidity currents
whose density derives from suspended mud or silt [6].

One disadvantage of Ripa’s models is that they can-
not incorporate effects of the Rayleigh—Taylor instabil-
ity because, by definition, buoyancy is supposed to be
positive in each layer. To overcome these limitations,
we have proposed a new one-layer model [7], whose dy-
namics is described by a relative buoyancy of alternat-
ing sign. As is shown in [7], the collapse (blow-up) is
possible in such a model only under certain initial con-
ditions when an integral criterion is fulfilled and the
distribution of density (temperature) is such that the
potential energy integral is nonpositive. This means
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that the mechanism responsible for initiating the col-
lapse is the Rayleigh—Taylor instability.

Undoubtedly, the collapse sooner or later leads
to small-scale processes ignored in the simplified
model [7]. However, it is extremely unlikely that in
a more complete dissipation-free model, the solutions
change so dramatically that collapses are completely
eliminated. In particular, as shown in [8, 9], account-
ing for the nonlinear dispersion due to nonhydrostatic
pressure effects does not cancel collapses in shallow wa-
ter models. Even if the collapsing solutions are elimi-
nated or, what is more probable, the self-similarity is
lost, such solutions are still of a certain value because
they can be regarded as initial or intermediate asymp-
totes [10].

Paper [7] was limited to the study of only inte-
gral criteria and power laws of collapses. The ob-
tained results therefore turn out to be incomplete be-
cause the problem of finding the space structure for
self-similar solutions remained beyond the scope of that
work. Here, we intend to fill this gap. By analogy
with [8,9,11-13], it is natural to expect that develop-
ment of a large-scale instability in the model discussed
below also leads to disintegration of the strongly per-
turbed flow and to the occurrence of drop-like fluid
fragments. It is these formations that play the role
of structural elements from which it is possible to com-
pile an overall picture of the instability up to the tur-
bulence stage. Because drop-like fragments produce
space—time singularities responsible for power-law tails
in the short-wave range of the spectrum, the study of
structural elements provides the key to understanding
strong turbulence [14, 15].

This article is organized as follows. In Sec. 2, we
construct the minimal model and formulate the gover-
ning equations in the shallow water approximation with
horizontal density gradients. In Sec. 3, we discuss the
rigorous integral criterion for isotropic collapse. We
assume that this phenomenon arises at the final stage
when the development of the instability has led to dis-
integration of strongly perturbed flows. After the for-
mation of localized fluid fragments, a time comes when
finite-time singularities form. The self-similar scenarios
of collapses and their corresponding structural elements
are considered in Sec. 4-6. We summarize our results
in Sec. 7.

2. MINIMAL MODEL

We consider the simplest model that can be proved
in the framework of the two-layer model (see the Ap-
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pendix for more details). This model supposes that
two incompressible fluids with densities o const
and o + o'(x1,22,t) are separated by the surface z =
= h(z1,x2,t) and contained between two rigid parallel
planes z = 0 and z = [ under the action of gravity ¢g. If
the horizontally nonuniform density jump o' between
the fluids is small and the lower layer is sufficiently
thin, such that the inequalities ¢'/o < 1 and h/l < 1
hold, then the shallow water approximation leads to
the equations

1
Opui + updpu; — 2Qepuy = —0;(ht) + ghaﬂ, (1)

O¢h + O (hug) = 0, (2)
O + upOrt = 0. (3)

These equations describe the depth-averaged flow
in the lower layer, and our notation is as follows:
x; = (21, x3) are the Cartesian coordinates; 9; = 9/0t,
0; = 0/0x;; e is the unit antisymmetric tensor,
€11 = €29 = 0, €12 = —€g1 = 1; U; = (ul, UQ) are hor-
izontal components of the depth-averaged velocity in
the layer; and h is its thickness. Because (Q is the con-
stant angular velocity with which the layer is rotating
about the vertical axis, the term 2Qe;,uy describes the
Coriolis acceleration components. The field variable
7 = go'/p has the meaning of the relative buoyancy
and can therefore take any sign.

In the cases where density variations are produced
only by temperature ones, AT, and are linearly con-
nected, the relative buoyancy can be computed as
7 = —gBAT, where 3 is thermal expansion coefficient.
This parameterization allows studying the heating and
cooling effects in shallow water models [16, 17].

We note that in the case 7 = 1, Eqs. (1)—(3) re-
duce to the usual shallow water equations. The other
limit case 7 = —1 leads to the so-called “inverted” shal-
low water model describing the layer of a heavy fluid
bounded above by a solid slab. The equilibrium in the
unperturbed state is provided by the pressure of a light
fluid or a gas lying below. Examples of using the in-
verted shallow water model in various applications are
presented in [18]. Understandably, such equilibrium is
unstable and short-lived. The heavier fluid eventually
falls down to the bottom. But initial and intermediate
stages of the instability, when the system is far from the
final state, are of the utmost importance. Their study
provides a way for understanding the processes of ver-
tical mixing in many physical applications, including
atmospheric and ocean science.

There is one more wuseful interpretation of
Egs. (1)-(3) as equations of hydrodynamic type
derived from first principles (conservation laws). As
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can be verified directly, if the variables h and 7 are
regarded as densities of mass and entropy, Eqs. (1)—(3)
follow from the Hamiltonian formulation [19, 20] of
two-dimensional motion of a nonbarotropic rotating
gas with the Hamiltonian

H= /dx (hu?2 +6(h,r)> ,

where ¢(h,7) is the internal energy density, which in
our case is given by € = h?7/2, and dx = dxdz>.
In terms of the variables h, 7, and

=5y "
(referred to as the hydrodynamic momentum density),

nontrivial Poisson brackets defining the dynamics for
the given family of models take the form

m hu

{mi, mjf} = 6;(7712:5) — O (ml6) + ZQheiké, (4)
{hvm;c} = _ak(h5)7 {Ta m;c} = —00kT. (5)

Primed field variables imply the dependence on the
primed spatial coordinates, and § = §(x — x') is the
Dirac delta function.

Evolution (1)-(3) preserves the integrals of total
mass ) and total energy H,

1
Q:/dxh, H= E/dx (hu® +R%7) . (6)
In addition, any system with Poisson brackets (4), (5)
automatically preserves the integrals (Casimirs)

C= /dx (O1uz — Ouy + 2Q) F (1)

for any function F'(7). Among them, we note the con-
servation law

n= /dxr (Orus — Gaug + 292) . (7)

As we see in what follows, this quantity together with
other constants of motion plays an important role in de-
termining self-similar solutions considered in Secs. 4-6.

3. COLLAPSE CRITERION

If the fluid moves as a whole, then it is convenient to
pass from old coordinates x to new ones x’ connected
with the center-of-mass reference frame. In this case,
the primed and unprimed coordinates and velocities are
related by the transformation

x=X+x, u=Q 'P+u, (])

where coordinates of the center of mass X and compo-
nents of the total momentum P are defined as

X:Q_l/dxhx, P:/dxhu7

and, by virtue of Eqs. (1)—(3), are governed by the
equations

0Xi=Q 'P;, 0P =20e;P.

Because the transformation (8) leaves Eqs. (1)—(3)
invariant, we do not change the notation and merely
set P =0 and X =0 from the very beginning.

As shown in [7], the model in (1)—(3) admits a sim-
ple mechanical reduction in terms of the variables

Vz/dxhxiui, Mz/dxh(xlug — zauy),

I:/dxhx2.

The integrals I, M, and V have the respective meaning
of the moment of inertia, the kinetic moment, and the
virial, and obey the closed system of equations

(9)

oI =2V, O,V =2H+2QM, 0o,M = -2QV. (10)
Equations (10) give two more motion integrals

m=M+QlI, (11)

V2= (M+Q'H) + V2, (12)

and can be easily integrated to obtain

I=Q2(H+Qm) - %cos%) (t —to), (13)
M=—-Q 'H+Vycos2Q (t —tg), (14)
V =Vosin2Q (t — to), (15)

where g is a constant of integration.

The integral I serves as an indicator of the isotropic
collapse, in the course of which this positive-definite
quantity undergoes specific temporal changes: I de-
creases with increasing ¢ and reaches the value I = 0
at a finite point ¢ = tg > 0. The condition for such
behavior is the inequality

(H + Qm)”> < Q?V2. (16)

We also note that this condition can be written in the
equivalent form

2(H+Qm -’ I <V? = i(atI)Z, (17)

if we eliminate Vi and M by using relations (11), (12).
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Fig. 1. Stability diagram. The collapse region is marked
by dots

These inequalities are criterions for collapse in the
rotating shallow water model with horizontally nonuni-
form density. Only under these conditions does the
development of instability lead to the formation of a
singularity in the point x = 0.

According to (16), the stability of the system is de-
termined by four constants of motion: H, m, Vj, and
Q. In place of them, it is more convenient to use two
nondimensional parameters

()

in terms of which the possible scenarios of stability and
instability can be analyzed with the diagram shown in
Fig. 1.

From the diagram of stability, we see that increasing
the angular velocity |Q|, such that v — 0 as |Q] — oo,
allows the system to leave the collapse region only if
v < 1, i.e., |Vo| < |m|. But in the opposite case v >
> 1 (and hence |Vp| > |m]), with the other parameters
fixed, an analogous behavior of || does not lead to the
same result.

H

_H Vo
T omQ’

m

14

In the case of isotropic collapsing, h behaves as a
self-similar function, such that h = 372 f(x/f3), and we
can therefore write the relation

I=p0C, (18)

where ((t) is a function of time and C is a positive
constant, depending on the shape factor f only.

On the other hand, expanding the function I in
powers of ty — ¢t in the vicinity of the collapse time
to, we approximately obtain

T~ar(tg—t) +as(to—t)7 + ..., (19)

870

where tg, the coefficients a; and as, and the integrals
of motion are related as

ar = 2\/V2 — Q=2 (H + Qm)?,
as =2 (H + Qm),
H + Qm = VpQ cos(2Qy).

The comparison of (18) with (19) allow us to make the
following conclusions.

1. If a1 # 0, i.e., inequality (16) is strict, then the
isotropic collapse obeys the laws

Br(to—t)"?, BB 2~(to—t)"" .  (20)

2. If ay = 0, i.e., inequality (16) turns into an
equality, then, instead of (20), we obtain the laws

BN(tO_t)v

We note that system (10) can be viewed as a ge-
neralization of the virial theorem, which obtaining the
Vlasov—Petrishchev—Talanov-type criterion for collapse
in the nonlinear Schrédinger (NLS) equation. This cri-
terion was first formulated for the two-dimensional NLS
equation [21] and was later generalized to many other
models. Among them is the NLS model in semiclassi-
cal limit [22], where the Zakharov equations transform
into a hydrodynamic-type system. In particular, in the
absence of rotation, system (10) reduces to the equa-
tion

h~ B2~ (tg—t)2.

071 = 4H, (21)

which coincides with that for the two-dimensional NLS
equation, and after integration gives

I =2H + I}t + L.

Here, the initial data Iy = I|;=¢ and I} = (0¢I)|i=0 =
= 2V|;—o are used as constants of integration. In this
case, criterion (17) becomes
1
2HI < V? = Z(8t1)2 (22)

and enables us to make the following conclusions.

1. If H < 0, the isotropic collapse always occurs.
Because H can be represented as

1 1
H=K+1I, K:i/dxth7 Hzi/dxh%',

the inequality H < 0 implies that II|;=o < —K|=0.
The only way to provide this condition is by appropri-
ately choosing the initial distribution for the field T,
which, unlike h, can be sign-alternating.
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2. If H > 0, the fulfilment of criterion (22) depends
on Iy and Ij, and hence at the initial time we have the
condition

8HI, < I??, (23)

where I} must be negative because I decreases with
time.

On the other hand, based on the Cauchy inequality,
we can write

(O, )* = 4V? < 8IK. (24)
It is clear that inequalities (23) and (24) are consistent
only if
12
Iy < Kli=
81y

H<

As a consequence, we arrive at the condition — K |;—g <
< Ij¢=o < 0.

Therefore, irrespective of the sign of H, the col-
lapse becomes possible if TI|;—9 < 0. The negative
quantity —K |¢—o plays the role of a critical level. For
values II|;—¢ below the critical level, no conditions are
required, but above or at this level, the additional con-
ditions must be satisfied.

4. STRUCTURAL ELEMENTS OF COLLAPSES

It is known [10] that self-similar solutions are in-
termediate asymptotic regimes of nondegenerate prob-
lems and are very useful in studying the final stages
of strongly nonlinear processes, when the system for-
gets about the details related to the initial data and its
behavior depends on the motion integrals. For any dy-
namical system, the existence of self-similar solutions
reflects the existence of fundamental internal symme-
tries and allows deciding on the tendencies in the devel-
opment of the instability at the final stage. This type
of solutions is of particular importance for studying the
phenomenon of collapse — formation of a singularity
in a finite time [22-28].

As a self-similar substitution for i and 7, we con-
sider the expressions

%(1 +f7,
f=1-(GUx)*, (26)

h = T=1f'7", (25)

where 0 < v < 1, 79 is a magnitude-specified parame-
ter, G and U are delation and rotation matrices

o ﬂl_l (31 U= cosp —sing ’
0 B, sinp  cosp

B1(t) and Ba2(t) are positive deformation parameters,
and ¢(t) is the angle of rotation in the transformation
x' = Ux.

The ansatz in (25) and (26) describes a liquid drop
concentrated on a compact carrier of elliptic shape

2B + b8y =1,

and rotated with the angular speed 0.

Direct substitution in Eqs. (1)-(3) shows that ex-
pressions (25) and (26) are exact solutions if the veloc-
ity components u’ = dx'/dt in the rotating coordinate
system x’ = Ux obey the relations

r Q1 oy

Uy =

)\/81 ! ' Qs I+AB2 I} (27)
1

— T — A—T5, Uy =
Bt B 2= 3,
Equations (27) correspond to the uniform vorticity dis-
tribution inside the domain with an elliptical liquid
contour boundary. The variables «a;, £;, A, and ¢’ =
= ¢ — Ot as functions of time satisfy the equations

dra; = =i + (=1)2 (B2 — B1) N’ +

#8000 + LoD oy
i = a, (29)

m =N -3 (R B)aed,  B0)
W= NG B) - Asde, (B

where m’ and n/ are parameters connected with motion
invariants m and n by the relations

n = (2-9) o

, m
m' = (2+7) 0’
We note that Eqs. (30) and (31) can be alternatively
derived by substituting (25), (26), and (27) in the right-
hand sides of (7), (11).

After eliminating A and ¢’ from Eqs. (28)—(31), we
obtain that variables a; and 3; obey the canonical equa-
tions of motion

2Ty

OH (n +m)
s = — 2 = — B0
“ 9B e (Br + B2)*
YN -m')’>  Qm(y+1)°
(=1 2( )3 * BB (82)
Onfi = (‘% = o, (33)

which describe a system with two degrees of freedom
and the Hamiltonian
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(v +2)
Q

N <M>2+ (M)Z
B+ B2 B — B2
0?2 9 9 QTo(l—l—"y)2
MERGRE A

Once we know the variables $; and >, we can find
A and Oy as

1
H=2 (H—}—Qm):i(a%—l—a%)—l—

(34)

\ (B2 33) —2m'Bi s
(82 - B3)’ ’
2n'B1 B> —m' (BF + B3)
Opo=0Q+2 .
v G 32y

Hence, the ansatz in (25), (26), and (27) reduces the
initial infinite-dimensional Hamiltonian system given
by Egs. (1)—(3) to a two-dimensional canonical system.

If motion invariants n and  are finite, it is conve-
nient to convert the problem to dimensionless form by
choosing the spatial scale L and characteristic time T
such that

T=10", L=/,

After nondimensionalizing, Hamiltonian (34) is rewrit-
ten as

o—1

B152
T+p\° <1—M)2
- (51 +32> * Bi—PB2)

where i and o are the nondimensional parameters

1
Hzi(a%+a§+ﬂ3+ﬂg)+ +

m’ (2+7) om
p=— =27 —_—
n (2-7) Qn (35)
2 3
o=14dr (1+_7> Qg
2—x n?2

The corresponding equations of motion for «;, [,
and ¢ are given by

OH c—1
i =05, = Pt B

(1+p)’ iy (1= p)?
po TRy TR (36
(B1 + B2)° = (B1 = o)’ (36)

OH

OB = 9, a;, (37)

. 28182 — (B + B3)
Orp = 14 2sign(n') (7~ 65)2 2L (38)

5. ISOTROPIC SOLUTIONS

Below, we single out isotropic solutions of two types,
rotating (Q = 1), and nonrotating (2 = 0).

We let 2 = 1 and assume that solutions are radially
symmetric. Then

ﬂ1262267

As analysis shows, such solutions are degenerate and
are possible only if © = 1 or m’ = n'. This is the reason
why the rotational effect due to ;¢ loses theoretical le-
gitimacy and Eq. (38) is no longer valid. Instead, we
can see directly from (30) and (31) that the functions
¢ and A become linearly dependent,

a1 = Qg = Q.

p=1=p31+X=0y).

Hence, isotropic solutions are rotationally invariant.
In this case, Eqs. (36) and (37) reduce to the form

8H1 a aHl

8t()4:—%:@—6, 8tﬂ:a:oz, (39)
where
leé(a2+ﬂ2+%). (40)

Analytic solutions of Eq. (39) can be written as

8= \/H1 - (H? - 0)1/2 cos2(tg — t),
(H2 — o)/ sin 2t(t — 1) (41)

o = .

VH: = (2 = 0)/? cos2(to — 1)

Relevant structures look like radially symmetric drops.

Without loss of generality, we can assume that o
equals either 0 or 1, or —1. With Q = 1, depending on
the parameter o, there are three different branches of
solutions, hereafter referred to as the neutral (o = 0),
cold (¢ = 1), and warm (¢ = —1) rotating regimes.
The parameter ¢ is chosen according to the rule

ok
07 To=T,

— *
o= 1, 79>71%,
*

-1, o< 71",

where the threshold value 7* is determined from (35)
with ¢ = 0, which yields

. n2 \ /3 2~ 2/3
N V) 1+~/)

1. In the neutral regime, when o = 0, the motion
can occur only if H; > 0. As is shown in Fig. 2, the
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| AR

—4 0 4

Fig.2. Phase portrait of the rotating isotropic model
in the neutral regime (o = 0)

system moves along open trajectories in the form of
semicircles. The arrows placed along the phase trajec-
tories show the direction of motion in time. Relevant
solutions for h look like drops collapsing according to
the laws

Q ~ —/ 21{17

2. In the cold regime, the motion can occur only if
Hy; > 1. According to Fig. 3, the typical trajectories
of the dynamical system are closed curves, which cor-
respond to periodic solutions. Relevant solutions for
h look like pulsating drops. The minimum H; = 1 is
attained at the point @ = 0, f = 1 and corresponds to
a stationary (nonpulsating) solution.

3. In the warm regime, the system moves along
open trajectories shown in Fig. 4.

The collapse point is reached for both positive and
negative values of H; as a — oo, and f — 0. In
this regime, the variables 8 and « asymptotically (as
t — to) tend to zero and infinity, respectively, according
to the laws

B~y —t, hN(to—t)_Q.

B (to—0)2 an~(to—8)""2 he~(tg—1)7",
where the collapse time
1 H,
t) = — arccos ———
2 1+ H?

is determined from (41) and the condition £(tg) = 0.

13 ZK3T®, Bom. 4 (10)

Fig.3. Phase portrait of the rotating isotropic model
in the cold regime (o = 1)

=}

Fig.4. Phase portrait of the rotating isotropic model
in the warm regime (o = —1)

We emphasize that in the case {2 = 1, there are no
spreading regimes for which f — oo as ¢ — oo among
solutions of Eqs. (39). These regimes occur only in
nonrotating shallow water models with @ = 0. Be-
cause the proper analytic treatment implies dropping
the term with 3> from Hamiltonian (40), Eqs. (39) re-
duce to the form
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o~

Fig.5.

Phase portrait of the nonrotating isotropic
model in the cold regime (o = 1)

Fig.6. Phase portrait of the nonrotating isotropic
model in the warm regime (o = —1)
8H0 a 6I_I[)
oo=——5=—, Of=—= 42
t 85 53 ) t/B 8 ) ( )
where

b

"5)
B2

Phase trajectories of Eqs. (42) are presented in
Figs. 5 and 6 for both cold and warm nonrotating

874

regimes. The steady-state case ¢ = 0 is of no inter-
est because of its triviality. Regardless of the sign of
o, spreading regimes are realized only on trajectories
with Hy > 0. In Fig. 6, the spreading (Hy > 0) and
collapsing (Hg < 0) regimes are separated by a dashed
line. Hence, if 0 = —1 (i.e., a regime is warm) and
Hy < 0, the topology of phase trajectories is indepen-
dent, of whether the shallow water model is rotating.

6. ANISOTROPIC SOLUTIONS

Equations (36) and (37) can have solutions that
violate the radial symmetry. In such situations, us-
ing positive-definite integral (9) to test the anisotropic
collapse is not a good idea, since this quantity reaches
zero only if B and (2 vanish simultaneously.

We first consider the anisotropic collapse scenario
according to which the cross-sectional area s = w3132
tends to zero due to the unilateral compression along
one of the semiaxes (e.g., 1), whereas the other semi-
axis 35 remains finite (Fig. 7). As a result, the elliptic
contact area of a collapsing liquid fragment contracts
into a line segment rather than into a point.

Analysis of the anisotropic collapse solutions in the
vicinity of the point t = tp results in the following

0.8 1.2

Fig.7. Anisotropic collapse. The calculation was per-

formed for the parameters 0 = —4 and p = 2.8, and

the initial values 31(0) = 5.5, 32(0) = 13, a1 (0) = 3,
and a2(0) = -2
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asymptotic forms of 5 and fs:

61 ~b (to — t)2/3 +a (tO - t)4/3 ) (43)
o9 v 1/3
32~—§b (0—1)+m(t0—t) . (44)

Here, b and a are constants dependent on the initial
conditions and closely connected with other constants
of motion by

3 (0 —1)2

g3 23 1+ p?
23 b

6_
AT P—te

+ %ba.

Asymptotic forms (43) and (44) signify two things.
First, the anisotropic collapse is possible only if o < 1
and, correspondingly, requires a negative value of 7p.
Second, because h ~ (312)" !, such a collapse obeys
the law

ho~(tg—t) 2*.

By contrast, the isotropic collapses follow the compa-
ratively faster laws h~ (tg —t) ' or h ~ (to — t) >

We note that as ¢t — #g, the contact area s between
the liquid and the bottom shrinks into a line segment
that rotates with the constant angular velocity

23 b

3t99=1—2uﬂ52:1—§m-

Collapsing solutions in the flat model have the same
character as in a two-dimensional model, with the only
difference that the contact area s shrinks not into a line
segment but into an infinite axis perpendicular to the
flow plane.

The flat model for shallow water follows from
Eqgs. (32) and (33) if one of the semiaxes (e.g., (2)
and, correspondingly, the total mass ) tend to infinity
such that Q/fs — const, as — 0, and Q =n=m = 0.
Collapses in the flat model therefore represent an ide-
alization that ignores effects of rotation.

In this case, the nondimensional equations of mo-
tion are written as
OH' o oH'

Toh T B O = o

8,5041 = = Qq, (45)

HI:§Q%+

B
where ¢ = sign 79 is the only nondimensional parame-
ter.

Phase portraits of nonlinear system (45) have
no qualitative differences from the ones presented in
Figs. 5, and 6. As analysis shows, depending on the pa-
rameter o, there exist two kinds of collapsing regimes.

Fig.8. Oscillation regime. The calculation was per-

formed for the parameters 0 = 2 and p = 3.8, and

the initial values 31(0) = 5.5, 82(0) = 8, a1(0) = 3,
O¢2(0) = -2

If 0 < 0, the variables § and h asymptotically (as
t — to) tend to zero and infinity, respectively, according
to the laws

Br ~ (tg — )23, ho~ (tg —t)72/3.

But if o = 0, these variables obey the laws

Bi~ (to—1t), h~(tg—1t)"".

In the absence of collapses, system (36)—(38) de-
scribes nonlinear oscillations. Such behavior of the sys-
tem agrees completely with laws (13)—(15), according
to which the oscillatory period 7/ is indispensable for
the rotating shallow water model. Because this period
defines the maximum time scale in the system, char-
acteristic times of all other feasible effects, including
collapse, should be smaller.

A typical example of time behavior for basic func-
tions is shown in Fig. 8.

Although collapse is physically impossible (o > 1),
the minimal and maximal values of the area s (height
h) can be very small and very large. Specifically, the
numerical experiment in Fig. 8 gives S, = 137.76
and s,,;, = 0.095. Another notable fact is the periodic
bursts of the angular velocity d;¢ (marked by a dashed
line) at the instant when the semiaxes $; and 2 come
close to each other.

13%*
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7. CONCLUSIONS

We summarize the main results in the work. The
main goal of this paper was to study structural ele-
ments of collapses in the shallow water model with hor-
izontally nonuniform density. The diagram of stability
based on the rigorous integral criterion for isotropic
collapse allows to making some qualitative conclusions
about the system behavior in the space of constants
of motion. In particular, depending on the ratio be-
tween two integrals of motion V and m, an amplifica-
tion of rotation, i. e., an increase in the angular velocity
) leads both to stabilization of the flow, if |V| < |m],
and to destabilization, if |Vp| > |m].

In our opinion, the collapse phenomenon arises at
the final stage when the development of instability has
led to disintegration of the strongly perturbed flows.
Once the fluid forms localized (drop-like) fragments,
the collapse eventually occurs and leads to the forma-
tion of finite-time singularities.

Analysis of the instability shows that two collapse
scenarios are possible depending on whether the
contact area between the drop and the bottom is con-
tractible into a segment or into a point. In the course
of anisotropic collapsing, the contact area contracts
to a spinning segment and the drop height h obeys
the law h ~ (to — t)~2/3. By contrast, the isotropic
scenario implies that the contact area contracts to a
point. Because of this, the height h follows relatively
faster laws h ~ (to —t)~! and h ~ (tg — t)~2 in warm
and neutral regimes, respectively. In the absence of
collapses, a drop-like fragment undergoes nonlinear
oscillations with the period m/€Q. This period is the
largest time scale of the rotating shallow water system.

This work was supported by the RFBR (grant
Ne12-05-00168), by the Presidium of the Russian
Academy of Sciences (Program Fundamental Problems
of Nonlinear Dynamics), and by the President of the
Russian Federation (Program NSh-4166.2006.5).

APPENDIX

Formulation of model

We consider two layers of inviscid incompressible
fluids that move under the action of gravity g in the
Cartesian frame z,y,z rotating around the vertical
axis z with a constant angular velocity € = (0,0, 2).
We suppose the layers are separated by a surface
z = h(z,y,t) and are contained between two rigid par-
allel planes z = 0 and z = as shown in Fig. 9.

876

z=1

on=0+¢

Fig.9. Vertical structure of the two-layer model

Our purpose is to derive description for this flow in
the shallow water approximation taking into account
that the density jump between the layers is small and
horizontally nonuniform. The corresponding motion
equations can be obtained from the results in [5] if
the free boundary condition for the uppermost layer
in Ripa’s model is replaced with the rigid-lid approxi-
mation.

This modification does not change Ripa’s equations
which, as before, are given by

(8 +u-V)u—2Q x u+ Vjp=hVe,
Oh+V-(hu)=0, (O+u-V)8=0

(46)
(47)

in each layer, where h(z,y,t) is the thickness, u(z,y,t)
is the velocity, and 6(zx,y,t) is the buoyancy. We note
that the variables u(x,y,t) and #(x,y,t) must be in-
terpreted as vertically layer-averaged quantities. The
other two variables ﬁ(ac,y, t) and p(x,y,t) are treated
as the height of the center of mass of the layer and the
effective pressure in the absence of inhomogeneities.

In the rigid-lid approximation, Ripa’s definition of
h for the ith layer remains unchanged,

_ i 1
hi = hy— Shi (48)
k=1
but the definition for p must be modified as
Pi=0:Y hit+ Y Okhi+p, (49)
k=1 k=it1

where p'(z,y,t) # const is the rigid-lid pressure, and
the layer thicknesses satisfy the condition

Dt
k=1

where the total depth [ is a constant.

=1 (50)
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In the case of two layers, assuming that oo = ¢ =
= const and g1 = p+0'(x,y,t), we obtain in accordance
with (48)—(50) that

- 1 - 1 1
hl = §h17 h2—h1+§h2—l_§h27 (51)
Pr = 01hy + 020y + ', Po =105+, (52)
’
01 =g<1+%>, 0 =g. (53)

After substitution of relations (51)—(53) to Eqs. (46)
and (47), these equations take the form

(8t+U1'V)U1—2QXU1+

+ Vp' = —QLIHV(hfr), (54)

(0 +uy - V)uy —2Q x us + Vp' =0, (55)
Otht + V-(hiuy) =0, (56)

Oths + V- (haus) =0, (57)

KT +u;-Vr =0, (58)

where subscripts “1,2” show layer numbers. We note
that the reduced gravity 7 = 0; — 62 = go'/p can take
any sign depending on the difference between positive-
definite quantities #; and 65.

Because of the condition hy + he = [, it follows from
Eqs. (57) that

V- (h1U1 + (l - hl)ll2) =0. (59)

Using (59) and combining (54) and (55), it is easy
to find the expression for the pressure gradient

A <lp' + %hfr) =

=V.V. (h1U1U1 + (l — hl)u2u2) . (60)

Let U be the scale of the velocity uy, L be the hor-
izontal length scale, and h; < [, with & = hy/l being
a small parameter. Then, if O(h17/U?) = 1, Egs. (59)
and (60) imply the estimations

w =0(lU), p =0 (U?).

This result allows eliminating the pressure gradi-
ent Vp' from Eq. (54). Thus, using the thin-layer ap-
proximation and omitting the layer subscript, we ob-
tain, in the leading order, the closed system of equa-
tions (1)—(3).
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