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STRUCTURAL ELEMENTS OF COLLAPSES IN SHALLOW WATERFLOWS WITH HORIZONTALLY NONUNIFORM DENSITYV. P. Gonharov a*, V. I. Pavlov b**aObukhov Institute of Atmospheri Physis of Aademy of Sienes109017, Mosow, RussiabUFR de Mathématiques Pures et Appliquées � LML UMR 8107, Université de Lille 159655, Villeneuve d'Asq, FraneReeived Marh 2, 2013The mehanisms and strutural elements of instability whose evolution results in the ourrene of the ollapseare studied in the sope of the rotating shallow water model with a horizontally nonuniform density. The dia-gram stability based on the integral ollapse riterion is suggested to explain system behavior in the spae ofonstants of motion. Analysis of the instability shows that two ollapse senarios are possible. One senarioimplies anisotropi ollapse during whih the ontat area of a ollapsing drop-like fragment with the bottomontrats into a rotating segment. The other implies isotropi ontration of the area into a point.DOI: 10.7868/S00444510131001801. INTRODUCTIONThe shallow water approximation arises in manyphysial situations where the harateristi horizon-tal sale (perpendiular to the gravity aeleration) ismuh larger than the vertial dimension of the �ow.In geophysial �uid dynamis, many oeani and at-mospheri large-sale gravity urrents, �ows in rivers,avalanhes et., an be investigated using layered mod-els, in whih the ontinuous vertial struture is ap-proximated by a small stak of layers with varyingthiknesses [1℄.Besides geophysial �uid dynamis, the shallow wa-ter models an be useful for studying ertain astrophys-ial phenomena. For example, a shallow water analoguewas used to desribe the shok instability taking plaein the ollapsing inner ore prior to explosion of a pro-toneutron star [2℄. The shallow water model an alsodesribe the dynamis of the taholine of a star, aswas done in [3; 4℄ for the taholine of the Sun.In the simplest approximation, the �uid variableswithin eah layer, suh as density and the horizontal�ow veloity, are assumed to be vertially uniform, de-pending only on horizontal oordinates and time. The*E-mail: v.gonharov�rambler.ru**E-mail: Vadim.Pavlov�univ-lille1.fr

simplest layer model is the shallow water model, de-sribing equations for a single layer of an inompress-ible �uid with a free surfae. Finer e�ets, for example,barolini e�ets due to unaligned density and pres-sure gradients in a ontinuously strati�ed �uid, anbe modeled using two or more layers. Inasmuh aslayer models with onstant layer densities in generalhave di�ulty representing thermodynami phenom-ena suh as heating or fresh medium foring that anbeome important, Ripa [5℄ proposed to onsider a fam-ily of layered models that permitted horizontal varia-tions in �uid density within eah layer. These densityvariations may be attributed, for example, to horizon-tal temperature gradients. In the oean/atmosphere,gravity urrents are driven by temperature and salin-ity inhomogeneities, or onsidered as turbidity urrentswhose density derives from suspended mud or silt [6℄.One disadvantage of Ripa's models is that they an-not inorporate e�ets of the Rayleigh�Taylor instabil-ity beause, by de�nition, buoyany is supposed to bepositive in eah layer. To overome these limitations,we have proposed a new one-layer model [7℄, whose dy-namis is desribed by a relative buoyany of alternat-ing sign. As is shown in [7℄, the ollapse (blow-up) ispossible in suh a model only under ertain initial on-ditions when an integral riterion is ful�lled and thedistribution of density (temperature) is suh that thepotential energy integral is nonpositive. This means867



V. P. Gonharov, V. I. Pavlov ÆÝÒÔ, òîì 144, âûï. 4 (10), 2013that the mehanism responsible for initiating the ol-lapse is the Rayleigh�Taylor instability.Undoubtedly, the ollapse sooner or later leadsto small-sale proesses ignored in the simpli�edmodel [7℄. However, it is extremely unlikely that ina more omplete dissipation-free model, the solutionshange so dramatially that ollapses are ompletelyeliminated. In partiular, as shown in [8, 9℄, aount-ing for the nonlinear dispersion due to nonhydrostatipressure e�ets does not anel ollapses in shallow wa-ter models. Even if the ollapsing solutions are elimi-nated or, what is more probable, the self-similarity islost, suh solutions are still of a ertain value beausethey an be regarded as initial or intermediate asymp-totes [10℄.Paper [7℄ was limited to the study of only inte-gral riteria and power laws of ollapses. The ob-tained results therefore turn out to be inomplete be-ause the problem of �nding the spae struture forself-similar solutions remained beyond the sope of thatwork. Here, we intend to �ll this gap. By analogywith [8; 9; 11�13℄, it is natural to expet that develop-ment of a large-sale instability in the model disussedbelow also leads to disintegration of the strongly per-turbed �ow and to the ourrene of drop-like �uidfragments. It is these formations that play the roleof strutural elements from whih it is possible to om-pile an overall piture of the instability up to the tur-bulene stage. Beause drop-like fragments produespae�time singularities responsible for power-law tailsin the short-wave range of the spetrum, the study ofstrutural elements provides the key to understandingstrong turbulene [14, 15℄.This artile is organized as follows. In Se. 2, weonstrut the minimal model and formulate the gover-ning equations in the shallow water approximation withhorizontal density gradients. In Se. 3, we disuss therigorous integral riterion for isotropi ollapse. Weassume that this phenomenon arises at the �nal stagewhen the development of the instability has led to dis-integration of strongly perturbed �ows. After the for-mation of loalized �uid fragments, a time omes when�nite-time singularities form. The self-similar senariosof ollapses and their orresponding strutural elementsare onsidered in Se. 4�6. We summarize our resultsin Se. 7. 2. MINIMAL MODELWe onsider the simplest model that an be provedin the framework of the two-layer model (see the Ap-

pendix for more details). This model supposes thattwo inompressible �uids with densities % = onstand % + %0(x1; x2; t) are separated by the surfae z == h(x1; x2; t) and ontained between two rigid parallelplanes z = 0 and z = l under the ation of gravity g. Ifthe horizontally nonuniform density jump %0 betweenthe �uids is small and the lower layer is su�ientlythin, suh that the inequalities %0=% � 1 and h=l � 1hold, then the shallow water approximation leads tothe equations�tui + uk�kui � 2
eikuk = ��i(h�) + 12h�i�; (1)�th+ �k(huk) = 0; (2)�t� + uk�k� = 0: (3)These equations desribe the depth-averaged �owin the lower layer, and our notation is as follows:xi = (x1; x2) are the Cartesian oordinates; �t = �=�t,�i = �=�xi; eik is the unit antisymmetri tensor,e11 = e22 = 0, e12 = �e21 = 1; ui = (u1; u2) are hor-izontal omponents of the depth-averaged veloity inthe layer; and h is its thikness. Beause 
 is the on-stant angular veloity with whih the layer is rotatingabout the vertial axis, the term 2
eikuk desribes theCoriolis aeleration omponents. The �eld variable� = g%0=% has the meaning of the relative buoyanyand an therefore take any sign.In the ases where density variations are produedonly by temperature ones, �T , and are linearly on-neted, the relative buoyany an be omputed as� = �g��T , where � is thermal expansion oe�ient.This parameterization allows studying the heating andooling e�ets in shallow water models [16, 17℄.We note that in the ase � = 1, Eqs. (1)�(3) re-due to the usual shallow water equations. The otherlimit ase � = �1 leads to the so-alled �inverted� shal-low water model desribing the layer of a heavy �uidbounded above by a solid slab. The equilibrium in theunperturbed state is provided by the pressure of a light�uid or a gas lying below. Examples of using the in-verted shallow water model in various appliations arepresented in [18℄. Understandably, suh equilibrium isunstable and short-lived. The heavier �uid eventuallyfalls down to the bottom. But initial and intermediatestages of the instability, when the system is far from the�nal state, are of the utmost importane. Their studyprovides a way for understanding the proesses of ver-tial mixing in many physial appliations, inludingatmospheri and oean siene.There is one more useful interpretation ofEqs. (1)�(3) as equations of hydrodynami typederived from �rst priniples (onservation laws). As868



ÆÝÒÔ, òîì 144, âûï. 4 (10), 2013 Strutural elements of ollapses : : :an be veri�ed diretly, if the variables h and � areregarded as densities of mass and entropy, Eqs. (1)�(3)follow from the Hamiltonian formulation [19, 20℄ oftwo-dimensional motion of a nonbarotropi rotatinggas with the HamiltonianH = Z dx �hu22 + �(h; �)� ;where �(h; �) is the internal energy density, whih inour ase is given by � = h2�=2, and dx = dx1dx2.In terms of the variables h, � , andm = ÆHÆu = hu(referred to as the hydrodynami momentum density),nontrivial Poisson brakets de�ning the dynamis forthe given family of models take the formfmi;m0kg = �0i(m0kÆ)� �k(miÆ) + 2
heikÆ; (4)fh;m0kg = ��k(hÆ); f�;m0kg = �Æ�k�: (5)Primed �eld variables imply the dependene on theprimed spatial oordinates, and Æ = Æ(x � x0) is theDira delta funtion.Evolution (1)�(3) preserves the integrals of totalmass Q and total energy H ,Q = Z dxh; H = 12 Z dx �hu2 + h2�� : (6)In addition, any system with Poisson brakets (4), (5)automatially preserves the integrals (Casimirs)C = Z dx (�1u2 � �2u1 + 2
)F (�)for any funtion F (�). Among them, we note the on-servation lawn = Z dx � (�1u2 � �2u1 + 2
) : (7)As we see in what follows, this quantity together withother onstants of motion plays an important role in de-termining self-similar solutions onsidered in Ses. 4�6.3. COLLAPSE CRITERIONIf the �uid moves as a whole, then it is onvenient topass from old oordinates x to new ones x0 onnetedwith the enter-of-mass referene frame. In this ase,the primed and unprimed oordinates and veloities arerelated by the transformationx = X+ x0; u = Q�1P+ u0; (8)

where oordinates of the enter of mass X and ompo-nents of the total momentum P are de�ned asX = Q�1 Z dxhx; P = Z dxhu;and, by virtue of Eqs. (1)�(3), are governed by theequations �tXi = Q�1Pi; �tPi = 2
eikPk:Beause the transformation (8) leaves Eqs. (1)�(3)invariant, we do not hange the notation and merelyset P = 0 and X = 0 from the very beginning.As shown in [7℄, the model in (1)�(3) admits a sim-ple mehanial redution in terms of the variablesV = Z dxhxiui; M = Z dxh (x1u2 � x2u1) ;I = Z dxhx2: (9)The integrals I , M , and V have the respetive meaningof the moment of inertia, the kineti moment, and thevirial, and obey the losed system of equations�tI = 2V; �tV = 2H+2
M; �tM = �2
V: (10)Equations (10) give two more motion integralsm = M +
I; (11)V 20 = �M +
�1H�2 + V 2; (12)and an be easily integrated to obtainI = 
�2 (H +
m)� V0
 os 2
 (t� t0) ; (13)M = �
�1H + V0 os 2
 (t� t0) ; (14)V = V0 sin 2
 (t� t0) ; (15)where t0 is a onstant of integration.The integral I serves as an indiator of the isotropiollapse, in the ourse of whih this positive-de�nitequantity undergoes spei� temporal hanges: I de-reases with inreasing t and reahes the value I = 0at a �nite point t = t0 > 0. The ondition for suhbehavior is the inequality(H +
m)2 � 
2V 20 : (16)We also note that this ondition an be written in theequivalent form2 �H +
m� 
2I� I � V 2 = 14(�tI)2; (17)if we eliminate V0 and M by using relations (11), (12).869
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Fig. 1. Stability diagram. The ollapse region is markedby dotsThese inequalities are riterions for ollapse in therotating shallow water model with horizontally nonuni-form density. Only under these onditions does thedevelopment of instability lead to the formation of asingularity in the point x = 0.Aording to (16), the stability of the system is de-termined by four onstants of motion: H , m, V0, and
. In plae of them, it is more onvenient to use twonondimensional parameters� = Hm
 ; � = �V0m�2in terms of whih the possible senarios of stability andinstability an be analyzed with the diagram shown inFig. 1.From the diagram of stability, we see that inreasingthe angular veloity j
j, suh that � ! 0 as j
j ! 1,allows the system to leave the ollapse region only if� � 1, i. e., jV0j � jmj. But in the opposite ase � >> 1 (and hene jV0j > jmj), with the other parameters�xed, an analogous behavior of j
j does not lead to thesame result.In the ase of isotropi ollapsing, h behaves as aself-similar funtion, suh that h = ��2f(x=�), and wean therefore write the relationI = �2C; (18)where �(t) is a funtion of time and C is a positiveonstant depending on the shape fator f only.On the other hand, expanding the funtion I inpowers of t0 � t in the viinity of the ollapse timet0, we approximately obtainI � a1 (t0 � t) + a2 (t0 � t)2 + : : : ; (19)

where t0, the oe�ients a1 and a2, and the integralsof motion are related asa1 = 2qV 20 � 
�2 (H +
m)2;a2 = 2 (H +
m) ;H +
m = V0
os(2
t0):The omparison of (18) with (19) allow us to make thefollowing onlusions.1. If a1 6= 0, i. e., inequality (16) is strit, then theisotropi ollapse obeys the laws� � (t0 � t)1=2 ; h � ��2 � (t0 � t)�1 : (20)2. If a1 = 0, i. e., inequality (16) turns into anequality, then, instead of (20), we obtain the laws� � (t0 � t) ; h � ��2 � (t0 � t)�2 :We note that system (10) an be viewed as a ge-neralization of the virial theorem, whih obtaining theVlasov�Petrishhev�Talanov-type riterion for ollapsein the nonlinear Shrödinger (NLS) equation. This ri-terion was �rst formulated for the two-dimensional NLSequation [21℄ and was later generalized to many othermodels. Among them is the NLS model in semilassi-al limit [22℄, where the Zakharov equations transforminto a hydrodynami-type system. In partiular, in theabsene of rotation, system (10) redues to the equa-tion �2t I = 4H; (21)whih oinides with that for the two-dimensional NLSequation, and after integration givesI = 2Ht2 + I 00t+ I0:Here, the initial data I0 = I jt=0 and I 00 = (�tI)jt=0 == 2V jt=0 are used as onstants of integration. In thisase, riterion (17) beomes2HI � V 2 = 14(�tI)2 (22)and enables us to make the following onlusions.1. If H < 0, the isotropi ollapse always ours.Beause H an be represented asH = K +�; K = 12 Z dxhu2; � = 12 Z dxh2�;the inequality H < 0 implies that �jt=0 < �Kjt=0.The only way to provide this ondition is by appropri-ately hoosing the initial distribution for the �eld � ,whih, unlike h, an be sign-alternating.870



ÆÝÒÔ, òîì 144, âûï. 4 (10), 2013 Strutural elements of ollapses : : :2. If H � 0, the ful�lment of riterion (22) dependson I0 and I 00, and hene at the initial time we have theondition 8HI0 � I 020 ; (23)where I 00 must be negative beause I dereases withtime.On the other hand, based on the Cauhy inequality,we an write (�tI)2 = 4V 2 � 8IK: (24)It is lear that inequalities (23) and (24) are onsistentonly if H � I 0208I0 � Kjt=0:As a onsequene, we arrive at the ondition �Kjt=0 �� �jt=0 � 0.Therefore, irrespetive of the sign of H , the ol-lapse beomes possible if �jt=0 � 0. The negativequantity �Kjt=0 plays the role of a ritial level. Forvalues �jt=0 below the ritial level, no onditions arerequired, but above or at this level, the additional on-ditions must be satis�ed.4. STRUCTURAL ELEMENTS OF COLLAPSESIt is known [10℄ that self-similar solutions are in-termediate asymptoti regimes of nondegenerate prob-lems and are very useful in studying the �nal stagesof strongly nonlinear proesses, when the system for-gets about the details related to the initial data and itsbehavior depends on the motion integrals. For any dy-namial system, the existene of self-similar solutionsre�ets the existene of fundamental internal symme-tries and allows deiding on the tendenies in the devel-opment of the instability at the �nal stage. This typeof solutions is of partiular importane for studying thephenomenon of ollapse � formation of a singularityin a �nite time [22�28℄.As a self-similar substitution for h and � , we on-sider the expressionsh = QjGj� (1 + )f ; � = �0f1� ; (25)f = 1� (GUx)2 ; (26)where 0 �  � 1, �0 is a magnitude-spei�ed parame-ter, G and U are delation and rotation matriesG =  ��11 00 ��12 ! ; U =  os' � sin'sin' os' ! ;

�1(t) and �2(t) are positive deformation parameters,and '(t) is the angle of rotation in the transformationx0 = Ux.The ansatz in (25) and (26) desribes a liquid droponentrated on a ompat arrier of ellipti shapex012��21 + x022��22 = 1;and rotated with the angular speed �t'.Diret substitution in Eqs. (1)�(3) shows that ex-pressions (25) and (26) are exat solutions if the velo-ity omponents u0 = dx0=dt in the rotating oordinatesystem x0 = Ux obey the relationsu01 = �1�1 x01 � ��1�2 x02; u02 = �2�2 x02 + ��2�1 x01: (27)Equations (27) orrespond to the uniform vortiity dis-tribution inside the domain with an elliptial liquidontour boundary. The variables �i, �i, �, and '0 == '� 
t as funtions of time satisfy the equations�t�i = ��i
2 + (�1)i2 (�2 � �1)��t'0 ++ �i (�� �t'0)2 + Q�0 (1 + )2��i�1�2 ; (28)�t�i = �i; (29)m0 = ��1�2 � 12 ��21 + �22� �t'0; (30)n0 = 12� ��21 + �22�� �1�2�t'0; (31)wherem0 and n0 are parameters onneted with motioninvariants m and n by the relationsm0 = (2 + ) mQ; n0 = (2� ) n2��0 :We note that Eqs. (30) and (31) an be alternativelyderived by substituting (25), (26), and (27) in the right-hand sides of (7), (11).After eliminating � and '0 from Eqs. (28)�(31), weobtain that variables �i and �i obey the anonial equa-tions of motion�t�i = ��H��i = ��i
2 + 2(n0 +m0)2(�1 + �2)3 �� (�1)i2(n0 �m0)2(�1 � �2)3 + Q�0 ( + 1)2��i�1�2 ; (32)�t�i = �H��i = �i; (33)whih desribe a system with two degrees of freedomand the Hamiltonian871



V. P. Gonharov, V. I. Pavlov ÆÝÒÔ, òîì 144, âûï. 4 (10), 2013H = 2( + 2)Q (H +
m) = 12 ��21 + �22�++�n0 +m0�1 + �2�2 +�n0 �m0�1 � �2�2 ++ 
22 ��21 + �22�+ Q�0(1 + )2��1�2 : (34)One we know the variables �1 and �2, we an �nd� and �t' as� = 2n0 ��21 + �22�� 2m0�1�2(�21 � �22)2 ;�t' = 
+ 22n0�1�2 �m0 ��21 + �22�(�21 � �22)2 :Hene, the ansatz in (25), (26), and (27) redues theinitial in�nite-dimensional Hamiltonian system givenby Eqs. (1)�(3) to a two-dimensional anonial system.If motion invariants n and 
 are �nite, it is onve-nient to onvert the problem to dimensionless form byhoosing the spatial sale L and harateristi time Tsuh that T = j
j�1; L = jn0=
j1=2 :After nondimensionalizing, Hamiltonian (34) is rewrit-ten asH = 12 ��21 + �22 + �21 + �22�+ � � 1�1�2 ++� 1 + ��1 + �2�2 +� 1� ��1 � �2�2 ;where � and � are the nondimensional parameters� = m0n0 = 2� (2 + )(2� ) �0mQn ;� = 1 + 4��1 + 2� �2 Q�30n2 : (35)The orresponding equations of motion for �i, �i,and ' are given by�t�i = ��H��i = ��i + � � 1�i�1�2 ++ 2 (1 + �)2(�1 + �2)3 � (�1)i2 (1� �)2(�1 � �2)3 ; (36)�t�i = �H��i = �i; (37)�t' = 1 + 2 sign(n0)2�1�2 � � ��21 + �22�(�21 � �22)2 : (38)

5. ISOTROPIC SOLUTIONSBelow, we single out isotropi solutions of two types,rotating (
 = 1), and nonrotating (
 = 0).We let 
 = 1 and assume that solutions are radiallysymmetri. Then�1 = �2 = �; �1 = �2 = �:As analysis shows, suh solutions are degenerate andare possible only if � = 1 orm0 = n0. This is the reasonwhy the rotational e�et due to �t' loses theoretial le-gitimay and Eq. (38) is no longer valid. Instead, wean see diretly from (30) and (31) that the funtions' and � beome linearly dependent,� = 1 = �2 (1 + �� �t') :Hene, isotropi solutions are rotationally invariant.In this ase, Eqs. (36) and (37) redue to the form�t� = ��H1�� = ��3 � �; �t� = �H1�� = �; (39)where H1 = 12 ��2 + �2 + ��2� : (40)Analyti solutions of Eq. (39) an be written as� =qH1 � (H21 � �)1=2 os 2(t0 � t);� = �H21 � ��1=2 sin 2t(t0 � t)qH1 � (H21 � �)1=2 os 2(t0 � t) : (41)Relevant strutures look like radially symmetri drops.Without loss of generality, we an assume that �equals either 0 or 1, or �1. With 
 = 1, depending onthe parameter �, there are three di�erent branhes ofsolutions, hereafter referred to as the neutral (� = 0),old (� = 1), and warm (� = �1) rotating regimes.The parameter � is hosen aording to the rule� = 8><>: 0; �0 = ��;1; �0 > ��;�1; �0 < ��;where the threshold value �� is determined from (35)with � = 0, whih yields�� = �� n24�Q�1=3�2� 1 + �2=3 :1. In the neutral regime, when � = 0, the motionan our only if H1 > 0. As is shown in Fig. 2, the872



ÆÝÒÔ, òîì 144, âûï. 4 (10), 2013 Strutural elements of ollapses : : :

0 4�4 �0
2
4�

Fig. 2. Phase portrait of the rotating isotropi modelin the neutral regime (� = 0)system moves along open trajetories in the form ofsemiirles. The arrows plaed along the phase traje-tories show the diretion of motion in time. Relevantsolutions for h look like drops ollapsing aording tothe laws� � t0 � t; � � �p2H1; h � (t0 � t)�2:2. In the old regime, the motion an our only ifH1 � 1. Aording to Fig. 3, the typial trajetoriesof the dynamial system are losed urves, whih or-respond to periodi solutions. Relevant solutions forh look like pulsating drops. The minimum H1 = 1 isattained at the point � = 0, � = 1 and orresponds toa stationary (nonpulsating) solution.3. In the warm regime, the system moves alongopen trajetories shown in Fig. 4.The ollapse point is reahed for both positive andnegative values of H1 as � ! 1, and � ! 0. Inthis regime, the variables � and � asymptotially (ast! t0) tend to zero and in�nity, respetively, aordingto the laws� � (t0 � t)1=2; � � (t0 � t)�1=2; h � (t0 � t)�1;where the ollapse timet0 = 12 aros H1p1 +H21is determined from (41) and the ondition �(t0) = 0.
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Fig. 3. Phase portrait of the rotating isotropi modelin the old regime (� = 1)
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Fig. 4. Phase portrait of the rotating isotropi modelin the warm regime (� = �1)We emphasize that in the ase 
 = 1, there are nospreading regimes for whih � ! 1 as t ! 1 amongsolutions of Eqs. (39). These regimes our only innonrotating shallow water models with 
 = 0. Be-ause the proper analyti treatment implies droppingthe term with �2 from Hamiltonian (40), Eqs. (39) re-due to the form13 ÆÝÒÔ, âûï. 4 (10) 873
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Fig. 5. Phase portrait of the nonrotating isotropimodel in the old regime (� = 1)
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Fig. 6. Phase portrait of the nonrotating isotropimodel in the warm regime (� = �1)�t� = ��H0�� = ��3 ; �t� = �H0�� = �; (42)where H0 = 12 ��2 + ��2� :Phase trajetories of Eqs. (42) are presented inFigs. 5 and 6 for both old and warm nonrotating

regimes. The steady-state ase � = 0 is of no inter-est beause of its triviality. Regardless of the sign of�, spreading regimes are realized only on trajetorieswith H0 > 0. In Fig. 6, the spreading (H0 > 0) andollapsing (H0 < 0) regimes are separated by a dashedline. Hene, if � = �1 (i. e., a regime is warm) andH0 < 0, the topology of phase trajetories is indepen-dent of whether the shallow water model is rotating.6. ANISOTROPIC SOLUTIONSEquations (36) and (37) an have solutions thatviolate the radial symmetry. In suh situations, us-ing positive-de�nite integral (9) to test the anisotropiollapse is not a good idea, sine this quantity reaheszero only if �1 and �2 vanish simultaneously.We �rst onsider the anisotropi ollapse senarioaording to whih the ross-setional area s = ��1�2tends to zero due to the unilateral ompression alongone of the semiaxes (e. g., �1), whereas the other semi-axis �2 remains �nite (Fig. 7). As a result, the elliptiontat area of a ollapsing liquid fragment ontratsinto a line segment rather than into a point.Analysis of the anisotropi ollapse solutions in theviinity of the point t = t0 results in the following

0 0:4 0:8 1:2 t04
812 �2

�1
�t'

Fig. 7. Anisotropi ollapse. The alulation was per-formed for the parameters � = �4 and � = 2:8, andthe initial values �1(0) = 5:5, �2(0) = 13, �1(0) = 3,and �2(0) = �2874



ÆÝÒÔ, òîì 144, âûï. 4 (10), 2013 Strutural elements of ollapses : : :asymptoti forms of �1 and �2:�1 � b (t0 � t)2=3 + a (t0 � t)4=3 ; (43)�2 � �92b�3(� � 1) + b59(� � 1) (t0 � t)4=3 : (44)Here, b and a are onstants dependent on the initialonditions and losely onneted with other onstantsof motion byH = 3423 (� � 1)2b6 + b6 2334 1 + �2(� � 1)2 + 109 ba:Asymptoti forms (43) and (44) signify two things.First, the anisotropi ollapse is possible only if � < 1and, orrespondingly, requires a negative value of �0.Seond, beause h � (�1�2)�1, suh a ollapse obeysthe law h � (t0 � t)�2=3 :By ontrast, the isotropi ollapses follow the ompa-ratively faster laws h� (t0 � t)�1 or h � (t0 � t)�2.We note that as t! t0, the ontat area s betweenthe liquid and the bottom shrinks into a line segmentthat rotates with the onstant angular veloity�t' = 1� 2���22 = 1� 2334 �b6(� � 1)2 :Collapsing solutions in the �at model have the sameharater as in a two-dimensional model, with the onlydi�erene that the ontat area s shrinks not into a linesegment but into an in�nite axis perpendiular to the�ow plane.The �at model for shallow water follows fromEqs. (32) and (33) if one of the semiaxes (e. g., �2)and, orrespondingly, the total mass Q tend to in�nitysuh that Q=�2 ! onst, �2 ! 0, and 
 = n = m = 0.Collapses in the �at model therefore represent an ide-alization that ignores e�ets of rotation.In this ase, the nondimensional equations of mo-tion are written as�t�1 = ��H 0��1 = ��21 ; �t�1 = �H 0��1 = �1; (45)H 0 = 12�21 + ��1 ;where � = sign �0 is the only nondimensional parame-ter.Phase portraits of nonlinear system (45) haveno qualitative di�erenes from the ones presented inFigs. 5, and 6. As analysis shows, depending on the pa-rameter �, there exist two kinds of ollapsing regimes.
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Fig. 8. Osillation regime. The alulation was per-formed for the parameters � = 2 and � = 3:8, andthe initial values �1(0) = 5:5, �2(0) = 8, �1(0) = 3,�2(0) = �2If � < 0, the variables � and h asymptotially (ast! t0) tend to zero and in�nity, respetively, aordingto the laws�1 � (t0 � t)2=3; h � (t0 � t)�2=3:But if � = 0, these variables obey the laws�1 � (t0 � t); h � (t0 � t)�1:In the absene of ollapses, system (36)�(38) de-sribes nonlinear osillations. Suh behavior of the sys-tem agrees ompletely with laws (13)�(15), aordingto whih the osillatory period �=
 is indispensable forthe rotating shallow water model. Beause this periodde�nes the maximum time sale in the system, har-ateristi times of all other feasible e�ets, inludingollapse, should be smaller.A typial example of time behavior for basi fun-tions is shown in Fig. 8.Although ollapse is physially impossible (� > 1),the minimal and maximal values of the area s (heighth) an be very small and very large. Spei�ally, thenumerial experiment in Fig. 8 gives smax = 137:76and smin = 0:095. Another notable fat is the periodibursts of the angular veloity �t' (marked by a dashedline) at the instant when the semiaxes �1 and �2 omelose to eah other.875 13*



V. P. Gonharov, V. I. Pavlov ÆÝÒÔ, òîì 144, âûï. 4 (10), 20137. CONCLUSIONSWe summarize the main results in the work. Themain goal of this paper was to study strutural ele-ments of ollapses in the shallow water model with hor-izontally nonuniform density. The diagram of stabilitybased on the rigorous integral riterion for isotropiollapse allows to making some qualitative onlusionsabout the system behavior in the spae of onstantsof motion. In partiular, depending on the ratio be-tween two integrals of motion V0 and m, an ampli�a-tion of rotation, i. e., an inrease in the angular veloity
 leads both to stabilization of the �ow, if jV0j < jmj,and to destabilization, if jV0j � jmj.In our opinion, the ollapse phenomenon arises atthe �nal stage when the development of instability hasled to disintegration of the strongly perturbed �ows.One the �uid forms loalized (drop-like) fragments,the ollapse eventually ours and leads to the forma-tion of �nite-time singularities.Analysis of the instability shows that two ollapsesenarios are possible depending on whether theontat area between the drop and the bottom is on-tratible into a segment or into a point. In the ourseof anisotropi ollapsing, the ontat area ontratsto a spinning segment and the drop height h obeysthe law h � (t0 � t)�2=3. By ontrast, the isotropisenario implies that the ontat area ontrats to apoint. Beause of this, the height h follows relativelyfaster laws h � (t0 � t)�1 and h � (t0 � t)�2 in warmand neutral regimes, respetively. In the absene ofollapses, a drop-like fragment undergoes nonlinearosillations with the period �=
. This period is thelargest time sale of the rotating shallow water system.This work was supported by the RFBR (grant� 12-05-00168), by the Presidium of the RussianAademy of Sienes (Program Fundamental Problemsof Nonlinear Dynamis), and by the President of theRussian Federation (Program NSh-4166.2006.5).APPENDIXFormulation of modelWe onsider two layers of invisid inompressible�uids that move under the ation of gravity g in theCartesian frame x; y; z rotating around the vertialaxis z with a onstant angular veloity 
 = (0; 0;
).We suppose the layers are separated by a surfaez = h(x; y; t) and are ontained between two rigid par-allel planes z = 0 and z = l as shown in Fig. 9.

h2 = l� hh1 = h
z = l
z = 0

%2 = %%1 = %+ %0Fig. 9. Vertial struture of the two-layer modelOur purpose is to derive desription for this �ow inthe shallow water approximation taking into aountthat the density jump between the layers is small andhorizontally nonuniform. The orresponding motionequations an be obtained from the results in [5℄ ifthe free boundary ondition for the uppermost layerin Ripa's model is replaed with the rigid-lid approxi-mation.This modi�ation does not hange Ripa's equationswhih, as before, are given by(�t + u � r)u� 2
� u+r~p = ~hr�; (46)�th+r�(hu) = 0; (�t + u � r) � = 0 (47)in eah layer, where h(x; y; t) is the thikness, u(x; y; t)is the veloity, and �(x; y; t) is the buoyany. We notethat the variables u(x; y; t) and �(x; y; t) must be in-terpreted as vertially layer-averaged quantities. Theother two variables ~h(x; y; t) and ~p(x; y; t) are treatedas the height of the enter of mass of the layer and thee�etive pressure in the absene of inhomogeneities.In the rigid-lid approximation, Ripa's de�nition of~h for the ith layer remains unhanged,~hi = iXk=1 hk � 12hi; (48)but the de�nition for ~p must be modi�ed as~pi = �i iXk=1 hk + nXk=i+1 �khk + p0; (49)where p0(x; y; t) 6= onst is the rigid-lid pressure, andthe layer thiknesses satisfy the onditionnXk=1hk = l; (50)where the total depth l is a onstant.876



ÆÝÒÔ, òîì 144, âûï. 4 (10), 2013 Strutural elements of ollapses : : :In the ase of two layers, assuming that %2 = % == onst and %1 = %+%0(x; y; t), we obtain in aordanewith (48)�(50) that~h1 = 12h1; ~h2 = h1 + 12h2 = l � 12h2; (51)~p1 = �1h1 + �2h2 + p0; ~p2 = l�2 + p0; (52)�1 = g�1 + %0% � ; �2 = g: (53)After substitution of relations (51)�(53) to Eqs. (46)and (47), these equations take the form(�t + u1 � r)u1 � 2
� u1 ++rp0 = � 12h1r(h21�); (54)(�t + u2 � r)u2 � 2
� u2 +rp0 = 0; (55)�th1 +r�(h1u1) = 0; (56)�th2 +r�(h2u2) = 0; (57)�t� + u1 � r� = 0; (58)where subsripts �1; 2� show layer numbers. We notethat the redued gravity � = �1 � �2 = g%0=% an takeany sign depending on the di�erene between positive-de�nite quantities �1 and �2.Beause of the ondition h1+h2 = l, it follows fromEqs. (57) thatr� (h1u1 + (l � h1)u2) = 0: (59)Using (59) and ombining (54) and (55), it is easyto �nd the expression for the pressure gradient��lp0 + 12h21�� == r�r� (h1u1u1 + (l � h1)u2u2) : (60)Let U be the sale of the veloity u1, L be the hor-izontal length sale, and h1 � l, with " = h1=l beinga small parameter. Then, if O(h1�=U2) = 1, Eqs. (59)and (60) imply the estimationsu2 = O("U); p0 = O �"U2� :This result allows eliminating the pressure gradi-ent rp0 from Eq. (54). Thus, using the thin-layer ap-proximation and omitting the layer subsript, we ob-tain, in the leading order, the losed system of equa-tions (1)�(3). REFERENCES1. J. Pedlosky, Geophysial Fluid Dynamis, Springer,New York (1979).2. T. Foglizzo, F. Masset, J. Guilet, and G. Durand, Phys.Rev. Lett. 108, 051103(4) (2012).
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