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EFFECT OF THE REFRACTIVE INDEXON THE HAWKING TEMPERATURE:AN APPLICATION OF THE HAMILTON�JACOBI METHODI. Sakalli *, S. F. Mirekhtiary **Department of Physi
s, Eastern Mediterranean UniversityG. Magosa, North Cyprus, Mersin 10, TurkeyRe
eived April 20, 2013Hawking radiation of a non-asymptoti
ally �at 4-dimensional spheri
ally symmetri
 and stati
 dilatoni
 bla
khole (BH) via the Hamilton�Ja
obi (HJ) method is studied. In addition to the naive 
oordinates, we use fourmore di�erent 
oordinate systems that are well-behaved at the horizon. Ex
ept for the isotropi
 
oordinates,dire
t 
omputation by the HJ method leads to the standard Hawking temperature for all 
oordinate systems.The isotropi
 
oordinates allow extra
ting the index of refra
tion from the Fermat metri
. It is expli
itly shownthat the index of refra
tion determines the value of the tunneling rate and its natural 
onsequen
e, the Hawkingtemperature. The isotropi
 
oordinates in the 
onventional HJ method produ
e a wrong result for the temper-ature of the linear dilaton. Here, we explain how this dis
repan
y 
an be resolved by regularizing the integralpossessing a pole at the horizon.DOI: 10.7868/S00444510131000881. INTRODUCTIONIn 1974, Hawking [1, 2℄ proved, taking quantum ef-fe
ts into a

ount, that a BH 
an emit thermal radi-ation. This means, that ea
h BH has a 
hara
teristi
temperature and 
an be regarded as a thermodynami-
al system. In fa
t, this dis
overy broke all taboos thatwere 
lassi
ally imposed on BHs until that day. To-gether with Bekenstein's work [3℄, it led to the birthof a new subje
t, the so-
alled quantum gravity the-ory, whi
h has not yet been 
ompleted. After Hawk-ing, there has always been interest in deriving newmethods for the Hawking radiation (HR), whi
h 
ande
ode the underlying BH spa
etime. Today, manymethods for the HR have been found in the literature(see [4℄ and the referen
es therein for a general review).Among them, the most promising one is the tunnelingmethod of Kraus and Wil
zek (KW) [5, 6℄. KW usedthe null-geodesi
 method to develop the a
tion for thetunneling parti
le that is 
onsidered a self-gravitatingthin spheri
al shell and then managed to quantize it.The KW method provides a dynami
al model of HR in*E-mail: izzet.sakalli�emu.edu.tr**E-mail: fatemeh.mirekhtiary�emu.edu.tr

whi
h the BH shrinks as parti
les are radiated. In thisdynami
al model, both energy 
onservation and ba
k-rea
tion e�e
ts are in
luded, whi
h were not 
onsideredin the original derivation of HR. Six years later, their
al
ulations were reinterpreted by Parikh and Wil
zek(PW) [7℄. They showed that the HR spe
trum 
an de-viate from pure thermality, whi
h implies unitarity ofthe underlying quantum pro
ess and the resolution ofthe information loss paradox [8, 9℄. Nowadays, PW'spioneering work is still preserving its popularity. Nu-merous works for various BHs proves its validity (werefer the reader to [10℄). As far as we know, the orig-inal PW's tunneling method only su�ers from one ofthe non-asymptoti
aly �at (NAF) BHs, whi
h is theso-
alled linear dilaton BH (LDBH). In 
ontrast to theother well-known BHs, its evaporation does not admitnonthermal radiation, and therefore 
auses the viola-tion of information 
onservation. This problem was�rst unraveled in [11℄. Re
ently, it was shown that theweakness of the PW's method in retrieving the infor-mation from the LDBH 
an be over
ome by addingquantum 
orre
tions to the entropy [12℄. Furthermore,it was proved in another study [13℄ that the entropy ofthe LDBH 
an be tweaked by the quantum e�e
ts su
hthat both its temperature and mass simultaneously be-
ome zero at the end of the 
omplete evaporation.756
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t of the refra
tive index on the Hawking temperature : : :Based on the 
omplex path analysis in [14�16℄, theauthors of [17℄ developed an alternative method for 
al-
ulating the imaginary part of the a
tion belonging tothe tunneling parti
les. For this, they used the rel-ativisti
 HJ equation. Their method negle
ts the ef-fe
ts of parti
le self-gravitation and involves the WKBapproximation. In general, the relativisti
 HJ equa-tion 
an be solved by substituting a suitable ansatz.The 
hosen ansatz should respe
t the symmetries of thespa
etime in order to allow for the separability. The re-sulting equation thus obtained is solved by integratingalong the 
lassi
ally forbidden traje
tory that starts in-side the BH and ends at the outside observer. However,the integral has always a pole lo
ated at the horizon.For this reason, the method of 
omplex path analysismust be used to 
ir
umvent the pole.A Friedmann�Robertson�Walker universe � whi
his assumed to be a good model for our universe � isgenerally NAF [18℄. For this reason, we believe thatmost of the BHs in the real universe ne
essarily haveNAF geometries. Hen
e, it is of our spe
ial inter-est to �nd spe
i�
 examples of NAF BHs as a testbed for HR problems within the HJ method. Start-ing from this idea, we 
onsider the LDBHs in this pa-per. First of all, the eponym of these BHs are Clémentand Gal'tsov [19℄. Initially, LDBHs were found as asolution of the Einstein�Maxwell�dilaton (EMD) the-ory [20℄ in four dimensions. Later on, it was shownthat in addition to the EMD theory, N � 4 dimen-sional LDBHs (even in the 
ase of higher dimensions)are available in Einstein�Yang�Mills�dilaton (EYMD)and Einstein�Yang�Mills�Born�Infeld�dilaton (EYM-BID) theories (see [21℄ and the referen
es therein). Themost intriguing feature of these BHs is that while radi-ating, they undergo an isothermal pro
ess. Namely,their temperature does not alter with the shrinkingof the BH horizon or with the mass loss. Our pri-mary 
on
ern in this study is to obtain the imaginarypart of the a
tion of the tunneling parti
le throughthe LDBH horizon. This produ
es the tunneling ratethat yields the Hawking temperature. To test the HJmethod on the LDBH, in addition to the naive 
oor-dinates, we 
onsider four other 
oordinate systems (allregular): isotropi
, Painlevé�Gullstrand (PG), ingoingEddington�Finkelstein (IEF), and Kruskal�Szekeres(KS). Espe
ially, we mainly fo
us on the isotropi
 
o-ordinates. They require more straightforward 
al
u-lations 
ompared with the others. Furthermore, aswe show in what follows, the use of the standard HJmethod with isotropi
 
oordinates reveals a dis
rep-an
y in the temperatures. For a more re
ent a

ountin the same line of thought applied to the S
hwarzs
hild

BH within the isotropi
 
oordinates, we refer to [22℄,where a similar dis
repan
y problem in HR has beenstudied. Gaining inspiration from [22℄, we also dis
usshow the dis
repan
y appearing in the LDBH radiation
an be removed. Di�erently from [22℄, we also presentthe 
al
ulation of the index of refra
tion of the LDBHmedium, its e�e
t on the tunneling rate and 
onse-quently on the Hawking temperature. A

ording toour knowledge, su
h a theoreti
al observation has notbeen reported before in the literature. Slightly di�er-ent from the other 
oordinate systems, in applying theHJ method in the KS 
oordinates, we �rst redu
e theLDBH spa
etime to Minkowski spa
e and then demon-strate in detail how the Hawking temperature re
ov-ered.The paper uses the signature (�;+;+;+) and unitswhere 
 = G = ~ = kB = 1:The paper is organized as follows. In Se
. 2, we re-view some of the geometri
al and thermodynami
al fea-tures of the LDBH with naive 
oordinates and showthe separation of variables of the relativisti
 HJ equa-tion. The 
al
ulation of the tunneling rate and hen
e-forth the Hawking temperature via the HJ method isalso presented. In Se
. 3, the metri
 for an LDBH inisotropi
 
oordinates is derived. The e�e
t of the indexof refra
tion on the tunneling rate is expli
itly shown.The obtained temperature is half the a

epted valueof the Hawking temperature. It is demonstrated howthe proper regularization of singular integrals resolvesthe dis
repan
y in the aforementioned temperatures.Se
tions 4 and 5 are devoted to the 
al
ulation of theHawking temperature in PG and IEF 
oordinate sys-tems. In Se
. 6, we apply the HJ method to the KSform of LDBHs. Finally, the 
on
lusion and future di-re
tions are given in Se
. 7.2. LDBH AND HJ METHODIn general, the metri
 of a spheri
ally symmetri
and stati
 BH in four dimensions is given byds2 = �f dt2 + f�1dr2 +R2d
2; (1)where d
2 = d�2 + sin2 � d'2; (2)is the metri
 on the unit two-sphere S2. Be
ause weaim to solve the relativisti
 HJ equation for a massivebut un
harged s
alar �eld in the LDBH ba
kground,757
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 fun
tions of line element (1) are given byR2 = A2r; f = �(r � rh); (3)we 
all the metri
 in (1) the LDBH [19, 21℄. In varioustheories (EMD, EYMD, and EYMBID), metri
 fun
-tions do not alter their forms as seen in Eq. (3). Onlynonzero positive 
onstants A and � take di�erent val-ues depending on whi
h theory is used [21℄. It 
an beeasily dedu
ed from the metri
 fun
tion f that LDBHshave an NAF geometry and rh represents the horizon.For rh 6= 0, the horizon hides the null singularity atr = 0. Even in the extreme 
ase rh = 0 in whi
h the
entral null singularity at r = 0 is marginally trapped,su
h that outgoing waves are permitted to rea
h the ex-ternal observers, the LDBH still sustains its BH prop-erty.The NAF stru
ture of the LDBH leads us to usethe de�nition of a quasi-lo
al mass M [23℄ to obtain arelation between the horizon rh and the mass M of theBH as follows rh = 4M�A2 : (4)A

ording to the laws of BH thermodynami
s, the
onventional de�nition of the Hawking temperatureTH [24℄ is expressed in terms of the surfa
e gravity �.For metri
 (1), TH is expli
ity given asTH = �2� = �rf4� ����r=rh : (5)After substituting metri
 fun
tion f (3) in the aboveequation, TH of the LDBH be
omesTH = �4� : (6)We 
an immediately observe that the obtained tem-perature is 
onstant. In general, this typi
ally o

urs inan isothermal pro
ess of the standard thermodynami
sin whi
h �T = 0. Therefore, the LDBH's radiation issu
h a parti
ular pro
ess that the energy (mass) trans-fer out of the BH typi
ally o

urs at a slow rate su
hthat thermal equilibrium is maintained.Here, we 
onsider the problem of a s
alar parti
lethat moves in this spa
etime, while there is no ba
k-rea
tion or self-gravitational e�e
t. Within the semi-
lassi
al framework, the 
lassi
al a
tion I of the parti
lesatis�es the relativisti
 HJ equationg����I��I +m2 = 0; (7)

in whi
h m is the mass of the s
alar parti
le and g��represents the inverse metri
 tensors derived from met-ri
 (1). By 
onsidering Eqs. (1), (3), and (7), we obtain� 1f (�tI)2 + f(�rI)2 ++ 1A2r �(��I)2 + 1sin2 � (�'I)2�+m2 = 0: (8)For the HJ equation, it is 
ommon to use theseparation-of-variables method for the a
tion I == I(t; r; �; ') as follows:I = �Et+W (r) + J(xi); (9)where�tI = �E; �rI = �rW (r); �iI = Ji; (10)and the Ji are 
onstants in whi
h i = 1; 2 label respe
-tively angular 
oordinates � and '. Sin
e the norm ofthe timelike Killing ve
tor �t is (negative) unity at aparti
ular lo
ation r � �r = 1� + rh;E is the energy of the parti
le dete
ted by an observerat �r, whi
h is outside the horizon. Solving for W (r)yieldsW (r) == � Z vuutE2� fA2r "J2�+ J2'sin2 �+(mA)2 r#f dr; (11)where � o

urs naturally be
ause Eq. (8) is quadrati
in W (r). The solution of Eq. (11) with the plus sign
orresponds to s
alar parti
les moving away from theBH (outgoing) and the solution with the minus signrepresents parti
les that move toward the BH (in
om-ing). After evaluating the above integral around thepole at the horizon (adhering to Feynman's pres
rip-tion [25℄), we arrives atW(�) = � i�E� + 
; (12)where 
 is a 
omplex integration 
onstant. Thus, we
an dedu
e that imaginary parts of the a
tion 
an arisedue to the pole at the horizon and from the 
omplex
onstant 
. Hen
e, we 
an determine the probabilitiesof in
oming and outgoing parti
les while 
rossing thehorizon asPout = exp(�2 Im I) == exp ��2(ImW(+) + Im 
)� ; (13)758
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t of the refra
tive index on the Hawking temperature : : :Pin = exp(�2 Im I) == exp ��2(ImW(�) + Im 
)� : (14)From the 
lassi
al standpoint, a BH absorbs any in-
oming parti
les 
rossing its horizon. In other words,there is no re�e
tion for the in
oming waves, whi
h 
or-responds to Pin = 1. This is enabled by settingIm 
 = �E� :This 
hoi
e also implies that the imaginary part of thea
tion I for a tunneling parti
le 
an only originate inW+. Namely, we obtainIm I = ImW+ = 2�E� ; (15)whi
h is independent of the horizon radius rh. There-fore, the tunneling rate for the LDBH 
an be obtainedas � = Pout = exp��4�E� � ; (16)and sin
e [7℄ � = exp(��E); (17)where � denotes the Boltzmann fa
tor and T = 1=�, we
an easily �nd the horizon temperature of the LDBHas �TH = �4� ; (18)whi
h means that the Hawking temperature TH in (6)is impe

ably re
overed.3. ISOTROPIC COORDINATESIn general, when metri
 (1) is transformed to theisotropi
 
oordinates, the resulting line element admitsa BH spa
etime in whi
h the metri
 fun
tions are non-singular at the horizon, the time dire
tion is a Killingve
tor, and the three-dimensional subspa
e of the spa-tial part of the line element (known as a time sli
e)appears as Eu
lidean with a 
onformal fa
tor. Further-more, using these 
oordinates renders the 
al
ulation ofthe index of refra
tion of light rays (a subje
t of gravi-tational lensing) around a BH possible. Therefore, thelight propagation of a BH 
an be mimi
ked by the in-dex of refra
tion. In this way, an observer 
an identifythe type of the BH [26℄.In this se
tion, we �rst transform the LDBH to theisotropi
 
oordinates and then analyze the HJ equa-tion. Next, we examine the horizon temperature and

see whether it agrees with TH . At the �nal stage, wedis
uss the dis
repan
y in the temperatures and its res-olution.The LDBH solution in isotropi
 
oordinates 
an befound by the transformationd�� = drAp�(r2 � rrh) ; (19)when
e we obtain� = �2r � rh + 2pr(r � rh)�1=
 ; (20)and 
onversely r = 14�
 (�
 + rh)2 ; (21)where 
 = Ap�:This transformation takes metri
 (1) to the formds2 = �F dt2 +G(d�2 + �2d
2); (22)withF = �4�
 (�
 � rh)2 ; G = A24�
+2 (�
 + rh)2 : (23)In this 
oordinate system, the event horizon is lo-
ated at �h = (rh)1=
and the region � > �h 
overs the exterior region of theLDBH, whi
h is stati
. In the naive 
oordinates (1)of the LDBH, all Killing ve
tors are spa
elike in theinterior region, and we dedu
e that the interior of theLDBH is nonstationary. On the other hand, when we
onsider the interior region � < �h of metri
 (22), itadmits a hypersurfa
e-orthogonal timelike Killing ve
-tor, whi
h implies a stati
 region. Namely, the region� < �h does not 
over the interior of the LDBH. In-stead, it again 
overs the exterior region su
h that met-ri
 (22) is a double 
over of the LDBH exterior [27℄.We 
an easily rewrite metri
 (22) asds2 = F (�dt2 + bg); (24)and obtain the Fermat metri
 [26℄ form that of theLDBH as bg = n(�)2(d�2 + �2d
2); (25)where n(�) is known as the index of refra
tion. For theLDBH medium, it is 
al
ulated asn(�) =rGF = Ap�� �
 + rh�
 � rh : (26)759
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obi equation (7) on ba
kground (22)
orresponds to� 1F (�tI)2 + F (��I)2 + 1G�2 �� �(��I)2 + 1sin2 � (�'I)2�+m2 = 0: (27)There exists a solution of the formI = �Et+Wiso(�) + J(xi): (28)Solving for Wiso(�) yieldsWiso(�) = � Z n(�)��sE2 � FG�2 �J2� + J2'sin2 ���m2Fd�; (29)whi
h 
an be written near the horizon� � (rh)1=
as Wiso(�) = �E Z n(�) d�: (30)Here, it is 
lear that Wiso(�) is governed by the indexof refra
tion of the LDBH. Applying Feynman's pre-s
ription to the above integral, we obtainWiso(�) = � i2�E� + 
2; (31)where 
2 is another integration 
onstant. Similarly tothe pro
edure followed in the previous se
tion i. e., set-ting Pin = 1, whi
h yieldsIm 
2 = 2�E� ;we obtain the imaginary part of the a
tion I of thetunneling parti
le asIm I = ImWiso(+) = 4�E� : (32)Thus, by using the tunneling rate formulation (16) weobtain the horizon temperature of the LDBH as�TH = �8� : (33)But the obtained temperature is half the 
onven-tional Hawking temperature,�TH = 12TH :

Hen
e, the result in (33) shows that transforming thenaive 
oordinates to the isotropi
 
oordinates yields anapparent temperature of the BH that is less than thetrue temperature TH . This is analogous to the appar-ent depth q of a �sh swimming at a depth d belowthe surfa
e of a pond being less than the true depthd, q < d. This illusion is due to the di�eren
e of theindi
es of refra
tion between the media. Parti
ularly,su
h a 
ase o

urs whennobserver < nobje
t;as is the 
ase here. It is obvious from Eq. (26) thatthe index of refra
tion of the medium of an observerlo
ated at the outer region is less than the index ofrefra
tion of the medium near the horizon. Sin
e thevalue of Wiso(�) in (30) a
ts as a de
ision-maker onthe value of the Hawking temperature TH of the BH,we 
an dedu
e that the index of refra
tion in (26), and
onsequently the gravitational lensing e�e
t, play animportant role in the observation of the true TH .On the other hand, we admittedly know that the 
o-ordinate transformation of the naive 
oordinates to theisotropi
 
oordinates should not alter the true temper-ature of the BH. Sin
e the appearan
es are de
eptive,we should make a deeper analysis. Very re
ently, thisproblem was throughly dis
ussed by Chatterjee andMitra [22℄. Sin
e the isotropi
 
oordinate � be
omes
omplex inside the horizon (r < rh), they have proventhat while evaluating the integral (30) around the hori-zon, the path a
ross the horizon involves a 
hange of�=2 instead of � in the phase of the 
omplex variable(�
 � rh). This 
an best be seen from Eq. (21), whi
his rewritten as r = rh + (�
 � rh)2�
 ; (34)and implies thatdrr � rh = �
 d�� + 2
d��1�
(�
 � rh) == �
 d�� + 2dzz � rh ; (35)where z = �
 . The �rst term does not admit any imag-inary part at the horizon. Hen
e, any imaginary 
on-tribution 
oming from 2dz=(z � rh) must be a half ofdr=(r�rh). The last remark produ
es a fa
tor i�=2 forthe integral in (30) and subsequently it yieldsImWiso(+) = 2�E�760
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t of the refra
tive index on the Hawking temperature : : :as obtained in the previous se
tion. Thus, we obtainthe horizon temperature as�TH = �4� ;whi
h is again TH .4. PG COORDINATESGenerally, we use the PG 
oordinates [28, 29℄ to de-s
ribe the spa
etime on either side of the event horizonof a stati
 BH. In this 
oordinate system, an observerdoes not 
onsider the surfa
e of the horizon to be inany way spe
ial. In this se
tion, we use the PG 
oor-dinates as another regular 
oordinate system in the HJequation and examine whether they yield the 
orre
t
al
ulation of TH .We 
an pass to the PG 
oordinates by applying thefollowing transformation [30℄ to metri
 (1):dT = dt+ p1� ff dr; (36)where T is our new time 
oordinate (whi
h we 
all thePG time). Substituting this in metri
 (1) givesds2 = �fdT 2 + 2p1� f dT dr + dr2 +R2d
2: (37)One of the main features of these 
oordinates is thatthe PG time 
on
urrently 
orresponds to the propertime. For metri
 (37), HJ equation (7) takes the form� (�T I)2 + 2p1� f(�T I)(�rI) + f(�rI)2 ++ 1R2 (��I)2 + 1R2 sin2 � (�'I)2 +m2 = 0: (38)Letting I = �ET +WPG(r) + J(xi); (39)and substituting Eqs. (39) and (3) in Eq. (38), we �ndWPG(r) = Z E�(r � rh)  p1� �(r � rh) �� r1� �(r � rh) � ��(r � rh)E2 ! dr; (40)where � = m2 �E2 + J2�R2 + J2'R2 sin2 � : (41)Near the horizon, Eq. (40) in turn implies thatWPG(�) = E� Z 1r � rh (1� 1) dr: (42)

Therefore, imposing the 
onditionWPG(�) = 0;whi
h ensures that there is no re�e
tion for the in
om-ing parti
le, we haveWPG(+) = i2�E� : (43)Thus, we obtain the imaginary part of the a
tion I asIm I = ImWPG(+) = 2�E� : (44)With the aid of Eqs. (16) and (17), we 
an readily�nd the horizon temperature of the LDBH in the PG
oordinates as �TH = �4� : (45)This result fully agrees with the standard value of theHawking temperature (6).5. IEF COORDINATESAnother useful 
oordinate system, whi
h is also reg-ular at the event horizon, was originally 
onstru
ted byEddington [31℄ and Finkelstein [32℄. These 
oordinatesare �xed to radially moving photons. Line element (1)takes the following form in the IEF 
oordinates (see,e. g., [33℄):ds2 = �fd�2 + 2p1� f d� dr + dr2 ++R2(d�2 + sin2 � d'2); (46)where � is a new null 
oordinate, the so-
alled advan
edtime. It is given by � = t+ r�; (47)where r� is known as the Regger�Wheeler 
oordinateor the tortoise 
oordinate. For the outer region of theLDBH, it is found to ber� = 1� ln� rrh � 1� : (48)Sin
e the metri
 (46) has the Killing ve
tor �eld�� = ��, in this 
oordinate system an observer mea-sures the s
alar parti
le energy asE = ���I:In this regard, the a
tion is assumed to be of the formI = �E� +WEF (r) + J(xi): (49)6 ÆÝÒÔ, âûï. 4 (10) 761
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 (46), we �nd the�nal resultWEF (r) = Z E�(r � rh) �� 1�r1� {�(r � rh)E2 ! dr; (50)where { = m2 + J2�R2 + J2'R2 sin2 � : (51)In the vi
inity of the event horizon,WEF (r) redu
esto the expressionWEF (�) = E� Z 1r � rh (1� 1) dr; (52)whi
h is identi
al to (42). Hen
e,WEF (�) = 0; WEF (+) = i2�E� !! Im I = ImWEF (+) = 2�E� ; (53)and similarly to the PG 
oordinates, the use of the EF
oordinates in the HJ equation allows reprodu
ing thestandard Hawking temperature from the horizon tem-perature of the LDBH:�TH = �4� = TH : (54)6. KS COORDINATESAnother well-behaved 
oordinate system, whi
h
overs the entire spa
etime manifold of the maximallyextended BH solution, is the so-
alled KS 
oordi-nates [34, 35℄. These 
oordinates have the e�e
t ofsqueezing in�nity into a �nite distan
e and hen
e theentire spa
etime 
an be displayed on a stamp-like dia-gram. In this se
tion, we apply the HJ equation to theKS metri
 of the LDBH in order to verify that �TH isequal to TH .Metri
 (1) 
an be rewritten as [33℄ds2 = �f du dv +R2d
2; (55)where du = dt� dr�; dv = dt+ dr�: (56)Furthermore, if we de�ne new 
oordinates (U; V ) interms of the surfa
e gravity � in (5) asU = �e��u; V = e�v; (57)

metri
 (55) transforms to the KS metri
 asds2 = f�2 dU dVUV +R2d
2: (58)Re
alling the de�nitions given in Eqs. (3)�(5) and(57), it is then straightforward to obtain the KS metri
of the LDBH. It is given byds2 = � 16M�2A2 dU dV +R2d
2: (59)This metri
 is well-behaved everywhere outside thephysi
al singularity r = 0. Alternatively, metri
 (59)
an be rewritten asds2 = �dT 2 + dX2 +R2d
2: (60)This is possible with the transformationT = 4pM�A (V + U) = 4pM�A r rrh � 1 sh��t2 � ; (61)X = 4pM�A (V � U) = 4pM�A r rrh � 1 
h��t2 � : (62)It is easy to see thatX2 � T 2 = 16M�2A2 � rrh � 1� ; (63)whi
h means that X = �T 
orresponds to the futureand past horizons. On the other hand, �T is not a time-like Killing ve
tor anymore for metri
 (60); instead, weshould 
onsider the timelike Killing ve
tor�bT = N(X�T + T�X); (64)where N denotes the normalization 
onstant. It 
anadmit a spe
ial value su
h that the norm of the Killingve
tor be
omes negative unity at a spe
i�
 lo
ation inthe outer region of the LDBH wherer = 1� + rh:This implies that N = �2 : (65)Sin
e the energy is de�ned by�bT I = �E; (66)it follows that �2 (X�T I + T�XI) = �E: (67)762
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t of the refra
tive index on the Hawking temperature : : :Without loss of generality, we 
an 
onsider only the(1+1)-dimensional form of KS metri
 (60), whi
h nowappears as Minkowskian:ds2 = �dT 2 + dX2: (68)The 
al
ulation by the HJ method is more straightfor-ward in this 
ase. Hamilton�Ja
obi equation (7) forthe above metri
 is given by� (�T I)2 + (�XI)2 +m2 = 0: (69)This equation implies that the a
tion I to be used inHJ equation (7) for metri
 (68) 
an beI = g(X � T ) + J(xi): (70)For simpli
ity, we 
an further setJ(xi) = 0; m = 0:Using Eq. (67) with ansatz (70), we derive the expres-sion g(u) = Z 2E�u du; (71)where u = X�T . This expression diverges at the hori-zon u = 0, namely, X = T . This leads to a pole at thehorizon (going over a semi-
ir
ular 
ontour of integra-tion in the 
omplex plane) and the result is found tobe Im I = 2�E� : (72)Therefore, referring to tunneling probability (7), we ob-tain � = exp��4�E� � ; (73)whi
h means that the 
orre
t Hawking temperatureTH = �4�is re
overed in the ba
kground of the KS metri
 of theLDBH. 7. CONCLUSIONIn this study, the Hawking radiation of the LDBHin four dimensions is studied by the HJ method. Toour knowledge, the LDBH is the only BH whose radia-tion obeys an isothermal pro
ess, whi
h 
orresponds tono 
hange in the temperature during its evaporation,�T = 0. This 
an be easily dedu
ed from its Hawking

temperature, whi
h yields a 
onstant value. Namely, itis independent of the mass M (or the horizon radiusr+) of the BH. In addition to the naive 
oordinates,four di�erent regular 
oordinate systems are examinedin this study. It is shown that the horizon temperatures
omputed in the naive, PG, IEF, and KS 
oordinates bythe HJ method exa
tly mat
h the 
onventional Hawk-ing temperature. Here, we note that in Se
. 6, whi
h
onsiders the KS 
oordinates, the way that we followedwas slightly di�erent than in other se
tions. In that se
-tion, without loss of generality, we dis
arded the massof the s
alar �eld and negle
ted the angular dependen
eof the HJ equation. This turned out to be the appli
a-tion of the HJ method for the Minkowski metri
. As aresult, the mat
h of the temperatures was su

essfullyshown.We believe that the most interesting part of thepresent paper is Se
. 3, where the LDBH metri
 is ex-pressed in terms of the isotropi
 
oordinates. Usingthe Fermat metri
 enabled us to determine the indexof refra
tion of the LDBH. In parti
ular, it is provedthat the index of refra
tion plays a de
isive role on thetunneling rate. Unlike in the other 
oordinate systems,the standard integration around the pole at the horizonin the isotropi
 
oordinates produ
ed an una

eptablevalue of the temperature, half the standard TH . Toover
ome this dis
repan
y, we were inspired by re
entstudy [22℄, whi
h has demonstrated how the proper reg-ularization of singular integrals leads to the standardHawking temperature for the isotropi
 
oordinates. Asa result, it is 
lari�ed that the path a
ross the hori-zon results in the value i�=2 on integration instead ofi�. The underlying reason of this is that the isotropi
radial 
oordinate � in (20) is real outside the BH, butbe
omes 
omplex inside the BH.Finally, it would be interesting to extend our anal-ysis to other BHs, whi
h 
ould be BHs with multi-ple horizons, multi-BHs, higher-dimensional BHs, et
.This will be 
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