ZKIT®, 2013, rom 144, Boim. 4 (10), crp. 756-764

© 2013

EFFECT OF THE REFRACTIVE INDEX
ON THE HAWKING TEMPERATURE:
AN APPLICATION OF THE HAMILTON-JACOBI METHOD

I. Sakalli, S. F. Mirekhtiary""

Department of Physics, Eastern Mediterranean University
G. Magosa, North Cyprus, Mersin 10, Turkey

Received April 20, 2013

Hawking radiation of a non-asymptotically flat 4-dimensional spherically symmetric and static dilatonic black
hole (BH) via the Hamilton—Jacobi (HJ) method is studied. In addition to the naive coordinates, we use four
more different coordinate systems that are well-behaved at the horizon. Except for the isotropic coordinates,
direct computation by the HJ method leads to the standard Hawking temperature for all coordinate systems.
The isotropic coordinates allow extracting the index of refraction from the Fermat metric. It is explicitly shown
that the index of refraction determines the value of the tunneling rate and its natural consequence, the Hawking
temperature. The isotropic coordinates in the conventional HJ method produce a wrong result for the temper-
ature of the linear dilaton. Here, we explain how this discrepancy can be resolved by regularizing the integral

possessing a pole at the horizon.
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1. INTRODUCTION

In 1974, Hawking [1, 2] proved, taking quantum ef-
fects into account, that a BH can emit thermal radi-
ation. This means, that each BH has a characteristic
temperature and can be regarded as a thermodynami-
cal system. In fact, this discovery broke all taboos that
were classically imposed on BHs until that day. To-
gether with Bekenstein’s work [3], it led to the birth
of a new subject, the so-called quantum gravity the-
ory, which has not yet been completed. After Hawk-
ing, there has always been interest in deriving new
methods for the Hawking radiation (HR), which can
decode the underlying BH spacetime. Today, many
methods for the HR have been found in the literature
(see [4] and the references therein for a general review).
Among them, the most promising one is the tunneling
method of Kraus and Wilezek (KW) [5, 6]. KW used
the null-geodesic method to develop the action for the
tunneling particle that is considered a self-gravitating
thin spherical shell and then managed to quantize it.
The KW method provides a dynamical model of HR in
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which the BH shrinks as particles are radiated. In this
dynamical model, both energy conservation and back-
reaction effects are included, which were not considered
in the original derivation of HR. Six years later, their
calculations were reinterpreted by Parikh and Wilczek
(PW) [7]. They showed that the HR spectrum can de-
viate from pure thermality, which implies unitarity of
the underlying quantum process and the resolution of
the information loss paradox [8, 9]. Nowadays, PW’s
pioneering work is still preserving its popularity. Nu-
merous works for various BHs proves its validity (we
refer the reader to [10]). As far as we know, the orig-
inal PW’s tunneling method only suffers from one of
the non-asymptoticaly flat (NAF) BHs, which is the
so-called linear dilaton BH (LDBH). In contrast to the
other well-known BHs, its evaporation does not admit
nonthermal radiation, and therefore causes the viola-
tion of information conservation. This problem was
first unraveled in [11]. Recently, it was shown that the
weakness of the PW’s method in retrieving the infor-
mation from the LDBH can be overcome by adding
quantum corrections to the entropy [12]. Furthermore,
it was proved in another study [13] that the entropy of
the LDBH can be tweaked by the quantum effects such
that both its temperature and mass simultaneously be-
come zero at the end of the complete evaporation.
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Based on the complex path analysis in [14-16], the
authors of [17] developed an alternative method for cal-
culating the imaginary part of the action belonging to
the tunneling particles. For this, they used the rel-
ativistic HJ equation. Their method neglects the ef-
fects of particle self-gravitation and involves the WKB
approximation. In general, the relativistic HJ equa-
tion can be solved by substituting a suitable ansatz.
The chosen ansatz should respect the symmetries of the
spacetime in order to allow for the separability. The re-
sulting equation thus obtained is solved by integrating
along the classically forbidden trajectory that starts in-
side the BH and ends at the outside observer. However,
the integral has always a pole located at the horizon.
For this reason, the method of complex path analysis
must be used to circumvent the pole.

A Friedmann—Robertson—Walker universe — which
is assumed to be a good model for our universe — is
generally NAF [18]. For this reason, we believe that
most of the BHs in the real universe necessarily have
NAF geometries. Hence, it is of our special inter-
est to find specific examples of NAF BHs as a test
bed for HR problems within the HJ method. Start-
ing from this idea, we consider the LDBHs in this pa-
per. First of all, the eponym of these BHs are Clément
and Gal'tsov [19]. Initially, LDBHs were found as a
solution of the Einstein-Maxwell-dilaton (EMD) the-
ory [20] in four dimensions. Later on, it was shown
that in addition to the EMD theory, N > 4 dimen-
sional LDBHs (even in the case of higher dimensions)
are available in Einstein—Yang-Mills—dilaton (EYMD)
and Einstein—Yang—Mills-Born-Infeld—dilaton (EYM-
BID) theories (see [21] and the references therein). The
most intriguing feature of these BHs is that while radi-
ating, they undergo an isothermal process. Namely,
their temperature does not alter with the shrinking
of the BH horizon or with the mass loss. Our pri-
mary concern in this study is to obtain the imaginary
part of the action of the tunneling particle through
the LDBH horizon. This produces the tunneling rate
that yields the Hawking temperature. To test the HJ
method on the LDBH, in addition to the naive coor-
dinates, we consider four other coordinate systems (all
regular): isotropic, Painlevé-Gullstrand (PG), ingoing
Eddington-Finkelstein (IEF), and Kruskal-Szekeres
(KS). Especially, we mainly focus on the isotropic co-
ordinates. They require more straightforward calcu-
lations compared with the others. Furthermore, as
we show in what follows, the use of the standard HJ
method with isotropic coordinates reveals a discrep-
ancy in the temperatures. For a more recent account
in the same line of thought applied to the Schwarzschild
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BH within the isotropic coordinates, we refer to [22],
where a similar discrepancy problem in HR has been
studied. Gaining inspiration from [22], we also discuss
how the discrepancy appearing in the LDBH radiation
can be removed. Differently from [22], we also present
the calculation of the index of refraction of the LDBH
medium, its effect on the tunneling rate and conse-
quently on the Hawking temperature. According to
our knowledge, such a theoretical observation has not
been reported before in the literature. Slightly differ-
ent from the other coordinate systems, in applying the
HJ method in the KS coordinates, we first reduce the
LDBH spacetime to Minkowski space and then demon-
strate in detail how the Hawking temperature recov-
ered.

The paper uses the signature (—, +, 4+, +) and units
where

c=G=h=kp=1.

The paper is organized as follows. In Sec. 2, we re-
view some of the geometrical and thermodynamical fea-
tures of the LDBH with naive coordinates and show
the separation of variables of the relativistic HJ equa-
tion. The calculation of the tunneling rate and hence-
forth the Hawking temperature via the HJ method is
also presented. In Sec. 3, the metric for an LDBH in
isotropic coordinates is derived. The effect of the index
of refraction on the tunneling rate is explicitly shown.
The obtained temperature is half the accepted value
of the Hawking temperature. It is demonstrated how
the proper regularization of singular integrals resolves
the discrepancy in the aforementioned temperatures.
Sections 4 and 5 are devoted to the calculation of the
Hawking temperature in PG and IEF coordinate sys-
tems. In Sec. 6, we apply the HJ method to the KS
form of LDBHs. Finally, the conclusion and future di-
rections are given in Sec. 7.

2. LDBH AND HJ METHOD

In general, the metric of a spherically symmetric
and static BH in four dimensions is given by

ds®> = —fdt*> + fLdr? + R2dQ?, (1)
where
dQ? = df* + sin” 9 d?, (2)

is the metric on the unit two-sphere S2. Because we
aim to solve the relativistic HJ equation for a massive
but uncharged scalar field in the LDBH background,
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we first analyze the geometry of the LDBH. Whenever
the metric functions of line element (1) are given by

f = E(T - Th)v (3)

we call the metric in (1) the LDBH [19, 21]. In various
theories (EMD, EYMD, and EYMBID), metric func-
tions do not alter their forms as seen in Eq. (3). Only
nonzero positive constants A and ¥ take different val-
ues depending on which theory is used [21]. It can be
easily deduced from the metric function f that LDBHs
have an NAF geometry and rj represents the horizon.
For r, # 0, the horizon hides the null singularity at
r = 0. Even in the extreme case r, = 0 in which the
central null singularity at » = 0 is marginally trapped,
such that outgoing waves are permitted to reach the ex-
ternal observers, the LDBH still sustains its BH prop-
erty.

The NAF structure of the LDBH leads us to use
the definition of a quasi-local mass M [23] to obtain a
relation between the horizon r; and the mass M of the
BH as follows

R? = A?r,

(4)

According to the laws of BH thermodynamics, the
conventional definition of the Hawking temperature
Ty [24] is expressed in terms of the surface gravity x.
For metric (1), Ty is explicity given as

ko O f
47

T=Th

Ty

(5)

2

After substituting metric function f (3) in the above
equation, Ty of the LDBH becomes

D)

Ty =—.
A= 4r

(6)

We can immediately observe that the obtained tem-
perature is constant. In general, this typically occurs in
an isothermal process of the standard thermodynamics
in which AT = 0. Therefore, the LDBH’s radiation is
such a particular process that the energy (mass) trans-
fer out of the BH typically occurs at a slow rate such
that thermal equilibrium is maintained.

Here, we consider the problem of a scalar particle
that moves in this spacetime, while there is no back-
reaction or self-gravitational effect. Within the semi-
classical framework, the classical action I of the particle
satisfies the relativistic HJ equation

guyaulaul +m? = 0, (7)
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in which m is the mass of the scalar particle and g*”
represents the inverse metric tensors derived from met-
ric (1). By considering Eqs. (1), (3), and (7), we obtain

1
@D+ 0,17 +

1
sin” @
For the HJ equation, it is common to use the

separation-of-variables method for the action I
= I(t,r,60,p) as follows:

+ L (Dp1)* + (0,1)*] +m? =0.

A2r

(8)

I =—Et+W(r)+ J(z, (9)

where

Ol =—E, 0,1=0W(r), 0I=1J;, (10)

and the J; are constants in which ¢ = 1, 2 label respec-
tively angular coordinates # and ¢. Since the norm of
the timelike Killing vector J; is (negative) unity at a
particular location

r=r=<=+4r,

D)
E is the energy of the particle detected by an observer
at 7, which is outside the horizon. Solving for W (r)
yields

Wi(r)
2
@
sin® 6

==/ i

where £ occurs naturally because Eq. (8) is quadratic
in W (r). The solution of Eq. (11) with the plus sign
corresponds to scalar particles moving away from the
BH (outgoing) and the solution with the minus sign
represents particles that move toward the BH (incom-
ing). After evaluating the above integral around the
pole at the horizon (adhering to Feynman’s prescrip-
tion [25]), we arrives at

f

A2r

Ji+

E2— +(mA)’r

dr, (11)

(12)

where ¢ is a complex integration constant. Thus, we
can deduce that imaginary parts of the action can arise
due to the pole at the horizon and from the complex
constant ¢. Hence, we can determine the probabilities
of incoming and outgoing particles while crossing the
horizon as

Pyyt = exp(—2Im ) =

=exp [-2(Im W) +Imc)], (13)
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P, = exp(—2ImI) =
=exp [-2(ImW_) +Imc)] . (14)

From the classical standpoint, a BH absorbs any in-
coming particles crossing its horizon. In other words,
there is no reflection for the incoming waves, which cor-
responds to P, = 1. This is enabled by setting

E

Ime = 7T—.
This choice also implies that the imaginary part of the
action I for a tunneling particle can only originate in

W,.. Namely, we obtain
2 E

ImI:ImW+:T, (15)
which is independent of the horizon radius r,. There-
fore, the tunneling rate for the LDBH can be obtained

as
—4nE
1—‘:]Dout:exp< il )7 (16)
by
and since [7]
r= exp(—,@E), (17)

where § denotes the Boltzmann factor and T =1/, we
can easily find the horizon temperature of the LDBH
as

. P
Ty =— 18
= (18)
which means that the Hawking temperature Ty in (6)
is impeccably recovered.

3. ISOTROPIC COORDINATES

In general, when metric (1) is transformed to the
isotropic coordinates, the resulting line element admits
a BH spacetime in which the metric functions are non-
singular at the horizon, the time direction is a Killing
vector, and the three-dimensional subspace of the spa-
tial part of the line element (known as a time slice)
appears as Euclidean with a conformal factor. Further-
more, using these coordinates renders the calculation of
the index of refraction of light rays (a subject of gravi-
tational lensing) around a BH possible. Therefore, the
light propagation of a BH can be mimicked by the in-
dex of refraction. In this way, an observer can identify
the type of the BH [26].

In this section, we first transform the LDBH to the
isotropic coordinates and then analyze the HJ equa-
tion. Next, we examine the horizon temperature and

see whether it agrees with Ty. At the final stage, we
discuss the discrepancy in the temperatures and its res-
olution.
The LDBH solution in isotropic coordinates can be
found by the transformation
dp dr

P A =) (19)

whence we obtain

p= (2r—rh+2\/r(1“_rh—))1/v, (20)

and conversely

r (p" +7n)?, (21)

:H

where

v = AVT.

This transformation takes metric (1) to the form

ds® = —F dt* + G(dp* + p*dQ?), (22)
with
Y 2 A Y 2
F:H(p —’I“h) R G:4p'7—+2(p +’I“h) . (23)
In this coordinate system, the event horizon is lo-
cated at
pn = (ra)"”

and the region p > pj covers the exterior region of the
LDBH, which is static. In the naive coordinates (1)
of the LDBH, all Killing vectors are spacelike in the
interior region, and we deduce that the interior of the
LDBH is nonstationary. On the other hand, when we
consider the interior region p < pp of metric (22), it
admits a hypersurface-orthogonal timelike Killing vec-
tor, which implies a static region. Namely, the region
p < pn does not cover the interior of the LDBH. In-
stead, it again covers the exterior region such that met-
ric (22) is a double cover of the LDBH exterior [27].
We can easily rewrite metric (22) as

ds® = F(—dt* +7), (24)

and obtain the Fermat metric [26] form that of the
LDBH as

g =n(p)*(dp® + p*d2), (25)

where n(p) is known as the index of refraction. For the
LDBH medium, it is calculated as

n(p) = g_ A prtra
=N E= T

(26)
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Hamilton—Jacobi equation (7) on background (22)
corresponds to

1
— F(at.[)2 +F(8p.[)2 —+ G—p2 X
x(%02+,2 (0,1 +m? =0. (27)
sin” 6

There exists a solution of the form
I = —FEt+ Wis(p) + J(2%). (28)

Solving for Wis,(p) yields

Wiso(p) = + / n(p) x

2 F 2 J‘% 2
X E — G—p2 J0 + Sin20 —m de, (29)

which can be written near the horizon

p~ ()

as
Wissis) = £E [ n(p)dp (30)

Here, it is clear that Wiy, (4 is governed by the index
of refraction of the LDBH. Applying Feynman’s pre-
scription to the above integral, we obtain

12rE
by

Wiso(:ﬁ:) ==+ + c2, (31)
where ¢y is another integration constant. Similarly to
the procedure followed in the previous section i. e., set-
ting P, = 1, which yields

2rE
Im Cy = T,

we obtain the imaginary part of the action I of the
tunneling particle as
irE
Im7 =TIm W) = —. 32
m I =1ImWiso(+) = —5 (32)
Thus, by using the tunneling rate formulation (16) we
obtain the horizon temperature of the LDBH as

. by
Ty =—.
" 81

(33)

But the obtained temperature is half the conven-
tional Hawking temperature,
1

Hence, the result in (33) shows that transforming the
naive coordinates to the isotropic coordinates yields an
apparent temperature of the BH that is less than the
true temperature Tp. This is analogous to the appar-
ent depth ¢ of a fish swimming at a depth d below
the surface of a pond being less than the true depth
d, ¢ < d. This illusion is due to the difference of the
indices of refraction between the media. Particularly,
such a case occurs when

Nobserver < Nobject,

as is the case here. It is obvious from Eq. (26) that
the index of refraction of the medium of an observer
located at the outer region is less than the index of
refraction of the medium near the horizon. Since the
value of Wis,(1) in (30) acts as a decision-maker on
the value of the Hawking temperature Ty of the BH,
we can deduce that the index of refraction in (26), and
consequently the gravitational lensing effect, play an
important role in the observation of the true Ty.

On the other hand, we admittedly know that the co-
ordinate transformation of the naive coordinates to the
isotropic coordinates should not alter the true temper-
ature of the BH. Since the appearances are deceptive,
we should make a deeper analysis. Very recently, this
problem was throughly discussed by Chatterjee and
Mitra [22]. Since the isotropic coordinate p becomes
complex inside the horizon (r < r}), they have proven
that while evaluating the integral (30) around the hori-
zon, the path across the horizon involves a change of
/2 instead of 7 in the phase of the complex variable
(p7 —ry). This can best be seen from Eq. (21), which
is rewritten as

(p” — 1)’
r=r+ T, (34)
and implies that
dr dp 2vdp
A
d 2d
=424 2 (35)

p z—ry

where z = p7. The first term does not admit any imag-
inary part at the horizon. Hence, any imaginary con-
tribution coming from 2dz/(z — r,) must be a half of
dr/(r—rp). The last remark produces a factor im /2 for
the integral in (30) and subsequently it yields

27E
Im Wiso(Jr) = T
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as obtained in the previous section. Thus, we obtain
the horizon temperature as

which is again Ty .

4. PG COORDINATES

Generally, we use the PG coordinates [28, 29] to de-
scribe the spacetime on either side of the event horizon
of a static BH. In this coordinate system, an observer
does not consider the surface of the horizon to be in
any way special. In this section, we use the PG coor-
dinates as another regular coordinate system in the H.J
equation and examine whether they yield the correct
calculation of Ty.

We can pass to the PG coordinates by applying the
following transformation [30] to metric (1):

vi—f
f

where T' is our new time coordinate (which we call the
PG time). Substituting this in metric (1) gives

ds®> = —fdT* + 2\/1 — fdT dr + dr® + R*dQ>. (37)

dT = dt +

dr, (36)

One of the main features of these coordinates is that
the PG time concurrently corresponds to the proper
time. For metric (37), HJ equation (7) takes the form

—(0rD)?* +2/1 — f(OrD)(0.1) + f(O,.1)* +

1 1

0p1)? + ————(8,1)> +m?=0. (38

T 0Dt gy 0D m (%)
Letting

I = —ET + Wpq(r) + J(z), (39)

and substituting Eqs. (39) and (3) in Eq. (38), we find

WPG(T‘):/ﬁ< 1-%(r—ry) £

AS(r —
+ \/1—2(7«—7«,1)—%> dr,  (40)

where
T3 T

P e 41
" R?  R%sin’ @ (41)

Near the horizon, Eq. (40) in turn implies that

E 1

W == 1+1)dr. 42
row =5 [ roo(Edn (42)

6 ZKOT®, Bem. 4 (10)

Therefore, imposing the condition
Wpa—) =0,

which ensures that there is no reflection for the incom-
ing particle, we have

12nE
Wra+) = —5— (43)

Thus, we obtain the imaginary part of the action I as

21E
Im7I=ImW = —.

m mWPpa(+) D
With the aid of Eqgs. (16) and (17), we can readily
find the horizon temperature of the LDBH in the PG

coordinates as

(44)

. p
Ty = —.
H 41

This result fully agrees with the standard value of the
Hawking temperature (6).

(45)

5. IEF COORDINATES

Another useful coordinate system, which is also reg-
ular at the event horizon, was originally constructed by
Eddington [31] and Finkelstein [32]. These coordinates
are fixed to radially moving photons. Line element (1)
takes the following form in the IEF coordinates (see,

e.g., [33]):
ds®> = —fdv?® +2y/1 — fdvdr + dr?® +
+ R2(dA* + sin® § dp?),  (46)

where v is a new null coordinate, the so-called advanced
time. It is given by

’U=t-|—7“*, (47)

where r, is known as the Regger—-Wheeler coordinate
or the tortoise coordinate. For the outer region of the
LDBH, it is found to be

1 r
sy==In{——-1]}. 48
re=gln <7‘h ) (48)
Since the metric (46) has the Killing vector field

&* = 0Oy, in this coordinate system an observer mea-
sures the scalar particle energy as

E=—-0,1I.
In this regard, the action is assumed to be of the form

I =—FEv+Wgp(r)+ J(z"). (49)
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Using HJ equation (7) in metric (46), we find the  metric (55) transforms to the KS metric as
final result
AU dv
E ds® = % —— + R*d0% (58)
WEF(T):/zi « W2 UV
(r—rn) Recalling the definitions given in Eqs. (3)—(5) and
x5(r —rp) (57), it is then straightforward to obtain the KS metric
X (1 V- ) dr,(50) ¢ the LDBHL Tt is given by
160
where ds? = oz dU dV + R*d0?. (59)
T3 T3
x=m>+ R_92 + R2T“‘;129. (51)  This metric is well-behaved everywhere outside the

In the vicinity of the event horizon, Wgp (r) reduces
to the expression

E

W == 1+£1)d 52
prw =5 [ oo (EDd (3)

which is identical to (42). Hence,

12tE

Wery =0, Wgpy = s
2rnE

—TmT =TmWep) = WT (53)

and similarly to the PG coordinates, the use of the EF
coordinates in the HJ equation allows reproducing the
standard Hawking temperature from the horizon tem-
perature of the LDBH:

(54)

6. KS COORDINATES

Another well-behaved coordinate system, which
covers the entire spacetime manifold of the maximally
extended BH solution, is the so-called KS coordi-
nates [34, 35]. These coordinates have the effect of
squeezing infinity into a finite distance and hence the
entire spacetime can be displayed on a stamp-like dia-
gram. In this section, we apply the HJ equation to the
KS metric of the LDBH in order to verify that T4 is
equal to .

Metric (1) can be rewritten as [33]

—f dudv + R2dQ?, (55)

where

du =dt —dr., dv=dt+dr,. (56)

Furthermore, if we define new coordinates (U, V') in
terms of the surface gravity « in (5) as

U=—e " V=" (57)
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physical singularity r = 0. Alternatively, metric (59)
can be rewritten as

ds® = —dT? + dX* + R*dQ*. (60)

This is possible with the transformation

_4M _4VM [ St
T T ()

It is easy to see that

16M

w2\ )
which means that X = £T corresponds to the future
and past horizons. On the other hand, 97 is not a time-

like Killing vector anymore for metric (60); instead, we
should consider the timelike Killing vector

X2-T2= (63)

07 = N(Xr + Tox), (64)

where N denotes the normalization constant. It can
admit a special value such that the norm of the Killing
vector becomes negative unity at a specific location in
the outer region of the LDBH where

r= D Th.
This implies that
b
N =—. 65
> (65)
Since the energy is defined by
Opl = —E, (66)
it follows that
b
5(X8T1+ ToxI)=—-FE. (67)
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Without loss of generality, we can consider only the
(141)-dimensional form of KS metric (60), which now
appears as Minkowskian:

ds> = —dT? + dX>. (68)

The calculation by the HJ method is more straightfor-
ward in this case. Hamilton—Jacobi equation (7) for
the above metric is given by

—(0rD)? + (OxI)* +m? = 0. (69)

This equation implies that the action I to be used in
HJ equation (7) for metric (68) can be

I=g(X =T)+ J(x%). (70)

For simplicity, we can further set

J(z')y=0, m=0.

Using Eq. (67) with ansatz (70), we derive the expres-

sion

where u = X —T'. This expression diverges at the hori-
zon u = 0, namely, X = T. This leads to a pole at the
horizon (going over a semi-circular contour of integra-
tion in the complex plane) and the result is found to
be

2F
— du,

Su (71)

g(u)

_ 2rE

ImI =
m >

(72)

Therefore, referring to tunneling probability (7), we ob-

tain

which means that the correct Hawking temperature

4T E

5 (73)

I' =exp (—

D)

Ty = —
A= 4r

is recovered in the background of the KS metric of the
LDBH.

7. CONCLUSION

In this study, the Hawking radiation of the LDBH
in four dimensions is studied by the HJ method. To
our knowledge, the LDBH is the only BH whose radia-
tion obeys an isothermal process, which corresponds to
no change in the temperature during its evaporation,
AT = 0. This can be easily deduced from its Hawking
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temperature, which yields a constant value. Namely, it
is independent of the mass M (or the horizon radius
ry) of the BH. In addition to the naive coordinates,
four different regular coordinate systems are examined
in this study. It is shown that the horizon temperatures
computed in the naive, PG, IEF, and KS coordinates by
the HJ method exactly match the conventional Hawk-
ing temperature. Here, we note that in Sec. 6, which
considers the KS coordinates, the way that we followed
was slightly different than in other sections. In that sec-
tion, without loss of generality, we discarded the mass
of the scalar field and neglected the angular dependence
of the HJ equation. This turned out to be the applica-
tion of the HJ method for the Minkowski metric. As a
result, the match of the temperatures was successfully
shown.

We believe that the most interesting part of the
present paper is Sec. 3, where the LDBH metric is ex-
pressed in terms of the isotropic coordinates. Using
the Fermat metric enabled us to determine the index
of refraction of the LDBH. In particular, it is proved
that the index of refraction plays a decisive role on the
tunneling rate. Unlike in the other coordinate systems,
the standard integration around the pole at the horizon
in the isotropic coordinates produced an unacceptable
value of the temperature, half the standard Ty. To
overcome this discrepancy, we were inspired by recent
study [22], which has demonstrated how the proper reg-
ularization of singular integrals leads to the standard
Hawking temperature for the isotropic coordinates. As
a result, it is clarified that the path across the hori-
zon results in the value i7/2 on integration instead of
iw. The underlying reason of this is that the isotropic
radial coordinate p in (20) is real outside the BH, but
becomes complex inside the BH.

Finally, it would be interesting to extend our anal-
ysis to other BHs, which could be BHs with multi-
ple horizons, multi-BHs, higher-dimensional BHs, etc.
This will be considered in the near future.
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