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EFFECT OF THE REFRACTIVE INDEXON THE HAWKING TEMPERATURE:AN APPLICATION OF THE HAMILTON�JACOBI METHODI. Sakalli *, S. F. Mirekhtiary **Department of Physis, Eastern Mediterranean UniversityG. Magosa, North Cyprus, Mersin 10, TurkeyReeived April 20, 2013Hawking radiation of a non-asymptotially �at 4-dimensional spherially symmetri and stati dilatoni blakhole (BH) via the Hamilton�Jaobi (HJ) method is studied. In addition to the naive oordinates, we use fourmore di�erent oordinate systems that are well-behaved at the horizon. Exept for the isotropi oordinates,diret omputation by the HJ method leads to the standard Hawking temperature for all oordinate systems.The isotropi oordinates allow extrating the index of refration from the Fermat metri. It is expliitly shownthat the index of refration determines the value of the tunneling rate and its natural onsequene, the Hawkingtemperature. The isotropi oordinates in the onventional HJ method produe a wrong result for the temper-ature of the linear dilaton. Here, we explain how this disrepany an be resolved by regularizing the integralpossessing a pole at the horizon.DOI: 10.7868/S00444510131000881. INTRODUCTIONIn 1974, Hawking [1, 2℄ proved, taking quantum ef-fets into aount, that a BH an emit thermal radi-ation. This means, that eah BH has a harateristitemperature and an be regarded as a thermodynami-al system. In fat, this disovery broke all taboos thatwere lassially imposed on BHs until that day. To-gether with Bekenstein's work [3℄, it led to the birthof a new subjet, the so-alled quantum gravity the-ory, whih has not yet been ompleted. After Hawk-ing, there has always been interest in deriving newmethods for the Hawking radiation (HR), whih andeode the underlying BH spaetime. Today, manymethods for the HR have been found in the literature(see [4℄ and the referenes therein for a general review).Among them, the most promising one is the tunnelingmethod of Kraus and Wilzek (KW) [5, 6℄. KW usedthe null-geodesi method to develop the ation for thetunneling partile that is onsidered a self-gravitatingthin spherial shell and then managed to quantize it.The KW method provides a dynamial model of HR in*E-mail: izzet.sakalli�emu.edu.tr**E-mail: fatemeh.mirekhtiary�emu.edu.tr

whih the BH shrinks as partiles are radiated. In thisdynamial model, both energy onservation and bak-reation e�ets are inluded, whih were not onsideredin the original derivation of HR. Six years later, theiralulations were reinterpreted by Parikh and Wilzek(PW) [7℄. They showed that the HR spetrum an de-viate from pure thermality, whih implies unitarity ofthe underlying quantum proess and the resolution ofthe information loss paradox [8, 9℄. Nowadays, PW'spioneering work is still preserving its popularity. Nu-merous works for various BHs proves its validity (werefer the reader to [10℄). As far as we know, the orig-inal PW's tunneling method only su�ers from one ofthe non-asymptotialy �at (NAF) BHs, whih is theso-alled linear dilaton BH (LDBH). In ontrast to theother well-known BHs, its evaporation does not admitnonthermal radiation, and therefore auses the viola-tion of information onservation. This problem was�rst unraveled in [11℄. Reently, it was shown that theweakness of the PW's method in retrieving the infor-mation from the LDBH an be overome by addingquantum orretions to the entropy [12℄. Furthermore,it was proved in another study [13℄ that the entropy ofthe LDBH an be tweaked by the quantum e�ets suhthat both its temperature and mass simultaneously be-ome zero at the end of the omplete evaporation.756



ÆÝÒÔ, òîì 144, âûï. 4 (10), 2013 E�et of the refrative index on the Hawking temperature : : :Based on the omplex path analysis in [14�16℄, theauthors of [17℄ developed an alternative method for al-ulating the imaginary part of the ation belonging tothe tunneling partiles. For this, they used the rel-ativisti HJ equation. Their method neglets the ef-fets of partile self-gravitation and involves the WKBapproximation. In general, the relativisti HJ equa-tion an be solved by substituting a suitable ansatz.The hosen ansatz should respet the symmetries of thespaetime in order to allow for the separability. The re-sulting equation thus obtained is solved by integratingalong the lassially forbidden trajetory that starts in-side the BH and ends at the outside observer. However,the integral has always a pole loated at the horizon.For this reason, the method of omplex path analysismust be used to irumvent the pole.A Friedmann�Robertson�Walker universe � whihis assumed to be a good model for our universe � isgenerally NAF [18℄. For this reason, we believe thatmost of the BHs in the real universe neessarily haveNAF geometries. Hene, it is of our speial inter-est to �nd spei� examples of NAF BHs as a testbed for HR problems within the HJ method. Start-ing from this idea, we onsider the LDBHs in this pa-per. First of all, the eponym of these BHs are Clémentand Gal'tsov [19℄. Initially, LDBHs were found as asolution of the Einstein�Maxwell�dilaton (EMD) the-ory [20℄ in four dimensions. Later on, it was shownthat in addition to the EMD theory, N � 4 dimen-sional LDBHs (even in the ase of higher dimensions)are available in Einstein�Yang�Mills�dilaton (EYMD)and Einstein�Yang�Mills�Born�Infeld�dilaton (EYM-BID) theories (see [21℄ and the referenes therein). Themost intriguing feature of these BHs is that while radi-ating, they undergo an isothermal proess. Namely,their temperature does not alter with the shrinkingof the BH horizon or with the mass loss. Our pri-mary onern in this study is to obtain the imaginarypart of the ation of the tunneling partile throughthe LDBH horizon. This produes the tunneling ratethat yields the Hawking temperature. To test the HJmethod on the LDBH, in addition to the naive oor-dinates, we onsider four other oordinate systems (allregular): isotropi, Painlevé�Gullstrand (PG), ingoingEddington�Finkelstein (IEF), and Kruskal�Szekeres(KS). Espeially, we mainly fous on the isotropi o-ordinates. They require more straightforward alu-lations ompared with the others. Furthermore, aswe show in what follows, the use of the standard HJmethod with isotropi oordinates reveals a disrep-any in the temperatures. For a more reent aountin the same line of thought applied to the Shwarzshild

BH within the isotropi oordinates, we refer to [22℄,where a similar disrepany problem in HR has beenstudied. Gaining inspiration from [22℄, we also disusshow the disrepany appearing in the LDBH radiationan be removed. Di�erently from [22℄, we also presentthe alulation of the index of refration of the LDBHmedium, its e�et on the tunneling rate and onse-quently on the Hawking temperature. Aording toour knowledge, suh a theoretial observation has notbeen reported before in the literature. Slightly di�er-ent from the other oordinate systems, in applying theHJ method in the KS oordinates, we �rst redue theLDBH spaetime to Minkowski spae and then demon-strate in detail how the Hawking temperature reov-ered.The paper uses the signature (�;+;+;+) and unitswhere  = G = ~ = kB = 1:The paper is organized as follows. In Se. 2, we re-view some of the geometrial and thermodynamial fea-tures of the LDBH with naive oordinates and showthe separation of variables of the relativisti HJ equa-tion. The alulation of the tunneling rate and hene-forth the Hawking temperature via the HJ method isalso presented. In Se. 3, the metri for an LDBH inisotropi oordinates is derived. The e�et of the indexof refration on the tunneling rate is expliitly shown.The obtained temperature is half the aepted valueof the Hawking temperature. It is demonstrated howthe proper regularization of singular integrals resolvesthe disrepany in the aforementioned temperatures.Setions 4 and 5 are devoted to the alulation of theHawking temperature in PG and IEF oordinate sys-tems. In Se. 6, we apply the HJ method to the KSform of LDBHs. Finally, the onlusion and future di-retions are given in Se. 7.2. LDBH AND HJ METHODIn general, the metri of a spherially symmetriand stati BH in four dimensions is given byds2 = �f dt2 + f�1dr2 +R2d
2; (1)where d
2 = d�2 + sin2 � d'2; (2)is the metri on the unit two-sphere S2. Beause weaim to solve the relativisti HJ equation for a massivebut unharged salar �eld in the LDBH bakground,757



I. Sakalli, S. F. Mirekhtiary ÆÝÒÔ, òîì 144, âûï. 4 (10), 2013we �rst analyze the geometry of the LDBH. Wheneverthe metri funtions of line element (1) are given byR2 = A2r; f = �(r � rh); (3)we all the metri in (1) the LDBH [19, 21℄. In varioustheories (EMD, EYMD, and EYMBID), metri fun-tions do not alter their forms as seen in Eq. (3). Onlynonzero positive onstants A and � take di�erent val-ues depending on whih theory is used [21℄. It an beeasily dedued from the metri funtion f that LDBHshave an NAF geometry and rh represents the horizon.For rh 6= 0, the horizon hides the null singularity atr = 0. Even in the extreme ase rh = 0 in whih theentral null singularity at r = 0 is marginally trapped,suh that outgoing waves are permitted to reah the ex-ternal observers, the LDBH still sustains its BH prop-erty.The NAF struture of the LDBH leads us to usethe de�nition of a quasi-loal mass M [23℄ to obtain arelation between the horizon rh and the mass M of theBH as follows rh = 4M�A2 : (4)Aording to the laws of BH thermodynamis, theonventional de�nition of the Hawking temperatureTH [24℄ is expressed in terms of the surfae gravity �.For metri (1), TH is expliity given asTH = �2� = �rf4� ����r=rh : (5)After substituting metri funtion f (3) in the aboveequation, TH of the LDBH beomesTH = �4� : (6)We an immediately observe that the obtained tem-perature is onstant. In general, this typially ours inan isothermal proess of the standard thermodynamisin whih �T = 0. Therefore, the LDBH's radiation issuh a partiular proess that the energy (mass) trans-fer out of the BH typially ours at a slow rate suhthat thermal equilibrium is maintained.Here, we onsider the problem of a salar partilethat moves in this spaetime, while there is no bak-reation or self-gravitational e�et. Within the semi-lassial framework, the lassial ation I of the partilesatis�es the relativisti HJ equationg����I��I +m2 = 0; (7)

in whih m is the mass of the salar partile and g��represents the inverse metri tensors derived from met-ri (1). By onsidering Eqs. (1), (3), and (7), we obtain� 1f (�tI)2 + f(�rI)2 ++ 1A2r �(��I)2 + 1sin2 � (�'I)2�+m2 = 0: (8)For the HJ equation, it is ommon to use theseparation-of-variables method for the ation I == I(t; r; �; ') as follows:I = �Et+W (r) + J(xi); (9)where�tI = �E; �rI = �rW (r); �iI = Ji; (10)and the Ji are onstants in whih i = 1; 2 label respe-tively angular oordinates � and '. Sine the norm ofthe timelike Killing vetor �t is (negative) unity at apartiular loation r � �r = 1� + rh;E is the energy of the partile deteted by an observerat �r, whih is outside the horizon. Solving for W (r)yieldsW (r) == � Z vuutE2� fA2r "J2�+ J2'sin2 �+(mA)2 r#f dr; (11)where � ours naturally beause Eq. (8) is quadratiin W (r). The solution of Eq. (11) with the plus signorresponds to salar partiles moving away from theBH (outgoing) and the solution with the minus signrepresents partiles that move toward the BH (inom-ing). After evaluating the above integral around thepole at the horizon (adhering to Feynman's presrip-tion [25℄), we arrives atW(�) = � i�E� + ; (12)where  is a omplex integration onstant. Thus, wean dedue that imaginary parts of the ation an arisedue to the pole at the horizon and from the omplexonstant . Hene, we an determine the probabilitiesof inoming and outgoing partiles while rossing thehorizon asPout = exp(�2 Im I) == exp ��2(ImW(+) + Im )� ; (13)758



ÆÝÒÔ, òîì 144, âûï. 4 (10), 2013 E�et of the refrative index on the Hawking temperature : : :Pin = exp(�2 Im I) == exp ��2(ImW(�) + Im )� : (14)From the lassial standpoint, a BH absorbs any in-oming partiles rossing its horizon. In other words,there is no re�etion for the inoming waves, whih or-responds to Pin = 1. This is enabled by settingIm  = �E� :This hoie also implies that the imaginary part of theation I for a tunneling partile an only originate inW+. Namely, we obtainIm I = ImW+ = 2�E� ; (15)whih is independent of the horizon radius rh. There-fore, the tunneling rate for the LDBH an be obtainedas � = Pout = exp��4�E� � ; (16)and sine [7℄ � = exp(��E); (17)where � denotes the Boltzmann fator and T = 1=�, wean easily �nd the horizon temperature of the LDBHas �TH = �4� ; (18)whih means that the Hawking temperature TH in (6)is impeably reovered.3. ISOTROPIC COORDINATESIn general, when metri (1) is transformed to theisotropi oordinates, the resulting line element admitsa BH spaetime in whih the metri funtions are non-singular at the horizon, the time diretion is a Killingvetor, and the three-dimensional subspae of the spa-tial part of the line element (known as a time slie)appears as Eulidean with a onformal fator. Further-more, using these oordinates renders the alulation ofthe index of refration of light rays (a subjet of gravi-tational lensing) around a BH possible. Therefore, thelight propagation of a BH an be mimiked by the in-dex of refration. In this way, an observer an identifythe type of the BH [26℄.In this setion, we �rst transform the LDBH to theisotropi oordinates and then analyze the HJ equa-tion. Next, we examine the horizon temperature and

see whether it agrees with TH . At the �nal stage, wedisuss the disrepany in the temperatures and its res-olution.The LDBH solution in isotropi oordinates an befound by the transformationd�� = drAp�(r2 � rrh) ; (19)whene we obtain� = �2r � rh + 2pr(r � rh)�1= ; (20)and onversely r = 14� (� + rh)2 ; (21)where  = Ap�:This transformation takes metri (1) to the formds2 = �F dt2 +G(d�2 + �2d
2); (22)withF = �4� (� � rh)2 ; G = A24�+2 (� + rh)2 : (23)In this oordinate system, the event horizon is lo-ated at �h = (rh)1=and the region � > �h overs the exterior region of theLDBH, whih is stati. In the naive oordinates (1)of the LDBH, all Killing vetors are spaelike in theinterior region, and we dedue that the interior of theLDBH is nonstationary. On the other hand, when weonsider the interior region � < �h of metri (22), itadmits a hypersurfae-orthogonal timelike Killing ve-tor, whih implies a stati region. Namely, the region� < �h does not over the interior of the LDBH. In-stead, it again overs the exterior region suh that met-ri (22) is a double over of the LDBH exterior [27℄.We an easily rewrite metri (22) asds2 = F (�dt2 + bg); (24)and obtain the Fermat metri [26℄ form that of theLDBH as bg = n(�)2(d�2 + �2d
2); (25)where n(�) is known as the index of refration. For theLDBH medium, it is alulated asn(�) =rGF = Ap�� � + rh� � rh : (26)759



I. Sakalli, S. F. Mirekhtiary ÆÝÒÔ, òîì 144, âûï. 4 (10), 2013Hamilton�Jaobi equation (7) on bakground (22)orresponds to� 1F (�tI)2 + F (��I)2 + 1G�2 �� �(��I)2 + 1sin2 � (�'I)2�+m2 = 0: (27)There exists a solution of the formI = �Et+Wiso(�) + J(xi): (28)Solving for Wiso(�) yieldsWiso(�) = � Z n(�)��sE2 � FG�2 �J2� + J2'sin2 ���m2Fd�; (29)whih an be written near the horizon� � (rh)1=as Wiso(�) = �E Z n(�) d�: (30)Here, it is lear that Wiso(�) is governed by the indexof refration of the LDBH. Applying Feynman's pre-sription to the above integral, we obtainWiso(�) = � i2�E� + 2; (31)where 2 is another integration onstant. Similarly tothe proedure followed in the previous setion i. e., set-ting Pin = 1, whih yieldsIm 2 = 2�E� ;we obtain the imaginary part of the ation I of thetunneling partile asIm I = ImWiso(+) = 4�E� : (32)Thus, by using the tunneling rate formulation (16) weobtain the horizon temperature of the LDBH as�TH = �8� : (33)But the obtained temperature is half the onven-tional Hawking temperature,�TH = 12TH :

Hene, the result in (33) shows that transforming thenaive oordinates to the isotropi oordinates yields anapparent temperature of the BH that is less than thetrue temperature TH . This is analogous to the appar-ent depth q of a �sh swimming at a depth d belowthe surfae of a pond being less than the true depthd, q < d. This illusion is due to the di�erene of theindies of refration between the media. Partiularly,suh a ase ours whennobserver < nobjet;as is the ase here. It is obvious from Eq. (26) thatthe index of refration of the medium of an observerloated at the outer region is less than the index ofrefration of the medium near the horizon. Sine thevalue of Wiso(�) in (30) ats as a deision-maker onthe value of the Hawking temperature TH of the BH,we an dedue that the index of refration in (26), andonsequently the gravitational lensing e�et, play animportant role in the observation of the true TH .On the other hand, we admittedly know that the o-ordinate transformation of the naive oordinates to theisotropi oordinates should not alter the true temper-ature of the BH. Sine the appearanes are deeptive,we should make a deeper analysis. Very reently, thisproblem was throughly disussed by Chatterjee andMitra [22℄. Sine the isotropi oordinate � beomesomplex inside the horizon (r < rh), they have proventhat while evaluating the integral (30) around the hori-zon, the path aross the horizon involves a hange of�=2 instead of � in the phase of the omplex variable(� � rh). This an best be seen from Eq. (21), whihis rewritten as r = rh + (� � rh)2� ; (34)and implies thatdrr � rh = � d�� + 2d��1�(� � rh) == � d�� + 2dzz � rh ; (35)where z = � . The �rst term does not admit any imag-inary part at the horizon. Hene, any imaginary on-tribution oming from 2dz=(z � rh) must be a half ofdr=(r�rh). The last remark produes a fator i�=2 forthe integral in (30) and subsequently it yieldsImWiso(+) = 2�E�760



ÆÝÒÔ, òîì 144, âûï. 4 (10), 2013 E�et of the refrative index on the Hawking temperature : : :as obtained in the previous setion. Thus, we obtainthe horizon temperature as�TH = �4� ;whih is again TH .4. PG COORDINATESGenerally, we use the PG oordinates [28, 29℄ to de-sribe the spaetime on either side of the event horizonof a stati BH. In this oordinate system, an observerdoes not onsider the surfae of the horizon to be inany way speial. In this setion, we use the PG oor-dinates as another regular oordinate system in the HJequation and examine whether they yield the orretalulation of TH .We an pass to the PG oordinates by applying thefollowing transformation [30℄ to metri (1):dT = dt+ p1� ff dr; (36)where T is our new time oordinate (whih we all thePG time). Substituting this in metri (1) givesds2 = �fdT 2 + 2p1� f dT dr + dr2 +R2d
2: (37)One of the main features of these oordinates is thatthe PG time onurrently orresponds to the propertime. For metri (37), HJ equation (7) takes the form� (�T I)2 + 2p1� f(�T I)(�rI) + f(�rI)2 ++ 1R2 (��I)2 + 1R2 sin2 � (�'I)2 +m2 = 0: (38)Letting I = �ET +WPG(r) + J(xi); (39)and substituting Eqs. (39) and (3) in Eq. (38), we �ndWPG(r) = Z E�(r � rh)  p1� �(r � rh) �� r1� �(r � rh) � ��(r � rh)E2 ! dr; (40)where � = m2 �E2 + J2�R2 + J2'R2 sin2 � : (41)Near the horizon, Eq. (40) in turn implies thatWPG(�) = E� Z 1r � rh (1� 1) dr: (42)

Therefore, imposing the onditionWPG(�) = 0;whih ensures that there is no re�etion for the inom-ing partile, we haveWPG(+) = i2�E� : (43)Thus, we obtain the imaginary part of the ation I asIm I = ImWPG(+) = 2�E� : (44)With the aid of Eqs. (16) and (17), we an readily�nd the horizon temperature of the LDBH in the PGoordinates as �TH = �4� : (45)This result fully agrees with the standard value of theHawking temperature (6).5. IEF COORDINATESAnother useful oordinate system, whih is also reg-ular at the event horizon, was originally onstruted byEddington [31℄ and Finkelstein [32℄. These oordinatesare �xed to radially moving photons. Line element (1)takes the following form in the IEF oordinates (see,e. g., [33℄):ds2 = �fd�2 + 2p1� f d� dr + dr2 ++R2(d�2 + sin2 � d'2); (46)where � is a new null oordinate, the so-alled advanedtime. It is given by � = t+ r�; (47)where r� is known as the Regger�Wheeler oordinateor the tortoise oordinate. For the outer region of theLDBH, it is found to ber� = 1� ln� rrh � 1� : (48)Sine the metri (46) has the Killing vetor �eld�� = ��, in this oordinate system an observer mea-sures the salar partile energy asE = ���I:In this regard, the ation is assumed to be of the formI = �E� +WEF (r) + J(xi): (49)6 ÆÝÒÔ, âûï. 4 (10) 761



I. Sakalli, S. F. Mirekhtiary ÆÝÒÔ, òîì 144, âûï. 4 (10), 2013Using HJ equation (7) in metri (46), we �nd the�nal resultWEF (r) = Z E�(r � rh) �� 1�r1� {�(r � rh)E2 ! dr; (50)where { = m2 + J2�R2 + J2'R2 sin2 � : (51)In the viinity of the event horizon,WEF (r) reduesto the expressionWEF (�) = E� Z 1r � rh (1� 1) dr; (52)whih is idential to (42). Hene,WEF (�) = 0; WEF (+) = i2�E� !! Im I = ImWEF (+) = 2�E� ; (53)and similarly to the PG oordinates, the use of the EFoordinates in the HJ equation allows reproduing thestandard Hawking temperature from the horizon tem-perature of the LDBH:�TH = �4� = TH : (54)6. KS COORDINATESAnother well-behaved oordinate system, whihovers the entire spaetime manifold of the maximallyextended BH solution, is the so-alled KS oordi-nates [34, 35℄. These oordinates have the e�et ofsqueezing in�nity into a �nite distane and hene theentire spaetime an be displayed on a stamp-like dia-gram. In this setion, we apply the HJ equation to theKS metri of the LDBH in order to verify that �TH isequal to TH .Metri (1) an be rewritten as [33℄ds2 = �f du dv +R2d
2; (55)where du = dt� dr�; dv = dt+ dr�: (56)Furthermore, if we de�ne new oordinates (U; V ) interms of the surfae gravity � in (5) asU = �e��u; V = e�v; (57)

metri (55) transforms to the KS metri asds2 = f�2 dU dVUV +R2d
2: (58)Realling the de�nitions given in Eqs. (3)�(5) and(57), it is then straightforward to obtain the KS metriof the LDBH. It is given byds2 = � 16M�2A2 dU dV +R2d
2: (59)This metri is well-behaved everywhere outside thephysial singularity r = 0. Alternatively, metri (59)an be rewritten asds2 = �dT 2 + dX2 +R2d
2: (60)This is possible with the transformationT = 4pM�A (V + U) = 4pM�A r rrh � 1 sh��t2 � ; (61)X = 4pM�A (V � U) = 4pM�A r rrh � 1 h��t2 � : (62)It is easy to see thatX2 � T 2 = 16M�2A2 � rrh � 1� ; (63)whih means that X = �T orresponds to the futureand past horizons. On the other hand, �T is not a time-like Killing vetor anymore for metri (60); instead, weshould onsider the timelike Killing vetor�bT = N(X�T + T�X); (64)where N denotes the normalization onstant. It anadmit a speial value suh that the norm of the Killingvetor beomes negative unity at a spei� loation inthe outer region of the LDBH wherer = 1� + rh:This implies that N = �2 : (65)Sine the energy is de�ned by�bT I = �E; (66)it follows that �2 (X�T I + T�XI) = �E: (67)762



ÆÝÒÔ, òîì 144, âûï. 4 (10), 2013 E�et of the refrative index on the Hawking temperature : : :Without loss of generality, we an onsider only the(1+1)-dimensional form of KS metri (60), whih nowappears as Minkowskian:ds2 = �dT 2 + dX2: (68)The alulation by the HJ method is more straightfor-ward in this ase. Hamilton�Jaobi equation (7) forthe above metri is given by� (�T I)2 + (�XI)2 +m2 = 0: (69)This equation implies that the ation I to be used inHJ equation (7) for metri (68) an beI = g(X � T ) + J(xi): (70)For simpliity, we an further setJ(xi) = 0; m = 0:Using Eq. (67) with ansatz (70), we derive the expres-sion g(u) = Z 2E�u du; (71)where u = X�T . This expression diverges at the hori-zon u = 0, namely, X = T . This leads to a pole at thehorizon (going over a semi-irular ontour of integra-tion in the omplex plane) and the result is found tobe Im I = 2�E� : (72)Therefore, referring to tunneling probability (7), we ob-tain � = exp��4�E� � ; (73)whih means that the orret Hawking temperatureTH = �4�is reovered in the bakground of the KS metri of theLDBH. 7. CONCLUSIONIn this study, the Hawking radiation of the LDBHin four dimensions is studied by the HJ method. Toour knowledge, the LDBH is the only BH whose radia-tion obeys an isothermal proess, whih orresponds tono hange in the temperature during its evaporation,�T = 0. This an be easily dedued from its Hawking

temperature, whih yields a onstant value. Namely, itis independent of the mass M (or the horizon radiusr+) of the BH. In addition to the naive oordinates,four di�erent regular oordinate systems are examinedin this study. It is shown that the horizon temperaturesomputed in the naive, PG, IEF, and KS oordinates bythe HJ method exatly math the onventional Hawk-ing temperature. Here, we note that in Se. 6, whihonsiders the KS oordinates, the way that we followedwas slightly di�erent than in other setions. In that se-tion, without loss of generality, we disarded the massof the salar �eld and negleted the angular dependeneof the HJ equation. This turned out to be the applia-tion of the HJ method for the Minkowski metri. As aresult, the math of the temperatures was suessfullyshown.We believe that the most interesting part of thepresent paper is Se. 3, where the LDBH metri is ex-pressed in terms of the isotropi oordinates. Usingthe Fermat metri enabled us to determine the indexof refration of the LDBH. In partiular, it is provedthat the index of refration plays a deisive role on thetunneling rate. Unlike in the other oordinate systems,the standard integration around the pole at the horizonin the isotropi oordinates produed an unaeptablevalue of the temperature, half the standard TH . Tooverome this disrepany, we were inspired by reentstudy [22℄, whih has demonstrated how the proper reg-ularization of singular integrals leads to the standardHawking temperature for the isotropi oordinates. Asa result, it is lari�ed that the path aross the hori-zon results in the value i�=2 on integration instead ofi�. The underlying reason of this is that the isotropiradial oordinate � in (20) is real outside the BH, butbeomes omplex inside the BH.Finally, it would be interesting to extend our anal-ysis to other BHs, whih ould be BHs with multi-ple horizons, multi-BHs, higher-dimensional BHs, et.This will be onsidered in the near future.REFERENCES1. S. W. Hawking, Nature (London) 248, 30 (1974).2. S. W. Hawking, Commun. Math. Phys. 43, 199 (1975);46, 206 (1976), Erratum.3. J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).4. D. N. Page, New J. Phys. 7, 203 (2005).5. P. Kraus and F. Wilzek, Nul. Phys. B 433, 403(1995).763 6*
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