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EFFECTS OF BULK CHARGED IMPURITIES ON THE BULKAND SURFACE TRANSPORT IN THREE-DIMENSIONALTOPOLOGICAL INSULATORSB. Skinner, T. Chen, B. I. Shklovskii *Fine Theoreti
al Physi
s Institute, University of MinnesotaMN 55455, Minneapolis, USARe
eived April 1, 2013Dedi
ated to the memory of Professor Anatoly LarkinIn the three-dimensional topologi
al insulator (TI), the physi
s of doped semi
ondu
tors exists literally side-by-side with the physi
s of ultra-relativisti
 Dira
 fermions. This unusual pairing 
reates a novel playground forstudying the interplay between disorder and ele
troni
 transport. In this mini-review, we fo
us on the disorder
aused by the three-dimensionally distributed 
harged impurities that are ubiquitous in TIs, and we outline thee�e
ts it has on both the bulk and surfa
e transport in TIs. We present self-
onsistent theories for Coulombs
reening both in the bulk and at the surfa
e, dis
uss the magnitude of the disorder potential in ea
h 
ase, andpresent results for the 
ondu
tivity. In the bulk, where the band gap leads to thermally a
tivated transport, weshow how disorder leads to a smaller-than-expe
ted a
tivation energy that gives way to variable-range hoppingat low temperatures. We 
on�rm this enhan
ed 
ondu
tivity with numeri
al simulations that also allow us toexplore di�erent degrees of impurity 
ompensation. For the surfa
e, where the TI has gapless Dira
 modes,we present a theory of disorder and s
reening of deep impurities, and we 
al
ulate the 
orresponding zero-temperature 
ondu
tivity. We also 
omment on the growth of the disorder potential in passing from the surfa
eof the TI into the bulk. Finally, we dis
uss how the presen
e of a gap at the Dira
 point, introdu
ed by somesour
e of time-reversal symmetry breaking, a�e
ts the disorder potential at the surfa
e and the mid-gap densityof states.DOI: 10.7868/S00444510130901621. INTRODUCTIONThe three-dimensional (3D) topologi
al insulator(TI) [1�5℄ has generated great ex
itement in the physi
s
ommunity be
ause of its gapless surfa
e states, whi
hhost a spe
trum of quantum transport phenomena[6; 7℄. Unfortunately, while a number of 
rystals havebeen identi�ed to be 3D TIs, most of them are nota
tually insulators, but instead have a relatively largebulk 
ondu
tivity that shunts the surfa
e 
ondu
tivityfor TI 
rystals of substantial thi
kness (& 10�m). Howto a
hieve a bulk-insulating state is a problem that iswidely dis
ussed in the 
urrent literature [8�16℄.Typi
ally, as-grown TI 
rystals are heavily dopedn-type semi
ondu
tors, su
h that the Fermi level re-sides in the bulk 
ondu
tion band. In order to arrive*E-mail: shklovsk�physi
s.spa.umn.edu

at a bulk insulating state, su
h TIs are 
ompensatedby a

eptors. With in
reasing the degree of 
ompensa-tionK = NA=ND, whereND andNA are the respe
tive
on
entrations of monovalent donors and a

eptors, theFermi level shifts from the 
ondu
tion band to insidethe gap and then into the valen
e band. When 
ompen-sation of donors is 
omplete, K = 1, the Fermi level isin the middle of the gap and the most insulating stateof the TI is rea
hed. The hope is that for a TI with abulk band gap Eg � 0:3 eV (as, for example, in Bi2Se3),the bulk resistivity should obey the a
tivation law� = �0 exp(�=kBT ) (1)with the a
tivation energy � = Eg=2 � 0:15 eV, su
hthat the TI is well insulating at room temperatures andbelow.The typi
al experimental situation near K = 1,however, is frustrating [15℄. In the range of temper-atures between 100 K and 300 K, the resistivity is a
-662
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ts of bulk 
harged impurities on the bulk : : :tivated, but with an a
tivation energy that is roughlythree times smaller than expe
ted, � � 50 meV. AtT � 100 K, the a
tivated transport is repla
ed byvariable-range hopping (VRH) and the resistivity growseven more slowly with de
reasing T . Finally, at evensmaller temperature, T < 50 K, the resistivity satu-rates1) at a value < 10

m.In a re
ent paper [17℄, we showed that the unexpe
-tedly large bulk 
ondu
tivity of TIs atK = 1 
an be ex-plained as a 
onsequen
e of the enormously �u
tuatingrandom Coulomb potential 
reated by randomly posi-tioned donor and a

eptor impurities. In later papers,we extended this analysis to the 
ase of near-
omplete
ompensation [18℄, K < 1 and 1 � K � 1, and weexamined the e�e
t of random Coulomb impurities onthe surfa
e disorder and transport properties [19℄. Inthis mini-review, our goal is to outline in a general waythe e�e
ts of random, 3D-distributed Coulomb impu-rities in TIs on both the bulk and surfa
e properties.We des
ribe the s
reening me
hanisms for the randomCoulomb potential both within the bulk of the TI andat the surfa
e, and we present predi
tions for the mag-nitude of the disorder potential and the 
ondu
tivity.Our theoreti
al treatment is also motivated by there
ent experiments in Ref. [20℄, where the random po-tential at the surfa
e of typi
al TIs (Bi2Se3 and Bi2Te3)was studied dire
tly by spe
tros
opi
 mapping witha s
anning tunneling mi
ros
ope. It was shown thatnear the Dira
 energy, random �u
tuations of the po-tential have a Gaussian-like distribution with a width� 20�40 meV that 
an be attributed to deep impurity
harges. We show below that su
h �u
tuations are 
on-sistent with disorder produ
ed by three- dimensionallydistributed bulk Coulomb impurities that are s
reenedby the gapless TI surfa
e.Cru
ial to our theoreti
al des
ription throughoutthis paper is the assumption of a random spatial distri-bution of impurities. This assumption is readily justi-�ed for TI samples made by 
ooling from a melt, wherethe distribution of impurities in spa
e is a snapshot ofthe distribution that impurities have at higher temper-ature, when their di�usion pra
ti
ally freezes [21℄. In3D TIs, as in 
onventional narrow-band gap semi
on-du
tors, the 
on
entration of intrinsi
 
arriers at thistemperature is larger than the 
on
entration of impuri-ties. Intrinsi
 
arriers thus s
reen the Coulomb intera
-tion between impurities, and hen
e impurities remainrandomly distributed in spa
e. When the temperatureis de
reased to the point where intrinsi
 
arriers re
om-1) The authors of Ref. [15℄ interpret this saturation as the 
on-tribution of the surfa
e states.

bine, the impurities are left in random positions [22; 23℄.If the di�usion of impurities freezes at T � 1000 K, itis reasonable to assume that impurities are randomlypositioned for semi
ondu
tors with a bulk band gapEg � 0:3 eV. Throughout this paper, we deal withnarrow-band gap TIs, su
h as Bi2Se3, for whi
h our de-s
ription of randomly positioned impurities is a

urate.We also assume everywhere that donor and a

eptorenergy levels are shallow, meaning that their bindingenergy is mu
h smaller than Eg .The remainder of this paper 
an be divided intotwo parts. In the �rst part, 
omprising Se
s. 2�4, wefo
us on bulk properties, essentially treating the TI asa strongly or 
ompletely 
ompensated semi
ondu
torand ignoring the surfa
e states. In Se
. 2, we give a
on
eptual explanation of the bulk disorder potentialand the origin of the anomalously small bulk resistiv-ity. Se
tion 3 formulates a numeri
al model of the TIbulk and uses it to 
al
ulate the 
orresponding ele
trondensity of states (DOS). In Se
. 4, we present our algo-rithm for 
omputing the thermally a
tivated 
ondu
-tivity, analyze our results, and arrive at an expressionfor the unusually small bulk a
tivation energy. We alsoevaluate the lo
alization length of states 
lose to theFermi energy and estimate the 
hara
teristi
 tempera-ture asso
iated with VRH.The se
ond part of this paper, 
omprising Se
s. 5�8,deals with the e�e
ts of Coulomb impurities on theproperties of the TI surfa
e. In Se
. 5, we des
ribea self-
onsistent theory of the s
reened disorder poten-tial at the TI surfa
e and 
ompare it with experiment.Se
tion 7, uses this theory to 
al
ulate the 
ondu
tivityof surfa
e ele
trons. Se
tion 6 brie�y dis
usses how theamplitude of the disorder potential transitions from itslarge bulk value to its smaller value at the surfa
e. Fi-nally, Se
. 8 dis
usses an extension of our analysis tothe 
ase where the TI surfa
e has a gap introdu
edby some sour
e of time-reversal symmetry breaking.Where appli
able, the major results of ea
h se
tion aresummarized at the beginning of the se
tion.2. ORIGIN OF THE ENHANCED BULKCONDUCTIVITYAs mentioned in the Introdu
tion, randomly posi-tioned impurities 
reate a disordered Coulomb land-s
ape in the bulk of the TI, whi
h has the e�e
t of re-du
ing the a
tivation energy � relative to what 
ouldbe naively expe
ted based on �at valen
e and 
ondu
-tion bands. In this se
tion, we explain this idea morefully, fo
using �rst on the 
ase of 
omplete 
ompensa-663
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Fig. 1. Energy diagram of a) a 
ompletely 
ompen-sated semi
ondu
tor (K = 1) and b ) a strongly 
om-pensated semi
ondu
tor (1 � K � 1) with the bandgap Eg. The upper and the lower straight lines in-di
ate the unperturbed positions of the bottom of the
ondu
tion band E
 and the 
eiling of the valen
e bandEv; the middle straight line 
orresponds to the Fermilevel �. Meandering lines represent the band edges,whi
h are modulated by the �u
tuating potential of
harged impurities. R is the 
hara
teristi
 size of po-tential �u
tuations. Per
olation levels (mobility edges)for ele
trons, Ee, and holes, Eh, are shown by dashedlines. Puddles o

upied by 
arriers are shaded. Shallowimpurities levels are not shown be
ause they pra
ti
allymerge with band edgestion, where the bulk transport 
an be des
ribed usingthe theory of a 
ompletely 
ompensated semi
ondu
tor(CCS) [23; 24℄.This theory is based on the idea that at K = 1,when almost all donors and a

eptors are 
harged, ran-dom spatial �u
tuations of the lo
al 
on
entration ofimpurities result in large �u
tuations of 
harge. Theirpotential is poorly s
reened, be
ause of the vanish-ing average 
on
entration n = ND � NA of ele
trons,and therefore has huge �u
tuations. These �u
tuationsbend the 
ondu
tion and valen
e band edges and insome pla
es bring them to the Fermi level, 
reating ele
-tron and hole puddles that in turn nonlinearly s
reenthe random potential. As a result, the amplitude of po-tential �u
tuations is limited by Eg=2, and hen
e the

ground state, illustrated s
hemati
ally in Fig. 1, resem-bles a network of p�n jun
tions [23; 24℄. The 
hara
ter-isti
 size of these p�n jun
tions is [17℄R = E2g�28�Ne4 ; (2)whi
h 
an be thought of as the 
orrelation length of therandom potential. For the typi
al parameters Eg == 0:3 eV, ND = 1019 
m�3, and diele
tri
 
onstant� = 30, this length s
ale R � 150 nm � N�1=3D == 4:6 nm. That is, we deal with a very long-rangepotential.As a result of these long-range �u
tuations, the re-sistivity 
an be dramati
ally di�erent from the naiveexpe
tation based on thinking about �at valen
e and
ondu
tion bands. First, at relatively high temper-atures, the a
tivated 
ondu
tivity is due to ele
tronsand holes a
tivated from the Fermi level to their 
or-responding 
lassi
al per
olation levels (
lassi
al mobil-ity edges), Ee and Eh, in the 
ondu
tion and the va-len
e bands. A

ording to numeri
al modeling in [17℄ atK = 1, the a
tivation energy is � � 0:15Eg, meaningthat Ee and Eh are substantially 
loser to the Fermilevel � than to the unperturbed bottom of the 
on-du
tion band, E
, or 
eiling of the valen
e band, Ev(Fig. 1a). (E
 and Ev are the respe
tive energies ofthe 
ondu
tion and valen
e bands in the absen
e ofa random potential.) Therefore, we 
an think of theuniversal small fa
tor �=Eg � 0:15 as 
orrespondingto a per
olation threshold asso
iated with per
olationthrough the potential 
reated by random Coulomb im-purities in 3D.Se
ond, at su�
iently low temperatures, ele
tronsand holes 
an hop (tunnel) dire
tly between puddles,so that a
tivated transport is repla
ed by VRH. Weshowed in Ref. [17℄ that with de
reasing temperature,the a
tivated resistivity 
rosses over dire
tly to theEfros�Shklovskii (ES) law [25℄� = �0 exp(TES=T )1=2; (3)where TES = Ce2=kB��, e is the ele
tron 
harge, � isthe lo
alization length of ele
tron states with energy
lose to the Fermi level, and C � 4:4 is a numeri
al
oe�
ient. Together our results for the a
tivated andVRH resistivity established the universal upper limit ofthe bulk resistivity �(T ) for a 3D TI 
ompensated byshallow impurities.In Ref. [18℄, we expanded our fo
us to 
onsider notjust the maximum possible bulk resistivity that appearsat K = 1, but to address the more pra
ti
al questionof the dependen
e of the bulk resistivity on the degree664
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ompensation K at 1�K � 1. Indeed, the existingmethods of growth of TI samples do not allow obtain-ing K = 1 exa
tly, and it is important to know how theresults for a CCS, where K = 1, are extended to the
ase of a strongly 
ompensated semi
ondu
tor (SCS),for whi
h 0 < 1 � K � 1. For example, we 
an askat whi
h value of 1�K does the a
tivation energy �be
ome twi
e smaller than at K = 1. For de�niteness,we 
onsider an n-type SCS, where the 
on
entrationof ele
trons n = ND � NA � ND. We numeri
allymodel the ground state of su
h a SCS and its resistiv-ity using algorithms similar to those in Ref. [17℄. We�nd that, in agreement with analyti
 theory [23℄, as1�K in
reases, the s
reening of the random potentialimproves and the 
orrelation length R of the randompotential de
reases. The amplitude of the random po-tential de
reases as well; hole puddles shrink and even-tually vanish; and the 
hemi
al potential � moves up,and hen
e E
 � � de
reases. We 
an say that within
reasing 1 � K, s
reening o

urs by bending of the
ondu
tion band only, while all a

eptors remain o
-
upied by ele
trons and negatively 
harged. All these
hanges are illustrated by the transition from a to b inFig. 1.As a result of these 
hanges with in
reasing 1�K,the a
tivation energy � de
reases. We �nd that the re-lation � = 0:3(E
 � �) obtained in Ref. [17℄ for K = 1remains valid for 1�K � 1 as well (see Fig. 6 below).(In p-type semi
ondu
tors, where K = ND=NA, a sim-ilar relation holds: � = 0:3(� � Ev).) At K = 0:97,the a
tivation energy� is already several times smallerthan at K = 1. This result shows that a
hieving themaximum bulk resistivity, with � = 0:15Eg, is noteasy. It also helps to explain the origin of the larges
atter in the magnitude of � among di�erent TI sam-ples [15℄.Our predi
tion is that � = 0:3(E
��) 
an in prin-
iple be dire
tly 
ompared with experiments in TIs. In-deed, for ea
h K, the position of the Fermi level E
��
an be found via measurements of the 
on
entration ofele
trons in the surfa
e states using Shubnikov�de-Haasos
illations.At lower temperatures, the a
tivated bulk 
ondu
-tion 
rosses over to ES VRH. In Se
. 4, we study this
rossover numeri
ally and also show how TES , whi
h is
orrelated with �, de
reases with 1�K.It should be mentioned that these results for thebulk 
ondu
tivity are also appli
able to other narrow-gap semi
ondu
tors, for example, InSb. Histori
ally,a large e�ort was made to make InSb insulating viastrong 
ompensation, with the goal of improving theperforman
e of InSb-based photodete
tors. The results

were again frustrating: the dark resistivity was toosmall. Our results are in reasonable agreement withtransport experimental data for InSb [26; 27℄.3. MODEL OF BULK IMPURITIES AND THEDENSITY OF STATESTo study the bulk properties of a heavily doped SCSnumeri
ally, we introdu
e a model of the bulk donorsand a

eptors. In this se
tion, we �rst des
ribe our nu-meri
al model and then use it to 
al
ulate the positionof the Fermi level relative to the band edges as a fun
-tion of the 
ompensation degree K and to evaluate thedensity of states of impurity states. Our major resultsare shown below in Figs. 2 and 3.Spe
i�
ally, we model the bulk as a 
ube 
ontaininga large number of randomly positioned donors and a
-
eptors. We numerate all donors and a

eptors by theindex i and use ni = 0 or 1 to denote the number ofele
trons residing on a donor or a

eptor. We also in-trodu
e the binary variable fi to dis
riminate betweendonors (for whi
h fi = 1) and a

eptors (fi = �1).The Hamiltonian of our system is thenH =Xi Eg2 fini +Xhiji V (rij )qiqj ; (4)where qi = (fi=2� ni +1=2) is the net 
harge of site i,V (r) is the intera
tion energy between two likely-
har-ged impurities at a distan
e r, and all energies are

0 0.01 0.02 0.03 0.04 0.05
1 − K

4

6

8

Ec − µ

Eg/2

(Ec − µ) ∼ 1.4(1 − K)−1/3

Fig. 2. Distan
e between the Fermi level � and the bot-tom of the 
ondu
tion band E
 as a fun
tion of 1�K,as 
al
ulated by numeri
al simulation. Energies are inunits of e2N�1=3D =�, and the simulated band gap isEg = 15. The size of dots 
hara
terizes the numeri
alun
ertainty665
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K = 1 K = 0:95

0 0:5 1:0�1:0 �0:500:040:080:12DOS, g�(")
Ele
tron energy, "=EgFig. 3. Dimensionless single-ele
tron DOS g("), inunits of (1 + K)N=(e2N1=3=�), as a fun
tion of theele
tron energy " 
al
ulated from the Fermi level. Re-sults are plotted for K = 0:95 and K = 1 using Eg == 15. Impurity states with " < 0 are o

upied andthose with " > 0 are empty. At K = 1, the total DOSof impurities has the donor�a

eptor symmetry, whi
his lost as 1�K in
reasesde�ned relative to the Fermi level. The �rst term inEq. (4) 
ontains the di�eren
e between the energies ofdonors and a

eptors, whi
h in the 
ase of shallow im-purities is very 
lose to the semi
ondu
tor gap Eg . These
ond term of H represents the total intera
tion en-ergy of 
harged impurities. We note that Eq. (4) doesnot in
lude the kineti
 energy of ele
trons and holes inthe 
ondu
tion and valen
e bands and, therefore, aimsonly at a des
ription of the low-temperature physi
s ofSCS (kBT � E
 � �).The form of the intera
tion law V (r) requires some
onsideration. For two impurities at a distan
e r � aB ,where aB is the e�e
tive Bohr radius of impuritystates, we 
an use the normal Coulomb intera
tionV (r) = e2=�r for V (r). For example, we 
an 
onsider apair of empty and distant donors. In su
h a donor pair,one donor shifts the energy of the ele
tron level on theother by V (r) = �e2=�r. This 
lassi
al form for V (r) isgood for a lightly doped SCS. In a heavily doped SCS,on the other hand, where aB > N�1=3D , most impuri-ties have at least one neighbor at a distan
e r < aB ,and quantum me
hani
al averaging over the ele
tronwave fun
tion be
omes important. (This is why an un-
ompensated heavily doped semi
ondu
tor is a goodmetal.) For example, a pair of donors 
annot 
reate anele
tron energy state deeper than that of the helium-like ion, whi
h has the binding energy 2e2=�aB. Theintera
tion law V (r) should therefore be �softened� atshort distan
es r < aB to re�e
t quantum me
hani
al

e�e
ts. We model this behavior by 
ontinuing to usethe 
lassi
al Hamiltonian in Eq. (4) with a trun
atedCoulomb potential V (r) = e2=�(r2 + a2B)1=2.Below, it is 
onvenient to express energies in unitsof e2N1=3D =�. In these units, a typi
al TI with the bandgap 0:3 eV has Eg � 30. We unfortunately 
ould notmodel Eg = 30 dire
tly, sin
e in this 
ase the very large
orrelation length of the random potential, R, leads tolarge size e�e
ts. Instead, we present results for themore modest value Eg = 15, for whi
h the size e�e
trequires extrapolation [17℄ only for K = 1. Results forthe smaller Eg = 10 are largely identi
al [17℄.In our numeri
al simulations, we �rst randomlypla
e donors and a

eptors within the simulationvolume; the results presented below 
orrespond toM = 20000 donors and 20000K a

eptors. We thensear
h for the arrangement of ele
trons (or equivalently,the set of ele
tron o

upation numbers fnig) that min-imizes H , and we use this set to 
al
ulate the DOS andthe 
ondu
tivity. We begin our sear
h from the statewhere all MK a

eptors are populated by ele
tronsand negative (ni = 1; qi = �1), and where an equalnumber of randomly 
hosen donors are empty and pos-itive (ni = 0; qi = 1), while the remaining M(1 �K)donors are �lled and neutral (ni = 1; qi = 0). The
harged donors and a

eptors in this initial state 
re-ate a random potential whose magnitude ex
eeds Eg ,and as a result the system energy is well above thatof the ground state. To bring the system 
loser to itsground state, we attempt sequentially to transfer ele
-trons from an o

upied impurity (either a neutral donoror a negatively 
harged a

eptor) to an uno

upied one(a positively 
harged donor or a neutral a

eptor). Ifthe proposed move de
reases the total system energyH , then it is a

epted, otherwise it is reje
ted. To
he
k whether H de
reases with ea
h proposed move,for a given set of ele
tron o

upation numbers fnig,it is 
onvenient to introdu
e the single-ele
tron energystate "i at a given impurity i:"i = Eg2 fi �Xj 6=i V (rij )qj : (5)In the ground state, single-ele
tron energies must sat-isfy the ES 
riterion"j � "i � V (rij) > 0 (6)for all i, j with ni = 1 and nj = 0. We use our nu-meri
al simulation to loop through all pairs of impuritysites i, j and enfor
e this 
riterion; if a given pair doesnot satisfy Eq. (6), then we move the ele
tron fromimpurity i to j and re
al
ulate all "i. This pro
ess is666
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ontinued until no single-ele
tron transfers are possiblethat de
rease H . The �nal arrangement of ele
trons
an be 
alled a pseudo-ground state, sin
e higher-orderstability 
riteria of the true ground state (
orrespond-ing to simultaneously 
hanging three or more ele
tronnumbers) are not 
he
ked. Su
h pseudo-ground statesare known to des
ribe the properties of real groundstates with a high degree of a

ura
y [23; 28℄. The re-sults below are obtained at Eg = 15 and aB = N�1=3Dfor K = 1; 0:99; 0:98; 0:97; 0:96, and 0:95, and are aver-aged over 100 realizations of the impurity 
oordinates.For ea
h pseudo-ground state, we estimate theFermi energy � as the arithmeti
 average of the min-imum empty and maximum o

upied energies ". Theresults are shown in Fig. 2, whi
h shows how the Fermilevel �(K) shifts from the middle of the gap towardthe 
ondu
tion band bottom as 1 � K in
reases. At1 �K > 0:01, this dependen
e is in reasonable agree-ment with the predi
tion of the single-band theory(whi
h ignores the valen
e band and a

eptors) [23℄that E
 � � = A(1 � K)�1=3, where A is a numer-i
al 
oe�
ient. We note, however, that for heavilydoped SCS, the 
oe�
ient Ah � 1:4 is twi
e smallerthan the 
oe�
ient Al � 2:8 obtained in Ref. [23℄ for alightly doped SCS, for whi
h NDa3B � 1. In the latter
ase, the short-range Coulomb intera
tion at distan
esr � N�1=3D leads to an additional 
ontribution to � ofthe same order of magnitude.The resulting DOS of impurities is shown in Fig. 3for K = 1 and K = 0:95. g�(") is the DOS in theunits of (1 + K)ND=(e2N1=3D =�) and is normalized tounity. At K = 1, the nearly 
onstant and symmetri
DOS between " = �Eg and " = Eg re�e
ts the pra
ti-
ally uniform distribution of the random potential from�Eg=2 to Eg=2 and, 
orrespondingly, of the respe
tiveband edges E
 and Ev between 0 to Eg and between 0to �Eg (see Fig. a). Near the Fermi level (" = 0), we
an see the ES Coulomb gap [25℄.On the other hand, at K < 1, the DOS of impu-rity states loses the donor�a

eptor symmetry it has atK = 1. As des
ribed in Se
. 2 (see Fig. 1), as 1 �Kin
reases, hole puddles are eliminated and hen
e a
-
eptors be
ome disengaged from s
reening. The a
-
eptor DOS (leftmost peak in Fig. 3) therefore splitsfrom the donor one, whi
h in turn develops two peaksseparated by the Fermi level at " = 0. The large rightpeak belongs to empty donors, while the small and nar-row left peak belongs to o

upied donors (ele
tron pud-dles). These two donor peaks are separated by the ESCoulomb gap.

4. NUMERICAL MODELING OF THERMALLYACTIVATED CONDUCTIVITYIn the pre
eding se
tion, we des
ribed our pro
e-dure for �nding the energy levels of donor and a

eptorimpurities in the pseudo-ground state. We now dis
usshow these results 
an be used to 
al
ulate the bulk
ondu
tivity of a SCS, and we present results for the
ondu
tivity both in the high-temperature, a
tivatedregime and in the low-temperature, VRH regime. Ourmajor results are twofold. First, we �nd that in the a
-tivated regime, the a
tivation energy de
reases as the
hemi
al potential approa
hes the 
ondu
tion band a
-
ording to � � 0:3(E
 � �) (see Fig. 6 below). Se
-ond, we study how the 
hara
teristi
 temperature TESin the VRH regime depends on 
ompensation, and we�nd that TES � 4:4q�(e2N1=3D =�).Our pro
ess for numeri
ally 
al
ulating the re-sistivity is as follows. On
e the energies f"ig areknown (
al
ulated using the pro
edure des
ribed inSe
. 3), we evaluate the resistivity using the approa
hof the Miller�Abrahams resistor network [23; 29℄.In this des
ription, ea
h pair of impurities i; j issaid to be 
onne
ted by a link with the resistan
eRij = R0 exp[2rij=� + "ij=kBT ℄, where the a
tivationenergy "ij is de�ned [23℄ as"ij = ( j"j � "ij � V (rij); "j"i < 0;max [j"ij ; j"j j℄ ; "j"i > 0: (7)The resistivity of the system as a whole is found us-ing a per
olation approa
h [23℄. Spe
i�
ally, we �ndthe minimum resistan
e R
 su
h that if all links withresistan
e Rij > R
 are 
ut, then there still exists aper
olation pathway 
onne
ting opposite fa
es of thesimulation volume. This approa
h 
aptures the expo-nential dependen
e of the resistivity on the tempera-ture, and we ignore details of the prefa
tor. Below,we plot the temperature in the dimensionless unitsT � = 2kBT�=e2N2=3D � and the resistivity � using thedimensionless quantity (ln �)� = (�N1=3D =2) lnR
=R0.These dimensionless units eliminate any expli
it depen-den
e on the lo
alization length �.In Fig. 4, the resulting resistivity is plotted as afun
tion of (T �)�1=2 over the huge range of tempera-ture 200 > T � > 0:03 for four di�erent values of the
ompensation degree K. The resulting linear depen-den
e at 0:3 > T � > 0:03 indi
ates that at low tempera-tures, the resistivity is des
ribed well by the ES law (seeEq. (3)). The higher-temperature range 200 > T � > 1is plotted separately as a fun
tion of 1=T � in Fig. 5.Here, the linear slope suggests a well-de�ned a
tiva-667
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Fig. 4. The temperature dependen
e of the resistiv-ity in the whole temperature range 200 > T � > 0:03.The dimensionless resistan
e (ln�)� is plotted against(T �)�1=2 to illustrate that the resistivity follows the ESlaw at low temperatures. The lines are the best linear�ts
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Fig. 5. The temperature dependen
e of the resistivityin the high-temperature range 200 > T � > 1. The di-mensionless resistan
e (ln �)� is plotted against (T �)�1to illustrate that the resistivity is a
tivated at high tem-peratures. The dashed lines are the best linear �tstion energy that depends on the 
ompensation degreeK. At extremely high T � & 50, whi
h generally 
orre-sponds to unrealisti
ally large temperatures, the 
on-du
tion is dominated by a
tivation of 
arriers a
rossthe band gap, whi
h is not 
aptured by our model.Extra
ting the slope of the 
urves in Fig. 5 (dashedlines) gives an estimate of the a
tivation energy � asa fun
tion of K. Combining this result with the val-ues for the 
hemi
al potential �(K) 
al
ulated in Se
. 3yields the data shown in Fig. 6, where � is plotted asa fun
tion of E
 � � for all the studied values of 
om-pensation K = 1; 0:99; 0:98; 0:97; 0:96; 0:95. We 
an see

∆ ∼ 0.3(Ec − µ)

0.1 0.2 0.3 0.4 0.5
(Ec − µ)/Eg

0

0.05

0.10

0.15

0.20
Activation energy, ∆/Eg

Fig. 6. The a
tivation energy � as a fun
tion of thedistan
e between the Fermi level and the 
ondu
tionband, plotted for K = 1:0, 0:99, 0:98, 0:97, 0:96, and0:95 (from right to left). The dashed line is the bestlinear �t, � � 0:3(E
 � �). All energies are plotted inunits of the band gap Egthat the equation � � 0:3(E
 � �) holds reasonablywell for all K in this interval.So far, we have emphasized results that do not ex-pli
itly depend on the lo
alization length �. In fa
t,� determines the magnitude of TES, and therefore de-termines the value of temperature at whi
h the 
on-du
tion transitions from a
tivated to VRH behavior.We argue now that in a TI, � is quite large, leading toa prominent role for VRH. To see this, we 
an imag-ine an ele
tron with energy 
lose to the Fermi level,tunneling from one ele
tron puddle to another, dis-tant one. If su
h an ele
tron were to tunnel along thestraight line 
onne
ting the two puddles, it would tun-nel through high barriers and its wave fun
tion wouldde
ay sharply, with a de
ay length � � aB . But thisstraight line does not 
onstitute the path of least a
tionfor the tunneling ele
tron. Instead, a tunneling ele
-tron 
an use the same geometri
al path as a 
lassi
alper
olating ele
tron, whi
h has an energy � above theFermi level, and thereby avoid large barriers. We 
anroughly estimate the tunneling de
ay length by assum-ing that along su
h a �per
olating� tunneling path, thepotential energy barriers V are uniformly distributedin the range 0 � V � � and negle
ting the additional
ontribution to the a
tion asso
iated with 
urvature ofthis path. Integration over V then gives a lo
alizationlength � � ~=pm� and kBTES = 4:4(m�)1=2(e2=�~).For a TI with aB = N�1=3D , this implies that kBTES == 4:4q�(e2N1=3D =�).668
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ts of bulk 
harged impurities on the bulk : : :The dependen
e TES / p� implies that when �in
reases � 2:5 times, as in Fig. 6 
orresponding tothe di�eren
e between K = 0:95 and K = 1, the EStemperature TES in
reases by � 60%. For a TI with� = 30 and ND = 1019 
m�3, this 
orresponds to avariation in TES from 500 to 800 K. The regime of ESVRH in TIs 
an be studied experimentally, but su
ha study requires su�
iently thi
k samples for the bulk
ondu
tion to provide a larger 
ontribution to the total
ondu
tan
e than the TI surfa
es.5. SELF-CONSISTENT THEORY OF THESURFACE DISORDER POTENTIALIn the �rst part of this paper, we showed how thebulk 
ondu
tion is strongly in�uen
ed by the presen
eof random Coulomb impurities, whi
h produ
e largebending of the bulk 
ondu
tion and valen
e bands. Wenow turn our attention to the problem of how thesesame impurities a�e
t the surfa
e transport providedby the Dira
-like surfa
e states. For this problem, weadopt the same model of monovalent Coulomb impu-rities that are randomly distributed throughout thebulk of the TI, and we fo
us our attention on the
ase of 
omplete (or nearly 
omplete) 
ompensationND = NA � N , where the Fermi level lies within thebulk band gap. As we show below, for determiningthe properties of the surfa
e, we 
an safely ignore theweak nonlinear s
reening by ele
tron and hole puddlesformed in the bulk (illustrated in Fig. 1).In this se
tion, we present a self-
onsistent theoryfor the magnitude of the disorder potential at the TIsurfa
e, following Ref. [19℄. Our primary result is anexpression for the amplitude of �u
tuations of the ele
-tri
 potential energy � at the TI surfa
e as a fun
tionof the 
hemi
al potential, �, measured relative to theDira
 point. In parti
ular, for � = 0, we show belowthat �2 = 3p2��4=3 �e2N1=3�s �2 (� = 0); (8)where � = e2=�s~v is the e�e
tive �ne stru
ture 
on-stant, �s is the e�e
tive diele
tri
 
onstant at the sur-fa
e, and v is the Dira
 velo
ity. This expression de-s
ribes s
reening of the disorder potential via the for-mation of ele
tron and hole puddles at the TI surfa
e.The 
hara
teristi
 size of these puddles is given byrs = N�1=322=3�4=3 (� = 0); (9)

and the 
orresponding total number of ele
trons (orholes) per unit area in surfa
e puddles is given bynp = � �16�2=3N2=3 (� = 0): (10)Equations (8)�(10) are derived below, along with re-sults 
orresponding to large �. Below we also derive asimple relation for the auto
orrelation fun
tion of thepotential at the TI surfa
e, whi
h has an unusuallyslow de
ay and 
an be used to verify the bulk originof disorder. These results were 
on�rmed by numeri
alsimulation in Ref. [19℄.Our primary tool for des
ribing s
reening of theele
tri
 potential is the Thomas�Fermi (TF) approx-imation, whi
h applies in the limit where the potential�(r) varies slowly 
ompared to the 
hara
teristi
 Fermiwavelength of ele
trons at the surfa
e. Spe
i�
ally, theTF approximation gives� = Ef [n(r)℄� e�(r); (11)where Ef (n) = ~vp4�jnj sign(n) = (e2=��s) �� p4�jnj sign(n) is the lo
al Fermi energy and n(r)is the 2D ele
tron 
on
entration at the point r on thesurfa
e. The TF approximation is justi�ed whenever� � 1, as we show below. In TIs, su
h a small � 
anbe seen as the result of the large bulk diele
tri
 
on-stant � & 30. We note here that for des
ribing theproperties of the surfa
e state, whi
h exists at a diele
-tri
 dis
ontinuity, the e�e
tive diele
tri
 
onstant �sshould be taken as the arithmeti
 mean of the internaland external diele
tri
 
onstants. If the TI is in theva
uum, then �s = (�+ 1)=2 � �=2.When the 
hemi
al potential is large enough in mag-nitude su
h that �2 � e2h�2i, where h: : : i denotes av-eraging over the TI surfa
e, the expression for Ef (n)
an be linearized to Ef [n(r)℄ � �+ Æn(r)=�(�), whereÆn(r) = n(r)� n0 is the di�eren
e in the ele
tron 
on-
entration relative to the state with zero ele
tri
 poten-tial, n0 = �2�2s�2=(4�e4), and �(�) = �2�2sj�j=(2�e4)is the density of states at Ef = �. From this den-sity of states, we 
an de�ne the s
reening radius rs == �s=2�e2� = e2=�2�s� that 
hara
terizes the dis-tan
e over whi
h �u
tuations in the Coulomb potentialare s
reened by the surfa
e. The TF approximationis valid when the Fermi wavelength �f � n�1=20 �� e2=��s� is mu
h smaller than rs, whi
h gives the
ondition �� 1.We 
an understand the magnitude of the potential�u
tuations � qualitatively using the following simpleargument. For a given point on the TI surfa
e, we 
ansay that only impurities within a distan
e R0 . rs 
on-tribute to the potential; those impurities at a distan
e669
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tively s
reened out (we 
an say thatthey are s
reened by their image 
harges in the �metal-li
� TI surfa
e). Impurities with R0 < rs, on the otherhand, are essentially uns
reened. There are� Nr3s su
himpurities, and their net 
harge is of the order of Q �� epNr3s , with a random sign. The absolute value ofthe potential at the surfa
e is then � Q=�srs, when
e� � eQ=�srs � (e2N1=3=�s)(Nr3s)1=6 � pe2N=�s� ��pe4N=�2�3sj�j.In order to more a

urately derive the value of �,we 
an start by 
onsidering the potential 
reated bya single impurity 
harge +e. When su
h an impurity
harge is pla
ed at a distan
e z from the TI surfa
e(say, above the origin), it 
reates a potential �1(r; z)that within the TF approximation is given by [30℄�1(r; z) = e�s 1Z0 exp[�qz℄1 + (qrs)�1 J0(qr) dq; (12)where J0(x) is the zeroth-order Bessel fun
tion of the�rst kind. At large z=rs, Eq. (12) 
an be expanded togive �1(r; z) � e�s zrs(r2 + z2)3=2 : (13)A simple physi
al derivation of Eq. (13) is based onthe notion [31℄ that for a distant impurity, su
h thatz � rs, a surfa
e with a s
reening radius rs e�e
tivelyplays the role of a metalli
 surfa
e positioned belowthe real surfa
e at the distan
e z = �rs=2. Equation(13) 
an then be viewed as the sum of the potentials
reated by the original 
harge at the distan
e z abovethe plane and its opposite image 
harge at the distan
ez + rs below the plane, expanded to the lowest orderin rs=z.The total potential at the origin is �(0) ==Pi qi�1(ri; zi), where the index i labels all impurity
harges, qi is the sign of impurity i, and ri and zi arethe radial and azimuthal 
oordinates of its position.Under the assumption that all impurity positions areun
orrelated and randomly distributed throughout thebulk of the TI, the average of �2 is given byh�2i = Z [�1(r0; z0)℄2 2Nd2r0dz0: (14)Here, the quantity 2Nd2r0dz0 des
ribes the probabil-ity that the volume element d2r0dz0 
ontains an im-purity 
harge, and the integration is taken over thesemi-in�nite volume of the bulk of the TI. The widthof the disorder potential at the TI surfa
e, �, is de�ned

by �2 = e2h�2i. Inserting Eq. (12) into Eq. (14) andtaking the integral then gives�2 = e2N�s� = 2�e4N�2�3sj�j �j�j � e2N1=3�s�2=3 � : (15)Equation (15) is 
orre
t so long as the �u
tuations inthe Coulomb potential energy are small 
ompared tothe 
hemi
al potential, or � � j�j; this gives the 
on-dition written in parentheses.On the other hand, when j�j is very small, the �u
-tuations in the Coulomb potential be
ome large 
om-pared to the 
hemi
al potential, and we 
annot speak ofa spatially uniform lo
al density of states � or a s
reen-ing radius rs. Instead, the Fermi energy has strong spa-tial variations, and the random potential is s
reened bythe formation of ele
tron and hole puddles at the sur-fa
e. Nonetheless, we 
an de�ne an average densityof states h�i at the surfa
e, whi
h self-
onsistently de-termines the typi
al s
reening radius rs and the mag-nitude of the potential �u
tuations at the TI surfa
e.This value h�i 
an be equated to the thermodynami
density of states of the system, d�=dhni, where hni isthe overall ele
tron 
on
entration of the surfa
e.For example, we 
onsider the 
ase � = 0, whereby the symmetry argument, the average value of thepotential h�i = 0. At any given point r on thesurfa
e, the potential �(r) is the sum of 
ontribu-tions from many individual impurity 
harges underthe 
ondition that the 
hara
teristi
 s
reening radiusrs = �s=2�e2h�i � N�1=3. This implies that, by the
entral limit theorem, the value of the potential a
rossthe surfa
e is Gaussian-distributed with some varian
eh�2i = �2=e2 that remains to be 
al
ulated. Withinthe TF approximation, the lo
al density of states at thepoint r is �[�e�(r)℄ = e�2�2sj�(r)j=(2�e4), and hen
ewe 
an 
al
ulate the average density of states ash�i = 1Z�1 �(�e�)exp ��e2�2=2�2�p2��2=e2 d� == �2�2s�p2�3e4 (� = 0): (16)This result for h�i 
an be inserted into the �rst equalityin Eq. (15), �2 = e2N=�sh�i, to give a self-
onsistentrelation for the amplitude of potential �u
tuations [32℄.This pro
edure gives the result �rst announ
ed at thebeginning of this se
tion, Eq. (8). Substituting Eqs. (8)and (16) in the expression for the s
reening radius,rs = �s=2�e2h�i, gives Eq. (9).We 
an also 
al
ulate the total 
on
entration ofele
trons/holes in surfa
e puddles, np, implied by this670
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ts of bulk 
harged impurities on the bulk : : :result for �2. This is done by �rst inverting theTF relation, Eq. (11), at � = 0 to give n(�) == (�2�2s=4�e2)�2 sign(�). Integrating this expressionfor n(�) weighted by the Gaussian probability distri-bution for � givesnp = 1Z0 n(�)exp ��e2�2=2�2�p2��2=e2 d� == �2�2s�28�e4 (� = 0):Substituting the result in Eq. (8) for �2 then givesEq. (10). We 
an also 
ombine this result for theresidual ele
tron/hole 
on
entration np with the ex-pression for the s
reening radius rs to arrive at an es-timate for the number of ele
trons/holes per puddle:Mp � �npr2s � �=16�2. Apparently, at small � pud-dles typi
ally 
ontain many ele
trons/holes, Mp � 1.Our primarily results, outlined in Eqs. (8)�(10), arevalid within the TF approximation so long as the typ-i
al Fermi wavelength �f � e2=��s� is mu
h smallerthan the typi
al s
reening radius rs � e2=�2�s� whi
hagain gives the 
ondition �� 1.As we mentioned above, at � = 0, the s
reeningradius rs des
ribes the 
hara
teristi
 size of ele
tron orhole puddles at the TI surfa
e. More generally, rs playsthe role of a length s
ale over whi
h potential �u
tu-ations at the surfa
e are 
orrelated. Su
h 
orrelations
an be dis
ussed in a quantitative way by de�ning thepotential auto-
orrelation fun
tionC(r) = h�(R0)�(r0 + r)ir0 ; (17)where h: : : ir0 denotes averaging over the spatial 
oor-dinate r0, and where by symmetry the 
orrelation fun
-tion depends on jrj = r only. In the remainder of thisse
tion, we derive approximate analyti
 results for C(r)and show that spatial 
orrelations in the potential havean unusually slow de
ay.At r = 0, Eq. (17) reprodu
es the de�nition ofh�2i, when
e C(0) = �2=e2. At small enough dis-tan
es su
h that r � rs, we 
an expe
t that thevalue of C(r) is determined primarily by uns
reenedimpurities that are within a distan
e rs from the sur-fa
e, as explained above in deriving �2. On the otherhand, at r � rs, 
orrelations are produ
ed primar-ily by impurities that are relatively far from the sur-fa
e, as 
an be seen from the following s
aling argu-ment. We 
onsider two surfa
e points separated by adistan
e r � rs and imagine drawing a 
ube of size rthat extends into the bulk of the TI and whi
h 
on-tains the two surfa
e points on opposite edges of one

of its fa
es. Su
h a 
ube 
ontains � Nr3 impurities,and has a net impurity 
harge with the magnitudeq � epNr3 and random sign. These impurity 
hargesare lo
ated at a mean distan
e � r � rs above thesurfa
e and therefore by Eq. (13), 
ontribute a net po-tential � qrs=�sr2 � (e=�s)pNr2s=r to both surfa
epoints. The square of this potential roughly gives theauto
orrelation of the potential, C(r) � e2Nr2s=�2sr.A more 
areful expression for C(r) 
an be derivedby writingC(r) = Z �1(r0; z0)�1(r0 � r; z0)2Nd2r0dz0; (18)similarly to Eq. (14). Inserting the asymptoti
 expres-sion of Eq. (13) for �1 and evaluating the integral givesC(r) � 2�e2Nr2s�2sr = �2=e2r=rs � rrs � 1� : (19)This result was also 
on�rmed by numeri
al simulationin Ref. [19℄.Equation (19) implies an unusually slow de
ay ofpotential 
orrelations at the surfa
e, whi
h, as ex-plained above, arises from long-range �u
tuations ofthe potential 
reated by deep bulk impurities. This be-havior 
an be 
ontrasted with the mu
h faster de
ayof C(r) that would result from a two-dimensional (2D)distribution of Coulomb impurities at a distan
e d fromthe surfa
e2): C(r) � e2nidr2s=�2sr3, where ni is the 2Dimpurity 
on
entration. Thus, studying C(r) experi-mentally by s
anning tunneling mi
ros
opy allows dis-
riminating between disorder by bulk impurities anddisorder by impurities lo
ated in a layer 
lose to thesurfa
e.We now dis
uss the magnitude of � and rs impliedby these expressions for typi
al TIs, whi
h generallyhave the impurity 
on
entration N � 1019 
m�3. Typ-i
al values of the Dira
 velo
ity and �ne stru
ture 
on-stant for TIs 
an be taken from Ref. [20℄, whi
h reports~v = 1:3 eVÅ and estimates � = 0:24. Using these pa-rameters gives � � 30 meV and rs � 20 nm at theDira
 point � = 0. At large j�j & 30 meV, both �2 andrs de
ay as 1=j�j.As mentioned in the Introdu
tion, the theory pre-sented in this se
tion provides a good des
ription ofthe re
ent experimental results in Ref. [20℄, where therandom potential at the surfa
e of the 3D TIs Bi2Se3and Bi2Te3 was studied using a s
anning tunneling mi-
ros
ope [19℄. Indeed, it was found in these experi-ments that the ele
tri
 potential at the surfa
e was2) This result 
an be obtained by repla
ing the bulk impurity
harge density 2N in Eq. (18) with niÆ(z � d).671
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hara
terized by a Gaussian distribution with astandard deviation � � 10�20 meV, and the 
hara
-teristi
 length s
ale of potential �u
tuations was es-timated as rs � 20�30 nm. We 
an 
ompare thesemeasurements to our theoreti
al predi
tions by usingthe parameters listed above and inserting the measured
hemi
al potential � � 100 meV into Eq. (15). Thisgives � � 18 meV and the 
orresponding s
reening ra-dius rs � 5 nm, and therefore our theory is indeedin reasonably good agreement with experiment. Fur-ther, Ref. [20℄ found that the disorder potential at thesurfa
e was not 
orrelated with the position of surfa
eimpurities, indi
ating that the surfa
e disorder poten-tial originates primarily from impurities deep below theTI surfa
e, as we have des
ribed.Throughout this se
tion, we have worked withinthe assumption that bulk impurities are 
ompletelyionized, or in other words, there is no s
reening by
ondu
tion-band ele
trons or valen
e-band holes in thebulk. Su
h an assumption is valid when the 
hemi
alpotential resides in the middle of a large bulk band gap.In this 
ase, donors or a

eptors 
an only be neutral-ized by very large band bending dis
ussed in Se
. 2 (seeFig. 1). Su
h �u
tuations o

ur over a long length s
aleR that s
ales as the square of the distan
e between theFermi level and the nearest band edge (see Eq. (2)) andis typi
ally on the order of hundreds of nanometers fortypi
al TIs [17℄. On the other hand, near the surfa
eof the TI, the potential �u
tuations are s
reened mu
hmore e�e
tively and over a mu
h shorter distan
e, rs,by the (ungapped) surfa
e states. As shown above, rsis typi
ally . 20 nm, and the amplitude of surfa
e po-tential �u
tuations is � � 30 meV � Eg � 300 meV.We 
an therefore safely assume that there is no largeband bending near the surfa
e and we 
an indeed treatbulk impurities as 
ompletely ionized. The e�e
t ofbulk s
reening should appear only in the long-rangebehavior of the 
orrelation fun
tion, r � R, where the1=r de
ay of C(r) is trun
ated and, as 
an be shown,is repla
ed with C(r) � e2NRr2s=�2sr2.Finally, we note that our theory ignores the possi-bility of s
reening by material outside the TI. For ex-ample, if the TI is pla
ed next to a metal ele
trodeor an ioni
 liquid [33℄, then this external material 
ans
reen the large potential �u
tuations 
reated by thebulk, thereby de
reasing � and rs.6. FROM SURFACE TO BULKWe showed in Se
. 2 that deep within the bulk ofthe TI, the disorder potential has large �u
tuations of

the order of � � Eg . On the other hand, we showed inSe
. 5 that at the TI surfa
e, the disorder potential hasa mu
h smaller amplitude, � � (e2N1=3=��2=3). In thisse
tion, we elaborate brie�y on the 
rossover betweenthese two results, or in other words we des
ribe howthe amplitude of potential �u
tuations grow in passingfrom the surfa
e of the TI to the bulk.Generally speaking, in moving over a distan
e z > 0into the bulk of the TI, the amplitude of the disorderpotential in
reases in magnitude. In order to see quan-titatively how � in
reases as a fun
tion of z, we 
antemporarily assume that the TI surfa
e is equivalentto a perfe
t metalli
 plane. In this 
ase, ea
h impurityat position (r0; z0) has a 
orresponding image 
harge at(r0;�z0), and the total potential at (0; z) is equal to thesum of the potentials 
reated by the original impurityand its image. We 
an 
al
ulate �2(z) by averagingthe square of this potential over all possible positionsof the impurity 
harge [as in Eq. (14)℄. This 
al
ula-tion gives �2(z) = 8�Ne4z=�2. That is, �2(z) in
reaseslinearly with the distan
e z from the TI surfa
e. Thisin
rease 
ontinues until � be
omes large enough su
hthat �2(z) = (Eg=2)2, at whi
h point ele
tron and holepuddles begin to form in the bulk and we arrive atthe bulk s
reening pi
ture des
ribed in Ref. [17℄. Thisdistan
e 
orresponds to z = R=4; at smaller z, the po-tential �u
tuations are small enough for pra
ti
ally alldonors and a

eptors to be 
harged.We 
an now re
all that the TI surfa
e is not per-fe
tly metalli
, and that its s
reening length rs is �nite,and therefore �2(z) should be somewhat larger. In fa
t,at z � rs we 
an still use the formula above for �2(z)by introdu
ing a small modi�
ation allowing for thefa
t that the metalli
 surfa
e is e�e
tively shifted tothe position z = �rs=2 (as dis
ussed in Se
. 5). Mak-ing this adjustment gives �2(z) = 8�Ne4(z + rs=2)=�2at z � rs, whi
h does not signi�
antly alter our 
on-
lusions. 7. SURFACE CONDUCTIVITYWe now turn our attention to the problem of howthe 3D-distributed Coulomb impurities within the TIbulk a�e
t the surfa
e 
ondu
tivity. As dis
ussed atthe beginning of Se
. 5, we limit our 
onsideration tothe 
ase where the Fermi level resides within the bulkband gap, where we 
an safely assume that all relevantbulk impurities are ionized.Our primary result is an expression for the ele
-tron 
ondu
tivity � of the surfa
e as a fun
tion of theaverage 2D surfa
e ele
tron 
on
entration n. In par-672
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ts of bulk 
harged impurities on the bulk : : :ti
ular, when n � np, where np is the typi
al puddle
on
entration at � = 0 (see Eq. (10)), we �nd that the
ondu
tivity is given by� � e2h 2p��2 ln(1=�) n3=2N ; (20)where e2=h is the 
ondu
tan
e quantum. At mu
hsmaller ele
tron 
on
entrations n � np, the 
ondu
-tivity saturates at a value �min, whi
h we estimate as�min � e2h 1�� ln(1=�) : (21)To derive these results, we �rst note that in the limitof large 
hemi
al potential �, where the ele
tron den-sity is only weakly modulated by the disorder potential,it 
an be shown using the Boltzmann kineti
 equationthat for ele
trons with a massless Dira
 spe
trum, the
ondu
tivity is given by [34�37℄� = e2h ��4~ ; (22)where � is the momentum relaxation time. In the limitof zero temperature, the s
attering rate 1=� 
an befound by integrating the squared s
attering potentialprodu
ed by a given impurity over all impurities andover all s
attering angles. More simply, we 
an arriveat an expression for 1=� by taking the result for thes
attering rate of a 2D layer of impurities with the 
on-
entration ni at a distan
e z (for example, Eq. (38) inRef. [35℄), repla
ing ni with 2Ndz, and then integratingover all planes z 
ontaining impurities. This pro
eduregives1� = kf��s4�~e2 1Z0 2N dz �� �Z0 d� �~�1 �2kf sin �2 ; z��2 (1� 
os2 �): (23)In this equation, kf = ��s�=e2 is the Fermi wave-length, ~�1(q; z) = (2�e2=�sq) exp[�qz℄=[1 + (qrs)�1℄ isthe s
reened potential (in momentum spa
e) 
reated bya single impurity at position z, and q = 2kf sin(�=2) isthe 
hange in momentum asso
iated with s
attering byan angle �.Evaluating the integral in Eq. (23) at small � gives1� � �� ln� 1�� e2N~�sk2f : (24)Inserting this result for � into Eq. (22) and substitut-ing � = e2kf=��s and kf = p4�n yields the result for


ondu
tivity announ
ed at the beginning of the se
tion,Eq. (20).Equation (20) 
an be 
ontrasted with the widelyused result for the 2D model of 
harge impuri-ties [34; 35; 37; 38℄, for whi
h the 
ondu
tivity is lin-early proportional to the ele
tron density: �=(e2=h) �� (1=�2)(n=ni). This di�eren
e 
an be understood
on
eptually by noting that, for large angle s
atter-ing, only those impurities at a distan
e smaller thanthe Fermi wavelength �f � n�1=2 
ontribute signi�-
antly to s
attering. We 
an therefore de�ne, roughlyspeaking, an e�e
tive 2D 
on
entration of s
atteringimpurities as N�f � N=n1=2. Inserting N=n1=2 for nigives � / (1=�2)(n3=2=N), similarly to Eq. (20). Theremaining fa
tor 1= ln(1=�) in Eq. (20) is related to low-angle s
attering by distant impurities with z � �f . Sofar, we are unaware of any transport data for TIs thatshows � / n3=2. Re
ent 
ondu
tivity measurements onultra-thin TIs (with a thi
kness � 10 nm � �f ) sug-gest [39℄ that � / n, whi
h is 
onsistent with the 2Dmodel of impurities.Our 3D model also yields a distin
t result for theminimum 
ondu
tivity �min that appears in the limit ofsmall average ele
tron 
on
entration. At small enough
hemi
al potential su
h that � � e2N1=3=�2=3�s, thesurfa
e breaks into ele
tron and hole puddles, andwe 
an think that the e�e
tive 
arrier 
on
entrationsaturates at � np [see Eq. (10)℄. An estimate of�min 
an therefore be obtained by setting n � np inEq. (20), whi
h gives [19℄ the result in Eq. (21). Two-dimensional models of disorder impurities also pro-du
e a minimum 
ondu
tivity that is independent ofthe impurity 
on
entration, but has a di�erent de-penden
e on �. Spe
i�
ally, at small �, su
h modelsgive �min � (e2=h) ln(1=�) [34; 40℄. Our model sug-gests a minimum 
ondu
tivity that is larger by a fa
tor� [� ln2(1=�)℄�1.8. TI SURFACE WITH A GAPIn Se
s. 5, 6, we dis
ussed the disorder potential
reated by Coulomb impurities at a gapless TI sur-fa
e, whose massless spe
trum is prote
ted by time-reversal symmetry. On the other hand, a gap 
an beopened at the TI surfa
e by introdu
ing some sour
e oftime-reversal symmetry breaking, su
h as an externalmagneti
 �eld [4; 41; 42℄, proximity to a magneti
 mate-rial or magneti
 impurities [43; 44℄, the proximity e�e
tfrom an adja
ent super
ondu
tor [45℄, or ele
tron tun-neling between two nearby TI surfa
es [46; 47℄ (see also15 ÆÝÒÔ, âûï. 3 (9) 673
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Fig. 7. S
hemati
 illustration of a gap opening atthe TI surfa
e between the 
ondu
tion band (upper)and the valen
e band (lower). With the addition ofsome sour
e of time-reversal symmetry breaking, theungapped dispersion relation (left) a
quires an energygap U (right)the review in Ref. [6℄). The resulting gapped spe
trumis illustrated s
hemati
ally in Fig. 7.In this �nal se
tion, we brie�y dis
uss how the pres-en
e of the gap with a magnitude U a�e
ts the disor-der potential at the surfa
e and the mid-gap densityof states. We fo
us our dis
ussion around the 
asewhere the 
hemi
al potential � = 0, whi
h roughly 
or-responds to the largest disorder potential and the min-imum in the thermodynami
 density of states. Again,we limit our 
onsideration to the 
ase where the TI issu�
iently thi
k and we 
an therefore des
ribe impuri-ties as three-dimensionally distributed.In the absen
e of a gap, U = 0, the disorder po-tential is well des
ribed by the results in the pre-
eding se
tion. In parti
ular, the disorder poten-tial width � = �0 � (21=6p�=�2=3)(e2N1=3=�s) (seeEq. (8)) and the average density of states h�i = h�i0 �� (�4=3=21=3�)(�sN1=3=e2) (see Eq. (16)). If the gap Uis small su
h that U � �0, then the disorder potentialat the surfa
e is essentially una�e
ted by the gap, sin
elo
al �u
tuations in the Fermi level are mu
h largerthan U . For example, if the gapless surfa
e spe
trumis repla
ed with a �massive� dispersion relationE = �p(~vk)2 + (U=2)2; (25)as plotted in Fig. 7, then we 
an estimate the �rst-ordere�e
t of the gap by 
arrying out the self-
onsistent pro-
edure outlined in Se
. 5. In parti
ular, the gappeddispersion relation in Eq. (25) has the 
orrespondingdensity of states�(E;U) = jEj2�~2v2��jEj � U2 � ; (26)where �(x) is the Heaviside step fun
tion. AtU=�0 � 1, we 
an assume a Gaussian distribution

of the Coulomb potential � with some unknown vari-an
e �2, integrate this distribution over � multipliedby �(�e�;U) to produ
e the thermodynami
 densityof states h�i, and then use the self-
onsisten
y relation�2 = e2N=�sh�i to arrive at a value for � (see Eq. (15)).Expanding the result of this pro
edure for small U=�0gives a slightly enhan
ed value for the disorder poten-tial width, �(U) � �0�1 + U224�20� : (27)Similarly, the thermodynami
 density of states isslightly depleted:h�i � h�i0 �1� U212�20� : (28)On the other hand, if U is mu
h larger than �0,then the surfa
e s
reens poorly and the disorder poten-tial in
reases. In this 
ase, s
reening of the disorder po-tential by the surfa
e o

urs only nonlinearly, throughthe formation of ele
tron and hole puddles at lo
ationswhere the magnitude of the Coulomb potential energyrea
hes the gap energy U=2. This is similar to the bulknonlinear s
reening dis
ussed in Se
. 2, and naturallyprodu
es �(U) � U . The typi
al 
orrelation lengthof the disorder potential at the surfa
e (the nonlinears
reening length) is given byRU � U2�2sNe4 ; (29)as in Eq. (2), with Eg ! U .We 
an estimate the 
orresponding 
on
entration ofele
trons/holes in surfa
e puddles, np, by noting thata square area of size R2U at the surfa
e should 
ontainsu�
iently many ele
trons/holes to neutralize the net
harge of Coulomb impurities in the adja
ent 
ubi
 vol-ume R3U of the TI bulk. This gives npR2U � pNR3U ,or in other words np � e2N�sU : (30)The 
orresponding thermodynami
 density of states
an be estimated by noting that when the 
hemi
al po-tential � in
reases by an amount � U=2, surfa
e holepuddles should dry up and be repla
ed by a 
orrespond-ingly in
reased number of ele
tron puddles. This sug-gests h�i = d�=dn � np=U , whi
h givesh�i � e2N�sU2 : (31)We note that if the gap U is redu
ed to the point whereU � �0, then h�i ! h�i0, as 
an be seen by 
omparingEq. (31) with Eqs. (8) and (16).674



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 E�e
ts of bulk 
harged impurities on the bulk : : :Of 
ourse, these estimates assume that the surfa
egap U is smaller than the bulk band gap Eg , and 
on-sequently that RU � R, and therefore impurities nearthe surfa
e are not s
reened by bending of the bulkbands. If the surfa
e gap U is larger than Eg, then thedisorder potential varian
e is trun
ated at �(U) � Egdue to bulk s
reening.We note that Eqs. (30) and (31) were �rst derived inRef. [48℄ in the 
ontext of semi
ondu
tor heterostru
-tures in a transverse magneti
 �eld, where a 2D ele
trongas experien
es disorder from adja
ent 3D impuritiesand the gap U in the kineti
 energy spe
trum is pro-vided by the Landau level spa
ing ~!
. These authorsalso showed how the disorder potential is redu
ed andthe density of states in
reased as the 
hemi
al potential� in
reased from zero [48℄. Spe
i�
ally, � � U � 2�and h�i � e2N=�s(U�2�)2 if U�2�� e2N1=3=�s. Of
ourse, the e�e
t of a transverse magneti
 �eld for TIsgoes beyond simply opening a single gap at the Dira
point [41; 42℄. We do not 
onsider the full problem ofs
reening of Coulomb impurities in the presen
e of amagneti
 �eld here, but in prin
iple this problem 
anbe dealt with along the lines of Ref. [48℄.We are grateful to Y. Ando, A. L. Efros, H. Bei-denkopf, M. M. Fogler, M. S. Fuhrer, Yu. M. Galperin,J. Kakalios, Q. Li, M. Müller, N. P. Ong, and A. Yaz-dani for helpful dis
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