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In the three-dimensional topological insulator (TI), the physics of doped semiconductors exists literally side-by-
side with the physics of ultra-relativistic Dirac fermions. This unusual pairing creates a novel playground for
studying the interplay between disorder and electronic transport. In this mini-review, we focus on the disorder
caused by the three-dimensionally distributed charged impurities that are ubiquitous in Tls, and we outline the
effects it has on both the bulk and surface transport in Tls. We present self-consistent theories for Coulomb
screening both in the bulk and at the surface, discuss the magnitude of the disorder potential in each case, and
present results for the conductivity. In the bulk, where the band gap leads to thermally activated transport, we
show how disorder leads to a smaller-than-expected activation energy that gives way to variable-range hopping
at low temperatures. We confirm this enhanced conductivity with numerical simulations that also allow us to
explore different degrees of impurity compensation. For the surface, where the Tl has gapless Dirac modes,
we present a theory of disorder and screening of deep impurities, and we calculate the corresponding zero-
temperature conductivity. We also comment on the growth of the disorder potential in passing from the surface
of the Tl into the bulk. Finally, we discuss how the presence of a gap at the Dirac point, introduced by some
source of time-reversal symmetry breaking, affects the disorder potential at the surface and the mid-gap density
of states.
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1. INTRODUCTION

The three-dimensional (3D) topological insulator
(TT) [1-5] has generated great excitement in the physics
community because of its gapless surface states, which
host a spectrum of quantum transport phenomena
[6,7]. Unfortunately, while a number of crystals have
been identified to be 3D TIs, most of them are not
actually insulators, but instead have a relatively large
bulk conductivity that shunts the surface conductivity
for TT crystals of substantial thickness (= 10 um). How
to achieve a bulk-insulating state is a problem that is
widely discussed in the current literature [8—16].

Typically, as-grown TI crystals are heavily doped
n-type semiconductors, such that the Fermi level re-
sides in the bulk conduction band. In order to arrive
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at a bulk insulating state, such TIs are compensated
by acceptors. With increasing the degree of compensa-
tion K = N4 /Np, where Np and N4 are the respective
concentrations of monovalent donors and acceptors, the
Fermi level shifts from the conduction band to inside
the gap and then into the valence band. When compen-
sation of donors is complete, K = 1, the Fermi level is
in the middle of the gap and the most insulating state
of the TT is reached. The hope is that for a TT with a
bulk band gap E, ~ 0.3 €V (as, for example, in Bi>Ses),
the bulk resistivity should obey the activation law

(1)

with the activation energy A = E;/2 ~ 0.15 eV, such
that the TT is well insulating at room temperatures and
below.

The typical experimental situation near K = 1,
however, is frustrating [15]. In the range of temper-
atures between 100 K and 300 K, the resistivity is ac-

p = poexp(A/kpT)
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tivated, but with an activation energy that is roughly
three times smaller than expected, A ~ 50 meV. At
T ~ 100 K, the activated transport is replaced by
variable-range hopping (VRH) and the resistivity grows
even more slowly with decreasing 7. Finally, at even
smaller temperature, 7' < 50 K, the resistivity satu-
rates!) at a value < 10 Qcm.

In a recent paper [17], we showed that the unexpec-
tedly large bulk conductivity of TIs at K = 1 can be ex-
plained as a consequence of the enormously fluctuating
random Coulomb potential created by randomly posi-
tioned donor and acceptor impurities. In later papers,
we extended this analysis to the case of near-complete
compensation [18], K < 1 and 1 — K « 1, and we
examined the effect of random Coulomb impurities on
the surface disorder and transport properties [19]. In
this mini-review, our goal is to outline in a general way
the effects of random, 3D-distributed Coulomb impu-
rities in TIs on both the bulk and surface properties.
We describe the screening mechanisms for the random
Coulomb potential both within the bulk of the TT and
at the surface, and we present predictions for the mag-
nitude of the disorder potential and the conductivity.

Our theoretical treatment is also motivated by the
recent experiments in Ref. [20], where the random po-
tential at the surface of typical TIs (BiySes and BisTes)
was studied directly by spectroscopic mapping with
a scanning tunneling microscope. It was shown that
near the Dirac energy, random fluctuations of the po-
tential have a Gaussian-like distribution with a width
~ 20-40 meV that can be attributed to deep impurity
charges. We show below that such fluctuations are con-
sistent with disorder produced by three- dimensionally
distributed bulk Coulomb impurities that are screened
by the gapless TT surface.

Crucial to our theoretical description throughout
this paper is the assumption of a random spatial distri-
bution of impurities. This assumption is readily justi-
fied for TT samples made by cooling from a melt, where
the distribution of impurities in space is a snapshot of
the distribution that impurities have at higher temper-
ature, when their diffusion practically freezes [21]. In
3D TIs, as in conventional narrow-band gap semicon-
ductors, the concentration of intrinsic carriers at this
temperature is larger than the concentration of impuri-
ties. Intrinsic carriers thus screen the Coulomb interac-
tion between impurities, and hence impurities remain
randomly distributed in space. When the temperature
is decreased to the point where intrinsic carriers recom-

D The authors of Ref. [15] interpret this saturation as the con-
tribution of the surface states.
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bine, the impurities are left in random positions [22, 23].
If the diffusion of impurities freezes at T' ~ 1000 K, it
is reasonable to assume that impurities are randomly
positioned for semiconductors with a bulk band gap
E, < 0.3 eV. Throughout this paper, we deal with
narrow-band gap TIs, such as BiySes, for which our de-
scription of randomly positioned impurities is accurate.
We also assume everywhere that donor and acceptor
energy levels are shallow, meaning that their binding
energy is much smaller than F,.

The remainder of this paper can be divided into
two parts. In the first part, comprising Secs. 2—4, we
focus on bulk properties, essentially treating the TT as
a strongly or completely compensated semiconductor
and ignoring the surface states. In Sec. 2, we give a
conceptual explanation of the bulk disorder potential
and the origin of the anomalously small bulk resistiv-
ity. Section 3 formulates a numerical model of the TI
bulk and uses it to calculate the corresponding electron
density of states (DOS). In Sec. 4, we present our algo-
rithm for computing the thermally activated conduc-
tivity, analyze our results, and arrive at an expression
for the unusually small bulk activation energy. We also
evaluate the localization length of states close to the
Fermi energy and estimate the characteristic tempera-
ture associated with VRH.

The second part of this paper, comprising Secs. 58,
deals with the effects of Coulomb impurities on the
properties of the TI surface. In Sec. 5, we describe
a self-consistent theory of the screened disorder poten-
tial at the TT surface and compare it with experiment.
Section 7, uses this theory to calculate the conductivity
of surface electrons. Section 6 briefly discusses how the
amplitude of the disorder potential transitions from its
large bulk value to its smaller value at the surface. Fi-
nally, Sec. 8 discusses an extension of our analysis to
the case where the TI surface has a gap introduced
by some source of time-reversal symmetry breaking.
Where applicable, the major results of each section are
summarized at the beginning of the section.

2. ORIGIN OF THE ENHANCED BULK
CONDUCTIVITY

As mentioned in the Introduction, randomly posi-
tioned impurities create a disordered Coulomb land-
scape in the bulk of the TI, which has the effect of re-
ducing the activation energy A relative to what could
be naively expected based on flat valence and conduc-
tion bands. In this section, we explain this idea more
fully, focusing first on the case of complete compensa-
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Fig.1. Energy diagram of a) a completely compen-
sated semiconductor (K = 1) and b) a strongly com-
pensated semiconductor (1 — K < 1) with the band
gap E,;. The upper and the lower straight lines in-
dicate the unperturbed positions of the bottom of the
conduction band E. and the ceiling of the valence band
E,; the middle straight line corresponds to the Fermi
level ©. Meandering lines represent the band edges,
which are modulated by the fluctuating potential of
charged impurities. R is the characteristic size of po-
tential fluctuations. Percolation levels (mobility edges)
for electrons, E., and holes, E},, are shown by dashed
lines. Puddles occupied by carriers are shaded. Shallow
impurities levels are not shown because they practically
merge with band edges

tion, where the bulk transport can be described using
the theory of a completely compensated semiconductor
(CCS) [23,24].

This theory is based on the idea that at K = 1,
when almost all donors and acceptors are charged, ran-
dom spatial fluctuations of the local concentration of
impurities result in large fluctuations of charge. Their
potential is poorly screened, because of the vanish-
ing average concentration n = Np — N4 of electrons,
and therefore has huge fluctuations. These fluctuations
bend the conduction and valence band edges and in
some places bring them to the Fermi level, creating elec-
tron and hole puddles that in turn nonlinearly screen
the random potential. As a result, the amplitude of po-
tential fluctuations is limited by E,/2, and hence the

ground state, illustrated schematically in Fig. 1, resem-
bles a network of p—n junctions [23,24]. The character-
istic size of these p—n junctions is [17]

E2k?

R=ginet @)
which can be thought of as the correlation length of the
random potential. For the typical parameters E, =
= 0.3 eV, Np = 10'® em 2, and dielectric constant
t = 30, this length scale R ~ 150 nm > Ngl/g =
= 4.6 nm. That is, we deal with a very long-range
potential.

Asg a result of these long-range fluctuations, the re-
sistivity can be dramatically different from the naive
expectation based on thinking about flat valence and
conduction bands. First, at relatively high temper-
atures, the activated conductivity is due to electrons
and holes activated from the Fermi level to their cor-
responding classical percolation levels (classical mobil-
ity edges), E. and E}, in the conduction and the va-
lence bands. According to numerical modeling in [17] at
K =1, the activation energy is A ~ 0.15E,, meaning
that E. and Ej are substantially closer to the Fermi
level p than to the unperturbed bottom of the con-
duction band, E., or ceiling of the valence band, E,
(Fig. 1a). (E. and E, are the respective energies of
the conduction and valence bands in the absence of
a random potential.) Therefore, we can think of the
universal small factor A/E,; ~ 0.15 as corresponding
to a percolation threshold associated with percolation
through the potential created by random Coulomb im-
purities in 3D.

Second, at sufficiently low temperatures, electrons
and holes can hop (tunnel) directly between puddles,
so that activated transport is replaced by VRH. We
showed in Ref. [17] that with decreasing temperature,
the activated resistivity crosses over directly to the
Efros—Shklovskii (ES) law [25]

p = poexp(Trs/T)"/?, (3)

where Tps = Ce?/kpké, e is the electron charge, ¢ is
the localization length of electron states with energy
close to the Fermi level, and C' ~ 4.4 is a numerical
coefficient. Together our results for the activated and
VRH resistivity established the universal upper limit of
the bulk resistivity p(T") for a 3D TI compensated by
shallow impurities.

In Ref. [18], we expanded our focus to consider not
just the maximum possible bulk resistivity that appears
at K = 1, but to address the more practical question
of the dependence of the bulk resistivity on the degree
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of compensation K at 1 — K < 1. Indeed, the existing
methods of growth of TT samples do not allow obtain-
ing K =1 exactly, and it is important to know how the
results for a CCS, where K = 1, are extended to the
case of a strongly compensated semiconductor (SCS),
for which 0 < 1 — K <« 1. For example, we can ask
at which value of 1 — K does the activation energy A
become twice smaller than at K = 1. For definiteness,
we consider an n-type SCS, where the concentration
of electrons n = Np — N4 <€ Np. We numerically
model the ground state of such a SCS and its resistiv-
ity using algorithms similar to those in Ref. [17]. We
find that, in agreement with analytic theory [23], as
1 — K increases, the screening of the random potential
improves and the correlation length R of the random
potential decreases. The amplitude of the random po-
tential decreases as well; hole puddles shrink and even-
tually vanish; and the chemical potential y moves up,
and hence E, — u decreases. We can say that with
increasing 1 — K, screening occurs by bending of the
conduction band only, while all acceptors remain oc-
cupied by electrons and negatively charged. All these
changes are illustrated by the transition from a to b in
Fig. 1.

As a result of these changes with increasing 1 — K,
the activation energy A decreases. We find that the re-
lation A = 0.3(E. — ) obtained in Ref. [17] for K’ =1
remains valid for 1 — K’ < 1 as well (see Fig. 6 below).
(In p-type semiconductors, where K = Np/N4, a sim-
ilar relation holds: A = 0.3(p — E,).) At K = 0.97,
the activation energy A is already several times smaller
than at K = 1. This result shows that achieving the
maximum bulk resistivity, with A = 0.15E,, is not
easy. It also helps to explain the origin of the large
scatter in the magnitude of A among different TT sam-
ples [15].

Our prediction is that A = 0.3(E, — p) can in prin-
ciple be directly compared with experiments in TIs. In-
deed, for each K, the position of the Fermi level FE. — i
can be found via measurements of the concentration of
electrons in the surface states using Shubnikov—de-Haas
oscillations.

At lower temperatures, the activated bulk conduc-
tion crosses over to ES VRH. In Sec. 4, we study this
crossover numerically and also show how Tgg, which is
correlated with A, decreases with 1 — K.

It should be mentioned that these results for the
bulk conductivity are also applicable to other narrow-
gap semiconductors, for example, InSh. Historically,
a large effort was made to make InSb insulating via
strong compensation, with the goal of improving the
performance of InSh-based photodetectors. The results
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were again frustrating: the dark resistivity was too
small. Our results are in reasonable agreement with
transport experimental data for InSh [26, 27].

3. MODEL OF BULK IMPURITIES AND THE
DENSITY OF STATES

To study the bulk properties of a heavily doped SCS
numerically, we introduce a model of the bulk donors
and acceptors. In this section, we first describe our nu-
merical model and then use it to calculate the position
of the Fermi level relative to the band edges as a func-
tion of the compensation degree K and to evaluate the
density of states of impurity states. Our major results
are shown below in Figs. 2 and 3.

Specifically, we model the bulk as a cube containing
a large number of randomly positioned donors and ac-
ceptors. We numerate all donors and acceptors by the
index ¢ and use n; = 0 or 1 to denote the number of
electrons residing on a donor or acceptor. We also in-
troduce the binary variable f; to discriminate between
donors (for which f; = 1) and acceptors (f; = —1).
The Hamiltonian of our system is then

H = ; %fﬂh +

> V(rij)aias, (4)

(i)

where ¢; = (fi/2 —n; + 1/2) is the net charge of site i,
V' (r) is the interaction energy between two likely-char-

ged impurities at a distance r, and all energies are
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Fig. 2. Distance between the Fermi level ;1 and the bot-

tom of the conduction band E. as a function of 1 — K,

as calculated by numerical simulation. Energies are in

units of e2N51/3/n, and the simulated band gap is

E,; = 15. The size of dots characterizes the numerical
uncertainty
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Fig.3. Dimensionless single-electron DOS g(¢), in

units of (1 + K)N/(e2N'/3/k), as a function of the

electron energy ¢ calculated from the Fermi level. Re-

sults are plotted for K = 0.95 and K =1 using E, =

= 15. Impurity states with ¢ < 0 are occupied and

those with ¢ > 0 are empty. At K =1, the total DOS

of impurities has the donor—acceptor symmetry, which
is lost as 1 — K increases

defined relative to the Fermi level. The first term in
Eq. (4) contains the difference between the energies of
donors and acceptors, which in the case of shallow im-
purities is very close to the semiconductor gap F,. The
second term of H represents the total interaction en-
ergy of charged impurities. We note that Eq. (4) does
not include the kinetic energy of electrons and holes in
the conduction and valence bands and, therefore, aims
only at a description of the low-temperature physics of
SCS (kT < E. — ).

The form of the interaction law V'(r) requires some
consideration. For two impurities at a distance r > ap,
where ap is the effective Bohr radius of impurity
states, we can use the normal Coulomb interaction
V(r) = €?/kr for V(r). For example, we can consider a
pair of empty and distant donors. In such a donor pair,
one donor shifts the energy of the electron level on the
other by V(r) = —e?/kr. This classical form for V(r) is
good for a lightly doped SCS. In a heavily doped SCS,
on the other hand, where ap > NBUS, most impuri-
ties have at least one neighbor at a distance r < ap,
and quantum mechanical averaging over the electron
wave function becomes important. (This is why an un-
compensated heavily doped semiconductor is a good
metal.) For example, a pair of donors cannot create an
electron energy state deeper than that of the helium-
like ion, which has the binding energy 2e*/kap. The
interaction law V' (r) should therefore be “softened” at
short distances r < ap to reflect quantum mechanical
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effects. We model this behavior by continuing to use
the classical Hamiltonian in Eq. (4) with a truncated
Coulomb potential V(1) = €2 /k(r? + a%)'/>.

Below, it is convenient to express energies in units
of e2N11)/3/m. In these units, a typical TI with the band
gap 0.3 eV has F; ~ 30. We unfortunately could not
model E, = 30 directly, since in this case the very large
correlation length of the random potential, R, leads to
large size effects. Instead, we present results for the
more modest value E, = 15, for which the size effect
requires extrapolation [17] only for X' = 1. Results for
the smaller E, = 10 are largely identical [17].

In our numerical simulations, we first randomly
place donors and acceptors within the simulation
volume; the results presented below correspond to
M = 20000 donors and 20000/ acceptors. We then
search for the arrangement of electrons (or equivalently,
the set of electron occupation numbers {n;}) that min-
imizes H, and we use this set to calculate the DOS and
the conductivity. We begin our search from the state
where all MK acceptors are populated by electrons
and negative (n; = 1,¢; = —1), and where an equal
number of randomly chosen donors are empty and pos-
itive (n; = 0,¢; = 1), while the remaining M (1 — K)
donors are filled and neutral (n; = 1,¢; = 0). The
charged donors and acceptors in this initial state cre-
ate a random potential whose magnitude exceeds g,
and as a result the system energy is well above that
of the ground state. To bring the system closer to its
ground state, we attempt sequentially to transfer elec-
trons from an occupied impurity (either a neutral donor
or a negatively charged acceptor) to an unoccupied one
(a positively charged donor or a neutral acceptor). If
the proposed move decreases the total system energy
H, then it is accepted, otherwise it is rejected. To
check whether H decreases with each proposed move,
for a given set of electron occupation numbers {n;},
it is convenient to introduce the single-electron energy
state ¢; at a given impurity ¢:

E
= 7gfi - ;V(Tz’j)qj'
j#i

gi

(5)

In the ground state, single-electron energies must sat-
isfy the ES criterion

6]'—Ei—V(Tij) >0 (6)
for all 4, j with n; = 1 and n; = 0. We use our nu-
merical simulation to loop through all pairs of impurity
sites ¢, j and enforce this criterion; if a given pair does
not satisfy Eq. (6), then we move the electron from
impurity ¢ to j and recalculate all ;. This process is
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continued until no single-electron transfers are possible
that decrease H. The final arrangement of electrons
can be called a pseudo-ground state, since higher-order
stability criteria of the true ground state (correspond-
ing to simultaneously changing three or more electron
numbers) are not checked. Such pseudo-ground states
are known to describe the properties of real ground
states with a high degree of accuracy [23,28]. The re-
sults below are obtained at F, = 15 and ap = N51/3
for K =1,0.99,0.98,0.97,0.96, and 0.95, and are aver-
aged over 100 realizations of the impurity coordinates.

For each pseudo-ground state, we estimate the
Fermi energy p as the arithmetic average of the min-
imum empty and maximum occupied energies . The
results are shown in Fig. 2, which shows how the Fermi
level p(K') shifts from the middle of the gap toward
the conduction band bottom as 1 — K increases. At
1 — K > 0.01, this dependence is in reasonable agree-
ment with the prediction of the single-band theory
(which ignores the valence band and acceptors) [23]
that E, — u = A(1 — K)~'/3, where A is a numer-
ical coefficient. We note, however, that for heavily
doped SCS, the coefficient A, ~ 1.4 is twice smaller
than the coefficient 4; ~ 2.8 obtained in Ref. [23] for a
lightly doped SCS, for which Npa% < 1. In the latter
case, the short-range Coulomb interaction at distances
r< N 51/ % leads to an additional contribution to 1 of
the same order of magnitude.

The resulting DOS of impurities is shown in Fig. 3
for K =1 and K = 0.95. g*(¢) is the DOS in the
units of (14 K)ND/(eZNll)/S/n) and is normalized to
unity. At K = 1, the nearly constant and symmetric
DOS between e = —E, and ¢ = E, reflects the practi-
cally uniform distribution of the random potential from
—E,/2 to E,/2 and, correspondingly, of the respective
band edges E. and E, between 0 to E, and between 0
to —E, (see Fig. a). Near the Fermi level (¢ = 0), we
can see the ES Coulomb gap [25].

On the other hand, at K < 1, the DOS of impu-
rity states loses the donor—acceptor symmetry it has at
K = 1. As described in Sec. 2 (see Fig. 1), as 1 — K
increases, hole puddles are eliminated and hence ac-
ceptors become disengaged from screening. The ac-
ceptor DOS (leftmost peak in Fig. 3) therefore splits
from the donor one, which in turn develops two peaks
separated by the Fermi level at ¢ = 0. The large right
peak belongs to empty donors, while the small and nar-
row left peak belongs to occupied donors (electron pud-
dles). These two donor peaks are separated by the ES
Coulomb gap.
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4. NUMERICAL MODELING OF THERMALLY
ACTIVATED CONDUCTIVITY

In the preceding section, we described our proce-
dure for finding the energy levels of donor and acceptor
impurities in the pseudo-ground state. We now discuss
how these results can be used to calculate the bulk
conductivity of a SCS, and we present results for the
conductivity both in the high-temperature, activated
regime and in the low-temperature, VRH regime. Our
major results are twofold. First, we find that in the ac-
tivated regime, the activation energy decreases as the
chemical potential approaches the conduction band ac-
cording to A ~ 0.3(E. — u) (see Fig. 6 below). Sec-
ond, we study how the characteristic temperature Tgg
in the VRH regime depends on compensation, and we

find that Tps ~ 4.4/ A(e2N}? /).

Our process for numerically calculating the re-
sistivity is as follows. Once the energies {e;} are
known (calculated using the procedure described in
Sec. 3), we evaluate the resistivity using the approach
of the Miller—Abrahams resistor network [23,29].
In this description, each pair of impurities i,j is
said to be connected by a link with the resistance
Ri; = Roexp[2r;;/§ + €;;/kpT], where the activation
energy ¢;; is defined [23] as

{

The resistivity of the system as a whole is found us-
ing a percolation approach [23]. Specifically, we find
the minimum resistance R, such that if all links with
resistance R;; > R, are cut, then there still exists a
percolation pathway connecting opposite faces of the
simulation volume. This approach captures the expo-
nential dependence of the resistivity on the tempera-
ture, and we ignore details of the prefactor. Below,
we plot the temperature in the dimensionless units
T = 2kBTm/e2N2D/3§ and the resistivity p using the
dimensionless quantity (Inp)* = (§N£/3/2) In R./Ryg.
These dimensionless units eliminate any explicit depen-
dence on the localization length &.

In Fig. 4, the resulting resistivity is plotted as a
function of (T*)~'/2 over the huge range of tempera-
ture 200 > T* > 0.03 for four different values of the
compensation degree K. The resulting linear depen-
dence at 0.3 > T > 0.03 indicates that at low tempera-
tures, the resistivity is described well by the ES law (see
Eq. (3)). The higher-temperature range 200 > 7* > 1
is plotted separately as a function of 1/7* in Fig. 5.
Here, the linear slope suggests a well-defined activa-

lej —eil = V(rij), ejei <O,

€€ > 0.

Eij =

(7)

max [|;], ;1]
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Fig.4. The temperature dependence of the resistiv-
ity in the whole temperature range 200 > 7 > 0.03.
The dimensionless resistance (Inp)* is plotted against

(T*)~'/? to illustrate that the resistivity follows the ES
law at low temperatures. The lines are the best linear

fits
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Fig.5. The temperature dependence of the resistivity
in the high-temperature range 200 > 7" > 1. The di-
mensionless resistance (In p)* is plotted against (7) ™"
to illustrate that the resistivity is activated at high tem-
peratures. The dashed lines are the best linear fits

tion energy that depends on the compensation degree
K. At extremely high T* > 50, which generally corre-
sponds to unrealistically large temperatures, the con-
duction is dominated by activation of carriers across
the band gap, which is not captured by our model.

Extracting the slope of the curves in Fig. 5 (dashed
lines) gives an estimate of the activation energy A as
a function of K. Combining this result with the val-
ues for the chemical potential ;(K) calculated in Sec. 3
yields the data shown in Fig. 6, where A is plotted as
a function of E. — p for all the studied values of com-
pensation K =1,0.99,0.98,0.97,0.96,0.95. We can see
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Activation energy, A/FE,
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Fig.6. The activation energy A as a function of the

distance between the Fermi level and the conduction

band, plotted for K = 1.0, 0.99, 0.98, 0.97, 0.96, and

0.95 (from right to left). The dashed line is the best

linear fit, A ~ 0.3(E. — p). All energies are plotted in
units of the band gap E,

that the equation A ~ 0.3(E. — p) holds reasonably
well for all K in this interval.

So far, we have emphasized results that do not ex-
plicitly depend on the localization length £. In fact,
¢ determines the magnitude of Trg, and therefore de-
termines the value of temperature at which the con-
duction transitions from activated to VRH behavior.
We argue now that in a TI, £ is quite large, leading to
a prominent role for VRH. To see this, we can imag-
ine an electron with energy close to the Fermi level,
tunneling from one electron puddle to another, dis-
tant one. If such an electron were to tunnel along the
straight line connecting the two puddles, it would tun-
nel through high barriers and its wave function would
decay sharply, with a decay length ¢ < ap. But this
straight line does not constitute the path of least action
for the tunneling electron. Instead, a tunneling elec-
tron can use the same geometrical path as a classical
percolating electron, which has an energy A above the
Fermi level, and thereby avoid large barriers. We can
roughly estimate the tunneling decay length by assum-
ing that along such a “percolating” tunneling path, the
potential energy barriers V' are uniformly distributed
in the range 0 <V < A and neglecting the additional
contribution to the action associated with curvature of
this path. Integration over V' then gives a localization
length & ~ fi/v/mA and kpTgs = 4.4(mA)"/?(e? /kh).
For a TT with ap = Nj5'/%, this implies that kpTrs =

= 4.4/ A(2NY? /).
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The dependence Tgs x VA implies that when A
increases ~ 2.5 times, as in Fig. 6 corresponding to
the difference between K = 0.95 and K = 1, the ES
temperature Tgg increases by ~ 60%. For a TI with
k = 30 and Np = 10" em™3, this corresponds to a
variation in Tgg from 500 to 800 K. The regime of ES
VRH in TIs can be studied experimentally, but such
a study requires sufficiently thick samples for the bulk
conduction to provide a larger contribution to the total
conductance than the TI surfaces.

5. SELF-CONSISTENT THEORY OF THE
SURFACE DISORDER POTENTIAL

In the first part of this paper, we showed how the
bulk conduction is strongly influenced by the presence
of random Coulomb impurities, which produce large
bending of the bulk conduction and valence bands. We
now turn our attention to the problem of how these
same impurities affect the surface transport provided
by the Dirac-like surface states. For this problem, we
adopt the same model of monovalent Coulomb impu-
rities that are randomly distributed throughout the
bulk of the TI, and we focus our attention on the
case of complete (or nearly complete) compensation
Np = Ny = N, where the Fermi level lies within the
bulk band gap. As we show below, for determining
the properties of the surface, we can safely ignore the
weak nonlinear screening by electron and hole puddles
formed in the bulk (illustrated in Fig. 1).

In this section, we present a self-consistent theory
for the magnitude of the disorder potential at the TI
surface, following Ref. [19]. Our primary result is an
expression for the amplitude of fluctuations of the elec-
tric potential energy I' at the TT surface as a function
of the chemical potential, p, measured relative to the
Dirac point. In particular, for = 0, we show below

that
( )2 (e

where a = €2 /kshv is the effective fine structure con-
stant, kg is the effective dielectric constant at the sur-
face, and v is the Dirac velocity. This expression de-
scribes screening of the disorder potential via the for-
mation of electron and hole puddles at the TT surface.
The characteristic size of these puddles is given by

V2r

e2N'1/3
a3\ Ky

Rs

r* = 0), (8)

N—1/3

s = 5373473

(n=0), (9)
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and the corresponding total number of electrons (or
holes) per unit area in surface puddles is given by
!

np = (1_6)2/3 N3 (u=0).

Equations (8)—(10) are derived below, along with re-
sults corresponding to large . Below we also derive a
simple relation for the autocorrelation function of the
potential at the TI surface, which has an unusually
slow decay and can be used to verify the bulk origin
of disorder. These results were confirmed by numerical
simulation in Ref. [19].

Our primary tool for describing screening of the
electric potential is the Thomas—Fermi (TF) approx-
imation, which applies in the limit where the potential
¢(r) varies slowly compared to the characteristic Fermi
wavelength of electrons at the surface. Specifically, the
TF approximation gives

1= Eyln(v)] - eo(r),

where Ef(n) hvy/4r|n|sign(n) = (e*/aks) x
x y/4m|n|sign(n) is the local Fermi energy and n(r)
is the 2D electron concentration at the point r on the
surface. The TF approximation is justified whenever
a K 1, as we show below. In TIs, such a small a can
be seen as the result of the large bulk dielectric con-
stant k£ > 30. We note here that for describing the
properties of the surface state, which exists at a dielec-
tric discontinuity, the effective dielectric constant kg
should be taken as the arithmetic mean of the internal
and external dielectric constants. If the TT is in the
vacuum, then ks = (k +1)/2 &~ £/2.

When the chemical potential is large enough in mag-
nitude such that p? > e*(¢?), where (...) denotes av-
eraging over the TI surface, the expression for Ey(n)
can be linearized to Ef[n(r)] = p + én(r)/v(u), where
on(r) = n(r) — ng is the difference in the electron con-
centration relative to the state with zero electric poten-
tial, ng = a?k2pu?/(4met), and v(p) = o®k2|u|/(2met)
is the density of states at £y = p. From this den-
sity of states, we can define the screening radius ry =
= ng/2me*v = e?/a’kgu that characterizes the dis-
tance over which fluctuations in the Coulomb potential
are screened by the surface. The TF approximation
is valid when the Fermi wavelength Ay ~ ngl/Z
~ e%/akgp is much smaller than ry, which gives the
condition a < 1.

We can understand the magnitude of the potential
fluctuations T' qualitatively using the following simple
argument. For a given point on the TT surface, we can
say that only impurities within a distance R" < r4 con-
tribute to the potential; those impurities at a distance

(10)

(11)

~
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R' > ry are effectively screened out (we can say that
they are screened by their image charges in the “metal-
lic” TT surface). Impurities with R’ < rg, on the other
hand, are essentially unscreened. There are ~ N7 such
impurities, and their net charge is of the order of Q) ~

ey/Nr3, with a random sign. The absolute value of
the potential at the surface is then ~ @/ksrs, whence
T ~ eQ/ksrs ~ (N3 k) (NrH/6 ~ \/e2N/k,v ~
~ /etN/a?k3| .

In order to more accurately derive the value of T,
we can start by considering the potential created by
a single impurity charge +e. When such an impurity
charge is placed at a distance z from the TIT surface
(say, above the origin), it creates a potential ¢;(r;2)
that within the TF approximation is given by [30]

_6/
_n 1
0

where Jy(x) is the zeroth-order Bessel function of the
first kind. At large z/rs, Eq. (12) can be expanded to
give

exp

L Jo(qr) da,
Iy o(gr) dq

(12)

e 2T
~N— 8
ke (12 + 22)3/2

¢1(r; 2) (13)

~

A simple physical derivation of Eq. (13) is based on
the notion [31] that for a distant impurity, such that
2z > rg, a surface with a screening radius r; effectively
plays the role of a metallic surface positioned below
the real surface at the distance z = —r;/2. Equation
(13) can then be viewed as the sum of the potentials
created by the original charge at the distance z above
the plane and its opposite image charge at the distance
z 4+ rs below the plane, expanded to the lowest order
inrg/z.

The total potential at the origin is ¢(0) =
= >, 4:01(r4; 2z;), where the index 7 labels all impurity
charges, ¢; is the sign of impurity 7, and r; and z; are
the radial and azimuthal coordinates of its position.
Under the assumption that all impurity positions are
uncorrelated and randomly distributed throughout the
bulk of the TI, the average of ¢? is given by

(%) = / 61 (s NP aNdYd . (14)
Here, the quantity 2Nd?r'dz’ describes the probabil-
ity that the volume element d’r'dz’ contains an im-
purity charge, and the integration is taken over the
semi-infinite volume of the bulk of the TI. The width
of the disorder potential at the TT surface, I, is defined
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by I'? = €2(¢?). Inserting Eq. (12) into Eq. (14
taking the integral then gives

(1> <

Equation (15) is correct so long as the fluctuations in
the Coulomb potential energy are small compared to
the chemical potential, or I' < |u|; this gives the con-
dition written in parentheses.

On the other hand, when |u| is very small, the fluc-
tuations in the Coulomb potential become large com-
pared to the chemical potential, and we cannot speak of
a spatially uniform local density of states v or a screen-
ing radius 4. Instead, the Fermi energy has strong spa-
tial variations, and the random potential is screened by
the formation of electron and hole puddles at the sur-
face. Nonetheless, we can define an average density
of states (v) at the surface, which self-consistently de-
termines the typical screening radius r; and the mag-
nitude of the potential fluctuations at the TT surface.
This value (v) can be equated to the thermodynamic
density of states of the system, du/d(n), where (n) is
the overall electron concentration of the surface.

For example, we consider the case y = 0, where
by the symmetry argument, the average value of the
potential () 0. At any given point r on the
surface, the potential ¢(r) is the sum of contribu-
tions from many individual impurity charges under
the condition that the characteristic screening radius
ry = kg/2me>(v) > N~'/3. This implies that, by the
central limit theorem, the value of the potential across
the surface is Gaussian-distributed with some variance
(¢?) = I'?/e? that remains to be calculated. Within
the TF approximation, the local density of states at the
point r is v[—ed(r)] = ea’k2|é(r)|/(2me?), and hence
we can calculate the average density of states as

/

) and

2N1/3
sa2/3

2ret N
a? k3| pf

2N

r=_-- =
Kgl

(15)

exp [—e?¢? /2I?]
NI
220

2m3et

W)= [ v(-e) dg =

(16)

(1

This result for () can be inserted into the first equality
in Eq. (15), I'? = €2N/k4(v), to give a self-consistent
relation for the amplitude of potential fluctuations [32].
This procedure gives the result first announced at the
beginning of this section, Eq. (8). Substituting Eqs. (8)
and (16) in the expression for the screening radius,
rs = ks/2me?(v), gives Eq. (9).

We can also calculate the total concentration of
electrons/holes in surface puddles, n,, implied by this
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result for T2, This is done by first inverting the
TF relation, Eq. (11), at p 0 to give n(¢)
= (a®k?/4me?)¢” sign(¢). Integrating this expression
for n(¢) weighted by the Gaussian probability distri-
bution for ¢ gives

B T exp [—e?¢? /2T
np = / e
a’k2T? _
= et (1 =0).

Substituting the result in Eq. (8) for T2 then gives
Eq. (10). We can also combine this result for the
residual electron/hole concentration n, with the ex-
pression for the screening radius rs to arrive at an es-
timate for the number of electrons/holes per puddle:
M, ~ mn,r? ~ 7/16a>. Apparently, at small a pud-
dles typically contain many electrons/holes, M, > 1.

Our primarily results, outlined in Eqgs. (8)—(10), are
valid within the TF approximation so long as the typ-
ical Fermi wavelength A\; ~ e?/aksI" is much smaller
than the typical screening radius rs ~ e?/a’ksI" which
again gives the condition o < 1.

As we mentioned above, at u = 0, the screening
radius r; describes the characteristic size of electron or
hole puddles at the TT surface. More generally, rs plays
the role of a length scale over which potential fluctu-
ations at the surface are correlated. Such correlations
can be discussed in a quantitative way by defining the
potential auto-correlation function

C(r) = (d(Ro(x" + 1)), (17)

where (...), denotes averaging over the spatial coor-
dinate r’, and where by symmetry the correlation func-
tion depends on |r| = r only. In the remainder of this
section, we derive approximate analytic results for C'(r)
and show that spatial correlations in the potential have
an unusually slow decay.

At r = 0, Eq. (17) reproduces the definition of
(¢?), whence C(0) = I'?/e?. At small enough dis-
tances such that » < rs;, we can expect that the
value of C(r) is determined primarily by unscreened
impurities that are within a distance rg from the sur-
face, as explained above in deriving I'2. On the other
hand, at r > rg, correlations are produced primar-
ily by impurities that are relatively far from the sur-
face, as can be seen from the following scaling argu-
ment. We consider two surface points separated by a
distance r > r; and imagine drawing a cube of size r
that extends into the bulk of the TI and which con-
tains the two surface points on opposite edges of one
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of its faces. Such a cube contains ~ Nr? impurities,
and has a net impurity charge with the magnitude
q ~ eV Nr3 and random sign. These impurity charges
are located at a mean distance ~ r > r, above the
surface and therefore by Eq. (13), contribute a net po-
tential ~ gqrs/ksr? ~ (e/ks)\/Nr2/r to both surface
points. The square of this potential roughly gives the
autocorrelation of the potential, C'(r) ~ e>Nr2/xk2r.

A more careful expression for C'(r) can be derived
by writing

C(r)= /(731 (r'; 21 (v — ;22N A’ d7', (18)

similarly to Eq. (14). Inserting the asymptotic expres-
sion of Eq. (13) for ¢; and evaluating the integral gives

=) oo

This result was also confirmed by numerical simulation
in Ref. [19].

Equation (19) implies an unusually slow decay of
potential correlations at the surface, which, as ex-
plained above, arises from long-range fluctuations of
the potential created by deep bulk impurities. This be-
havior can be contrasted with the much faster decay
of C'(r) that would result from a two-dimensional (2D)
distribution of Coulomb impurities at a distance d from
the surface?: C(r) ~ e?n;dr? /k2r®, where n; is the 2D
impurity concentration. Thus, studying C(r) experi-
mentally by scanning tunneling microscopy allows dis-
criminating between disorder by bulk impurities and
disorder by impurities located in a layer close to the
surface.

We now discuss the magnitude of I' and r; implied
by these expressions for typical TIs, which generally
have the impurity concentration N ~ 10' em™3. Typ-
ical values of the Dirac velocity and fine structure con-
stant for TIs can be taken from Ref. [20], which reports
liw = 1.3 eV A and estimates o = 0.24. Using these pa-
rameters gives I' ~ 30 meV and r; ~ 20 nm at the
Dirac point g = 0. At large |u| = 30 meV, both T'? and
rs decay as 1/|ul.

As mentioned in the Introduction, the theory pre-
sented in this section provides a good description of
the recent experimental results in Ref. [20], where the
random potential at the surface of the 3D TIs BisSes
and Bi,Tes was studied using a scanning tunneling mi-
croscope [19]. Indeed, it was found in these experi-
ments that the electric potential at the surface was

2

2me? Nr?

C(r) ~ _ /e

or/rg

r
—>1
rs

2
RgT

2) This result can be obtained by replacing the bulk impurity
charge density 2N in Eq. (18) with n;6(z — d).
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well characterized by a Gaussian distribution with a
standard deviation I' ~ 10-20 meV, and the charac-
teristic length scale of potential fluctuations was es-
timated as ry ~ 20-30 nm. We can compare these
measurements to our theoretical predictions by using
the parameters listed above and inserting the measured
chemical potential ;1 ~ 100 meV into Eq. (15). This
gives I' ~ 18 meV and the corresponding screening ra-
dius rs ~ 5 nm, and therefore our theory is indeed
in reasonably good agreement with experiment. Fur-
ther, Ref. [20] found that the disorder potential at the
surface was not correlated with the position of surface
impurities, indicating that the surface disorder poten-
tial originates primarily from impurities deep below the
TT surface, as we have described.

Throughout this section, we have worked within
the assumption that bulk impurities are completely
ionized, or in other words, there is no screening by
conduction-band electrons or valence-band holes in the
bulk. Such an assumption is valid when the chemical
potential resides in the middle of a large bulk band gap.
In this case, donors or acceptors can only be neutral-
ized by very large band bending discussed in Sec. 2 (see
Fig. 1). Such fluctuations occur over a long length scale
R that scales as the square of the distance between the
Fermi level and the nearest band edge (see Eq. (2)) and
is typically on the order of hundreds of nanometers for
typical TIs [17]. On the other hand, near the surface
of the TI, the potential fluctuations are screened much
more effectively and over a much shorter distance, rg,
by the (ungapped) surface states. As shown above, 7
is typically < 20 nm, and the amplitude of surface po-
tential fluctuations is I' ~ 30 meV < E; ~ 300 meV.
We can therefore safely assume that there is no large
band bending near the surface and we can indeed treat
bulk impurities as completely ionized. The effect of
bulk screening should appear only in the long-range
behavior of the correlation function, r > R, where the
1/r decay of C(r) is truncated and, as can be shown,
is replaced with C(r) ~ 2N Rr? /k2r>.

Finally, we note that our theory ignores the possi-
bility of screening by material outside the TI. For ex-
ample, if the TI is placed next to a metal electrode
or an ionic liquid [33], then this external material can
screen the large potential fluctuations created by the
bulk, thereby decreasing I' and r;.

6. FROM SURFACE TO BULK

We showed in Sec. 2 that deep within the bulk of
the TI, the disorder potential has large fluctuations of
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the order of I' ~ E,;. On the other hand, we showed in
Sec. 5 that at the TT surface, the disorder potential has
amuch smaller amplitude, T' ~ (e?N'/3/ka?/3). Tn this
section, we elaborate briefly on the crossover between
these two results, or in other words we describe how
the amplitude of potential fluctuations grow in passing
from the surface of the TI to the bulk.

Generally speaking, in moving over a distance z > 0
into the bulk of the TI, the amplitude of the disorder
potential increases in magnitude. In order to see quan-
titatively how I' increases as a function of z, we can
temporarily assume that the TI surface is equivalent
to a perfect metallic plane. In this case, each impurity
at position (r’, z') has a corresponding image charge at
(r', —z'), and the total potential at (0, z) is equal to the
sum of the potentials created by the original impurity
and its image. We can calculate T'?(z) by averaging
the square of this potential over all possible positions
of the impurity charge [as in Eq. (14)]. This calcula-
tion gives ['?(z) = 8w Ne*z/k2. That is, ['*(z) increases
linearly with the distance z from the TI surface. This
increase continues until I' becomes large enough such
that I'?(z) = (E,/2)?, at which point electron and hole
puddles begin to form in the bulk and we arrive at
the bulk screening picture described in Ref. [17]. This
distance corresponds to z = R/4; at smaller z, the po-
tential fluctuations are small enough for practically all
donors and acceptors to be charged.

We can now recall that the TT surface is not per-
fectly metallic, and that its screening length r is finite,
and therefore I'?(z) should be somewhat larger. In fact,
at z > 7, we can still use the formula above for I'?(z)
by introducing a small modification allowing for the
fact that the metallic surface is effectively shifted to
the position z = —r;/2 (as discussed in Sec. 5). Mak-
ing this adjustment gives ['?(z) = 8t Net(z +rs/2) /K>
at z > rg, which does not significantly alter our con-
clusions.

7. SURFACE CONDUCTIVITY

We now turn our attention to the problem of how
the 3D-distributed Coulomb impurities within the TIT
bulk affect the surface conductivity. As discussed at
the beginning of Sec. 5, we limit our consideration to
the case where the Fermi level resides within the bulk
band gap, where we can safely assume that all relevant
bulk impurities are ionized.

Our primary result is an expression for the elec-
tron conductivity o of the surface as a function of the
average 2D surface electron concentration n. In par-
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ticular, when n > n,, where n, is the typical puddle
concentration at u = 0 (see Eq. (10)), we find that the
conductivity is given by

N Rk

e
N — — 2
T h @ In(1/a) N’ (20)

where e2/h is the conductance quantum. At much
smaller electron concentrations n < n,, the conduc-
tivity saturates at a value o, which we estimate as

e? 1

To derive these results, we first note that in the limit
of large chemical potential u, where the electron den-
sity is only weakly modulated by the disorder potential,
it can be shown using the Boltzmann kinetic equation
that for electrons with a massless Dirac spectrum, the
conductivity is given by [34-37]

e? ur

0= (22)
where 7 is the momentum relaxation time. In the limit
of zero temperature, the scattering rate 1/7 can be
found by integrating the squared scattering potential
produced by a given impurity over all impurities and
over all scattering angles. More simply, we can arrive
at an expression for 1/7 by taking the result for the
scattering rate of a 2D layer of impurities with the con-
centration n; at a distance z (for example, Eq. (38) in
Ref. [35]), replacing n; with 2Ndz, and then integrating
over all planes z containing impurities. This procedure

gives
1 kraks r
- = 2N d
T 4mrhe? / =
0
s ~ 9 2
X /dﬂ [¢1 (Zkf sin 5;2)] (1—cos?6). (23)
0
In this equation, kf = akgsu/e® is the Fermi wave-

length, ¢1(q;z) = (2me? /ksq) exp[—qz]/[1 + (qrs) ™ is
the screened potential (in momentum space) created by
a single impurity at position z, and ¢ = 2k sin(6/2) is
the change in momentum associated with scattering by
an angle 6.

Evaluating the integral in Eq. (23) at small v gives

1 1\ &N
-~ In{—)——=. 24
;o <a) hkisk? (24)

Inserting this result for 7 into Eq. (22) and substitut-
ing = e’ky/aks and kg = V/4mn yields the result for

15 ZK3T®, Bem. 3(9)

conductivity announced at the beginning of the section,
Eq. (20).

Equation (20) can be contrasted with the widely
used result for the 2D model of charge impuri-
ties [34,35,37,38], for which the conductivity is lin-
early proportional to the electron density: o/(e?/h) ~
~ (1/a®)(n/n;). This difference can be understood
conceptually by noting that, for large angle scatter-
ing, only those impurities at a distance smaller than
the Fermi wavelength A\; ~ n~'/2 contribute signifi-
cantly to scattering. We can therefore define, roughly
speaking, an effective 2D concentration of scattering
impurities as N\; ~ N/n'/2. Inserting N/n'/? for n;
gives ¢ oc (1/a?)(n3/?/N), similarly to Eq. (20). The
remaining factor 1/1n(1/a) in Eq. (20) is related to low-
angle scattering by distant impurities with z > A¢. So
far, we are unaware of any transport data for TIs that
shows o o n3/2. Recent conductivity measurements on
ultra-thin TIs (with a thickness ~ 10 nm < Ay) sug-
gest [39] that o x n, which is consistent with the 2D
model of impurities.

Our 3D model also yields a distinct result for the
minimum conductivity o,,;, that appears in the limit of
small average electron concentration. At small enough
chemical potential such that p < e>N'/?/a?/3k,, the
surface breaks into electron and hole puddles, and
we can think that the effective carrier concentration
saturates at ~ n, [see Eq. (10)]. An estimate of
Omin can therefore be obtained by setting n ~ n, in
Eq. (20), which gives [19] the result in Eq. (21). Two-
dimensional models of disorder impurities also pro-
duce a minimum conductivity that is independent of
the impurity concentration, but has a different de-
pendence on «. Specifically, at small «, such models
give omin ~ (€2/h)In(1/a) [34,40]. Our model sug-
gests a minimum conductivity that is larger by a factor
~ [aln?(1/a)] 1.

8. TI SURFACE WITH A GAP

In Secs. 5, 6, we discussed the disorder potential
created by Coulomb impurities at a gapless TI sur-
face, whose massless spectrum is protected by time-
reversal symmetry. On the other hand, a gap can be
opened at the TT surface by introducing some source of
time-reversal symmetry breaking, such as an external
magnetic field [4,41,42], proximity to a magnetic mate-
rial or magnetic impurities [43, 44], the proximity effect
from an adjacent superconductor [45], or electron tun-
neling between two nearby T1T surfaces [46,47] (see also
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Fig.7. Schematic illustration of a gap opening at
the TI surface between the conduction band (upper)
and the valence band (lower). With the addition of
some source of time-reversal symmetry breaking, the
ungapped dispersion relation (left) acquires an energy

gap U (right)

the review in Ref. [6]). The resulting gapped spectrum
is illustrated schematically in Fig. 7.

In this final section, we briefly discuss how the pres-
ence of the gap with a magnitude U affects the disor-
der potential at the surface and the mid-gap density
of states. We focus our discussion around the case
where the chemical potential y = 0, which roughly cor-
responds to the largest disorder potential and the min-
imum in the thermodynamic density of states. Again,
we limit our consideration to the case where the TT is
sufficiently thick and we can therefore describe impuri-
ties as three-dimensionally distributed.

In the absence of a gap, U = 0, the disorder po-
tential is well described by the results in the pre-
ceding section. In particular, the disorder poten-
tial width T' = Ty = (2'/6/7/a?/3)(e2N'/3/k,) (see
Eq. (8)) and the average density of states (v) = (v)g =
= (a3 )2'37) (ks N3 [€2) (see Eq. (16)). If the gap U
is small such that U <« T'g, then the disorder potential
at the surface is essentially unaffected by the gap, since
local fluctuations in the Fermi level are much larger
than U. For example, if the gapless surface spectrum
is replaced with a “massive” dispersion relation

E = +\/(wk)? + (U/2)2,

as plotted in Fig. 7, then we can estimate the first-order
effect of the gap by carrying out the self-consistent pro-
cedure outlined in Sec. 5. In particular, the gapped
dispersion relation in Eq. (25) has the corresponding
density of states

(25)

|E] U
B =1 o(|E-Z 2
W) = e (1E- ), )
where O(z) is the Heaviside step function. At

U/Ty < 1, we can assume a Gaussian distribution

674

of the Coulomb potential ¢ with some unknown vari-
ance I'?, integrate this distribution over ¢ multiplied
by v(—ep;U) to produce the thermodynamic density
of states (v), and then use the self-consistency relation
['? = e2N/ks(v) to arrive at a value for I' (see Eq. (15)).
Expanding the result of this procedure for small U /T
gives a slightly enhanced value for the disorder poten-
1+ —

tial width,
24rg) ‘

Similarly, the thermodynamic density of states is

slightly depleted:
U2
(v) = (v)o <1 - FF%) -

On the other hand, if U is much larger than Ty,
then the surface screens poorly and the disorder poten-
tial increases. In this case, screening of the disorder po-
tential by the surface occurs only nonlinearly, through
the formation of electron and hole puddles at locations
where the magnitude of the Coulomb potential energy
reaches the gap energy U/2. This is similar to the bulk
nonlinear screening discussed in Sec. 2, and naturally
produces T'(U) ~ U. The typical correlation length
of the disorder potential at the surface (the nonlinear
screening length) is given by
U?k2
Net”
as in Eq. (2), with E; — U.

We can estimate the corresponding concentration of
electrons /holes in surface puddles, n,, by noting that
a square area of size R?, at the surface should contain
sufficiently many electrons/holes to neutralize the net
charge of Coulomb impurities in the adjacent cubic vol-
ume R}, of the TI bulk. This gives n,R}; ~ \/NR},,
or in other words

U2

T(U) ~ Ty < (27)

~

(28)

Ry ~ (29)

e2N
kU’
The corresponding thermodynamic density of states
can be estimated by noting that when the chemical po-
tential p increases by an amount ~ U/2, surface hole
puddles should dry up and be replaced by a correspond-
ingly increased number of electron puddles. This sug-
gests (v) = du/dn ~ n, /U, which gives

(30)

TLPN

e2N
) ~ kU2’
We note that if the gap U is reduced to the point where

U ~ Ty, then (v) — (v)g, as can be seen by comparing
Eq. (31) with Eqgs. (8) and (16).

(31)
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Effects of bulk charged impurities on the bulk ...

Of course, these estimates assume that the surface
gap U is smaller than the bulk band gap E,, and con-
sequently that Ry < R, and therefore impurities near
the surface are not screened by bending of the bulk
bands. If the surface gap U is larger than F,, then the
disorder potential variance is truncated at T'(U) ~ E,
due to bulk screening.

We note that Egs. (30) and (31) were first derived in
Ref. [48] in the context of semiconductor heterostruc-
tures in a transverse magnetic field, where a 2D electron
gas experiences disorder from adjacent 3D impurities
and the gap U in the kinetic energy spectrum is pro-
vided by the Landau level spacing hw.. These authors
also showed how the disorder potential is reduced and
the density of states increased as the chemical potential
u increased from zero [48]. Specifically, T' ~ U — 2u
and (V) ~ 2N /ky (U —=2u)? if U =2 > e2N/3 /k,. Of
course, the effect of a transverse magnetic field for TTs
goes beyond simply opening a single gap at the Dirac
point [41,42]. We do not consider the full problem of
screening of Coulomb impurities in the presence of a
magnetic field here, but in principle this problem can
be dealt with along the lines of Ref. [48].
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