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EFFECTS OF BULK CHARGED IMPURITIES ON THE BULKAND SURFACE TRANSPORT IN THREE-DIMENSIONALTOPOLOGICAL INSULATORSB. Skinner, T. Chen, B. I. Shklovskii *Fine Theoretial Physis Institute, University of MinnesotaMN 55455, Minneapolis, USAReeived April 1, 2013Dediated to the memory of Professor Anatoly LarkinIn the three-dimensional topologial insulator (TI), the physis of doped semiondutors exists literally side-by-side with the physis of ultra-relativisti Dira fermions. This unusual pairing reates a novel playground forstudying the interplay between disorder and eletroni transport. In this mini-review, we fous on the disorderaused by the three-dimensionally distributed harged impurities that are ubiquitous in TIs, and we outline thee�ets it has on both the bulk and surfae transport in TIs. We present self-onsistent theories for Coulombsreening both in the bulk and at the surfae, disuss the magnitude of the disorder potential in eah ase, andpresent results for the ondutivity. In the bulk, where the band gap leads to thermally ativated transport, weshow how disorder leads to a smaller-than-expeted ativation energy that gives way to variable-range hoppingat low temperatures. We on�rm this enhaned ondutivity with numerial simulations that also allow us toexplore di�erent degrees of impurity ompensation. For the surfae, where the TI has gapless Dira modes,we present a theory of disorder and sreening of deep impurities, and we alulate the orresponding zero-temperature ondutivity. We also omment on the growth of the disorder potential in passing from the surfaeof the TI into the bulk. Finally, we disuss how the presene of a gap at the Dira point, introdued by somesoure of time-reversal symmetry breaking, a�ets the disorder potential at the surfae and the mid-gap densityof states.DOI: 10.7868/S00444510130901621. INTRODUCTIONThe three-dimensional (3D) topologial insulator(TI) [1�5℄ has generated great exitement in the physisommunity beause of its gapless surfae states, whihhost a spetrum of quantum transport phenomena[6; 7℄. Unfortunately, while a number of rystals havebeen identi�ed to be 3D TIs, most of them are notatually insulators, but instead have a relatively largebulk ondutivity that shunts the surfae ondutivityfor TI rystals of substantial thikness (& 10�m). Howto ahieve a bulk-insulating state is a problem that iswidely disussed in the urrent literature [8�16℄.Typially, as-grown TI rystals are heavily dopedn-type semiondutors, suh that the Fermi level re-sides in the bulk ondution band. In order to arrive*E-mail: shklovsk�physis.spa.umn.edu

at a bulk insulating state, suh TIs are ompensatedby aeptors. With inreasing the degree of ompensa-tionK = NA=ND, whereND andNA are the respetiveonentrations of monovalent donors and aeptors, theFermi level shifts from the ondution band to insidethe gap and then into the valene band. When ompen-sation of donors is omplete, K = 1, the Fermi level isin the middle of the gap and the most insulating stateof the TI is reahed. The hope is that for a TI with abulk band gap Eg � 0:3 eV (as, for example, in Bi2Se3),the bulk resistivity should obey the ativation law� = �0 exp(�=kBT ) (1)with the ativation energy � = Eg=2 � 0:15 eV, suhthat the TI is well insulating at room temperatures andbelow.The typial experimental situation near K = 1,however, is frustrating [15℄. In the range of temper-atures between 100 K and 300 K, the resistivity is a-662



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 E�ets of bulk harged impurities on the bulk : : :tivated, but with an ativation energy that is roughlythree times smaller than expeted, � � 50 meV. AtT � 100 K, the ativated transport is replaed byvariable-range hopping (VRH) and the resistivity growseven more slowly with dereasing T . Finally, at evensmaller temperature, T < 50 K, the resistivity satu-rates1) at a value < 10
m.In a reent paper [17℄, we showed that the unexpe-tedly large bulk ondutivity of TIs atK = 1 an be ex-plained as a onsequene of the enormously �utuatingrandom Coulomb potential reated by randomly posi-tioned donor and aeptor impurities. In later papers,we extended this analysis to the ase of near-ompleteompensation [18℄, K < 1 and 1 � K � 1, and weexamined the e�et of random Coulomb impurities onthe surfae disorder and transport properties [19℄. Inthis mini-review, our goal is to outline in a general waythe e�ets of random, 3D-distributed Coulomb impu-rities in TIs on both the bulk and surfae properties.We desribe the sreening mehanisms for the randomCoulomb potential both within the bulk of the TI andat the surfae, and we present preditions for the mag-nitude of the disorder potential and the ondutivity.Our theoretial treatment is also motivated by thereent experiments in Ref. [20℄, where the random po-tential at the surfae of typial TIs (Bi2Se3 and Bi2Te3)was studied diretly by spetrosopi mapping witha sanning tunneling mirosope. It was shown thatnear the Dira energy, random �utuations of the po-tential have a Gaussian-like distribution with a width� 20�40 meV that an be attributed to deep impurityharges. We show below that suh �utuations are on-sistent with disorder produed by three- dimensionallydistributed bulk Coulomb impurities that are sreenedby the gapless TI surfae.Cruial to our theoretial desription throughoutthis paper is the assumption of a random spatial distri-bution of impurities. This assumption is readily justi-�ed for TI samples made by ooling from a melt, wherethe distribution of impurities in spae is a snapshot ofthe distribution that impurities have at higher temper-ature, when their di�usion pratially freezes [21℄. In3D TIs, as in onventional narrow-band gap semion-dutors, the onentration of intrinsi arriers at thistemperature is larger than the onentration of impuri-ties. Intrinsi arriers thus sreen the Coulomb intera-tion between impurities, and hene impurities remainrandomly distributed in spae. When the temperatureis dereased to the point where intrinsi arriers reom-1) The authors of Ref. [15℄ interpret this saturation as the on-tribution of the surfae states.

bine, the impurities are left in random positions [22; 23℄.If the di�usion of impurities freezes at T � 1000 K, itis reasonable to assume that impurities are randomlypositioned for semiondutors with a bulk band gapEg � 0:3 eV. Throughout this paper, we deal withnarrow-band gap TIs, suh as Bi2Se3, for whih our de-sription of randomly positioned impurities is aurate.We also assume everywhere that donor and aeptorenergy levels are shallow, meaning that their bindingenergy is muh smaller than Eg .The remainder of this paper an be divided intotwo parts. In the �rst part, omprising Ses. 2�4, wefous on bulk properties, essentially treating the TI asa strongly or ompletely ompensated semiondutorand ignoring the surfae states. In Se. 2, we give aoneptual explanation of the bulk disorder potentialand the origin of the anomalously small bulk resistiv-ity. Setion 3 formulates a numerial model of the TIbulk and uses it to alulate the orresponding eletrondensity of states (DOS). In Se. 4, we present our algo-rithm for omputing the thermally ativated ondu-tivity, analyze our results, and arrive at an expressionfor the unusually small bulk ativation energy. We alsoevaluate the loalization length of states lose to theFermi energy and estimate the harateristi tempera-ture assoiated with VRH.The seond part of this paper, omprising Ses. 5�8,deals with the e�ets of Coulomb impurities on theproperties of the TI surfae. In Se. 5, we desribea self-onsistent theory of the sreened disorder poten-tial at the TI surfae and ompare it with experiment.Setion 7, uses this theory to alulate the ondutivityof surfae eletrons. Setion 6 brie�y disusses how theamplitude of the disorder potential transitions from itslarge bulk value to its smaller value at the surfae. Fi-nally, Se. 8 disusses an extension of our analysis tothe ase where the TI surfae has a gap introduedby some soure of time-reversal symmetry breaking.Where appliable, the major results of eah setion aresummarized at the beginning of the setion.2. ORIGIN OF THE ENHANCED BULKCONDUCTIVITYAs mentioned in the Introdution, randomly posi-tioned impurities reate a disordered Coulomb land-sape in the bulk of the TI, whih has the e�et of re-duing the ativation energy � relative to what ouldbe naively expeted based on �at valene and ondu-tion bands. In this setion, we explain this idea morefully, fousing �rst on the ase of omplete ompensa-663
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Fig. 1. Energy diagram of a) a ompletely ompen-sated semiondutor (K = 1) and b ) a strongly om-pensated semiondutor (1 � K � 1) with the bandgap Eg. The upper and the lower straight lines in-diate the unperturbed positions of the bottom of theondution band E and the eiling of the valene bandEv; the middle straight line orresponds to the Fermilevel �. Meandering lines represent the band edges,whih are modulated by the �utuating potential ofharged impurities. R is the harateristi size of po-tential �utuations. Perolation levels (mobility edges)for eletrons, Ee, and holes, Eh, are shown by dashedlines. Puddles oupied by arriers are shaded. Shallowimpurities levels are not shown beause they pratiallymerge with band edgestion, where the bulk transport an be desribed usingthe theory of a ompletely ompensated semiondutor(CCS) [23; 24℄.This theory is based on the idea that at K = 1,when almost all donors and aeptors are harged, ran-dom spatial �utuations of the loal onentration ofimpurities result in large �utuations of harge. Theirpotential is poorly sreened, beause of the vanish-ing average onentration n = ND � NA of eletrons,and therefore has huge �utuations. These �utuationsbend the ondution and valene band edges and insome plaes bring them to the Fermi level, reating ele-tron and hole puddles that in turn nonlinearly sreenthe random potential. As a result, the amplitude of po-tential �utuations is limited by Eg=2, and hene the

ground state, illustrated shematially in Fig. 1, resem-bles a network of p�n juntions [23; 24℄. The harater-isti size of these p�n juntions is [17℄R = E2g�28�Ne4 ; (2)whih an be thought of as the orrelation length of therandom potential. For the typial parameters Eg == 0:3 eV, ND = 1019 m�3, and dieletri onstant� = 30, this length sale R � 150 nm � N�1=3D == 4:6 nm. That is, we deal with a very long-rangepotential.As a result of these long-range �utuations, the re-sistivity an be dramatially di�erent from the naiveexpetation based on thinking about �at valene andondution bands. First, at relatively high temper-atures, the ativated ondutivity is due to eletronsand holes ativated from the Fermi level to their or-responding lassial perolation levels (lassial mobil-ity edges), Ee and Eh, in the ondution and the va-lene bands. Aording to numerial modeling in [17℄ atK = 1, the ativation energy is � � 0:15Eg, meaningthat Ee and Eh are substantially loser to the Fermilevel � than to the unperturbed bottom of the on-dution band, E, or eiling of the valene band, Ev(Fig. 1a). (E and Ev are the respetive energies ofthe ondution and valene bands in the absene ofa random potential.) Therefore, we an think of theuniversal small fator �=Eg � 0:15 as orrespondingto a perolation threshold assoiated with perolationthrough the potential reated by random Coulomb im-purities in 3D.Seond, at su�iently low temperatures, eletronsand holes an hop (tunnel) diretly between puddles,so that ativated transport is replaed by VRH. Weshowed in Ref. [17℄ that with dereasing temperature,the ativated resistivity rosses over diretly to theEfros�Shklovskii (ES) law [25℄� = �0 exp(TES=T )1=2; (3)where TES = Ce2=kB��, e is the eletron harge, � isthe loalization length of eletron states with energylose to the Fermi level, and C � 4:4 is a numerialoe�ient. Together our results for the ativated andVRH resistivity established the universal upper limit ofthe bulk resistivity �(T ) for a 3D TI ompensated byshallow impurities.In Ref. [18℄, we expanded our fous to onsider notjust the maximum possible bulk resistivity that appearsat K = 1, but to address the more pratial questionof the dependene of the bulk resistivity on the degree664



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 E�ets of bulk harged impurities on the bulk : : :of ompensation K at 1�K � 1. Indeed, the existingmethods of growth of TI samples do not allow obtain-ing K = 1 exatly, and it is important to know how theresults for a CCS, where K = 1, are extended to thease of a strongly ompensated semiondutor (SCS),for whih 0 < 1 � K � 1. For example, we an askat whih value of 1�K does the ativation energy �beome twie smaller than at K = 1. For de�niteness,we onsider an n-type SCS, where the onentrationof eletrons n = ND � NA � ND. We numeriallymodel the ground state of suh a SCS and its resistiv-ity using algorithms similar to those in Ref. [17℄. We�nd that, in agreement with analyti theory [23℄, as1�K inreases, the sreening of the random potentialimproves and the orrelation length R of the randompotential dereases. The amplitude of the random po-tential dereases as well; hole puddles shrink and even-tually vanish; and the hemial potential � moves up,and hene E � � dereases. We an say that withinreasing 1 � K, sreening ours by bending of theondution band only, while all aeptors remain o-upied by eletrons and negatively harged. All thesehanges are illustrated by the transition from a to b inFig. 1.As a result of these hanges with inreasing 1�K,the ativation energy � dereases. We �nd that the re-lation � = 0:3(E � �) obtained in Ref. [17℄ for K = 1remains valid for 1�K � 1 as well (see Fig. 6 below).(In p-type semiondutors, where K = ND=NA, a sim-ilar relation holds: � = 0:3(� � Ev).) At K = 0:97,the ativation energy� is already several times smallerthan at K = 1. This result shows that ahieving themaximum bulk resistivity, with � = 0:15Eg, is noteasy. It also helps to explain the origin of the largesatter in the magnitude of � among di�erent TI sam-ples [15℄.Our predition is that � = 0:3(E��) an in prin-iple be diretly ompared with experiments in TIs. In-deed, for eah K, the position of the Fermi level E��an be found via measurements of the onentration ofeletrons in the surfae states using Shubnikov�de-Haasosillations.At lower temperatures, the ativated bulk ondu-tion rosses over to ES VRH. In Se. 4, we study thisrossover numerially and also show how TES , whih isorrelated with �, dereases with 1�K.It should be mentioned that these results for thebulk ondutivity are also appliable to other narrow-gap semiondutors, for example, InSb. Historially,a large e�ort was made to make InSb insulating viastrong ompensation, with the goal of improving theperformane of InSb-based photodetetors. The results

were again frustrating: the dark resistivity was toosmall. Our results are in reasonable agreement withtransport experimental data for InSb [26; 27℄.3. MODEL OF BULK IMPURITIES AND THEDENSITY OF STATESTo study the bulk properties of a heavily doped SCSnumerially, we introdue a model of the bulk donorsand aeptors. In this setion, we �rst desribe our nu-merial model and then use it to alulate the positionof the Fermi level relative to the band edges as a fun-tion of the ompensation degree K and to evaluate thedensity of states of impurity states. Our major resultsare shown below in Figs. 2 and 3.Spei�ally, we model the bulk as a ube ontaininga large number of randomly positioned donors and a-eptors. We numerate all donors and aeptors by theindex i and use ni = 0 or 1 to denote the number ofeletrons residing on a donor or aeptor. We also in-trodue the binary variable fi to disriminate betweendonors (for whih fi = 1) and aeptors (fi = �1).The Hamiltonian of our system is thenH =Xi Eg2 fini +Xhiji V (rij )qiqj ; (4)where qi = (fi=2� ni +1=2) is the net harge of site i,V (r) is the interation energy between two likely-har-ged impurities at a distane r, and all energies are
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Fig. 2. Distane between the Fermi level � and the bot-tom of the ondution band E as a funtion of 1�K,as alulated by numerial simulation. Energies are inunits of e2N�1=3D =�, and the simulated band gap isEg = 15. The size of dots haraterizes the numerialunertainty665
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Eletron energy, "=EgFig. 3. Dimensionless single-eletron DOS g("), inunits of (1 + K)N=(e2N1=3=�), as a funtion of theeletron energy " alulated from the Fermi level. Re-sults are plotted for K = 0:95 and K = 1 using Eg == 15. Impurity states with " < 0 are oupied andthose with " > 0 are empty. At K = 1, the total DOSof impurities has the donor�aeptor symmetry, whihis lost as 1�K inreasesde�ned relative to the Fermi level. The �rst term inEq. (4) ontains the di�erene between the energies ofdonors and aeptors, whih in the ase of shallow im-purities is very lose to the semiondutor gap Eg . Theseond term of H represents the total interation en-ergy of harged impurities. We note that Eq. (4) doesnot inlude the kineti energy of eletrons and holes inthe ondution and valene bands and, therefore, aimsonly at a desription of the low-temperature physis ofSCS (kBT � E � �).The form of the interation law V (r) requires someonsideration. For two impurities at a distane r � aB ,where aB is the e�etive Bohr radius of impuritystates, we an use the normal Coulomb interationV (r) = e2=�r for V (r). For example, we an onsider apair of empty and distant donors. In suh a donor pair,one donor shifts the energy of the eletron level on theother by V (r) = �e2=�r. This lassial form for V (r) isgood for a lightly doped SCS. In a heavily doped SCS,on the other hand, where aB > N�1=3D , most impuri-ties have at least one neighbor at a distane r < aB ,and quantum mehanial averaging over the eletronwave funtion beomes important. (This is why an un-ompensated heavily doped semiondutor is a goodmetal.) For example, a pair of donors annot reate aneletron energy state deeper than that of the helium-like ion, whih has the binding energy 2e2=�aB. Theinteration law V (r) should therefore be �softened� atshort distanes r < aB to re�et quantum mehanial

e�ets. We model this behavior by ontinuing to usethe lassial Hamiltonian in Eq. (4) with a trunatedCoulomb potential V (r) = e2=�(r2 + a2B)1=2.Below, it is onvenient to express energies in unitsof e2N1=3D =�. In these units, a typial TI with the bandgap 0:3 eV has Eg � 30. We unfortunately ould notmodel Eg = 30 diretly, sine in this ase the very largeorrelation length of the random potential, R, leads tolarge size e�ets. Instead, we present results for themore modest value Eg = 15, for whih the size e�etrequires extrapolation [17℄ only for K = 1. Results forthe smaller Eg = 10 are largely idential [17℄.In our numerial simulations, we �rst randomlyplae donors and aeptors within the simulationvolume; the results presented below orrespond toM = 20000 donors and 20000K aeptors. We thensearh for the arrangement of eletrons (or equivalently,the set of eletron oupation numbers fnig) that min-imizes H , and we use this set to alulate the DOS andthe ondutivity. We begin our searh from the statewhere all MK aeptors are populated by eletronsand negative (ni = 1; qi = �1), and where an equalnumber of randomly hosen donors are empty and pos-itive (ni = 0; qi = 1), while the remaining M(1 �K)donors are �lled and neutral (ni = 1; qi = 0). Theharged donors and aeptors in this initial state re-ate a random potential whose magnitude exeeds Eg ,and as a result the system energy is well above thatof the ground state. To bring the system loser to itsground state, we attempt sequentially to transfer ele-trons from an oupied impurity (either a neutral donoror a negatively harged aeptor) to an unoupied one(a positively harged donor or a neutral aeptor). Ifthe proposed move dereases the total system energyH , then it is aepted, otherwise it is rejeted. Tohek whether H dereases with eah proposed move,for a given set of eletron oupation numbers fnig,it is onvenient to introdue the single-eletron energystate "i at a given impurity i:"i = Eg2 fi �Xj 6=i V (rij )qj : (5)In the ground state, single-eletron energies must sat-isfy the ES riterion"j � "i � V (rij) > 0 (6)for all i, j with ni = 1 and nj = 0. We use our nu-merial simulation to loop through all pairs of impuritysites i, j and enfore this riterion; if a given pair doesnot satisfy Eq. (6), then we move the eletron fromimpurity i to j and realulate all "i. This proess is666



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 E�ets of bulk harged impurities on the bulk : : :ontinued until no single-eletron transfers are possiblethat derease H . The �nal arrangement of eletronsan be alled a pseudo-ground state, sine higher-orderstability riteria of the true ground state (orrespond-ing to simultaneously hanging three or more eletronnumbers) are not heked. Suh pseudo-ground statesare known to desribe the properties of real groundstates with a high degree of auray [23; 28℄. The re-sults below are obtained at Eg = 15 and aB = N�1=3Dfor K = 1; 0:99; 0:98; 0:97; 0:96, and 0:95, and are aver-aged over 100 realizations of the impurity oordinates.For eah pseudo-ground state, we estimate theFermi energy � as the arithmeti average of the min-imum empty and maximum oupied energies ". Theresults are shown in Fig. 2, whih shows how the Fermilevel �(K) shifts from the middle of the gap towardthe ondution band bottom as 1 � K inreases. At1 �K > 0:01, this dependene is in reasonable agree-ment with the predition of the single-band theory(whih ignores the valene band and aeptors) [23℄that E � � = A(1 � K)�1=3, where A is a numer-ial oe�ient. We note, however, that for heavilydoped SCS, the oe�ient Ah � 1:4 is twie smallerthan the oe�ient Al � 2:8 obtained in Ref. [23℄ for alightly doped SCS, for whih NDa3B � 1. In the latterase, the short-range Coulomb interation at distanesr � N�1=3D leads to an additional ontribution to � ofthe same order of magnitude.The resulting DOS of impurities is shown in Fig. 3for K = 1 and K = 0:95. g�(") is the DOS in theunits of (1 + K)ND=(e2N1=3D =�) and is normalized tounity. At K = 1, the nearly onstant and symmetriDOS between " = �Eg and " = Eg re�ets the prati-ally uniform distribution of the random potential from�Eg=2 to Eg=2 and, orrespondingly, of the respetiveband edges E and Ev between 0 to Eg and between 0to �Eg (see Fig. a). Near the Fermi level (" = 0), wean see the ES Coulomb gap [25℄.On the other hand, at K < 1, the DOS of impu-rity states loses the donor�aeptor symmetry it has atK = 1. As desribed in Se. 2 (see Fig. 1), as 1 �Kinreases, hole puddles are eliminated and hene a-eptors beome disengaged from sreening. The a-eptor DOS (leftmost peak in Fig. 3) therefore splitsfrom the donor one, whih in turn develops two peaksseparated by the Fermi level at " = 0. The large rightpeak belongs to empty donors, while the small and nar-row left peak belongs to oupied donors (eletron pud-dles). These two donor peaks are separated by the ESCoulomb gap.

4. NUMERICAL MODELING OF THERMALLYACTIVATED CONDUCTIVITYIn the preeding setion, we desribed our proe-dure for �nding the energy levels of donor and aeptorimpurities in the pseudo-ground state. We now disusshow these results an be used to alulate the bulkondutivity of a SCS, and we present results for theondutivity both in the high-temperature, ativatedregime and in the low-temperature, VRH regime. Ourmajor results are twofold. First, we �nd that in the a-tivated regime, the ativation energy dereases as thehemial potential approahes the ondution band a-ording to � � 0:3(E � �) (see Fig. 6 below). Se-ond, we study how the harateristi temperature TESin the VRH regime depends on ompensation, and we�nd that TES � 4:4q�(e2N1=3D =�).Our proess for numerially alulating the re-sistivity is as follows. One the energies f"ig areknown (alulated using the proedure desribed inSe. 3), we evaluate the resistivity using the approahof the Miller�Abrahams resistor network [23; 29℄.In this desription, eah pair of impurities i; j issaid to be onneted by a link with the resistaneRij = R0 exp[2rij=� + "ij=kBT ℄, where the ativationenergy "ij is de�ned [23℄ as"ij = ( j"j � "ij � V (rij); "j"i < 0;max [j"ij ; j"j j℄ ; "j"i > 0: (7)The resistivity of the system as a whole is found us-ing a perolation approah [23℄. Spei�ally, we �ndthe minimum resistane R suh that if all links withresistane Rij > R are ut, then there still exists aperolation pathway onneting opposite faes of thesimulation volume. This approah aptures the expo-nential dependene of the resistivity on the tempera-ture, and we ignore details of the prefator. Below,we plot the temperature in the dimensionless unitsT � = 2kBT�=e2N2=3D � and the resistivity � using thedimensionless quantity (ln �)� = (�N1=3D =2) lnR=R0.These dimensionless units eliminate any expliit depen-dene on the loalization length �.In Fig. 4, the resulting resistivity is plotted as afuntion of (T �)�1=2 over the huge range of tempera-ture 200 > T � > 0:03 for four di�erent values of theompensation degree K. The resulting linear depen-dene at 0:3 > T � > 0:03 indiates that at low tempera-tures, the resistivity is desribed well by the ES law (seeEq. (3)). The higher-temperature range 200 > T � > 1is plotted separately as a funtion of 1=T � in Fig. 5.Here, the linear slope suggests a well-de�ned ativa-667
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Fig. 4. The temperature dependene of the resistiv-ity in the whole temperature range 200 > T � > 0:03.The dimensionless resistane (ln�)� is plotted against(T �)�1=2 to illustrate that the resistivity follows the ESlaw at low temperatures. The lines are the best linear�ts
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Fig. 5. The temperature dependene of the resistivityin the high-temperature range 200 > T � > 1. The di-mensionless resistane (ln �)� is plotted against (T �)�1to illustrate that the resistivity is ativated at high tem-peratures. The dashed lines are the best linear �tstion energy that depends on the ompensation degreeK. At extremely high T � & 50, whih generally orre-sponds to unrealistially large temperatures, the on-dution is dominated by ativation of arriers arossthe band gap, whih is not aptured by our model.Extrating the slope of the urves in Fig. 5 (dashedlines) gives an estimate of the ativation energy � asa funtion of K. Combining this result with the val-ues for the hemial potential �(K) alulated in Se. 3yields the data shown in Fig. 6, where � is plotted asa funtion of E � � for all the studied values of om-pensation K = 1; 0:99; 0:98; 0:97; 0:96; 0:95. We an see
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Fig. 6. The ativation energy � as a funtion of thedistane between the Fermi level and the ondutionband, plotted for K = 1:0, 0:99, 0:98, 0:97, 0:96, and0:95 (from right to left). The dashed line is the bestlinear �t, � � 0:3(E � �). All energies are plotted inunits of the band gap Egthat the equation � � 0:3(E � �) holds reasonablywell for all K in this interval.So far, we have emphasized results that do not ex-pliitly depend on the loalization length �. In fat,� determines the magnitude of TES, and therefore de-termines the value of temperature at whih the on-dution transitions from ativated to VRH behavior.We argue now that in a TI, � is quite large, leading toa prominent role for VRH. To see this, we an imag-ine an eletron with energy lose to the Fermi level,tunneling from one eletron puddle to another, dis-tant one. If suh an eletron were to tunnel along thestraight line onneting the two puddles, it would tun-nel through high barriers and its wave funtion woulddeay sharply, with a deay length � � aB . But thisstraight line does not onstitute the path of least ationfor the tunneling eletron. Instead, a tunneling ele-tron an use the same geometrial path as a lassialperolating eletron, whih has an energy � above theFermi level, and thereby avoid large barriers. We anroughly estimate the tunneling deay length by assum-ing that along suh a �perolating� tunneling path, thepotential energy barriers V are uniformly distributedin the range 0 � V � � and negleting the additionalontribution to the ation assoiated with urvature ofthis path. Integration over V then gives a loalizationlength � � ~=pm� and kBTES = 4:4(m�)1=2(e2=�~).For a TI with aB = N�1=3D , this implies that kBTES == 4:4q�(e2N1=3D =�).668



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 E�ets of bulk harged impurities on the bulk : : :The dependene TES / p� implies that when �inreases � 2:5 times, as in Fig. 6 orresponding tothe di�erene between K = 0:95 and K = 1, the EStemperature TES inreases by � 60%. For a TI with� = 30 and ND = 1019 m�3, this orresponds to avariation in TES from 500 to 800 K. The regime of ESVRH in TIs an be studied experimentally, but suha study requires su�iently thik samples for the bulkondution to provide a larger ontribution to the totalondutane than the TI surfaes.5. SELF-CONSISTENT THEORY OF THESURFACE DISORDER POTENTIALIn the �rst part of this paper, we showed how thebulk ondution is strongly in�uened by the preseneof random Coulomb impurities, whih produe largebending of the bulk ondution and valene bands. Wenow turn our attention to the problem of how thesesame impurities a�et the surfae transport providedby the Dira-like surfae states. For this problem, weadopt the same model of monovalent Coulomb impu-rities that are randomly distributed throughout thebulk of the TI, and we fous our attention on thease of omplete (or nearly omplete) ompensationND = NA � N , where the Fermi level lies within thebulk band gap. As we show below, for determiningthe properties of the surfae, we an safely ignore theweak nonlinear sreening by eletron and hole puddlesformed in the bulk (illustrated in Fig. 1).In this setion, we present a self-onsistent theoryfor the magnitude of the disorder potential at the TIsurfae, following Ref. [19℄. Our primary result is anexpression for the amplitude of �utuations of the ele-tri potential energy � at the TI surfae as a funtionof the hemial potential, �, measured relative to theDira point. In partiular, for � = 0, we show belowthat �2 = 3p2��4=3 �e2N1=3�s �2 (� = 0); (8)where � = e2=�s~v is the e�etive �ne struture on-stant, �s is the e�etive dieletri onstant at the sur-fae, and v is the Dira veloity. This expression de-sribes sreening of the disorder potential via the for-mation of eletron and hole puddles at the TI surfae.The harateristi size of these puddles is given byrs = N�1=322=3�4=3 (� = 0); (9)

and the orresponding total number of eletrons (orholes) per unit area in surfae puddles is given bynp = � �16�2=3N2=3 (� = 0): (10)Equations (8)�(10) are derived below, along with re-sults orresponding to large �. Below we also derive asimple relation for the autoorrelation funtion of thepotential at the TI surfae, whih has an unusuallyslow deay and an be used to verify the bulk originof disorder. These results were on�rmed by numerialsimulation in Ref. [19℄.Our primary tool for desribing sreening of theeletri potential is the Thomas�Fermi (TF) approx-imation, whih applies in the limit where the potential�(r) varies slowly ompared to the harateristi Fermiwavelength of eletrons at the surfae. Spei�ally, theTF approximation gives� = Ef [n(r)℄� e�(r); (11)where Ef (n) = ~vp4�jnj sign(n) = (e2=��s) �� p4�jnj sign(n) is the loal Fermi energy and n(r)is the 2D eletron onentration at the point r on thesurfae. The TF approximation is justi�ed whenever� � 1, as we show below. In TIs, suh a small � anbe seen as the result of the large bulk dieletri on-stant � & 30. We note here that for desribing theproperties of the surfae state, whih exists at a diele-tri disontinuity, the e�etive dieletri onstant �sshould be taken as the arithmeti mean of the internaland external dieletri onstants. If the TI is in thevauum, then �s = (�+ 1)=2 � �=2.When the hemial potential is large enough in mag-nitude suh that �2 � e2h�2i, where h: : : i denotes av-eraging over the TI surfae, the expression for Ef (n)an be linearized to Ef [n(r)℄ � �+ Æn(r)=�(�), whereÆn(r) = n(r)� n0 is the di�erene in the eletron on-entration relative to the state with zero eletri poten-tial, n0 = �2�2s�2=(4�e4), and �(�) = �2�2sj�j=(2�e4)is the density of states at Ef = �. From this den-sity of states, we an de�ne the sreening radius rs == �s=2�e2� = e2=�2�s� that haraterizes the dis-tane over whih �utuations in the Coulomb potentialare sreened by the surfae. The TF approximationis valid when the Fermi wavelength �f � n�1=20 �� e2=��s� is muh smaller than rs, whih gives theondition �� 1.We an understand the magnitude of the potential�utuations � qualitatively using the following simpleargument. For a given point on the TI surfae, we ansay that only impurities within a distane R0 . rs on-tribute to the potential; those impurities at a distane669



B. Skinner, T. Chen, B. I. Shklovskii ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013R0 � rs are e�etively sreened out (we an say thatthey are sreened by their image harges in the �metal-li� TI surfae). Impurities with R0 < rs, on the otherhand, are essentially unsreened. There are� Nr3s suhimpurities, and their net harge is of the order of Q �� epNr3s , with a random sign. The absolute value ofthe potential at the surfae is then � Q=�srs, whene� � eQ=�srs � (e2N1=3=�s)(Nr3s)1=6 � pe2N=�s� ��pe4N=�2�3sj�j.In order to more aurately derive the value of �,we an start by onsidering the potential reated bya single impurity harge +e. When suh an impurityharge is plaed at a distane z from the TI surfae(say, above the origin), it reates a potential �1(r; z)that within the TF approximation is given by [30℄�1(r; z) = e�s 1Z0 exp[�qz℄1 + (qrs)�1 J0(qr) dq; (12)where J0(x) is the zeroth-order Bessel funtion of the�rst kind. At large z=rs, Eq. (12) an be expanded togive �1(r; z) � e�s zrs(r2 + z2)3=2 : (13)A simple physial derivation of Eq. (13) is based onthe notion [31℄ that for a distant impurity, suh thatz � rs, a surfae with a sreening radius rs e�etivelyplays the role of a metalli surfae positioned belowthe real surfae at the distane z = �rs=2. Equation(13) an then be viewed as the sum of the potentialsreated by the original harge at the distane z abovethe plane and its opposite image harge at the distanez + rs below the plane, expanded to the lowest orderin rs=z.The total potential at the origin is �(0) ==Pi qi�1(ri; zi), where the index i labels all impurityharges, qi is the sign of impurity i, and ri and zi arethe radial and azimuthal oordinates of its position.Under the assumption that all impurity positions areunorrelated and randomly distributed throughout thebulk of the TI, the average of �2 is given byh�2i = Z [�1(r0; z0)℄2 2Nd2r0dz0: (14)Here, the quantity 2Nd2r0dz0 desribes the probabil-ity that the volume element d2r0dz0 ontains an im-purity harge, and the integration is taken over thesemi-in�nite volume of the bulk of the TI. The widthof the disorder potential at the TI surfae, �, is de�ned

by �2 = e2h�2i. Inserting Eq. (12) into Eq. (14) andtaking the integral then gives�2 = e2N�s� = 2�e4N�2�3sj�j �j�j � e2N1=3�s�2=3 � : (15)Equation (15) is orret so long as the �utuations inthe Coulomb potential energy are small ompared tothe hemial potential, or � � j�j; this gives the on-dition written in parentheses.On the other hand, when j�j is very small, the �u-tuations in the Coulomb potential beome large om-pared to the hemial potential, and we annot speak ofa spatially uniform loal density of states � or a sreen-ing radius rs. Instead, the Fermi energy has strong spa-tial variations, and the random potential is sreened bythe formation of eletron and hole puddles at the sur-fae. Nonetheless, we an de�ne an average densityof states h�i at the surfae, whih self-onsistently de-termines the typial sreening radius rs and the mag-nitude of the potential �utuations at the TI surfae.This value h�i an be equated to the thermodynamidensity of states of the system, d�=dhni, where hni isthe overall eletron onentration of the surfae.For example, we onsider the ase � = 0, whereby the symmetry argument, the average value of thepotential h�i = 0. At any given point r on thesurfae, the potential �(r) is the sum of ontribu-tions from many individual impurity harges underthe ondition that the harateristi sreening radiusrs = �s=2�e2h�i � N�1=3. This implies that, by theentral limit theorem, the value of the potential arossthe surfae is Gaussian-distributed with some varianeh�2i = �2=e2 that remains to be alulated. Withinthe TF approximation, the loal density of states at thepoint r is �[�e�(r)℄ = e�2�2sj�(r)j=(2�e4), and henewe an alulate the average density of states ash�i = 1Z�1 �(�e�)exp ��e2�2=2�2�p2��2=e2 d� == �2�2s�p2�3e4 (� = 0): (16)This result for h�i an be inserted into the �rst equalityin Eq. (15), �2 = e2N=�sh�i, to give a self-onsistentrelation for the amplitude of potential �utuations [32℄.This proedure gives the result �rst announed at thebeginning of this setion, Eq. (8). Substituting Eqs. (8)and (16) in the expression for the sreening radius,rs = �s=2�e2h�i, gives Eq. (9).We an also alulate the total onentration ofeletrons/holes in surfae puddles, np, implied by this670



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 E�ets of bulk harged impurities on the bulk : : :result for �2. This is done by �rst inverting theTF relation, Eq. (11), at � = 0 to give n(�) == (�2�2s=4�e2)�2 sign(�). Integrating this expressionfor n(�) weighted by the Gaussian probability distri-bution for � givesnp = 1Z0 n(�)exp ��e2�2=2�2�p2��2=e2 d� == �2�2s�28�e4 (� = 0):Substituting the result in Eq. (8) for �2 then givesEq. (10). We an also ombine this result for theresidual eletron/hole onentration np with the ex-pression for the sreening radius rs to arrive at an es-timate for the number of eletrons/holes per puddle:Mp � �npr2s � �=16�2. Apparently, at small � pud-dles typially ontain many eletrons/holes, Mp � 1.Our primarily results, outlined in Eqs. (8)�(10), arevalid within the TF approximation so long as the typ-ial Fermi wavelength �f � e2=��s� is muh smallerthan the typial sreening radius rs � e2=�2�s� whihagain gives the ondition �� 1.As we mentioned above, at � = 0, the sreeningradius rs desribes the harateristi size of eletron orhole puddles at the TI surfae. More generally, rs playsthe role of a length sale over whih potential �utu-ations at the surfae are orrelated. Suh orrelationsan be disussed in a quantitative way by de�ning thepotential auto-orrelation funtionC(r) = h�(R0)�(r0 + r)ir0 ; (17)where h: : : ir0 denotes averaging over the spatial oor-dinate r0, and where by symmetry the orrelation fun-tion depends on jrj = r only. In the remainder of thissetion, we derive approximate analyti results for C(r)and show that spatial orrelations in the potential havean unusually slow deay.At r = 0, Eq. (17) reprodues the de�nition ofh�2i, whene C(0) = �2=e2. At small enough dis-tanes suh that r � rs, we an expet that thevalue of C(r) is determined primarily by unsreenedimpurities that are within a distane rs from the sur-fae, as explained above in deriving �2. On the otherhand, at r � rs, orrelations are produed primar-ily by impurities that are relatively far from the sur-fae, as an be seen from the following saling argu-ment. We onsider two surfae points separated by adistane r � rs and imagine drawing a ube of size rthat extends into the bulk of the TI and whih on-tains the two surfae points on opposite edges of one

of its faes. Suh a ube ontains � Nr3 impurities,and has a net impurity harge with the magnitudeq � epNr3 and random sign. These impurity hargesare loated at a mean distane � r � rs above thesurfae and therefore by Eq. (13), ontribute a net po-tential � qrs=�sr2 � (e=�s)pNr2s=r to both surfaepoints. The square of this potential roughly gives theautoorrelation of the potential, C(r) � e2Nr2s=�2sr.A more areful expression for C(r) an be derivedby writingC(r) = Z �1(r0; z0)�1(r0 � r; z0)2Nd2r0dz0; (18)similarly to Eq. (14). Inserting the asymptoti expres-sion of Eq. (13) for �1 and evaluating the integral givesC(r) � 2�e2Nr2s�2sr = �2=e2r=rs � rrs � 1� : (19)This result was also on�rmed by numerial simulationin Ref. [19℄.Equation (19) implies an unusually slow deay ofpotential orrelations at the surfae, whih, as ex-plained above, arises from long-range �utuations ofthe potential reated by deep bulk impurities. This be-havior an be ontrasted with the muh faster deayof C(r) that would result from a two-dimensional (2D)distribution of Coulomb impurities at a distane d fromthe surfae2): C(r) � e2nidr2s=�2sr3, where ni is the 2Dimpurity onentration. Thus, studying C(r) experi-mentally by sanning tunneling mirosopy allows dis-riminating between disorder by bulk impurities anddisorder by impurities loated in a layer lose to thesurfae.We now disuss the magnitude of � and rs impliedby these expressions for typial TIs, whih generallyhave the impurity onentration N � 1019 m�3. Typ-ial values of the Dira veloity and �ne struture on-stant for TIs an be taken from Ref. [20℄, whih reports~v = 1:3 eVÅ and estimates � = 0:24. Using these pa-rameters gives � � 30 meV and rs � 20 nm at theDira point � = 0. At large j�j & 30 meV, both �2 andrs deay as 1=j�j.As mentioned in the Introdution, the theory pre-sented in this setion provides a good desription ofthe reent experimental results in Ref. [20℄, where therandom potential at the surfae of the 3D TIs Bi2Se3and Bi2Te3 was studied using a sanning tunneling mi-rosope [19℄. Indeed, it was found in these experi-ments that the eletri potential at the surfae was2) This result an be obtained by replaing the bulk impurityharge density 2N in Eq. (18) with niÆ(z � d).671



B. Skinner, T. Chen, B. I. Shklovskii ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013well haraterized by a Gaussian distribution with astandard deviation � � 10�20 meV, and the hara-teristi length sale of potential �utuations was es-timated as rs � 20�30 nm. We an ompare thesemeasurements to our theoretial preditions by usingthe parameters listed above and inserting the measuredhemial potential � � 100 meV into Eq. (15). Thisgives � � 18 meV and the orresponding sreening ra-dius rs � 5 nm, and therefore our theory is indeedin reasonably good agreement with experiment. Fur-ther, Ref. [20℄ found that the disorder potential at thesurfae was not orrelated with the position of surfaeimpurities, indiating that the surfae disorder poten-tial originates primarily from impurities deep below theTI surfae, as we have desribed.Throughout this setion, we have worked withinthe assumption that bulk impurities are ompletelyionized, or in other words, there is no sreening byondution-band eletrons or valene-band holes in thebulk. Suh an assumption is valid when the hemialpotential resides in the middle of a large bulk band gap.In this ase, donors or aeptors an only be neutral-ized by very large band bending disussed in Se. 2 (seeFig. 1). Suh �utuations our over a long length saleR that sales as the square of the distane between theFermi level and the nearest band edge (see Eq. (2)) andis typially on the order of hundreds of nanometers fortypial TIs [17℄. On the other hand, near the surfaeof the TI, the potential �utuations are sreened muhmore e�etively and over a muh shorter distane, rs,by the (ungapped) surfae states. As shown above, rsis typially . 20 nm, and the amplitude of surfae po-tential �utuations is � � 30 meV � Eg � 300 meV.We an therefore safely assume that there is no largeband bending near the surfae and we an indeed treatbulk impurities as ompletely ionized. The e�et ofbulk sreening should appear only in the long-rangebehavior of the orrelation funtion, r � R, where the1=r deay of C(r) is trunated and, as an be shown,is replaed with C(r) � e2NRr2s=�2sr2.Finally, we note that our theory ignores the possi-bility of sreening by material outside the TI. For ex-ample, if the TI is plaed next to a metal eletrodeor an ioni liquid [33℄, then this external material ansreen the large potential �utuations reated by thebulk, thereby dereasing � and rs.6. FROM SURFACE TO BULKWe showed in Se. 2 that deep within the bulk ofthe TI, the disorder potential has large �utuations of

the order of � � Eg . On the other hand, we showed inSe. 5 that at the TI surfae, the disorder potential hasa muh smaller amplitude, � � (e2N1=3=��2=3). In thissetion, we elaborate brie�y on the rossover betweenthese two results, or in other words we desribe howthe amplitude of potential �utuations grow in passingfrom the surfae of the TI to the bulk.Generally speaking, in moving over a distane z > 0into the bulk of the TI, the amplitude of the disorderpotential inreases in magnitude. In order to see quan-titatively how � inreases as a funtion of z, we antemporarily assume that the TI surfae is equivalentto a perfet metalli plane. In this ase, eah impurityat position (r0; z0) has a orresponding image harge at(r0;�z0), and the total potential at (0; z) is equal to thesum of the potentials reated by the original impurityand its image. We an alulate �2(z) by averagingthe square of this potential over all possible positionsof the impurity harge [as in Eq. (14)℄. This alula-tion gives �2(z) = 8�Ne4z=�2. That is, �2(z) inreaseslinearly with the distane z from the TI surfae. Thisinrease ontinues until � beomes large enough suhthat �2(z) = (Eg=2)2, at whih point eletron and holepuddles begin to form in the bulk and we arrive atthe bulk sreening piture desribed in Ref. [17℄. Thisdistane orresponds to z = R=4; at smaller z, the po-tential �utuations are small enough for pratially alldonors and aeptors to be harged.We an now reall that the TI surfae is not per-fetly metalli, and that its sreening length rs is �nite,and therefore �2(z) should be somewhat larger. In fat,at z � rs we an still use the formula above for �2(z)by introduing a small modi�ation allowing for thefat that the metalli surfae is e�etively shifted tothe position z = �rs=2 (as disussed in Se. 5). Mak-ing this adjustment gives �2(z) = 8�Ne4(z + rs=2)=�2at z � rs, whih does not signi�antly alter our on-lusions. 7. SURFACE CONDUCTIVITYWe now turn our attention to the problem of howthe 3D-distributed Coulomb impurities within the TIbulk a�et the surfae ondutivity. As disussed atthe beginning of Se. 5, we limit our onsideration tothe ase where the Fermi level resides within the bulkband gap, where we an safely assume that all relevantbulk impurities are ionized.Our primary result is an expression for the ele-tron ondutivity � of the surfae as a funtion of theaverage 2D surfae eletron onentration n. In par-672



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 E�ets of bulk harged impurities on the bulk : : :tiular, when n � np, where np is the typial puddleonentration at � = 0 (see Eq. (10)), we �nd that theondutivity is given by� � e2h 2p��2 ln(1=�) n3=2N ; (20)where e2=h is the ondutane quantum. At muhsmaller eletron onentrations n � np, the ondu-tivity saturates at a value �min, whih we estimate as�min � e2h 1�� ln(1=�) : (21)To derive these results, we �rst note that in the limitof large hemial potential �, where the eletron den-sity is only weakly modulated by the disorder potential,it an be shown using the Boltzmann kineti equationthat for eletrons with a massless Dira spetrum, theondutivity is given by [34�37℄� = e2h ��4~ ; (22)where � is the momentum relaxation time. In the limitof zero temperature, the sattering rate 1=� an befound by integrating the squared sattering potentialprodued by a given impurity over all impurities andover all sattering angles. More simply, we an arriveat an expression for 1=� by taking the result for thesattering rate of a 2D layer of impurities with the on-entration ni at a distane z (for example, Eq. (38) inRef. [35℄), replaing ni with 2Ndz, and then integratingover all planes z ontaining impurities. This proeduregives1� = kf��s4�~e2 1Z0 2N dz �� �Z0 d� �~�1 �2kf sin �2 ; z��2 (1� os2 �): (23)In this equation, kf = ��s�=e2 is the Fermi wave-length, ~�1(q; z) = (2�e2=�sq) exp[�qz℄=[1 + (qrs)�1℄ isthe sreened potential (in momentum spae) reated bya single impurity at position z, and q = 2kf sin(�=2) isthe hange in momentum assoiated with sattering byan angle �.Evaluating the integral in Eq. (23) at small � gives1� � �� ln� 1�� e2N~�sk2f : (24)Inserting this result for � into Eq. (22) and substitut-ing � = e2kf=��s and kf = p4�n yields the result for

ondutivity announed at the beginning of the setion,Eq. (20).Equation (20) an be ontrasted with the widelyused result for the 2D model of harge impuri-ties [34; 35; 37; 38℄, for whih the ondutivity is lin-early proportional to the eletron density: �=(e2=h) �� (1=�2)(n=ni). This di�erene an be understoodoneptually by noting that, for large angle satter-ing, only those impurities at a distane smaller thanthe Fermi wavelength �f � n�1=2 ontribute signi�-antly to sattering. We an therefore de�ne, roughlyspeaking, an e�etive 2D onentration of satteringimpurities as N�f � N=n1=2. Inserting N=n1=2 for nigives � / (1=�2)(n3=2=N), similarly to Eq. (20). Theremaining fator 1= ln(1=�) in Eq. (20) is related to low-angle sattering by distant impurities with z � �f . Sofar, we are unaware of any transport data for TIs thatshows � / n3=2. Reent ondutivity measurements onultra-thin TIs (with a thikness � 10 nm � �f ) sug-gest [39℄ that � / n, whih is onsistent with the 2Dmodel of impurities.Our 3D model also yields a distint result for theminimum ondutivity �min that appears in the limit ofsmall average eletron onentration. At small enoughhemial potential suh that � � e2N1=3=�2=3�s, thesurfae breaks into eletron and hole puddles, andwe an think that the e�etive arrier onentrationsaturates at � np [see Eq. (10)℄. An estimate of�min an therefore be obtained by setting n � np inEq. (20), whih gives [19℄ the result in Eq. (21). Two-dimensional models of disorder impurities also pro-due a minimum ondutivity that is independent ofthe impurity onentration, but has a di�erent de-pendene on �. Spei�ally, at small �, suh modelsgive �min � (e2=h) ln(1=�) [34; 40℄. Our model sug-gests a minimum ondutivity that is larger by a fator� [� ln2(1=�)℄�1.8. TI SURFACE WITH A GAPIn Ses. 5, 6, we disussed the disorder potentialreated by Coulomb impurities at a gapless TI sur-fae, whose massless spetrum is proteted by time-reversal symmetry. On the other hand, a gap an beopened at the TI surfae by introduing some soure oftime-reversal symmetry breaking, suh as an externalmagneti �eld [4; 41; 42℄, proximity to a magneti mate-rial or magneti impurities [43; 44℄, the proximity e�etfrom an adjaent superondutor [45℄, or eletron tun-neling between two nearby TI surfaes [46; 47℄ (see also15 ÆÝÒÔ, âûï. 3 (9) 673
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Fig. 7. Shemati illustration of a gap opening atthe TI surfae between the ondution band (upper)and the valene band (lower). With the addition ofsome soure of time-reversal symmetry breaking, theungapped dispersion relation (left) aquires an energygap U (right)the review in Ref. [6℄). The resulting gapped spetrumis illustrated shematially in Fig. 7.In this �nal setion, we brie�y disuss how the pres-ene of the gap with a magnitude U a�ets the disor-der potential at the surfae and the mid-gap densityof states. We fous our disussion around the asewhere the hemial potential � = 0, whih roughly or-responds to the largest disorder potential and the min-imum in the thermodynami density of states. Again,we limit our onsideration to the ase where the TI issu�iently thik and we an therefore desribe impuri-ties as three-dimensionally distributed.In the absene of a gap, U = 0, the disorder po-tential is well desribed by the results in the pre-eding setion. In partiular, the disorder poten-tial width � = �0 � (21=6p�=�2=3)(e2N1=3=�s) (seeEq. (8)) and the average density of states h�i = h�i0 �� (�4=3=21=3�)(�sN1=3=e2) (see Eq. (16)). If the gap Uis small suh that U � �0, then the disorder potentialat the surfae is essentially una�eted by the gap, sineloal �utuations in the Fermi level are muh largerthan U . For example, if the gapless surfae spetrumis replaed with a �massive� dispersion relationE = �p(~vk)2 + (U=2)2; (25)as plotted in Fig. 7, then we an estimate the �rst-ordere�et of the gap by arrying out the self-onsistent pro-edure outlined in Se. 5. In partiular, the gappeddispersion relation in Eq. (25) has the orrespondingdensity of states�(E;U) = jEj2�~2v2��jEj � U2 � ; (26)where �(x) is the Heaviside step funtion. AtU=�0 � 1, we an assume a Gaussian distribution

of the Coulomb potential � with some unknown vari-ane �2, integrate this distribution over � multipliedby �(�e�;U) to produe the thermodynami densityof states h�i, and then use the self-onsisteny relation�2 = e2N=�sh�i to arrive at a value for � (see Eq. (15)).Expanding the result of this proedure for small U=�0gives a slightly enhaned value for the disorder poten-tial width, �(U) � �0�1 + U224�20� : (27)Similarly, the thermodynami density of states isslightly depleted:h�i � h�i0 �1� U212�20� : (28)On the other hand, if U is muh larger than �0,then the surfae sreens poorly and the disorder poten-tial inreases. In this ase, sreening of the disorder po-tential by the surfae ours only nonlinearly, throughthe formation of eletron and hole puddles at loationswhere the magnitude of the Coulomb potential energyreahes the gap energy U=2. This is similar to the bulknonlinear sreening disussed in Se. 2, and naturallyprodues �(U) � U . The typial orrelation lengthof the disorder potential at the surfae (the nonlinearsreening length) is given byRU � U2�2sNe4 ; (29)as in Eq. (2), with Eg ! U .We an estimate the orresponding onentration ofeletrons/holes in surfae puddles, np, by noting thata square area of size R2U at the surfae should ontainsu�iently many eletrons/holes to neutralize the netharge of Coulomb impurities in the adjaent ubi vol-ume R3U of the TI bulk. This gives npR2U � pNR3U ,or in other words np � e2N�sU : (30)The orresponding thermodynami density of statesan be estimated by noting that when the hemial po-tential � inreases by an amount � U=2, surfae holepuddles should dry up and be replaed by a orrespond-ingly inreased number of eletron puddles. This sug-gests h�i = d�=dn � np=U , whih givesh�i � e2N�sU2 : (31)We note that if the gap U is redued to the point whereU � �0, then h�i ! h�i0, as an be seen by omparingEq. (31) with Eqs. (8) and (16).674



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 E�ets of bulk harged impurities on the bulk : : :Of ourse, these estimates assume that the surfaegap U is smaller than the bulk band gap Eg , and on-sequently that RU � R, and therefore impurities nearthe surfae are not sreened by bending of the bulkbands. If the surfae gap U is larger than Eg, then thedisorder potential variane is trunated at �(U) � Egdue to bulk sreening.We note that Eqs. (30) and (31) were �rst derived inRef. [48℄ in the ontext of semiondutor heterostru-tures in a transverse magneti �eld, where a 2D eletrongas experienes disorder from adjaent 3D impuritiesand the gap U in the kineti energy spetrum is pro-vided by the Landau level spaing ~!. These authorsalso showed how the disorder potential is redued andthe density of states inreased as the hemial potential� inreased from zero [48℄. Spei�ally, � � U � 2�and h�i � e2N=�s(U�2�)2 if U�2�� e2N1=3=�s. Ofourse, the e�et of a transverse magneti �eld for TIsgoes beyond simply opening a single gap at the Dirapoint [41; 42℄. We do not onsider the full problem ofsreening of Coulomb impurities in the presene of amagneti �eld here, but in priniple this problem anbe dealt with along the lines of Ref. [48℄.We are grateful to Y. Ando, A. L. Efros, H. Bei-denkopf, M. M. Fogler, M. S. Fuhrer, Yu. M. Galperin,J. Kakalios, Q. Li, M. Müller, N. P. Ong, and A. Yaz-dani for helpful disussions. This work was supportedprimarily by the National Siene Foundation throughthe University of Minnesota MRSEC under AwardNumber DMR-0819885. T. Chen was partially sup-ported by the FTPI.REFERENCES1. L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett.98, 106803 (2007).2. J. E. Moore and L. Balents, Phys. Rev. B 75, 121306(2007).3. R. Roy, Phys. Rev. B 79, 195322 (2009).4. L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).5. X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev.B 78, 195424 (2008).6. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82,3045 (2010).7. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057(2011).8. D.-X. Qu, Y. S. Hor, J. Xiong, R. J. Cava, andN. P. Ong, Siene 329, 821 (2010).
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