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We study the random directed polymer problem — the short-scale behavior of an elastic string (or polymer) in
one transverse dimension subject to a disorder potential and finite temperature fluctuations. We are interested
in the polymer short-scale wandering expressed through the displacement correlator ([§u(X)]?), with du(X)
being the difference in the displacements at two points separated by a distance X. While this object can be
calculated at short scales using the perturbation theory in higher dimensions d > 2, this approach becomes
ill-defined and the problem turns out to be nonperturbative in low dimension and for an infinite-length polymer.
In order to make progress, we redefine the task and analyze the wandering of a string of a finite length L. At
zero temperature, we find that the displacement fluctuations ([Ju(X)]?) oc LX? depend on L and scale with
the square of the segment length X, which differs from a straightforward Larkin-type scaling. The result is best
understood in terms of a typical squared angle (a?) o L, where a = 0,u, from which the displacement scaling
for the segment X follows naturally, ([Ju(X)]?)  (a?)X?. At high temperatures, thermal fluctuations smear
the disorder potential and the lowest-order results for disorder-induced fluctuations in both the displacement field
and the angle vanish in the thermodynamic limit L — oo. The calculation up to the second order allows us to
identify the regime of validity of the perturbative approach and provides a finite expression for the displacement

© 2013

correlator, albeit depending on the boundary conditions and the location relative to the boundaries.

DOI: 10.7868,/50044451013090150

1. INTRODUCTION

The (d + n)-dimensional random elastic manifold
problem describes the behavior of the n-dimensional
transverse displacement field u(r) of a d-dimensional
elastic manifold subject to a disorder potential. The
topic has been initiated with the 1970 work of Ana-
toli Larkin [1], where he analyzed how disorder distorts
the three-dimensional vortex lattice in a type-II super-
conductor. Expanding the random potential V[r, u(r)]
due to impurities, he arrived at a random force model
V[r,u(r)] ~ f(r) - u(r) and showed that the relative
displacements of vortex positions du(r) diverge with
increasing distance R as ([du(R)]?)!/? o R3/2.

“E-mail: dimagesh@phys.ethz.ch

Later, the problem was generalized to manifolds of
arbitrary dimensions d + n and random potentials of
other types, both long- and short-range correlated; the
famous Larkin exponent (;, = (4 — d)/2 describing the
wandering ([0u(R)]?>)'/? o RSt of an elastic manifold
subject to a random force field is a tribute to the orig-
inal analysis of Larkin. However, in low dimensions
d < 2, the perturbative approach to the random elas-
tic manifold problem breaks down at any scale and the
problem becomes more difficult to solve.

Here, we study the short-scale behavior of an elastic
string (or polymer) confined to a plane and subject to a
disorder potential and thermal fluctuations, that is, the
(14 1)-dimensional random directed polymer problem.
The Hamiltonian describing the distortion u(z) along
the polymer involves two competing terms, the elastic
energy Hy (with J denoting the elasticity) and the po-
tential energy V due to the random potential V]z, u(x)]:
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The random potential is usually assumed to be Gaus-
sian distributed with zero mean and (short-ranged) cor-
related with a correlator U(u) of width & (which may
be related to the internal width of the manifold exposed
to an underlying d-correlated disorder potential),

(V(z,u))a =0,

roo _ ’ ' (2)
(V(z,u)V (2" u'"))g =6(x — 2"\ U(u —u').

Here and below, angular brackets with a subscript “d’
denote the average with respect to the distribution of
the random potential V. The effect of thermal fluctu-
ations (in a given realization of the random potential
V) is described by the usual thermal average

Sp[Aexp(—=FH)]
Splexp(—pH)] ’

and is identified by the subscript “th”; the average with
a subscript “0” denotes the thermal average in the un-
perturbed system with the harmonic Hamiltonian Hy.
The trace in Eq. (3) implies a functional integration
over all trajectories u(z) satisfying the chosen bound-
ary conditions.

The generic question in the 1 + 1-dimensional ran-
dom directed polymer problem addresses the growth of
the correlator

(Aen = p=1T,  (3)

([u(@r) —u(@2))nda  (4)

with the increase in X = |z3 — 24|, the distance be-
tween two points (with coordinates 1 and x5) of the
polymer. In brief, the following understanding has been
developed over the years: Starting from the perturba-
tive analysis and the development of scaling arguments
(Larkin scaling), it became clear (via numerical analy-
sis [2], analytic work [3, 4], and a recent exact solution
for £ = 0 [5-7]) that the long-distance behavior is non-
perturbative, with the wandering described in terms of
a nontrivial wandering exponent ¢ [8]

2

Caun(X) ~ A (X/0)", X 20, (5)
the transverse (¢1) and longitudinal (¢) scales being
dependent on temperature. In the absence of disorder,

the purely thermal wandering of the string is described
by the correlator

Co(zy,22) =

Capn(x1,22) =

(=2/3,

T
ooC—X

((ur — u2)?) 7

(6)
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(where we introduce the notation uw; = w(z;)) which
exhibits a smaller wandering exponent (, = 1/2 than
the one entering Eq. (5) and describing the disorder-
induced wandering; hence, disorder-induced fluctua-
tions supersede thermal wandering.

The breakdown of the perturbation theory at large
scales is associated with the presence of many compet-
ing (disorder-induced) potential valleys. One could ex-
pect that only one valley is relevant at very short scales,
which would make the perturbation theory applicable.
This is indeed the case in higher dimensions 2 < d < 4,
but in low dimensions, particularly in d = 1, the per-
turbation theory also breaks down at small scales. For
T = 0, this is easily understood from the lowest-order
perturbative expression for Cy(X), which corresponds
to replacing the random potential by a random force
Ve, u(z)] f(z)u(z) with the force f(z) Gaussian
distributed with zero mean and J-correlated with the
weight

~
~

~U"(0) (7)

given by the second derivative of the potential correla-
tor U(u). Within this approximation, the displacement
correlator is given by the integral

) =2v /ddk

that diverges strongly at small & when d < 2. Con-
flicting results for Cy(X) then have been quoted in the
literature for d = 1, e.g., Cg(X) o< X? resulting from
the d = 1 Larkin scaling with {;, = (4 — d)/2 = 3/2
(see Ref. [9]), or from the perturbative calculation for
a polymer of a finite length X in the presence of a
homogeneous random force [10]. A different result
C4(X) oc X2 was first obtained by Bouchaud et al. [11];
they analyzed the short-scale wandering of an infinite
polymer using a self-consistent harmonic approxima-
tion in terms of a replica approach and accounting for
replica symmetry breaking (see also the more recent
work by Agoritsas et al. [12]). On the other hand, the
replica theory does not provide the correct result for
the wandering exponent on large scales, and there is
an obvious need to check these findings with a better-
controlled method. For this, we here analyze a slightly
different problem, which is properly defined within a
perturbative approach, namely, the fluctuations of a
length- X segment of a polymer of length L, or, in other
words, the fluctuations of a polymer in a box with prop-
erly defined boundary conditions (fixed or free). This
finite-size-regularized perturbative approach does not
rely on any uncontrolled approximations and provides
interesting further insights into the problem.

V=

—cos(k - X)

(Tk)2 ®)
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In the remaining part of the introduction, we briefly
summarize the results derived below and place them
into the general context. For T = 0 and chosing a seg-
ment far away from the box ends (see Eq. (42) below),
we find the displacement correlator

Ca(X <L)~ (v/J*)L X2 9)
This result depends on the box size L and diverges as
L — oo; in addition, boundary effects show up when
placing the segment close to the box ends. We note
that for X ~ L, we recover the Larkin scaling at small
distances. In analyzing the full random polymer prob-
lem, the result in Eq. (9) can be used up to lengths
L ~ L., where the zero-temperature Larkin length

24024\ 1/3
L~ (55)

v
can be obtained from dimensional estimates balancing
the elastic energy J&2/L. against the disorder energy
VL€, At X ~ L ~ L., wehave Cyq(L.) ~ &2 and the
presence of other valleys becomes relevant. For L 2> L,
we cannot use the result (9) any more and have to re-
place the box size L with L., transforming (9) into

(10)

Ca(X <L) ~ & (X/Le)? x v*/3, (11)
an explicitly nonperturbative result, as it is evident
from the noninteger value of the exponent in the last
relation. The scaling in Eq. (11), confirmed by our
analysis below, was first reported in Ref. [11]. For large
segments X > L., the wandering exponent is reduced
to ¢ = 2/3 (cf. Eq. (5)). Hence, in the one-dimensio-
nal situation, the short-scale wandering at u < ¢ and
X « L, explicitly depends on the larger scales ¢ and
L., a phenomenon known as intermittency in the field
of turbulence [11].

To better understand the origin of the behavior
Cq x X? in Eq. (11), we analyze the angle correlator
{{[0zu (z1) — Opu (T2)]*)tn)d, Where the identification of
the derivative d,u with the local angle a enclosed be-
tween the polymer and the z axis makes sense for suf-
ficiently smooth excursions (directed polymer). This
correlator does not suffer from the divergences appear-
ing in the displacement correlator and hence produces
a regular result (for 7= 0)

(0 = 02)2)a ~ (0] )X, (12)
where a; = 0,ul,_, . Relation (12) is easily derived
from its perturbative expression having the form anal-
ogous to Eq. (8) but with an additional factor k? in
the numerator. It is valid at scales X <« L., where the
perturbation theory holds; at larger distances X 2> L,

655

the scaling Cyq(X) ~ €*[X/L.]*? tells us that the
angle correlator stops growing beyond L.. The typ-
ical squared angle (a?)q = ([0,u]?)q then assumes
the value (v/J?)L. ~ £2/L% As a result, the poly-
mer wandering on large scales can be roughly visual-
ized in terms of length-L. segments, each enclosing a
typical angle of the order of ££/L. with the z axis,
from which it (super-)diffuses away with an exponent
¢ > 1/2. At the same time, we conclude that at
small scales X < L., the displacement correlator grows
as Cy(X) ~ (a?)aX? ~ (v/J?)L.X? ~ £2(X/L.)?,
providing an alternative derivation of the result in
Eq. (11). The same arguments can be applied to derive
the result in Eq. (9).

The analysis at a finite temperature 7' > 0 is
more complex and involves the temperature-dependent
Larkin length

5 5
Lo(T) ~ g5 ~ Lo (77— (13)
with
Us = /du U(u) ~ U(0)E, (14)
and the so-called thermal depinning temperature
Tapin ~ (JUsE)'"*. (15)

The temperature-dependent Larkin length L.(T) is the
natural length scale that can be constructed from J, T,
and Up (at high temperatures, the width of U(u) can-
not be resolved, and hence only its integral over u is
relevant).

As shown in [13] (a more concise derivation can be
found in the appendix of Ref. [14]), for a random poten-
tial uncorrelated in z, the full displacement correlator
defined by Eq. (4) can be expressed as the sum of two
terms,

Can(x1,22) = Co(x1,22) + Cy(21, 22) , (16)

the first of which, Cy(z1, 22), has exactly the same form
as in the absence of disorder (see Eq. (6)), whereas the
second can be reduced to the form

Ca(w1,m2) = (((ur — u2)en)*)a - (17)

Accordingly, it is natural to call Cy(z1, 22) the disorder-
induced contribution to the fluctuations. At 7' = 0, this
term includes only the disorder-induced fluctuations; at
T > 0, these become subject to thermal smearing.

At T > 0, the main contribution to Cy (21, 22)
at the smallest scales is always given by Cy(z1,z2)
x (T/J)X because the disorder-induced wandering is
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always described by a larger exponent. As the distance
X increases, the disorder-related term Cy(x1,x2) over-
comes the purely thermal contribution. We focus our
attention entirely on the nontrivial disorder-induced
contribution Cy(x1,x2), whereas the consequences of
the interplay between Cy(x1,x2) and Cy(x1, z2) are dis-
cussed in Ref. [12]. Asis shown in Sec. 4.1 (see Eqs. (53)
and (54)), the lowest-order result for the displacement
correlator evaluated at a high temperature T' 2 Typin
scales as

xo  \Lc(T) ) 2 (18)

and the estimate for the typical squared angle is

(0u?[Le(T)])o | Le(T)
L(T) o

i (X) ~

(B [Le(T) oy | 22D ( i

(@ (20)){ ~ (19)
where z¢ marks the position of the segment X within
the box [0,L]. The results in Eqgs. (18) and (19) can
be easily obtained from the corresponding 7' = 0 ex-
pressions by replacing the parameter v = —U" with
the ratio Up/(u?(z0))o, as motivated by the form of
Eq. (33). Evaluating expression (18) away from the
box ends (i.e., for L — xg ~ ) and taking the formal
limit L — oo (which corresponds to taking the ther-
modynamic limit), we see that these results vanish, in
contrast to the zero-temperature results, which either
increase with the box dimension L (as Cy(X)) or are
independent thereof (as (a?(2¢))q).

Evaluating the second-order term in the perturba-
tion series (which, contrarily to the situation at 7' = 0,
does not vanish), we obtain the result (cf. Eq. (57))

Lo

OD (%) ~ £ (22) (G [Lo(T o (%) (20)

Here, f(zo/L) is a smooth function of the relative lo-
cation within the box (in our calculation below, we
use fixed and free boundary conditions at # = 0 and
x = L, respectively, resulting in a function f(z/L)
decreasing from a constant to zero). Hence, while the
finite-temperature problem is less divergent than the
zero-temperature version, it maintains some irregular
features as the numerical factor in the result depends
on the relative location of the segment X within the
box.

Combining the first- and second-order results (18)
and (20), we can conjecture that the perturbation ex-
pansion is valid as long as g < L.(T). Pushing this
result to its boundary of applicability, we find that

O2(X) ~ (5 [Lo(T)])o (%) @)

the high-temperature analogue of Eq. (11), which
smoothly goes over to the large-distance result (5) at
X ~ L.(T). This result (as well as the T = 0 re-
sult in Eq. (11)) is then consistent with the findings in
Ref. [12].

In Sec. 2 we construct the general form of the per-
turbative expansion for the model defined by Eqs. (1)
and (2), which is applicable for any boundary condi-
tion. Section 3 is devoted to the discussion of the zero-
temperature results for two different types of boundary
conditions, and in Sec. 4 we analyze the situation at
high temperatures.

2. CONSTRUCTION OF THE PERTURBATIVE

EXPANSION
Expressing  the  disorder-induced  correlator
Cy(x1,22) in Eq. (17) through
ca(z1,w2) = ((u1)en(u2)in)d (22)

Ca(z1,22) = cq(zr,21) — ca(xr, x2) —

—cq(za, 1) + cq(z2,22), (23)

we first have to calculate the thermal averages of uj o
in a given realization of a random potential. The first
step towards this goal can be easily made by noting
that the calculation of the thermal average of 0 H/duy
involves the integration of

(0H/ouy)exp(—BH) = —=T(§/duy) exp(—FH)

over uy, and therefore (0H/duy)s, has to vanish. On
the other hand, the variation of Eq. (1) with respect to
u1 gives

ot

!
(S’U/l + Vl ) (24)

=—J a§u|x:x’
where Vi = V]zy,u(z1)] and the prime denotes the
partial derivative with resect to u. Taking the thermal
average of Eq. (24), we find that

L
(W1 )en = /d$2 912{V3)tn , (25)
0
where
g2 = g(x1, z2) (26)

is the response function of the unperturbed (harmonic)
system, which is independent of temperature and is
trivially related to the correlation function

60(331,332) = <U1U2>0 = G12 = Tg12 (27)
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of the same system. Substituting Eq. (25) in Eq. (22)
then gives

L L
ca(r1,x2) = /dxs/drv4 913334942 , (28)
0 0

where

Y34 = ((V3)en(Vi)in)a (29)

plays the role of the effective self-energy part.

2.1. First-order approximation

In the first approximation, (V})i, can be replaced
by

I
Yo = < &zls K;)exp(iK; u])> =

0
00

[ dK; .
:z/Q—;AjV(Aj)w}f, (30)
— 00

where we perform the Fourier transformation with re-
spect to u, introduce the notation

wWij = exXp (—Kil(jGij) , (31)

and take into account that (uj)o = 0. Note that
in Eq. (30) (and analogous equations below), summa-
tion over repeated indices is not implied. Substituting
Eq. (30) in Eq. (29) and averaging over disorder then
provides the lowest-order approximation for the effec-
tive self-energy

S = 6(2s — 24)o(23)

o (32)

dK.
563 / ‘3 72U [X U)33
27

As T — 0, thermal fluctuations are suppressed such
that G33 — 0 and w33 — 1. In this limit, the expression
for o(x) in Eq. (32) is reduced to 0 = —U"(u = 0) =
= const (in agreement with the zero-temperature ana-
lysis of Efetov and Larkin [15]). On the other hand,
at T > 0, we have wsz < 1 and hence the value
of o(x3) is suppressed in comparison with its zero-
temperature value and depends on z3. In particular,
for U(u) o exp(—2?/4£?), that is, for

U(K) = Uy exp(—€°K?),

14 ZKS3T®, Bem. 3 (9)

the integration over K3 in Eq. (32) is Gaussian and can
be performed exactly, which leads to

o(rs) = o

4[71'(52 + G33)3]1/2 '
This suggests that at high temperatures (corresponding
to G'z3 > £?), the random potential is smeared out by
thermal fluctuations in such a way that its correlation
radius ¢ is replaced by the typical thermal displacement
GL? = (), although Uy = [ duU(u) remains the
same (cf. with Ref. [9]).

(33)

2.2. Second-order approximation

To find the next nonvanishing contribution to Y34,
we have to calculate (V)i with the help of Eq. (3),
expanding the exponentials both in the nominator and
in the denominator in powers of V up to the second
order,

V'Y = (Vido = B{V{V)o + (,6’2/2)(1/]-’1/2)0 +...

TV + (B2/2) (Vo + ..

(ViYo = B[(ViV)o — (V])o(V)o] +

+ L1 - 20000 +

+ 2<Vj>0<v>(2) = (V)o(V)o] +... (34)

The contribution to the product (Vi) (V) of the
second order in powers of V can then be written as

(V) en(Vi)en]® = B2symgy [(VEV?)o(Vi)o —
— 4VEV)e(Who(Vi)o + 3(Vi)o(W)g(Vi)o —
= (Vo (VDo (Vido + (VEV)o(VVi)o] ., (35)

where symg,[...] implies taking only the part of the
expression in square brackets that is symmetric with
respect to the permutation of x3 and x4.

Taking the disorder average of Eq. (35) produces the
following expression for the second-order contribution
to 2342

T T AR, dK )
34 62/ 2—71_32—4U )U(IX4)><

x |6(z3 — 24)0( Ky — K5) K3 x
X /dx5w33w55(3 — dwss + wiy) —

— 1(3[(4103311)44(211)34 — ’LU§4) . (36)
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In the expansion of (3 — 4wss + w3;) in powers of
K3 K5G35 the first nonvanishing term after the integra-
tion over K5 and K is proportional to T*, whereas the
expansion of (2wsz4 —w3,) and integration over K3 and
K, produces a first nonvanishing term proportional to
T3. This ensures that in the limit T — 0, £ van-
ishes, in agreement with the zero-temperature analysis
of Efetov and Larkin [15].

For U(K) = Ugexp(—£2K?), the integration over
K5 and K4 in Eq. (36) is Gaussian and can be per-
formed exactly. The result of this integration can be
expressed in the relatively compact form

2
224) =

-l r
871'3—'2 If;(lg —1‘4)/(11‘5 (G55 +€2) X
0

|
J

(2)

x (3D§) — 4D} + D)) + Gy (DY) - D

)

where

DY = [(Gi + €)(Gi + &) — (p/2°GL 0,

p=0,1,2.

(37)

3. ZERO TEMPERATURE

3.1. Fixed boundary conditions

We first consider the case where both end points of
the string are fixed, u(0) = u(L) = 0. In this situation,

571([/ — 552)

LJ ' (38)

gi2 =
where

T1 = min(z1,22), To = max(xri,T2),

and hence #; < . As demonstrated in Ref. [15], only
the lowest-order contribution to the perturbative ex-
pansion of ¥ is nonzero at 7' =0,

234 = (5(563 — $4)[—U”(0)] . (39)

Substituting Eqs. (38) and (39) in Eq. (28) and inte-
grating over x3 leads to
B U"(0)

6.2L [2LZy—x}—23] 71 (L—22), (40)

Cd(9€1,9€2) =

which, with Eq. (23), allows expressing Cy(x1,x2) as

Cd(xl,xg) = % X
x [2] 4+ (L — 22)> — 71 (L — Z2)] (71 — 22)*.  (41)
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Equation (41) demonstrates that even for L > X, Cy
essentially depends on the total system size L,

N _UII(O)
T2

and hence the thermodynamic limit . — oo cannot
be taken. This property was discovered by Bouchaud,
Mezard and Parisi [11], who noticed that in an infi-
nite system, the first-order expression for the correla-
tor Cyq(X) is given by an integral (see Eq. (8)) that for
d = 1 diverges at small k as 1/kpin. Equation (41)
confirms this conclusion on a more quantitative level
and demonstrates that the correlator C'y remains pro-
portional to L even when the distance from the interval
X where the relative displacement to the boundary of
the system is measured is much smaller than L.

According to Eq. (41), for X <« L, the dependence
of Cq(X) on X reduces to Cy(X) o< X2. This means
that the main contribution to the fluctuations of the
relative displacement in such a regime comes from the
fluctuations of the derivative a(x) = 9,u, which only
weakly changes between 1 and 2. For |a(z)] < 1, this
derivative coincides with the angle between the polymer
and its average direction (along axis ), and we there-
fore call the variable a(x) the angle in what follows. We
note that Hamiltonian (1) is directly applicable only
when the values of |a(z)| are much smaller than 1. If
the parameters of the system are such that typical fluc-
tuations of a calculated with the help of Hamiltonian
(1) are much larger than unity, this Hamiltonian has
to be complemented by some terms producing a short-
scale cutoff that suppresses the fluctuations of the an-
gle; for example, a term proportional to (92u)? can be
included into the elastic part.

In terms of angle fluctuations, Eq. (42) can be
rewritten as

Cy LX?%, (42)

Ca(X) = (ap)a X7, (43)

~

where ap = a(xg) and z¢ ~ x12 (more precisely, g
lies between z; and z). It follows from Eq. (28) that
for ¥34 = §(x3 — x4)0(x3), the expression for (ajaa)q

1S

(a1a2)q = /L dars ‘253’3113 ‘21223 o(3), (44)
whence (at T = 0), 0
(@rasha = D [ 4 (L~ o)~ 17/3] (45)
and
@ @na =101 [;_2 (% %)] s
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Equation (46) shows that (a?(z))4 is proportional to
the total length L of the string, implying that its value
in a given realization of the random potential is deter-
mined by the fluctuations of the random potential at
large length scales (which are comparable with L) and
not by those in the close vicinity of the point . The
value of (a?(x))4 is minimal in the middle of the string
and is larger at its endpoints by a factor of 4.

To find the range of X where Cy is determined by
angle fluctuations and is therefore proportional to X2,
we have to compare

((ay — 2)?))g = _({,”2(0)

|1‘1 - l‘2| (47)

with the value of (a?(x))4 given by Eq. (46). This com-
parison confirms that the dependence Cy o< X2 holds
as long as X <« L.

3.2. Mixed boundary conditions

If only one endpoint of the string is fixed and the
other is free, the equations become slightly simpler.
In particular, if the boundary condition at x = 0 is
u(0) = 0 and free at « = L, then Eq. (38) is replaced
by

gi2 = fl/J (48)

Quite remarkably, for such boundary conditions, the
form of the Green’s function g2 = g(x1,x2) is sensitive
only to one of its two arguments and does not depend
on the total length L. In this situation, the results in
Eqs. (41) and (46) are respectively replaced by

Caton2) = =52 (1-P222) (=, (49
and
@@Na= " mw) (50

It follows from the form of Eq. (49) that for 7= 0 and
mixed boundary conditions, Cy depends only on the
distances y;1,» = L — 21,2 between the points x; > and
the endpoint with the free boundary condition, whereas
the total length of the string is of no importance. In
particular, when the points z; and s are situated in
the vicinity of the free endpoint of the string, Cy is pro-
portional to the distance from the free end and not to
the total length L.

Naturally, an analogous conclusion applies also to
(a?(x))q, which linearly depends on L — z. The reason
why (a?(z))4 vanishes as # — L is quite clear: in the
minimal-energy configuration, the value of a(z) at the
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free end (z = L) has to be equal to zero for any real-
ization of the random potential. This follows from the
variation of Hamiltonian (1) with respect to u(z = L).

For a Green’s function g;» of form (48), differenti-
ating Eq. (28) with Y34 = §(x3 — x4)0(23) gives

({ar)enlaz)in)a = ((a(@2))ih)a (51)

whence it follows that the zero-temperature expression
for ((a; — a2)?)4 has exactly the same form (given by
Eq. (47)) as in the case of fixed boundary conditions.
A comparison of Eq. (47) with Eq. (50) then suggests
that for mixed boundary conditions, the dependence
C4 < X? holds as long as X is much smaller than the
distance to the free end of the string.

4. FINITE TEMPERATURES

4.1. First-order approximation, mixed
boundary conditions

At finite temperatures, all terms of the perturba-
tive expansion of ¥ become nonzero, and we start by
analyzing the first term. For simplicity, we consider
the case of mixed boundary conditions and focus our
attention on sufficiently high temperatures, where we
can neglect the finiteness of ¢, that is, U(u) can be
replaced by Upd(u). Substituting Gsz = (T/J)xs in
Eq. (33) with ¢ = 0 shows that in this regime, o(z) de-
pends algebraically on the distance from the fixed end

of the string,
B UO J 3/2

Substituting Y34 = 6(x3 — x4)o(z3) in Eqgs. (28)

and (44) and integrating over z3 then lead to

Uo

(1) _
Cy'(x1,22) = I T

27/ + 732 1
2 T1/2
() T

X % (1‘1 — 1‘2)2 (53)

U 1 1
(@) = 2(7”.1?3)1/2 <x1/2 - L1/2> . (54)
The result in Eq. (53) implies that at 77 > 0 (anal-
ogously to what is the case at T = 0), the disorder-
induced fluctuations of the thermally averaged relative
displacement (u1 —us2)¢, at small X are determined by
fluctuations of the thermally averaged angle (a)y,.
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In a generic situation with 2y ~ L — 212 ~ L,
expression (53) providing the first-order contribution
to Cg,p(X) vanishes in the limit L — oo (in contrast
to the expectations expressed in Sec. 2.2 in Ref. [9])
and remains finite only if the segment X is situated
at a finite distance from the fixed endpoint of the
string, where the influence of thermal fluctuations is
not as pronounced as in the middle of an infinite
string. Naturally, the same holds for expression (54) for
((a(x))th)( )| the intensity of fluctuations of the ther-
mally averaged angle.

For finite L, on approaching the free end of the
string, the angle fluctuations ((oz(x)}fh)l(il) tend to zero
linearily in the distance L — z, exactly as is the case
with (aQ(x))gl) at T = 0 (see Eq. (46)). However, the
reasons for this result are less evident than at T = 0, be-
cause in the presence of thermal fluctuations, a(x = L)
is not obliged to be equal to zero. On the other hand,
the reasons for the divergence of ((a(af:))fh)l(il) with de-
creasing x are quite clear: the amplitude of thermal
fluctuations of the displacement decreases on approach-
ing the fixed end of the string, and therefore the ther-
mal suppression of angle fluctuations also becomes less
prominent. Naturally, in a system with £ > 0, depen-
dence (54) has to saturate at sufficiently small = be-
cause ((a(x))fh)g) cannot exceed its zero-temperature
limit (a2 (x)) .

It follows from Eqs. (51) and (54) that the angle
correlator at high temperatures assumes the form

(1 _
d

Uo
2T T (o,

({ar — a2)7y)
X

22)1 /2 (ay/

N x1/2) . (55)

The comparison of Eqs. (54) and (55) allows con-
cluding that for the applicability of the dependence
C4(X) o< X? (which requires having ({(a — a2)3,)a <
< ({@)?,)a), the length X of the segment has to be
much smaller than the distance to the nearest endpoint.

4.2. Second-order approximation, mixed
boundary conditions

To find the range of parameters where the value of
agq(xo) can be described by expression (54), we have to
consider the next term in the perturbative expansion.
Substituting Eq. (37) in

L L
Oéo th //dxgd X4
0 0

0903 5’9042
a0 Dre 70 34

(56)
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and subsequently integrating over z3 and x4 leads to
o (7)
- 2T '

(2 _
d

xo

((ale n

0))in) (57)

where

f(7)=3(7’1/2—1)—2(\/47‘T—\/§)+

+/ -1,

The function f(y) has a finite limit f(y — 0)
= 2v/3—3 & 0.464 and monotonically decreases with in-
creasing v. The behavior of f(v) on approaching v =1
is determined by the last term in Eq. (58), f(y — 1) =
~ (1 — )12

For L—xzq ~ L, that is away from the free boundary,
Eqs. (54) and (57) can be rewritten as

5

UO
T T4

a (:(T)]l/2 ~
d

2
th

({a(@o))in)

To

T [L(T)]"?
NJLC(T)[ 20 ] > (59)
@ _ Ug T
((a(zo0))in)g ~ T4~ JL.(T) (60)

which suggest that the perturbative expansion for
aqa(zo) (and, therefore, for Cy ~ ((@)?,)aX?) is in
powers of [zo/L.(T)]'/? and, accordingly, the condi-
tion for its applicability is x9 < L.(T). This seems
to be reasonable: if we expect that the condition for
the applicability of the perturbation theory at T = 0
is 20 € Lo ~ (J?¢5/Up)"/3, then it is rather nat-
ural that at large temperatures, L. is replaced by
its high-temperature analog L.(T). Pushing the re-
sult to the boundary of its validity range (i.e., eval-
uating Eqgs. (59) and (60) at zo ~ L.(T)), we ob-
tain the result Cy(X) ~ (U2/T*)X?; the condition
Cy[Le(T)] ~ (u?[Le(T)])o leads to expression (13) for
the temperature-dependent Larkin length and the con-
dition (u?[Le(Tapin)])o ~ & leads to the depinning
temperature in (15). Rewriting Cy(X) in terms of these
quantities, we obtain the result in Eq. (21).

As regards the vicinity of the other (free) boundary,
the situation is less clear. In this region, the first-order
term <<04>th>511) x (L — xp) vanishes more rapidly than
the second-order contribution (()%)?) x T — o
and hence the ratio of the second- and the first-order
terms is of the order of L/[(L — x0)L.(T)]*/?; this sug-
gests that on approaching the free endpoint, one may
always leave the applicability range of the perturbation
theory.
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Finite-temperature perturbation theory ...

5. CONCLUSION

We have analyzed the wandering of a directed poly-
mer in a random potential. Formulated for an infinite
polymer, this problem is nonperturbative at all scales.
For a sufficiently small finite system, the problem is
perturbative with the polymer excursions depending
on the system size, the boundary conditions, and the
relative position of the segment within the box. The
results for the infinite polymer at distances X < L.(T')
can be found from the finite-system results by replac-
ing the box size L with the Larkin scale L.(T"). The
physical interpretation of the results is the following:
at short scales, the polymer fluctuates around an al-
most straight line, which, however, deviates from the
original direction or the z axis by some angle a = 0, u.
The typical value of this angle depends on the box size
L and on the relative location z¢/L in the box; for the
infinite polymer, we have to replace zg ~ L ~ L.. As a
result, the wandering at short scales is close to linear,
ou ~ aX, but with a coefficient « the typical value of
which is determined by much larger scales.

The linear behavior of the displacement, or
Cy(X) ~ BE(X/L.)? including the numerical fac-
tor B, was previously obtained in [11] and [12] in the
framework of a variational replica ansatz incorporating
replica symmetry breaking. Our analysis demonstrates
that their approach correctly captures the scaling oc X2
of the fluctuations at small scales (in contrast to large
scales X 2> L., where this approach does not predict
the correct result for the wandering exponent) and pro-
vides a simple physical interpretation for this behavior
in term of angle fluctuations. On the other hand, an
accurate calulation of the coefficient B in the expres-
sion for Cy(X) will most likely require the use of more
advanced methods than the variational one.

In Ref. [9], the short-distance behavior of the disor-
der-induced correlator Cy(X) for a polymer of infinite
length was analyzed for high temperatures T > Tipip
in the framework of a dynamic analysis based on the
Langevin equation. In this scheme, the total displace-
ment u(z,t) is split into a thermal and a disorder-in-
duced parts, u(z,t) = wuwm(z,t) + ug(x,t), with the
two terms following from the iterative solution of the
Langevin equation

Moy — JO? u(z,t) = fin(x,t) + falr,u(z,t)]  (61)

with a d-correlated thermal force (fip (2, t) fin(2',t')) =
= 2nTo(x — ') 6(t — t'), where n is the friction coef-
ficient for the dissipative motion and fg[z,u(z,t)] =
-0,V ]z, u(x,t)] is the disorder-induced force. By ex-
panding in w4, the term (([6uq(X)]?)¢n)a provided the
result Cy(X) ~ (0u*[Le(T)]))o [X/Le(T)]?/? consistent
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with the Larkin scaling. But this result is wrong be-
cause this term is exactly compensated [16] by the term
2((6uqg(X) dugn(X))en)a that was missed in the analy-
sis in Ref. [9]. This vanishing of the first-order term in
the perturbative analysis of the high-temperature anal-
ysis is in agreement with the result in Eq. (53) when
evaluating the expression away from the box ends and
taking the formal limit L. — oo for the box size.
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