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FINITE-TEMPERATURE PERTURBATION THEORYFOR THE RANDOM DIRECTED POLYMER PROBLEMS. E. Korshunov a, V. B. Geshkenbein b*, G. Blatter baLandau Institute for Theoretial Physis, Russian Aademy of Sienes119334, Mosow, RussiabTheoretishe PhysikCH-8093, Zürih, SwitzerlandReeived April 25, 2013Dediated to the memory of Professor Anatoly LarkinWe study the random direted polymer problem � the short-sale behavior of an elasti string (or polymer) inone transverse dimension subjet to a disorder potential and �nite temperature �utuations. We are interestedin the polymer short-sale wandering expressed through the displaement orrelator h[Æu(X)℄2i, with Æu(X)being the di�erene in the displaements at two points separated by a distane X. While this objet an bealulated at short sales using the perturbation theory in higher dimensions d > 2, this approah beomesill-de�ned and the problem turns out to be nonperturbative in low dimension and for an in�nite-length polymer.In order to make progress, we rede�ne the task and analyze the wandering of a string of a �nite length L. Atzero temperature, we �nd that the displaement �utuations h[Æu(X)℄2i / LX2 depend on L and sale withthe square of the segment length X, whih di�ers from a straightforward Larkin-type saling. The result is bestunderstood in terms of a typial squared angle h�2i / L, where � = �xu, from whih the displaement salingfor the segment X follows naturally, h[Æu(X)℄2i / h�2iX2. At high temperatures, thermal �utuations smearthe disorder potential and the lowest-order results for disorder-indued �utuations in both the displaement �eldand the angle vanish in the thermodynami limit L!1. The alulation up to the seond order allows us toidentify the regime of validity of the perturbative approah and provides a �nite expression for the displaementorrelator, albeit depending on the boundary onditions and the loation relative to the boundaries.DOI: 10.7868/S00444510130901501. INTRODUCTIONThe (d + n)-dimensional random elasti manifoldproblem desribes the behavior of the n-dimensionaltransverse displaement �eld u(r) of a d-dimensionalelasti manifold subjet to a disorder potential. Thetopi has been initiated with the 1970 work of Ana-toli Larkin [1℄, where he analyzed how disorder distortsthe three-dimensional vortex lattie in a type-II super-ondutor. Expanding the random potential V [r;u(r)℄due to impurities, he arrived at a random fore modelV [r;u(r)℄ � f(r) � u(r) and showed that the relativedisplaements of vortex positions Æu(r) diverge withinreasing distane R as h[Æu(R)℄2i1=2 / R3=2.*E-mail: dimagesh�phys.ethz.h

Later, the problem was generalized to manifolds ofarbitrary dimensions d + n and random potentials ofother types, both long- and short-range orrelated; thefamous Larkin exponent �L = (4� d)=2 desribing thewandering h[Æu(R)℄2i1=2 / R�L of an elasti manifoldsubjet to a random fore �eld is a tribute to the orig-inal analysis of Larkin. However, in low dimensionsd � 2, the perturbative approah to the random elas-ti manifold problem breaks down at any sale and theproblem beomes more di�ult to solve.Here, we study the short-sale behavior of an elastistring (or polymer) on�ned to a plane and subjet to adisorder potential and thermal �utuations, that is, the(1+1)-dimensional random direted polymer problem.The Hamiltonian desribing the distortion u(x) alongthe polymer involves two ompeting terms, the elastienergy H0 (with J denoting the elastiity) and the po-tential energy V due to the random potential V [x; u(x)℄:653



S. E. Korshunov, V. B. Geshkenbein, G. Blatter ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013H = H0 + V ; H0 = J2 LZ0 dx (�xu)2 ;V = LZ0 dx V [x; u(x)℄ : (1)The random potential is usually assumed to be Gaus-sian distributed with zero mean and (short-ranged) or-related with a orrelator U(u) of width � (whih maybe related to the internal width of the manifold exposedto an underlying Æ-orrelated disorder potential),hV (x; u)id = 0 ;hV (x; u)V (x0; u0)id = Æ(x� x0)U(u� u0) : (2)Here and below, angular brakets with a subsript �d�denote the average with respet to the distribution ofthe random potential V . The e�et of thermal �utu-ations (in a given realization of the random potentialV ) is desribed by the usual thermal averagehAith = Sp[A exp(��H)℄Sp[exp(��H)℄ ; � � 1=T ; (3)and is identi�ed by the subsript �th�; the average witha subsript �0� denotes the thermal average in the un-perturbed system with the harmoni Hamiltonian H0.The trae in Eq. (3) implies a funtional integrationover all trajetories u(x) satisfying the hosen bound-ary onditions.The generi question in the 1 + 1-dimensional ran-dom direted polymer problem addresses the growth ofthe orrelatorCd;th(x1; x2) = hh[u(x1)� u(x2)℄2ithid (4)with the inrease in X = jx2 � x1j, the distane be-tween two points (with oordinates x1 and x2) of thepolymer. In brief, the following understanding has beendeveloped over the years: Starting from the perturba-tive analysis and the development of saling arguments(Larkin saling), it beame lear (via numerial analy-sis [2℄, analyti work [3, 4℄, and a reent exat solutionfor � = 0 [5�7℄) that the long-distane behavior is non-perturbative, with the wandering desribed in terms ofa nontrivial wandering exponent � [8℄Cd;th(X) � `2?�X=`k�2� ; X & `k; � = 2=3 ; (5)the transverse (`?) and longitudinal (`k) sales beingdependent on temperature. In the absene of disorder,the purely thermal wandering of the string is desribedby the orrelatorC0(x1; x2) = h(u1 � u2)2i0 / TJ X (6)

(where we introdue the notation ui � u(xi)) whihexhibits a smaller wandering exponent �th = 1=2 thanthe one entering Eq. (5) and desribing the disorder-indued wandering; hene, disorder-indued �utua-tions supersede thermal wandering.The breakdown of the perturbation theory at largesales is assoiated with the presene of many ompet-ing (disorder-indued) potential valleys. One ould ex-pet that only one valley is relevant at very short sales,whih would make the perturbation theory appliable.This is indeed the ase in higher dimensions 2 < d � 4,but in low dimensions, partiularly in d = 1, the per-turbation theory also breaks down at small sales. ForT = 0, this is easily understood from the lowest-orderperturbative expression for Cd(X), whih orrespondsto replaing the random potential by a random foreV [x; u(x)℄ � f(x)u(x) with the fore f(x) Gaussiandistributed with zero mean and Æ-orrelated with theweight � � �U 00(0) (7)given by the seond derivative of the potential orrela-tor U(u). Within this approximation, the displaementorrelator is given by the integralCd(X) = 2� Z ddk 1� os(k �X)(Jk2)2 (8)that diverges strongly at small k when d � 2. Con-�iting results for Cd(X) then have been quoted in theliterature for d = 1, e. g., Cd(X) / X3 resulting fromthe d = 1 Larkin saling with �L = (4 � d)=2 = 3=2(see Ref. [9℄), or from the perturbative alulation fora polymer of a �nite length X in the presene of ahomogeneous random fore [10℄. A di�erent resultCd(X) / X2 was �rst obtained by Bouhaud et al. [11℄;they analyzed the short-sale wandering of an in�nitepolymer using a self-onsistent harmoni approxima-tion in terms of a replia approah and aounting forreplia symmetry breaking (see also the more reentwork by Agoritsas et al. [12℄). On the other hand, thereplia theory does not provide the orret result forthe wandering exponent on large sales, and there isan obvious need to hek these �ndings with a better-ontrolled method. For this, we here analyze a slightlydi�erent problem, whih is properly de�ned within aperturbative approah, namely, the �utuations of alength-X segment of a polymer of length L, or, in otherwords, the �utuations of a polymer in a box with prop-erly de�ned boundary onditions (�xed or free). This�nite-size-regularized perturbative approah does notrely on any unontrolled approximations and providesinteresting further insights into the problem.654



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Finite-temperature perturbation theory : : :In the remaining part of the introdution, we brie�ysummarize the results derived below and plae theminto the general ontext. For T = 0 and hosing a seg-ment far away from the box ends (see Eq. (42) below),we �nd the displaement orrelatorCd(X . L) � (�=J2)LX2: (9)This result depends on the box size L and diverges asL ! 1; in addition, boundary e�ets show up whenplaing the segment lose to the box ends. We notethat for X � L, we reover the Larkin saling at smalldistanes. In analyzing the full random polymer prob-lem, the result in Eq. (9) an be used up to lengthsL � L, where the zero-temperature Larkin lengthL � �J2�2� �1=3 (10)an be obtained from dimensional estimates balaningthe elasti energy J�2=L against the disorder energypL��2. AtX � L � L, we haveCd(L) � �2 and thepresene of other valleys beomes relevant. For L & L,we annot use the result (9) any more and have to re-plae the box size L with L, transforming (9) intoCd(X . L) � �2 (X=L)2 / �2=3; (11)an expliitly nonperturbative result, as it is evidentfrom the noninteger value of the exponent in the lastrelation. The saling in Eq. (11), on�rmed by ouranalysis below, was �rst reported in Ref. [11℄. For largesegments X > L, the wandering exponent is reduedto � = 2=3 (f. Eq. (5)). Hene, in the one-dimensio-nal situation, the short-sale wandering at u � � andX � L expliitly depends on the larger sales � andL, a phenomenon known as intermitteny in the �eldof turbulene [11℄.To better understand the origin of the behaviorCd / X2 in Eq. (11), we analyze the angle orrelatorhh[�xu (x1)��xu (x2)℄2ithid, where the identi�ation ofthe derivative �xu with the loal angle � enlosed be-tween the polymer and the x axis makes sense for suf-�iently smooth exursions (direted polymer). Thisorrelator does not su�er from the divergenes appear-ing in the displaement orrelator and hene produesa regular result (for T = 0)h(�1 � �2)2id � (�=J2)X; (12)where �i � �xujx=xi . Relation (12) is easily derivedfrom its perturbative expression having the form anal-ogous to Eq. (8) but with an additional fator k2 inthe numerator. It is valid at sales X � L, where theperturbation theory holds; at larger distanes X & L,

the saling Cd(X) � �2[X=L℄4=3 tells us that theangle orrelator stops growing beyond L. The typ-ial squared angle h�2id = h[�xu℄2id then assumesthe value (�=J2)L � �2=L2. As a result, the poly-mer wandering on large sales an be roughly visual-ized in terms of length-L segments, eah enlosing atypial angle of the order of ��=L with the x axis,from whih it (super-)di�uses away with an exponent� > 1=2. At the same time, we onlude that atsmall salesX � L, the displaement orrelator growsas Cd(X) � h�2idX2 � (�=J2)LX2 � �2(X=L)2,providing an alternative derivation of the result inEq. (11). The same arguments an be applied to derivethe result in Eq. (9).The analysis at a �nite temperature T > 0 ismore omplex and involves the temperature-dependentLarkin lengthL(T ) � T 5U20J � L� TTdpin�5 (13)with U0 = Z duU(u) � U(0)�; (14)and the so-alled thermal depinning temperatureTdpin � (JU0�)1=3: (15)The temperature-dependent Larkin length L(T ) is thenatural length sale that an be onstruted from J , T ,and U0 (at high temperatures, the width of U(u) an-not be resolved, and hene only its integral over u isrelevant).As shown in [13℄ (a more onise derivation an befound in the appendix of Ref. [14℄), for a random poten-tial unorrelated in x, the full displaement orrelatorde�ned by Eq. (4) an be expressed as the sum of twoterms,Cd;th(x1; x2) = C0(x1; x2) + Cd(x1; x2) ; (16)the �rst of whih, C0(x1; x2), has exatly the same formas in the absene of disorder (see Eq. (6)), whereas theseond an be redued to the formCd(x1; x2) = h(hu1 � u2ith)2id : (17)Aordingly, it is natural to all Cd(x1; x2) the disorder-indued ontribution to the �utuations. At T = 0, thisterm inludes only the disorder-indued �utuations; atT > 0, these beome subjet to thermal smearing.At T > 0, the main ontribution to Cd;th(x1; x2)at the smallest sales is always given by C0(x1; x2) // (T=J)X beause the disorder-indued wandering is655



S. E. Korshunov, V. B. Geshkenbein, G. Blatter ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013always desribed by a larger exponent. As the distaneX inreases, the disorder-related term Cd(x1; x2) over-omes the purely thermal ontribution. We fous ourattention entirely on the nontrivial disorder-induedontribution Cd(x1; x2), whereas the onsequenes ofthe interplay between C0(x1; x2) and Cd(x1; x2) are dis-ussed in Ref. [12℄. As is shown in Se. 4.1 (see Eqs. (53)and (54)), the lowest-order result for the displaementorrelator evaluated at a high temperature T & Tdpinsales asC(1)d (X) � hÆu2[L(T )℄i0sL(T )x0 � XL(T )�2 (18)and the estimate for the typial squared angle ish�2(x0)i(1)d � hÆu2[L(T )℄i0L2(T ) sL(T )x0 ; (19)where x0 marks the position of the segment X withinthe box [0; L℄. The results in Eqs. (18) and (19) anbe easily obtained from the orresponding T = 0 ex-pressions by replaing the parameter � = �U 00 withthe ratio U0=hu2(x0)i0, as motivated by the form ofEq. (33). Evaluating expression (18) away from thebox ends (i. e., for L� x0 � x0) and taking the formallimit L ! 1 (whih orresponds to taking the ther-modynami limit), we see that these results vanish, inontrast to the zero-temperature results, whih eitherinrease with the box dimension L (as Cd(X)) or areindependent thereof (as h�2(x0)id).Evaluating the seond-order term in the perturba-tion series (whih, ontrarily to the situation at T = 0,does not vanish), we obtain the result (f. Eq. (57))C(2)d (X) � f �x0L � hÆu2[L(T )℄i0� XL(T )�2 : (20)Here, f(x0=L) is a smooth funtion of the relative lo-ation within the box (in our alulation below, weuse �xed and free boundary onditions at x = 0 andx = L, respetively, resulting in a funtion f(x0=L)dereasing from a onstant to zero). Hene, while the�nite-temperature problem is less divergent than thezero-temperature version, it maintains some irregularfeatures as the numerial fator in the result dependson the relative loation of the segment X within thebox.Combining the �rst- and seond-order results (18)and (20), we an onjeture that the perturbation ex-pansion is valid as long as x0 � L(T ). Pushing thisresult to its boundary of appliability, we �nd thatC(2)d (X) � hÆu2[L(T )℄i0� XL(T )�2 ; (21)

the high-temperature analogue of Eq. (11), whihsmoothly goes over to the large-distane result (5) atX � L(T ). This result (as well as the T = 0 re-sult in Eq. (11)) is then onsistent with the �ndings inRef. [12℄.In Se. 2 we onstrut the general form of the per-turbative expansion for the model de�ned by Eqs. (1)and (2), whih is appliable for any boundary ondi-tion. Setion 3 is devoted to the disussion of the zero-temperature results for two di�erent types of boundaryonditions, and in Se. 4 we analyze the situation athigh temperatures.2. CONSTRUCTION OF THE PERTURBATIVEEXPANSIONExpressing the disorder-indued orrelatorCd(x1; x2) in Eq. (17) throughd(x1; x2) � hhu1ithhu2ithid ; (22)Cd(x1; x2) � d(x1; x1)� d(x1; x2)�� d(x2; x1) + d(x2; x2) ; (23)we �rst have to alulate the thermal averages of u1;2in a given realization of a random potential. The �rststep towards this goal an be easily made by notingthat the alulation of the thermal average of ÆH=Æu1involves the integration of(ÆH=Æu1) exp(��H) � �T (Æ=Æu1) exp(��H)over u1, and therefore hÆH=Æu1ith has to vanish. Onthe other hand, the variation of Eq. (1) with respet tou1 gives ÆHÆu1 = �J �2xu��x=x0 + V 01 ; (24)where V1 � V [x1; u(x1)℄ and the prime denotes thepartial derivative with reset to u. Taking the thermalaverage of Eq. (24), we �nd thathu1ith = � LZ0 dx2 g12hV 02 ith ; (25)where g12 � g(x1; x2) (26)is the response funtion of the unperturbed (harmoni)system, whih is independent of temperature and istrivially related to the orrelation funtion0(x1; x2) � hu1u2i0 � G12 = Tg12 (27)656



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Finite-temperature perturbation theory : : :of the same system. Substituting Eq. (25) in Eq. (22)then givesd(x1; x2) = LZ0 dx3 LZ0 dx4 g13�34g42 ; (28)where �34 � hhV 03 ithhV 04ithid (29)plays the role of the e�etive self-energy part.2.1. First-order approximationIn the �rst approximation, hV 0j ith an be replaedbyhV 0j i0 = * 1Z�1 dKj2� iKjV (Kj) exp(iKjuj)+0 == i 1Z�1 dKj2� KjV (Kj)w1=2jj ; (30)where we perform the Fourier transformation with re-spet to u, introdue the notationwij = exp (�KiKjGij) ; (31)and take into aount that huji0 = 0. Note thatin Eq. (30) (and analogous equations below), summa-tion over repeated indies is not implied. SubstitutingEq. (30) in Eq. (29) and averaging over disorder thenprovides the lowest-order approximation for the e�e-tive self-energy�(1)34 = Æ(x3 � x4)�(x3) ;�(x3) = 1Z�1 dK32� K23U(K)w33 : (32)As T ! 0, thermal �utuations are suppressed suhthatG33 ! 0 and w33 ! 1. In this limit, the expressionfor �(x) in Eq. (32) is redued to � = �U 00(u = 0) == onst (in agreement with the zero-temperature ana-lysis of Efetov and Larkin [15℄). On the other hand,at T > 0, we have w33 < 1 and hene the valueof �(x3) is suppressed in omparison with its zero-temperature value and depends on x3. In partiular,for U(u) / exp(�x2=4�2), that is, forU(K) = U0 exp(��2K2);

the integration overK3 in Eq. (32) is Gaussian and anbe performed exatly, whih leads to�(x3) = U04[�(�2 +G33)3℄1=2 : (33)This suggests that at high temperatures (orrespondingto G33 � �2), the random potential is smeared out bythermal �utuations in suh a way that its orrelationradius � is replaed by the typial thermal displaementG1=233 = hu23i1=20 , although U0 � R duU(u) remains thesame (f. with Ref. [9℄).2.2. Seond-order approximationTo �nd the next nonvanishing ontribution to �34,we have to alulate hV 0j ith with the help of Eq. (3),expanding the exponentials both in the nominator andin the denominator in powers of V up to the seondorder,hV 0j ith = hV 0j i0 � �hV 0j Vi0 + (�2=2)hV 0jV2i0 + : : :1� �hVi0 + (�2=2)hV2i0 + : : : == hV 0j i0 � � �hV 0j Vi0 � hV 0j i0hVi0�++ �22 �hV 0j V2i0 � 2hV 0jVi0hVi0 ++ 2hV 0j i0hVi20 � hV 0j i0hV2i0�+ : : : (34)The ontribution to the produt hV 03 ithhV 04 ith of theseond order in powers of V an then be written as[hV 03 ithhV 04 ith℄(2) = �2sym34 �hV 03V2i0hV 04i0 �� 4hV 03Vi0hVi0hV 04i0 + 3hV 03i0hVi20hV 04 i0 �� hV 03 i0hV2i0hV 04 i0 + hV 03Vi0hVV 04 i0� ; (35)where sym34[: : : ℄ implies taking only the part of theexpression in square brakets that is symmetri withrespet to the permutation of x3 and x4.Taking the disorder average of Eq. (35) produes thefollowing expression for the seond-order ontributionto �34:�(2)34 = �2 1Z�1 1Z�1 dK32� dK42� U(K3)U(K4)�� 24Æ(x3 � x4)Æ(K4 �K5)K23 �� LZ0 dx5w33w55(3� 4w35 + w235) �� K3K4w33w44(2w34 � w234)35 : (36)14 ÆÝÒÔ, âûï. 3 (9) 657



S. E. Korshunov, V. B. Geshkenbein, G. Blatter ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013In the expansion of (3 � 4w35 + w235) in powers ofK3K5G35 the �rst nonvanishing term after the integra-tion overK3 and K4 is proportional to T 4, whereas theexpansion of (2w34�w234) and integration over K3 andK4 produes a �rst nonvanishing term proportional toT 3. This ensures that in the limit T ! 0, �(2)34 van-ishes, in agreement with the zero-temperature analysisof Efetov and Larkin [15℄.For U(K) = U0 exp(��2K2), the integration overK3 and K4 in Eq. (36) is Gaussian and an be per-formed exatly. The result of this integration an beexpressed in the relatively ompat form�(2)34 = U208�T 2 24Æ(x3 � x4) LZ0 dx5 (G55 + �2) �� �3D(0)35 � 4D(1)35 +D(2)35 �+G34 �D(1)34 �D(2)34 �35 ;whereD(p)ij = [(Gii + �2)(Gjj + �2)� (p=2)2G2ij ℄�3=2 ;p = 0; 1; 2 : (37)3. ZERO TEMPERATURE3.1. Fixed boundary onditionsWe �rst onsider the ase where both end points ofthe string are �xed, u(0) = u(L) = 0. In this situation,g12 = �x1(L� �x2)LJ ; (38)where �x1 = min(x1; x2) ; �x2 = max(x1; x2) ;and hene �x1 � �x2. As demonstrated in Ref. [15℄, onlythe lowest-order ontribution to the perturbative ex-pansion of � is nonzero at T = 0,�34 = Æ(x3 � x4)[�U 00(0)℄ : (39)Substituting Eqs. (38) and (39) in Eq. (28) and inte-grating over x3 leads tod(x1; x2) = �U 00(0)6J2L [2L�x2�x21�x22℄ �x1 (L��x2) ; (40)whih, with Eq. (23), allows expressing Cd(x1; x2) asCd(x1; x2) = �U 00(0)3J2L �� ��x21 + (L� �x2)2 � �x1(L� �x2)� (x1 � x2)2: (41)

Equation (41) demonstrates that even for L � X , Cdessentially depends on the total system size L,Cd � �U 00(0)J2 LX2 ; (42)and hene the thermodynami limit L ! 1 annotbe taken. This property was disovered by Bouhaud,Mezard and Parisi [11℄, who notied that in an in�-nite system, the �rst-order expression for the orrela-tor Cd(X) is given by an integral (see Eq. (8)) that ford = 1 diverges at small k as 1=kmin. Equation (41)on�rms this onlusion on a more quantitative leveland demonstrates that the orrelator Cd remains pro-portional to L even when the distane from the intervalX where the relative displaement to the boundary ofthe system is measured is muh smaller than L.Aording to Eq. (41), for X � L, the dependeneof Cd(X) on X redues to Cd(X) / X2. This meansthat the main ontribution to the �utuations of therelative displaement in suh a regime omes from the�utuations of the derivative �(x) = �xu, whih onlyweakly hanges between x1 and x2. For j�(x)j � 1, thisderivative oinides with the angle between the polymerand its average diretion (along axis x), and we there-fore all the variable �(x) the angle in what follows. Wenote that Hamiltonian (1) is diretly appliable onlywhen the values of j�(x)j are muh smaller than 1. Ifthe parameters of the system are suh that typial �u-tuations of � alulated with the help of Hamiltonian(1) are muh larger than unity, this Hamiltonian hasto be omplemented by some terms produing a short-sale uto� that suppresses the �utuations of the an-gle; for example, a term proportional to (�2xu)2 an beinluded into the elasti part.In terms of angle �utuations, Eq. (42) an berewritten as Cd(X) = h�20id X2 ; (43)where �0 � �(x0) and x0 � x1;2 (more preisely, x0lies between x1 and x2). It follows from Eq. (28) thatfor �34 = Æ(x3 � x4)�(x3), the expression for h�1�2idis h�1�2id = LZ0 dx3 �g13�x1 �g23�x2 �(x3) ; (44)whene (at T = 0),h�1�2id = �U 00(0)2J2L ��x21 + (L� �x2)2 � L2=3� (45)and h�2(x)id = �U 00(0)J2 L" 112 +� xL � 12�2# : (46)658



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Finite-temperature perturbation theory : : :Equation (46) shows that h�2(x)id is proportional tothe total length L of the string, implying that its valuein a given realization of the random potential is deter-mined by the �utuations of the random potential atlarge length sales (whih are omparable with L) andnot by those in the lose viinity of the point x. Thevalue of h�2(x)id is minimal in the middle of the stringand is larger at its endpoints by a fator of 4.To �nd the range of X where Cd is determined byangle �utuations and is therefore proportional to X2,we have to ompareh(�1 � �2)2)id = �U 00(0)J2 jx1 � x2j (47)with the value of h�2(x)id given by Eq. (46). This om-parison on�rms that the dependene Cd / X2 holdsas long as X � L.3.2. Mixed boundary onditionsIf only one endpoint of the string is �xed and theother is free, the equations beome slightly simpler.In partiular, if the boundary ondition at x = 0 isu(0) = 0 and free at x = L, then Eq. (38) is replaedby g12 = �x1=J : (48)Quite remarkably, for suh boundary onditions, theform of the Green's funtion g12 � g(x1; x2) is sensitiveonly to one of its two arguments and does not dependon the total length L. In this situation, the results inEqs. (41) and (46) are respetively replaed byCd(x1; x2) = �U 00(0)J2 �L� �x1+2�x23 � (x1�x2)2; (49)and h�2(x)id = �U 00(0)J2 (L� x0) : (50)It follows from the form of Eq. (49) that for T = 0 andmixed boundary onditions, Cd depends only on thedistanes y1;2 = L � x1;2 between the points x1;2 andthe endpoint with the free boundary ondition, whereasthe total length of the string is of no importane. Inpartiular, when the points x1 and x2 are situated inthe viinity of the free endpoint of the string, Cd is pro-portional to the distane from the free end and not tothe total length L.Naturally, an analogous onlusion applies also toh�2(x)id, whih linearly depends on L�x. The reasonwhy h�2(x)id vanishes as x ! L is quite lear: in theminimal-energy on�guration, the value of �(x) at the

free end (x = L) has to be equal to zero for any real-ization of the random potential. This follows from thevariation of Hamiltonian (1) with respet to u(x = L).For a Green's funtion g12 of form (48), di�erenti-ating Eq. (28) with �34 = Æ(x3 � x4)�(x3) giveshh�1ithh�2ithid = hh�(�x2)i2thid (51)whene it follows that the zero-temperature expressionfor h(�1 � �2)2id has exatly the same form (given byEq. (47)) as in the ase of �xed boundary onditions.A omparison of Eq. (47) with Eq. (50) then suggeststhat for mixed boundary onditions, the dependeneCd / X2 holds as long as X is muh smaller than thedistane to the free end of the string.4. FINITE TEMPERATURES4.1. First-order approximation, mixedboundary onditionsAt �nite temperatures, all terms of the perturba-tive expansion of � beome nonzero, and we start byanalyzing the �rst term. For simpliity, we onsiderthe ase of mixed boundary onditions and fous ourattention on su�iently high temperatures, where wean neglet the �niteness of �, that is, U(u) an bereplaed by U0Æ(u). Substituting G33 = (T=J)x3 inEq. (33) with � = 0 shows that in this regime, �(x) de-pends algebraially on the distane from the �xed endof the string, �(x) = U04p� � JTx�3=2 : (52)Substituting �34 = Æ(x3 � x4)�(x3) in Eqs. (28)and (44) and integrating over x3 then lead toC(1)d (x1; x2) = U02(�JT 3)1=2 �� 26443 2�x1=21 + �x1=22�x1=21 + x1=22 �2 � 1L1=2375 (x1 � x2)2 (53)andhh�(x)i2thi(1)d = U02(�JT 3)1=2 � 1x1=2 � 1L1=2� : (54)The result in Eq. (53) implies that at T > 0 (anal-ogously to what is the ase at T = 0), the disorder-indued �utuations of the thermally averaged relativedisplaement hu1�u2ith at small X are determined by�utuations of the thermally averaged angle h�ith.659 14*



S. E. Korshunov, V. B. Geshkenbein, G. Blatter ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013In a generi situation with x1;2 � L � x1;2 � L,expression (53) providing the �rst-order ontributionto Cd;th(X) vanishes in the limit L ! 1 (in ontrastto the expetations expressed in Se. 2.2 in Ref. [9℄)and remains �nite only if the segment X is situatedat a �nite distane from the �xed endpoint of thestring, where the in�uene of thermal �utuations isnot as pronouned as in the middle of an in�nitestring. Naturally, the same holds for expression (54) forhh�(x)i2thi(1)d , the intensity of �utuations of the ther-mally averaged angle.For �nite L, on approahing the free end of thestring, the angle �utuations hh�(x)i2thi(1)d tend to zerolinearily in the distane L � x, exatly as is the asewith h�2(x)i(1)d at T = 0 (see Eq. (46)). However, thereasons for this result are less evident than at T = 0, be-ause in the presene of thermal �utuations, �(x = L)is not obliged to be equal to zero. On the other hand,the reasons for the divergene of hh�(x)i2thi(1)d with de-reasing x are quite lear: the amplitude of thermal�utuations of the displaement dereases on approah-ing the �xed end of the string, and therefore the ther-mal suppression of angle �utuations also beomes lessprominent. Naturally, in a system with � > 0, depen-dene (54) has to saturate at su�iently small x be-ause hh�(x)i2thi(1)d annot exeed its zero-temperaturelimit h�2(x)i(1)d .It follows from Eqs. (51) and (54) that the angleorrelator at high temperatures assumes the formhh�1 � �2i2thi(1)d == U02(�JT 3)1=2 X(x1x2)1=2(x1=21 + x1=22 ) : (55)The omparison of Eqs. (54) and (55) allows on-luding that for the appliability of the dependeneCd(X) / X2 (whih requires having hh�1 � �2i2thid �� hh�i2thid), the length X of the segment has to bemuh smaller than the distane to the nearest endpoint.4.2. Seond-order approximation, mixedboundary onditionsTo �nd the range of parameters where the value ofad(x0) an be desribed by expression (54), we have toonsider the next term in the perturbative expansion.Substituting Eq. (37) inhh�0i2thid = LZ0 LZ0 dx3 dx4 �g03�x0 �g04�x0 �34 (56)

and subsequently integrating over x3 and x4 leads tohh�(x0)i2thi(2)d = U202�T 4 f �x0L � ; (57)wheref() = 3��1=2 � 1�� 2�p4�1 � 1�p3�++p�1 � 1 : (58)The funtion f() has a �nite limit f( ! 0) == 2p3�3 � 0:464 and monotonially dereases with in-reasing . The behavior of f() on approahing  = 1is determined by the last term in Eq. (58), f( ! 1) �� (1� )1=2.For L�x0 � L, that is away from the free boundary,Eqs. (54) and (57) an be rewritten ashh�(x0)i2thi(1)d � U20T 4 �L(T )x0 �1=2 �� TJL(T ) �L(T )x0 �1=2 ; (59)hh�(x0)i2thi(2)d � U20T 4 � TJL(T ) ; (60)whih suggest that the perturbative expansion forad(x0) (and, therefore, for Cd � hh�i2thidX2) is inpowers of [x0=L(T )℄1=2 and, aordingly, the ondi-tion for its appliability is x0 � L(T ). This seemsto be reasonable: if we expet that the ondition forthe appliability of the perturbation theory at T = 0is x0 � L � (J2�5=U0)1=3, then it is rather nat-ural that at large temperatures, L is replaed byits high-temperature analog L(T ). Pushing the re-sult to the boundary of its validity range (i. e., eval-uating Eqs. (59) and (60) at x0 � L(T )), we ob-tain the result Cd(X) � (U20 =T 4)X2; the onditionCd[L(T )℄ � hu2[L(T )℄i0 leads to expression (13) forthe temperature-dependent Larkin length and the on-dition hu2[L(Tdpin)℄i0 � �2 leads to the depinningtemperature in (15). Rewriting Cd(X) in terms of thesequantities, we obtain the result in Eq. (21).As regards the viinity of the other (free) boundary,the situation is less lear. In this region, the �rst-orderterm hh�i2thi(1)d / (L� x0) vanishes more rapidly thanthe seond-order ontribution hh�i2thi(2)d / pL� x0and hene the ratio of the seond- and the �rst-orderterms is of the order of L=[(L� x0)L(T )℄1=2; this sug-gests that on approahing the free endpoint, one mayalways leave the appliability range of the perturbationtheory.660



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Finite-temperature perturbation theory : : :5. CONCLUSIONWe have analyzed the wandering of a direted poly-mer in a random potential. Formulated for an in�nitepolymer, this problem is nonperturbative at all sales.For a su�iently small �nite system, the problem isperturbative with the polymer exursions dependingon the system size, the boundary onditions, and therelative position of the segment within the box. Theresults for the in�nite polymer at distanes X � L(T )an be found from the �nite-system results by repla-ing the box size L with the Larkin sale L(T ). Thephysial interpretation of the results is the following:at short sales, the polymer �utuates around an al-most straight line, whih, however, deviates from theoriginal diretion or the x axis by some angle � = �xu.The typial value of this angle depends on the box sizeL and on the relative loation x0=L in the box; for thein�nite polymer, we have to replae x0 � L � L. As aresult, the wandering at short sales is lose to linear,Æu � �X , but with a oe�ient � the typial value ofwhih is determined by muh larger sales.The linear behavior of the displaement, orCd(X) � B�2(X=L)2 inluding the numerial fa-tor B, was previously obtained in [11℄ and [12℄ in theframework of a variational replia ansatz inorporatingreplia symmetry breaking. Our analysis demonstratesthat their approah orretly aptures the saling/ X2of the �utuations at small sales (in ontrast to largesales X & L, where this approah does not preditthe orret result for the wandering exponent) and pro-vides a simple physial interpretation for this behaviorin term of angle �utuations. On the other hand, anaurate alulation of the oe�ient B in the expres-sion for Cd(X) will most likely require the use of moreadvaned methods than the variational one.In Ref. [9℄, the short-distane behavior of the disor-der-indued orrelator Cd(X) for a polymer of in�nitelength was analyzed for high temperatures T � Tdpinin the framework of a dynami analysis based on theLangevin equation. In this sheme, the total displae-ment u(x; t) is split into a thermal and a disorder-in-dued parts, u(x; t) = uth(x; t) + ud(x; t), with thetwo terms following from the iterative solution of theLangevin equation[��t � J�2x℄u(x; t) = fth(x; t) + fd[x; u(x; t)℄ (61)with a Æ-orrelated thermal fore hfth(x; t)fth(x0; t0)i == 2�TÆ(x � x0) Æ(t � t0), where � is the frition oef-�ient for the dissipative motion and fd[x; u(x; t)℄ == ��uV [x; u(x; t)℄ is the disorder-indued fore. By ex-panding in ud, the term hh[Æud(X)℄2ithid provided theresult Cd(X) � hÆu2[L(T )℄i0 [X=L(T )℄3=2 onsistent
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