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FINITE-TEMPERATURE PERTURBATION THEORYFOR THE RANDOM DIRECTED POLYMER PROBLEMS. E. Korshunov a, V. B. Geshkenbein b*, G. Blatter baLandau Institute for Theoreti
al Physi
s, Russian A
ademy of S
ien
es119334, Mos
ow, RussiabTheoretis
he PhysikCH-8093, Züri
h, SwitzerlandRe
eived April 25, 2013Dedi
ated to the memory of Professor Anatoly LarkinWe study the random dire
ted polymer problem � the short-s
ale behavior of an elasti
 string (or polymer) inone transverse dimension subje
t to a disorder potential and �nite temperature �u
tuations. We are interestedin the polymer short-s
ale wandering expressed through the displa
ement 
orrelator h[Æu(X)℄2i, with Æu(X)being the di�eren
e in the displa
ements at two points separated by a distan
e X. While this obje
t 
an be
al
ulated at short s
ales using the perturbation theory in higher dimensions d > 2, this approa
h be
omesill-de�ned and the problem turns out to be nonperturbative in low dimension and for an in�nite-length polymer.In order to make progress, we rede�ne the task and analyze the wandering of a string of a �nite length L. Atzero temperature, we �nd that the displa
ement �u
tuations h[Æu(X)℄2i / LX2 depend on L and s
ale withthe square of the segment length X, whi
h di�ers from a straightforward Larkin-type s
aling. The result is bestunderstood in terms of a typi
al squared angle h�2i / L, where � = �xu, from whi
h the displa
ement s
alingfor the segment X follows naturally, h[Æu(X)℄2i / h�2iX2. At high temperatures, thermal �u
tuations smearthe disorder potential and the lowest-order results for disorder-indu
ed �u
tuations in both the displa
ement �eldand the angle vanish in the thermodynami
 limit L!1. The 
al
ulation up to the se
ond order allows us toidentify the regime of validity of the perturbative approa
h and provides a �nite expression for the displa
ement
orrelator, albeit depending on the boundary 
onditions and the lo
ation relative to the boundaries.DOI: 10.7868/S00444510130901501. INTRODUCTIONThe (d + n)-dimensional random elasti
 manifoldproblem des
ribes the behavior of the n-dimensionaltransverse displa
ement �eld u(r) of a d-dimensionalelasti
 manifold subje
t to a disorder potential. Thetopi
 has been initiated with the 1970 work of Ana-toli Larkin [1℄, where he analyzed how disorder distortsthe three-dimensional vortex latti
e in a type-II super-
ondu
tor. Expanding the random potential V [r;u(r)℄due to impurities, he arrived at a random for
e modelV [r;u(r)℄ � f(r) � u(r) and showed that the relativedispla
ements of vortex positions Æu(r) diverge within
reasing distan
e R as h[Æu(R)℄2i1=2 / R3=2.*E-mail: dimagesh�phys.ethz.
h

Later, the problem was generalized to manifolds ofarbitrary dimensions d + n and random potentials ofother types, both long- and short-range 
orrelated; thefamous Larkin exponent �L = (4� d)=2 des
ribing thewandering h[Æu(R)℄2i1=2 / R�L of an elasti
 manifoldsubje
t to a random for
e �eld is a tribute to the orig-inal analysis of Larkin. However, in low dimensionsd � 2, the perturbative approa
h to the random elas-ti
 manifold problem breaks down at any s
ale and theproblem be
omes more di�
ult to solve.Here, we study the short-s
ale behavior of an elasti
string (or polymer) 
on�ned to a plane and subje
t to adisorder potential and thermal �u
tuations, that is, the(1+1)-dimensional random dire
ted polymer problem.The Hamiltonian des
ribing the distortion u(x) alongthe polymer involves two 
ompeting terms, the elasti
energy H0 (with J denoting the elasti
ity) and the po-tential energy V due to the random potential V [x; u(x)℄:653



S. E. Korshunov, V. B. Geshkenbein, G. Blatter ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013H = H0 + V ; H0 = J2 LZ0 dx (�xu)2 ;V = LZ0 dx V [x; u(x)℄ : (1)The random potential is usually assumed to be Gaus-sian distributed with zero mean and (short-ranged) 
or-related with a 
orrelator U(u) of width � (whi
h maybe related to the internal width of the manifold exposedto an underlying Æ-
orrelated disorder potential),hV (x; u)id = 0 ;hV (x; u)V (x0; u0)id = Æ(x� x0)U(u� u0) : (2)Here and below, angular bra
kets with a subs
ript �d�denote the average with respe
t to the distribution ofthe random potential V . The e�e
t of thermal �u
tu-ations (in a given realization of the random potentialV ) is des
ribed by the usual thermal averagehAith = Sp[A exp(��H)℄Sp[exp(��H)℄ ; � � 1=T ; (3)and is identi�ed by the subs
ript �th�; the average witha subs
ript �0� denotes the thermal average in the un-perturbed system with the harmoni
 Hamiltonian H0.The tra
e in Eq. (3) implies a fun
tional integrationover all traje
tories u(x) satisfying the 
hosen bound-ary 
onditions.The generi
 question in the 1 + 1-dimensional ran-dom dire
ted polymer problem addresses the growth ofthe 
orrelatorCd;th(x1; x2) = hh[u(x1)� u(x2)℄2ithid (4)with the in
rease in X = jx2 � x1j, the distan
e be-tween two points (with 
oordinates x1 and x2) of thepolymer. In brief, the following understanding has beendeveloped over the years: Starting from the perturba-tive analysis and the development of s
aling arguments(Larkin s
aling), it be
ame 
lear (via numeri
al analy-sis [2℄, analyti
 work [3, 4℄, and a re
ent exa
t solutionfor � = 0 [5�7℄) that the long-distan
e behavior is non-perturbative, with the wandering des
ribed in terms ofa nontrivial wandering exponent � [8℄Cd;th(X) � `2?�X=`k�2� ; X & `k; � = 2=3 ; (5)the transverse (`?) and longitudinal (`k) s
ales beingdependent on temperature. In the absen
e of disorder,the purely thermal wandering of the string is des
ribedby the 
orrelatorC0(x1; x2) = h(u1 � u2)2i0 / TJ X (6)

(where we introdu
e the notation ui � u(xi)) whi
hexhibits a smaller wandering exponent �th = 1=2 thanthe one entering Eq. (5) and des
ribing the disorder-indu
ed wandering; hen
e, disorder-indu
ed �u
tua-tions supersede thermal wandering.The breakdown of the perturbation theory at larges
ales is asso
iated with the presen
e of many 
ompet-ing (disorder-indu
ed) potential valleys. One 
ould ex-pe
t that only one valley is relevant at very short s
ales,whi
h would make the perturbation theory appli
able.This is indeed the 
ase in higher dimensions 2 < d � 4,but in low dimensions, parti
ularly in d = 1, the per-turbation theory also breaks down at small s
ales. ForT = 0, this is easily understood from the lowest-orderperturbative expression for Cd(X), whi
h 
orrespondsto repla
ing the random potential by a random for
eV [x; u(x)℄ � f(x)u(x) with the for
e f(x) Gaussiandistributed with zero mean and Æ-
orrelated with theweight � � �U 00(0) (7)given by the se
ond derivative of the potential 
orrela-tor U(u). Within this approximation, the displa
ement
orrelator is given by the integralCd(X) = 2� Z ddk 1� 
os(k �X)(Jk2)2 (8)that diverges strongly at small k when d � 2. Con-�i
ting results for Cd(X) then have been quoted in theliterature for d = 1, e. g., Cd(X) / X3 resulting fromthe d = 1 Larkin s
aling with �L = (4 � d)=2 = 3=2(see Ref. [9℄), or from the perturbative 
al
ulation fora polymer of a �nite length X in the presen
e of ahomogeneous random for
e [10℄. A di�erent resultCd(X) / X2 was �rst obtained by Bou
haud et al. [11℄;they analyzed the short-s
ale wandering of an in�nitepolymer using a self-
onsistent harmoni
 approxima-tion in terms of a repli
a approa
h and a

ounting forrepli
a symmetry breaking (see also the more re
entwork by Agoritsas et al. [12℄). On the other hand, therepli
a theory does not provide the 
orre
t result forthe wandering exponent on large s
ales, and there isan obvious need to 
he
k these �ndings with a better-
ontrolled method. For this, we here analyze a slightlydi�erent problem, whi
h is properly de�ned within aperturbative approa
h, namely, the �u
tuations of alength-X segment of a polymer of length L, or, in otherwords, the �u
tuations of a polymer in a box with prop-erly de�ned boundary 
onditions (�xed or free). This�nite-size-regularized perturbative approa
h does notrely on any un
ontrolled approximations and providesinteresting further insights into the problem.654
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tion, we brie�ysummarize the results derived below and pla
e theminto the general 
ontext. For T = 0 and 
hosing a seg-ment far away from the box ends (see Eq. (42) below),we �nd the displa
ement 
orrelatorCd(X . L) � (�=J2)LX2: (9)This result depends on the box size L and diverges asL ! 1; in addition, boundary e�e
ts show up whenpla
ing the segment 
lose to the box ends. We notethat for X � L, we re
over the Larkin s
aling at smalldistan
es. In analyzing the full random polymer prob-lem, the result in Eq. (9) 
an be used up to lengthsL � L
, where the zero-temperature Larkin lengthL
 � �J2�2� �1=3 (10)
an be obtained from dimensional estimates balan
ingthe elasti
 energy J�2=L
 against the disorder energypL
��2. AtX � L � L
, we haveCd(L
) � �2 and thepresen
e of other valleys be
omes relevant. For L & L
,we 
annot use the result (9) any more and have to re-pla
e the box size L with L
, transforming (9) intoCd(X . L
) � �2 (X=L
)2 / �2=3; (11)an expli
itly nonperturbative result, as it is evidentfrom the noninteger value of the exponent in the lastrelation. The s
aling in Eq. (11), 
on�rmed by ouranalysis below, was �rst reported in Ref. [11℄. For largesegments X > L
, the wandering exponent is redu
edto � = 2=3 (
f. Eq. (5)). Hen
e, in the one-dimensio-nal situation, the short-s
ale wandering at u � � andX � L
 expli
itly depends on the larger s
ales � andL
, a phenomenon known as intermitten
y in the �eldof turbulen
e [11℄.To better understand the origin of the behaviorCd / X2 in Eq. (11), we analyze the angle 
orrelatorhh[�xu (x1)��xu (x2)℄2ithid, where the identi�
ation ofthe derivative �xu with the lo
al angle � en
losed be-tween the polymer and the x axis makes sense for suf-�
iently smooth ex
ursions (dire
ted polymer). This
orrelator does not su�er from the divergen
es appear-ing in the displa
ement 
orrelator and hen
e produ
esa regular result (for T = 0)h(�1 � �2)2id � (�=J2)X; (12)where �i � �xujx=xi . Relation (12) is easily derivedfrom its perturbative expression having the form anal-ogous to Eq. (8) but with an additional fa
tor k2 inthe numerator. It is valid at s
ales X � L
, where theperturbation theory holds; at larger distan
es X & L
,

the s
aling Cd(X) � �2[X=L
℄4=3 tells us that theangle 
orrelator stops growing beyond L
. The typ-i
al squared angle h�2id = h[�xu℄2id then assumesthe value (�=J2)L
 � �2=L2
. As a result, the poly-mer wandering on large s
ales 
an be roughly visual-ized in terms of length-L
 segments, ea
h en
losing atypi
al angle of the order of ��=L
 with the x axis,from whi
h it (super-)di�uses away with an exponent� > 1=2. At the same time, we 
on
lude that atsmall s
alesX � L
, the displa
ement 
orrelator growsas Cd(X) � h�2idX2 � (�=J2)L
X2 � �2(X=L
)2,providing an alternative derivation of the result inEq. (11). The same arguments 
an be applied to derivethe result in Eq. (9).The analysis at a �nite temperature T > 0 ismore 
omplex and involves the temperature-dependentLarkin lengthL
(T ) � T 5U20J � L
� TTdpin�5 (13)with U0 = Z duU(u) � U(0)�; (14)and the so-
alled thermal depinning temperatureTdpin � (JU0�)1=3: (15)The temperature-dependent Larkin length L
(T ) is thenatural length s
ale that 
an be 
onstru
ted from J , T ,and U0 (at high temperatures, the width of U(u) 
an-not be resolved, and hen
e only its integral over u isrelevant).As shown in [13℄ (a more 
on
ise derivation 
an befound in the appendix of Ref. [14℄), for a random poten-tial un
orrelated in x, the full displa
ement 
orrelatorde�ned by Eq. (4) 
an be expressed as the sum of twoterms,Cd;th(x1; x2) = C0(x1; x2) + Cd(x1; x2) ; (16)the �rst of whi
h, C0(x1; x2), has exa
tly the same formas in the absen
e of disorder (see Eq. (6)), whereas these
ond 
an be redu
ed to the formCd(x1; x2) = h(hu1 � u2ith)2id : (17)A

ordingly, it is natural to 
all Cd(x1; x2) the disorder-indu
ed 
ontribution to the �u
tuations. At T = 0, thisterm in
ludes only the disorder-indu
ed �u
tuations; atT > 0, these be
ome subje
t to thermal smearing.At T > 0, the main 
ontribution to Cd;th(x1; x2)at the smallest s
ales is always given by C0(x1; x2) // (T=J)X be
ause the disorder-indu
ed wandering is655
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ribed by a larger exponent. As the distan
eX in
reases, the disorder-related term Cd(x1; x2) over-
omes the purely thermal 
ontribution. We fo
us ourattention entirely on the nontrivial disorder-indu
ed
ontribution Cd(x1; x2), whereas the 
onsequen
es ofthe interplay between C0(x1; x2) and Cd(x1; x2) are dis-
ussed in Ref. [12℄. As is shown in Se
. 4.1 (see Eqs. (53)and (54)), the lowest-order result for the displa
ement
orrelator evaluated at a high temperature T & Tdpins
ales asC(1)d (X) � hÆu2[L
(T )℄i0sL
(T )x0 � XL
(T )�2 (18)and the estimate for the typi
al squared angle ish�2(x0)i(1)d � hÆu2[L
(T )℄i0L2
(T ) sL
(T )x0 ; (19)where x0 marks the position of the segment X withinthe box [0; L℄. The results in Eqs. (18) and (19) 
anbe easily obtained from the 
orresponding T = 0 ex-pressions by repla
ing the parameter � = �U 00 withthe ratio U0=hu2(x0)i0, as motivated by the form ofEq. (33). Evaluating expression (18) away from thebox ends (i. e., for L� x0 � x0) and taking the formallimit L ! 1 (whi
h 
orresponds to taking the ther-modynami
 limit), we see that these results vanish, in
ontrast to the zero-temperature results, whi
h eitherin
rease with the box dimension L (as Cd(X)) or areindependent thereof (as h�2(x0)id).Evaluating the se
ond-order term in the perturba-tion series (whi
h, 
ontrarily to the situation at T = 0,does not vanish), we obtain the result (
f. Eq. (57))C(2)d (X) � f �x0L � hÆu2[L
(T )℄i0� XL
(T )�2 : (20)Here, f(x0=L) is a smooth fun
tion of the relative lo-
ation within the box (in our 
al
ulation below, weuse �xed and free boundary 
onditions at x = 0 andx = L, respe
tively, resulting in a fun
tion f(x0=L)de
reasing from a 
onstant to zero). Hen
e, while the�nite-temperature problem is less divergent than thezero-temperature version, it maintains some irregularfeatures as the numeri
al fa
tor in the result dependson the relative lo
ation of the segment X within thebox.Combining the �rst- and se
ond-order results (18)and (20), we 
an 
onje
ture that the perturbation ex-pansion is valid as long as x0 � L
(T ). Pushing thisresult to its boundary of appli
ability, we �nd thatC(2)d (X) � hÆu2[L
(T )℄i0� XL
(T )�2 ; (21)

the high-temperature analogue of Eq. (11), whi
hsmoothly goes over to the large-distan
e result (5) atX � L
(T ). This result (as well as the T = 0 re-sult in Eq. (11)) is then 
onsistent with the �ndings inRef. [12℄.In Se
. 2 we 
onstru
t the general form of the per-turbative expansion for the model de�ned by Eqs. (1)and (2), whi
h is appli
able for any boundary 
ondi-tion. Se
tion 3 is devoted to the dis
ussion of the zero-temperature results for two di�erent types of boundary
onditions, and in Se
. 4 we analyze the situation athigh temperatures.2. CONSTRUCTION OF THE PERTURBATIVEEXPANSIONExpressing the disorder-indu
ed 
orrelatorCd(x1; x2) in Eq. (17) through
d(x1; x2) � hhu1ithhu2ithid ; (22)Cd(x1; x2) � 
d(x1; x1)� 
d(x1; x2)�� 
d(x2; x1) + 
d(x2; x2) ; (23)we �rst have to 
al
ulate the thermal averages of u1;2in a given realization of a random potential. The �rststep towards this goal 
an be easily made by notingthat the 
al
ulation of the thermal average of ÆH=Æu1involves the integration of(ÆH=Æu1) exp(��H) � �T (Æ=Æu1) exp(��H)over u1, and therefore hÆH=Æu1ith has to vanish. Onthe other hand, the variation of Eq. (1) with respe
t tou1 gives ÆHÆu1 = �J �2xu��x=x0 + V 01 ; (24)where V1 � V [x1; u(x1)℄ and the prime denotes thepartial derivative with rese
t to u. Taking the thermalaverage of Eq. (24), we �nd thathu1ith = � LZ0 dx2 g12hV 02 ith ; (25)where g12 � g(x1; x2) (26)is the response fun
tion of the unperturbed (harmoni
)system, whi
h is independent of temperature and istrivially related to the 
orrelation fun
tion
0(x1; x2) � hu1u2i0 � G12 = Tg12 (27)656



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Finite-temperature perturbation theory : : :of the same system. Substituting Eq. (25) in Eq. (22)then gives
d(x1; x2) = LZ0 dx3 LZ0 dx4 g13�34g42 ; (28)where �34 � hhV 03 ithhV 04ithid (29)plays the role of the e�e
tive self-energy part.2.1. First-order approximationIn the �rst approximation, hV 0j ith 
an be repla
edbyhV 0j i0 = * 1Z�1 dKj2� iKjV (Kj) exp(iKjuj)+0 == i 1Z�1 dKj2� KjV (Kj)w1=2jj ; (30)where we perform the Fourier transformation with re-spe
t to u, introdu
e the notationwij = exp (�KiKjGij) ; (31)and take into a

ount that huji0 = 0. Note thatin Eq. (30) (and analogous equations below), summa-tion over repeated indi
es is not implied. SubstitutingEq. (30) in Eq. (29) and averaging over disorder thenprovides the lowest-order approximation for the e�e
-tive self-energy�(1)34 = Æ(x3 � x4)�(x3) ;�(x3) = 1Z�1 dK32� K23U(K)w33 : (32)As T ! 0, thermal �u
tuations are suppressed su
hthatG33 ! 0 and w33 ! 1. In this limit, the expressionfor �(x) in Eq. (32) is redu
ed to � = �U 00(u = 0) == 
onst (in agreement with the zero-temperature ana-lysis of Efetov and Larkin [15℄). On the other hand,at T > 0, we have w33 < 1 and hen
e the valueof �(x3) is suppressed in 
omparison with its zero-temperature value and depends on x3. In parti
ular,for U(u) / exp(�x2=4�2), that is, forU(K) = U0 exp(��2K2);

the integration overK3 in Eq. (32) is Gaussian and 
anbe performed exa
tly, whi
h leads to�(x3) = U04[�(�2 +G33)3℄1=2 : (33)This suggests that at high temperatures (
orrespondingto G33 � �2), the random potential is smeared out bythermal �u
tuations in su
h a way that its 
orrelationradius � is repla
ed by the typi
al thermal displa
ementG1=233 = hu23i1=20 , although U0 � R duU(u) remains thesame (
f. with Ref. [9℄).2.2. Se
ond-order approximationTo �nd the next nonvanishing 
ontribution to �34,we have to 
al
ulate hV 0j ith with the help of Eq. (3),expanding the exponentials both in the nominator andin the denominator in powers of V up to the se
ondorder,hV 0j ith = hV 0j i0 � �hV 0j Vi0 + (�2=2)hV 0jV2i0 + : : :1� �hVi0 + (�2=2)hV2i0 + : : : == hV 0j i0 � � �hV 0j Vi0 � hV 0j i0hVi0�++ �22 �hV 0j V2i0 � 2hV 0jVi0hVi0 ++ 2hV 0j i0hVi20 � hV 0j i0hV2i0�+ : : : (34)The 
ontribution to the produ
t hV 03 ithhV 04 ith of these
ond order in powers of V 
an then be written as[hV 03 ithhV 04 ith℄(2) = �2sym34 �hV 03V2i0hV 04i0 �� 4hV 03Vi0hVi0hV 04i0 + 3hV 03i0hVi20hV 04 i0 �� hV 03 i0hV2i0hV 04 i0 + hV 03Vi0hVV 04 i0� ; (35)where sym34[: : : ℄ implies taking only the part of theexpression in square bra
kets that is symmetri
 withrespe
t to the permutation of x3 and x4.Taking the disorder average of Eq. (35) produ
es thefollowing expression for the se
ond-order 
ontributionto �34:�(2)34 = �2 1Z�1 1Z�1 dK32� dK42� U(K3)U(K4)�� 24Æ(x3 � x4)Æ(K4 �K5)K23 �� LZ0 dx5w33w55(3� 4w35 + w235) �� K3K4w33w44(2w34 � w234)35 : (36)14 ÆÝÒÔ, âûï. 3 (9) 657



S. E. Korshunov, V. B. Geshkenbein, G. Blatter ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013In the expansion of (3 � 4w35 + w235) in powers ofK3K5G35 the �rst nonvanishing term after the integra-tion overK3 and K4 is proportional to T 4, whereas theexpansion of (2w34�w234) and integration over K3 andK4 produ
es a �rst nonvanishing term proportional toT 3. This ensures that in the limit T ! 0, �(2)34 van-ishes, in agreement with the zero-temperature analysisof Efetov and Larkin [15℄.For U(K) = U0 exp(��2K2), the integration overK3 and K4 in Eq. (36) is Gaussian and 
an be per-formed exa
tly. The result of this integration 
an beexpressed in the relatively 
ompa
t form�(2)34 = U208�T 2 24Æ(x3 � x4) LZ0 dx5 (G55 + �2) �� �3D(0)35 � 4D(1)35 +D(2)35 �+G34 �D(1)34 �D(2)34 �35 ;whereD(p)ij = [(Gii + �2)(Gjj + �2)� (p=2)2G2ij ℄�3=2 ;p = 0; 1; 2 : (37)3. ZERO TEMPERATURE3.1. Fixed boundary 
onditionsWe �rst 
onsider the 
ase where both end points ofthe string are �xed, u(0) = u(L) = 0. In this situation,g12 = �x1(L� �x2)LJ ; (38)where �x1 = min(x1; x2) ; �x2 = max(x1; x2) ;and hen
e �x1 � �x2. As demonstrated in Ref. [15℄, onlythe lowest-order 
ontribution to the perturbative ex-pansion of � is nonzero at T = 0,�34 = Æ(x3 � x4)[�U 00(0)℄ : (39)Substituting Eqs. (38) and (39) in Eq. (28) and inte-grating over x3 leads to
d(x1; x2) = �U 00(0)6J2L [2L�x2�x21�x22℄ �x1 (L��x2) ; (40)whi
h, with Eq. (23), allows expressing Cd(x1; x2) asCd(x1; x2) = �U 00(0)3J2L �� ��x21 + (L� �x2)2 � �x1(L� �x2)� (x1 � x2)2: (41)

Equation (41) demonstrates that even for L � X , Cdessentially depends on the total system size L,Cd � �U 00(0)J2 LX2 ; (42)and hen
e the thermodynami
 limit L ! 1 
annotbe taken. This property was dis
overed by Bou
haud,Mezard and Parisi [11℄, who noti
ed that in an in�-nite system, the �rst-order expression for the 
orrela-tor Cd(X) is given by an integral (see Eq. (8)) that ford = 1 diverges at small k as 1=kmin. Equation (41)
on�rms this 
on
lusion on a more quantitative leveland demonstrates that the 
orrelator Cd remains pro-portional to L even when the distan
e from the intervalX where the relative displa
ement to the boundary ofthe system is measured is mu
h smaller than L.A

ording to Eq. (41), for X � L, the dependen
eof Cd(X) on X redu
es to Cd(X) / X2. This meansthat the main 
ontribution to the �u
tuations of therelative displa
ement in su
h a regime 
omes from the�u
tuations of the derivative �(x) = �xu, whi
h onlyweakly 
hanges between x1 and x2. For j�(x)j � 1, thisderivative 
oin
ides with the angle between the polymerand its average dire
tion (along axis x), and we there-fore 
all the variable �(x) the angle in what follows. Wenote that Hamiltonian (1) is dire
tly appli
able onlywhen the values of j�(x)j are mu
h smaller than 1. Ifthe parameters of the system are su
h that typi
al �u
-tuations of � 
al
ulated with the help of Hamiltonian(1) are mu
h larger than unity, this Hamiltonian hasto be 
omplemented by some terms produ
ing a short-s
ale 
uto� that suppresses the �u
tuations of the an-gle; for example, a term proportional to (�2xu)2 
an bein
luded into the elasti
 part.In terms of angle �u
tuations, Eq. (42) 
an berewritten as Cd(X) = h�20id X2 ; (43)where �0 � �(x0) and x0 � x1;2 (more pre
isely, x0lies between x1 and x2). It follows from Eq. (28) thatfor �34 = Æ(x3 � x4)�(x3), the expression for h�1�2idis h�1�2id = LZ0 dx3 �g13�x1 �g23�x2 �(x3) ; (44)when
e (at T = 0),h�1�2id = �U 00(0)2J2L ��x21 + (L� �x2)2 � L2=3� (45)and h�2(x)id = �U 00(0)J2 L" 112 +� xL � 12�2# : (46)658



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Finite-temperature perturbation theory : : :Equation (46) shows that h�2(x)id is proportional tothe total length L of the string, implying that its valuein a given realization of the random potential is deter-mined by the �u
tuations of the random potential atlarge length s
ales (whi
h are 
omparable with L) andnot by those in the 
lose vi
inity of the point x. Thevalue of h�2(x)id is minimal in the middle of the stringand is larger at its endpoints by a fa
tor of 4.To �nd the range of X where Cd is determined byangle �u
tuations and is therefore proportional to X2,we have to 
ompareh(�1 � �2)2)id = �U 00(0)J2 jx1 � x2j (47)with the value of h�2(x)id given by Eq. (46). This 
om-parison 
on�rms that the dependen
e Cd / X2 holdsas long as X � L.3.2. Mixed boundary 
onditionsIf only one endpoint of the string is �xed and theother is free, the equations be
ome slightly simpler.In parti
ular, if the boundary 
ondition at x = 0 isu(0) = 0 and free at x = L, then Eq. (38) is repla
edby g12 = �x1=J : (48)Quite remarkably, for su
h boundary 
onditions, theform of the Green's fun
tion g12 � g(x1; x2) is sensitiveonly to one of its two arguments and does not dependon the total length L. In this situation, the results inEqs. (41) and (46) are respe
tively repla
ed byCd(x1; x2) = �U 00(0)J2 �L� �x1+2�x23 � (x1�x2)2; (49)and h�2(x)id = �U 00(0)J2 (L� x0) : (50)It follows from the form of Eq. (49) that for T = 0 andmixed boundary 
onditions, Cd depends only on thedistan
es y1;2 = L � x1;2 between the points x1;2 andthe endpoint with the free boundary 
ondition, whereasthe total length of the string is of no importan
e. Inparti
ular, when the points x1 and x2 are situated inthe vi
inity of the free endpoint of the string, Cd is pro-portional to the distan
e from the free end and not tothe total length L.Naturally, an analogous 
on
lusion applies also toh�2(x)id, whi
h linearly depends on L�x. The reasonwhy h�2(x)id vanishes as x ! L is quite 
lear: in theminimal-energy 
on�guration, the value of �(x) at the

free end (x = L) has to be equal to zero for any real-ization of the random potential. This follows from thevariation of Hamiltonian (1) with respe
t to u(x = L).For a Green's fun
tion g12 of form (48), di�erenti-ating Eq. (28) with �34 = Æ(x3 � x4)�(x3) giveshh�1ithh�2ithid = hh�(�x2)i2thid (51)when
e it follows that the zero-temperature expressionfor h(�1 � �2)2id has exa
tly the same form (given byEq. (47)) as in the 
ase of �xed boundary 
onditions.A 
omparison of Eq. (47) with Eq. (50) then suggeststhat for mixed boundary 
onditions, the dependen
eCd / X2 holds as long as X is mu
h smaller than thedistan
e to the free end of the string.4. FINITE TEMPERATURES4.1. First-order approximation, mixedboundary 
onditionsAt �nite temperatures, all terms of the perturba-tive expansion of � be
ome nonzero, and we start byanalyzing the �rst term. For simpli
ity, we 
onsiderthe 
ase of mixed boundary 
onditions and fo
us ourattention on su�
iently high temperatures, where we
an negle
t the �niteness of �, that is, U(u) 
an berepla
ed by U0Æ(u). Substituting G33 = (T=J)x3 inEq. (33) with � = 0 shows that in this regime, �(x) de-pends algebrai
ally on the distan
e from the �xed endof the string, �(x) = U04p� � JTx�3=2 : (52)Substituting �34 = Æ(x3 � x4)�(x3) in Eqs. (28)and (44) and integrating over x3 then lead toC(1)d (x1; x2) = U02(�JT 3)1=2 �� 26443 2�x1=21 + �x1=22�x1=21 + x1=22 �2 � 1L1=2375 (x1 � x2)2 (53)andhh�(x)i2thi(1)d = U02(�JT 3)1=2 � 1x1=2 � 1L1=2� : (54)The result in Eq. (53) implies that at T > 0 (anal-ogously to what is the 
ase at T = 0), the disorder-indu
ed �u
tuations of the thermally averaged relativedispla
ement hu1�u2ith at small X are determined by�u
tuations of the thermally averaged angle h�ith.659 14*
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 situation with x1;2 � L � x1;2 � L,expression (53) providing the �rst-order 
ontributionto Cd;th(X) vanishes in the limit L ! 1 (in 
ontrastto the expe
tations expressed in Se
. 2.2 in Ref. [9℄)and remains �nite only if the segment X is situatedat a �nite distan
e from the �xed endpoint of thestring, where the in�uen
e of thermal �u
tuations isnot as pronoun
ed as in the middle of an in�nitestring. Naturally, the same holds for expression (54) forhh�(x)i2thi(1)d , the intensity of �u
tuations of the ther-mally averaged angle.For �nite L, on approa
hing the free end of thestring, the angle �u
tuations hh�(x)i2thi(1)d tend to zerolinearily in the distan
e L � x, exa
tly as is the 
asewith h�2(x)i(1)d at T = 0 (see Eq. (46)). However, thereasons for this result are less evident than at T = 0, be-
ause in the presen
e of thermal �u
tuations, �(x = L)is not obliged to be equal to zero. On the other hand,the reasons for the divergen
e of hh�(x)i2thi(1)d with de-
reasing x are quite 
lear: the amplitude of thermal�u
tuations of the displa
ement de
reases on approa
h-ing the �xed end of the string, and therefore the ther-mal suppression of angle �u
tuations also be
omes lessprominent. Naturally, in a system with � > 0, depen-den
e (54) has to saturate at su�
iently small x be-
ause hh�(x)i2thi(1)d 
annot ex
eed its zero-temperaturelimit h�2(x)i(1)d .It follows from Eqs. (51) and (54) that the angle
orrelator at high temperatures assumes the formhh�1 � �2i2thi(1)d == U02(�JT 3)1=2 X(x1x2)1=2(x1=21 + x1=22 ) : (55)The 
omparison of Eqs. (54) and (55) allows 
on-
luding that for the appli
ability of the dependen
eCd(X) / X2 (whi
h requires having hh�1 � �2i2thid �� hh�i2thid), the length X of the segment has to bemu
h smaller than the distan
e to the nearest endpoint.4.2. Se
ond-order approximation, mixedboundary 
onditionsTo �nd the range of parameters where the value ofad(x0) 
an be des
ribed by expression (54), we have to
onsider the next term in the perturbative expansion.Substituting Eq. (37) inhh�0i2thid = LZ0 LZ0 dx3 dx4 �g03�x0 �g04�x0 �34 (56)

and subsequently integrating over x3 and x4 leads tohh�(x0)i2thi(2)d = U202�T 4 f �x0L � ; (57)wheref(
) = 3�
�1=2 � 1�� 2�p4
�1 � 1�p3�++p
�1 � 1 : (58)The fun
tion f(
) has a �nite limit f(
 ! 0) == 2p3�3 � 0:464 and monotoni
ally de
reases with in-
reasing 
. The behavior of f(
) on approa
hing 
 = 1is determined by the last term in Eq. (58), f(
 ! 1) �� (1� 
)1=2.For L�x0 � L, that is away from the free boundary,Eqs. (54) and (57) 
an be rewritten ashh�(x0)i2thi(1)d � U20T 4 �L
(T )x0 �1=2 �� TJL
(T ) �L
(T )x0 �1=2 ; (59)hh�(x0)i2thi(2)d � U20T 4 � TJL
(T ) ; (60)whi
h suggest that the perturbative expansion forad(x0) (and, therefore, for Cd � hh�i2thidX2) is inpowers of [x0=L
(T )℄1=2 and, a

ordingly, the 
ondi-tion for its appli
ability is x0 � L
(T ). This seemsto be reasonable: if we expe
t that the 
ondition forthe appli
ability of the perturbation theory at T = 0is x0 � L
 � (J2�5=U0)1=3, then it is rather nat-ural that at large temperatures, L
 is repla
ed byits high-temperature analog L
(T ). Pushing the re-sult to the boundary of its validity range (i. e., eval-uating Eqs. (59) and (60) at x0 � L
(T )), we ob-tain the result Cd(X) � (U20 =T 4)X2; the 
onditionCd[L
(T )℄ � hu2[L
(T )℄i0 leads to expression (13) forthe temperature-dependent Larkin length and the 
on-dition hu2[L
(Tdpin)℄i0 � �2 leads to the depinningtemperature in (15). Rewriting Cd(X) in terms of thesequantities, we obtain the result in Eq. (21).As regards the vi
inity of the other (free) boundary,the situation is less 
lear. In this region, the �rst-orderterm hh�i2thi(1)d / (L� x0) vanishes more rapidly thanthe se
ond-order 
ontribution hh�i2thi(2)d / pL� x0and hen
e the ratio of the se
ond- and the �rst-orderterms is of the order of L=[(L� x0)L
(T )℄1=2; this sug-gests that on approa
hing the free endpoint, one mayalways leave the appli
ability range of the perturbationtheory.660



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Finite-temperature perturbation theory : : :5. CONCLUSIONWe have analyzed the wandering of a dire
ted poly-mer in a random potential. Formulated for an in�nitepolymer, this problem is nonperturbative at all s
ales.For a su�
iently small �nite system, the problem isperturbative with the polymer ex
ursions dependingon the system size, the boundary 
onditions, and therelative position of the segment within the box. Theresults for the in�nite polymer at distan
es X � L
(T )
an be found from the �nite-system results by repla
-ing the box size L with the Larkin s
ale L
(T ). Thephysi
al interpretation of the results is the following:at short s
ales, the polymer �u
tuates around an al-most straight line, whi
h, however, deviates from theoriginal dire
tion or the x axis by some angle � = �xu.The typi
al value of this angle depends on the box sizeL and on the relative lo
ation x0=L in the box; for thein�nite polymer, we have to repla
e x0 � L � L
. As aresult, the wandering at short s
ales is 
lose to linear,Æu � �X , but with a 
oe�
ient � the typi
al value ofwhi
h is determined by mu
h larger s
ales.The linear behavior of the displa
ement, orCd(X) � B�2(X=L
)2 in
luding the numeri
al fa
-tor B, was previously obtained in [11℄ and [12℄ in theframework of a variational repli
a ansatz in
orporatingrepli
a symmetry breaking. Our analysis demonstratesthat their approa
h 
orre
tly 
aptures the s
aling/ X2of the �u
tuations at small s
ales (in 
ontrast to larges
ales X & L
, where this approa
h does not predi
tthe 
orre
t result for the wandering exponent) and pro-vides a simple physi
al interpretation for this behaviorin term of angle �u
tuations. On the other hand, ana

urate 
alulation of the 
oe�
ient B in the expres-sion for Cd(X) will most likely require the use of moreadvan
ed methods than the variational one.In Ref. [9℄, the short-distan
e behavior of the disor-der-indu
ed 
orrelator Cd(X) for a polymer of in�nitelength was analyzed for high temperatures T � Tdpinin the framework of a dynami
 analysis based on theLangevin equation. In this s
heme, the total displa
e-ment u(x; t) is split into a thermal and a disorder-in-du
ed parts, u(x; t) = uth(x; t) + ud(x; t), with thetwo terms following from the iterative solution of theLangevin equation[��t � J�2x℄u(x; t) = fth(x; t) + fd[x; u(x; t)℄ (61)with a Æ-
orrelated thermal for
e hfth(x; t)fth(x0; t0)i == 2�TÆ(x � x0) Æ(t � t0), where � is the fri
tion 
oef-�
ient for the dissipative motion and fd[x; u(x; t)℄ == ��uV [x; u(x; t)℄ is the disorder-indu
ed for
e. By ex-panding in ud, the term hh[Æud(X)℄2ithid provided theresult Cd(X) � hÆu2[L
(T )℄i0 [X=L
(T )℄3=2 
onsistent

with the Larkin s
aling. But this result is wrong be-
ause this term is exa
tly 
ompensated [16℄ by the term2hhÆud(X) Æuth(X)ithid that was missed in the analy-sis in Ref. [9℄. This vanishing of the �rst-order term inthe perturbative analysis of the high-temperature anal-ysis is in agreement with the result in Eq. (53) whenevaluating the expression away from the box ends andtaking the formal limit L!1 for the box size.REFERENCES1. A. I. Larkin, Zh. Eksp. Theor. Fiz. 58, 1466 (1970).2. D. A. Huse and C. L. Henley, Phys. Rev. Lett. 54, 2708(1985); M. Kardar and Y.-C. Zhang, Phys. Rev. Lett.58, 2087 (1987).3. D. A. Huse, C. L. Henley, and D. S. Fisher, Phys. Rev.Lett. 55, 2924 (1985).4. M. Kardar, Nu
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