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ANOMALOUS HYDRODYNAMICSOF FRACTIONAL QUANTUM HALL STATESP. Wiegmann *Department of Physi
s, University of Chi
agoChi
ago, IL 60637, USARe
eived May 16, 2013Dedi
ated to the memory of Professor Anatoly LarkinWe propose a 
omprehensive framework for quantum hydrodynami
s of the fra
tional quantum Hall (FQH)states. We suggest that the ele
troni
 �uid in the FQH regime 
an be phenomenologi
ally des
ribed by thequantized hydrodynami
s of vorti
es in an in
ompressible rotating liquid. We demonstrate that su
h hydro-dynami
s 
aptures all major features of FQH states, in
luding the subtle e�e
t of the Lorentz shear stress.We present a 
onsistent quantization of the hydrodynami
s of an in
ompressible �uid, providing a powerfulframework to study the FQH e�e
t and super�uids. We obtain the quantum hydrodynami
s of the vortex �owby quantizing the Kir
hho� equations for vortex dynami
s.DOI: 10.7868/S00444510130901371. INTRODUCTIONQuantum systems with the e�e
tively strong inter-a
tion form liquids whose �ows are 
oherent quantum
olle
tive motions. Among them, there are interest-ing notable 
ases where su
h liquids allow a hydrody-nami
s des
ription. That is when the long-wave, slow�ows 
an be e�e
tively des
ribed solely in terms ofa ma
ros
opi
, but quantum, pair of 
anoni
al �eldsof density �(r; t) and velo
ity v(r; t). Su
h quantum�ows are the subje
t of quantum hydrodynami
s. Inthe 
lassi
al 
ase, the prin
iple of lo
al equilibrium re-du
es the Boltzmann kineti
 equation for the distribu-tion fun
tion to the hydrodynami
s equations for thedensity and the velo
ity (see, e. g., [1℄). Lo
al equilib-rium o

urs when the 
hara
teristi
 time of the �owex
eeds the 
hara
teristi
 time of 
ollisions, and the
hara
teristi
 s
ale of the �ow ex
eeds the mean freepath of parti
les. A quantum analog of the prin
ipleof lo
al equilibrium is yet to be understood, but whenit 
omes to e�e
t, it involves long-range 
oherent ef-fe
ts. Strong 
oheren
e emerges as a result of inter-a
tions. Notable examples of quantum hydrodynami
sare super�uid helium, super
ondu
tors, trapped 
ooled*E-mail: wiegmann�u
hi
ago.edu

atomi
 gases, and Luttinger liquids. A fra
tional quan-tum Hall (FQH) liquid is yet another 
ase.Ele
troni
 states 
on�ned within the lowest Landaulevel by the quantizing magneti
 �eld are holomorphi
.The holomorphi
 nature of states makes the hydrody-nami
 des
ription possible.A quest for the hydrodynami
s of a FQH liquid orig-inated in a seminal paper [2℄. Earlier approa
hes toFQH states in Refs. [3�5℄ are somewhat related to thehydrodynami
s, as noted in Ref. [6℄. Hydrodynami
sof FQH states is in the fo
us of a renewed interest.In hydrodynami
s, a few basi
 prin
iples, symme-tries, and a few phenomenologi
al parameters are suf-�
ient to formulate the fundamental equations. In the
ase of the FQH e�e
t (FQHE), we already possess suf-�
ient 
hara
terizations of states. They 
an be used asa basis of the hydrodynami
s approa
h. For this, a mi-
ros
opi
al Hamiltonian and a deeper understanding ofthe underlying mi
ros
opi
 me
hanisms of emergen
e of
orrelated liquid states are, in fa
t, not ne
essary.In this paper, we formulate a minimal number ofprin
iples su�
ient to develop the hydrodynami
s ofFQH bulk states in a 
lose similarity to Feynman's the-ory of super�uid helium [7℄, and the magneto-roton the-ory of 
olle
tive ex
itations in FQH states in Ref. [2℄.We dis
uss only the simplest Laughlin states. Else-where, we hope to be able to address the hydrodynam-i
s of other, ri
her FQH states, possessing additional617
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h as the 5=2 state. They 
an be stud-ied within the framework developed here.We argue that states of the FQH liquid 
an betreated as �ows of quantized vorti
es in a quantum in-
ompressible rotating invis
id liquid. On this basis, weobtain the major features of the FQHE in
luding subtlee�e
ts su
h as the Lorentz shear stress1), missed by theprevious approa
hes [3�6℄. In parti
ular, the Laughlinwave fun
tion 0(z1; : : : ; zN ) = exp � 14`2 Xi jzij2!��Yi>j(zi � zj)� ; � = 1� ; (1)emerges as the ground state of the vortex �uid. Here,` =p~
=eB is the magneti
 length.To the author's knowledge, a hydrodynami
s of vor-tex �ows has not been developed. It is an interestingsubje
t in and of itself. Apart from the FQHE, it isalso relevant in the theory of super�uids and 
lassi
alhydrodynami
s. In this paper, we present a 
onsistentquantum hydrodynami
s of su
h a �uid.The hydrodynami
s of vortex matter di�ers fromthe Euler hydrodynami
s. Its quantum version di�ersfrom the 
anoni
al quantum hydrodynami
s of Lan-dau [13℄. The major di�eren
e is the anomalous terms.These terms represent the Lorentz shear for
e. Theemergen
e of su
h for
es in hydrodynami
s, 
lassi
aland quantum alike, is the major fo
us of this paper.In Se
. 3, we start from the observation that theFQH states 
an be interpreted as the states of quan-tized Kir
hho� vortex matter and then develop the hy-drodynami
s of vortex matter in Se
. 4. We summarizethe main results in Se
. 5, and then give the details ofderivations in Se
s. [6�9℄.Some results presented below were obtained in 
ol-laboration with Alexander Abanov. This paper is anextended version of Ref. [14℄.2. FOUNDATIONAL PRINCIPLES OFHYDRODYNAMICS OF THE FQH LIQUID2.1. Chara
terization of fra
tional quantumHall statesEle
trons in a quantizing magneti
 �eld 
on�ned in2D heterostru
tures in the regime dominated by theCoulomb intera
tion form FQH states. The most ro-bust FQH states o

ur at the �lling fra
tion � = 1=3;1) For developments on this subje
t see [8�12℄.

that are the Laughlin states. The FQH states form aquantum liquid. This liquid 
an be 
hara
terized asfollows.� Flows are in
ompressible [15℄, and almost dissipa-tion-free [16; 17℄.� The spe
trum of bulk ex
itations is gapped [2; 17℄.The gap is less than the 
y
lotron energy, ~!
 > �� .Only edge states � ex
itations lo
alized on the bound-ary � are soft [18℄.� The Hall 
ondu
tan
e is fra
tionally quan-tized [16℄.� Elementary ex
itations in the bulk of the �uid arevorti
es. Vorti
es 
arry fra
tionally quantized negativeele
troni
 
harge [15℄.More subtle features re
ently dis
ussed in the literatureare as follows.� Edge ex
itations 
onsist of two bran
hes of non-linear solitons: subsoni
 solitons with a fra
tional neg-ative ele
troni
 
harge and supersoni
 solitons with theunit ele
troni
 
harge [19℄.� Quantized double layers of the density at bound-aries and vorti
es [19℄.� The Lorentz shear stress and anomalous vis
osity(or odd vis
osity, or Hall vis
osity) [8�12℄.From the listed properties, we sele
t a set of the foun-dational prin
iples and attempt to obtain others as
onsequen
es. The set of basi
 prin
iples is remark-ably small. We only assume that ele
trons in the FQHregime form a quantum �uid and that the �uid is in-
ompressible and �ows possess a ma
ros
opi
 numberof equally oriented vorti
es.We refer to su
h �ow as 
hiral �ow. Sin
e in aquantum �uid, vorti
ity is quantized, a unit volume ofthe �uid 
ontains the quantum of vorti
ity. We wantto demonstrate that the 
hiral �ow 
aptures all knownphysi
s of the FQHE.We start with a general dis
ussion of s
ales of FQH(bulk) states.2.2. S
ales, holomorphi
 states, andin
ompressibilityThere are two distin
t energy s
ales: the 
y
lotronenergy ~!
 = e~B=mb
, whi
h de�nes the distan
e be-tween Landau levels, and the gap in the bulk ex
itationspe
trum �� . The former is determined by the bandele
troni
 mass mb and by the magneti
 �eld. The lat-ter is a 
hara
teristi
 of the Coulomb energy. Fromthe theoreti
al standpoint, the very existen
e of FQHstates assumes that the 
y
lotron energy is larger than618
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s of fra
tional quantum Hall statesthe gap, �� � ~!
. If this limit holds2), the �ows withan energy E ex
eeding the gap 
an still be 
omprisedof states on the lowest Landau level, �� � E � ~!
.Su
h motion does not depend on the band ele
troni
mass mb.We 
onsider a small modulation of the ele
troni
density �(r) and ignore the ele
trostati
 intera
tion ofa nonuniform 
harged �uid3). Su
h a �ow has a mo-mentum �ux P (r) and propagates with a velo
ity v(r).We assume that at small modulations, the momentum�ux is equal to P = m��v, where m� is the inertia ofthe �ow. It seems natural to assume that the inertia isset by the s
ale provided by the gap, �� � ~2=m�`2.The mass m� ex
eeds that of a band ele
tron:m�=mb � ~!
=�� > 1:Generally, waves propagating through the bulk ofthe FQH liquid are essentially nonlinear. However,stationary linear waves in the bulk are possible in thenonuniform ele
tri
 and magneti
 �elds, or in a 
urvedspa
e. The se
tor of stationary linear waves some timeis 
alled topologi
al.Wave fun
tions of states with the energy less thanthe the 
y
lotron energy (the lowest Landau level) areholomorphi
. It is 
ustomary to des
ribe the set ofstates on the lowest Landau level as the Bargmannspa
e [20℄. Coherent states of the Bargmann spa
e arelabeled by symmetri
 polynomials in the holomorphi

oordinates of parti
les zi = xi + iyi and the holomor-phi
 momenta �zi = 12 (�xi � i�yi) :Let Q be su
h a polynomial and Qy be the Hermitian
onjugate polynomial, whi
h depends on antiholomor-phi
 
oordinates �zi = xi� iyi and antiholomorphi
 mo-menta �yzi = �12(�Txi + i�Tyi):The symbol �T � is the transposition. Then in the nota-tion of the Bargmann spa
e, the �bra� and �ket� statesare hQj = Yi>j(�zi � �zj)�Qy exp � 12`2 Xi jzij2! ;QYi>j(zi � zj)� = jQi: (2)2) In experiments, the 
y
lotron energy is only a few timeslarger than the gap.3) In FQH liquids, the Coulomb for
es essentially blo
k prop-agating waves in the bulk. In this paper, we negle
t Coulombfor
es in order to unmask laws of quantum hydrodynami
s.

Flows within the �rst Landau level are in
ompressible.The term �in
ompressible �ow� is sometimes attributedto the gapped spe
trum. Rather, the in
ompressibilityre�e
ts the holomorphi
 nature of FQH states. Thisis seen from the following argument. For simpli
ity,we 
onsider a 
oherent state 
hara
terized by a poly-nomial Q that depends only on 
oordinates zi. Thephase of the wave fun
tion of su
h a state di�ers fromthe phase of the ground state by the phase of the holo-morphi
 polynomial Im logQ. Sin
e the velo
ity is agradient of the phase, the phase is a hydrodynami
potential. The phase is harmoni
 everywhere ex
eptpoints where the wave fun
tion vanishes. Sin
e thewave fun
tion is single-valued, it vanishes as an inte-ger power of holomorphi
 
oordinates. Therefore, theallowed singularities of the phase 
orrespond to quan-tized vorti
es. There are no sour
es, and hen
e thegradient of the phase is divergen
e-free,!
 !1: r � v = 0: (3)There are two immediate 
onsequen
es of in
ompress-ibility. One is that the material derivative of the densityvanishes, Dt� � � ��t + v � r� � = 0: (4)The other is that �ows in homogeneous 2D in
ompres-sible liquids do not possess linear waves. Only availablebulk �ows are nonlinear �ows of vorti
ity. The �ow 
anbe viewed as a motion of a neutral gas of quasiholes andquasiparti
les.In the next se
tion, we identify the FQH states withvorti
es in a quantum in
ompressible rotating �uid.3. KIRCHHOFF EQUATIONSWe start by re
alling the 
lassi
al Kir
hho� equa-tions for rotating in
ompressible invis
id Euler �owswith 
onstant density (see e. g., [21℄), and then pro
eedwith the quantization.3.1. Classi
al Kir
hho� equations for anin
ompressible �uidIn two dimensions, an in
ompressible �uid with a
onstant density is fully 
hara
terized by its vorti
ity.The 
url of the Euler equation for the in
ompressible�uid with a 
onstant density,Dtu � (�t + u � r)u = �rp; (5)619



P. Wiegmann ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013yields a single (pseudo) s
alar equation for the vorti
-ity: Dt(r� u) = 0: (6)In this form, the Euler equation has a simple geomet-ri
al meaning: the material derivative of the vorti
ityvanishes. Vorti
ity is transported along the divergen
e-free velo
ity �eld u.Helmholtz, and later Kir
hho� realized that thereis a 
lass of solutions of vorti
ity equation (6) that 
on-sists of a �nite number of point-like vorti
es. In this
ase, the 
omplex velo
ity of the �uid u = ux � iuy isthe meromorphi
 fun
tionu(z; t) = �i
�z + i NXi=1 �iz � zi(t) ; (7)where 
 is the angular velo
ity of the rotating �uid, Nis the number of vorti
es, and �i and zi(t) are 
ir
ula-tions and positions of vorti
es.Substituting this �pole ansatz� into Euler equation(6) shows that the number of vorti
es N and the 
ir-
ulations �i do not 
hange in time, while the movingpositions of vorti
es zi(t) obey the Kir
hho� equations:_zi = �i
�zi + i NXi 6=j �jzi(t)� zj(t) : (8)The Kir
hho� equations repla
e nonlinear partial dif-ferential equation (PDE) (6) by a dynami
al system.They 
an be used for di�erent purposes. The equationsdes
ribe 
haoti
 motions of a �nite number of vorti
esif N > 3. If N is large, Kir
hho� equation 
an be usedto approximate virtually any �ow.3.2. Chiral �owThe �ows relevant for the FQHE are su
h that alarge number of vorti
es largely 
ompensates rotation.We refer to su
h �ows as the 
hiral �ow.Bearing the quantum 
ase in mind, we assume thatvorti
es have the same (minimal) 
ir
ulation �i = �.Then the Kir
hho� equations be
omevi � _zi = �i
�zi + i NXi 6=j �zi(t)� zj(t) : (9)We want to study the vortex system in the limit ofa large number of vorti
es distributed with the meandensity ��: N !1: �� = 
�� : (10)

The 
hiral �ow is a very spe
ial �ow in �uid me
han-i
s. We distinguish two types of motion there: the fastmotion of the �uid around vortex 
ores and the slowmotion of vorti
es. In this respe
t, vorti
es themselves
an be 
onsidered a (se
ondary) �uid. In the groundstate of the vortex �uid, vorti
es do not move, but the�uid does.Cir
ulation of vorti
es in units of the Plan
k 
on-stant has the dimension inverse to the mass unit. Weintrodu
e the dimensionless parameter� = ~m�� : (11)We show in what follows that the quantized 
hiral �owmodels the FQHE with a �lling fra
tion �. We set� = ��1.3.3. Quantum Kir
hho� equationsKir
hho� himself wrote Eqs. (9) in the Hamiltonianform, identifying the holomorphi
 and antiholomorphi

oordinates of vorti
es as 
anoni
al variables. In the
ase of the rotating �uid the 
anoni
al variables arem�
�zi and zi. The Hamiltonian of the 
hiral vortexsystem is given byH = m�
0�Xi [
jzij2 � �Xj 6=i log jzi � zj j21A ;(m�
)f�zi; zjgP:B: = �iÆij : (12)We emphasize that the Kir
hho� Hamiltonian is onlya part of the energy of the �uid. This part of energyis transported by vorti
es. Another part of the energyis related to the vorti
es at rest. It diverges at vortex
ores. This part is omitted in Eq. (12).The parameterm� introdu
ed into the Hamiltonianand Poisson bra
kets sets the s
ale of energy. It is aphenomenologi
al parameter that does not appear inthe Kir
hho� equations.The Kir
hho� vortex system is readily 
anoni
allyquantized. We repla
e the Poisson bra
kets by the 
om-mutators i~f�zi; zjgP:B: ! [�zi; zj ℄ = 2`2Æij : (13)The parameter 2`2 = ~=
m� has the dimension of area.It is a phenomenologi
al parameter arising in quanti-zation. We measure it in units of area per parti
le2`2 = �=���. The dimensionless number � in (11) is asemi
lassi
al parameter. We see in what follows that� is identi�ed with the �lling fra
tion and ` with themagneti
 length.620
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s of fra
tional quantum Hall statesThe next step is the 
hoi
e of states. We assumethat states are holomorphi
 polynomials in zi. Thenthe operators �zi are 
anoni
al momenta:�zi = 2`2�zi : (14)Finally, we have to spe
ify the inner produ
t. We im-pose the 
hiral 
ondition: the operators �zi and zi areHermitian 
onjugate, �zi = zyi : (15)This 
ondition 
ombined with representation (14) iden-ti�es the spa
e of states with the Bargmann spa
e [20℄(see also [2℄). This is the Hilbert spa
e of analyti
 poly-nomials  (z1; : : : ; zN) with the inner produ
th 0j i = Z d� � 0 ;d� =Yi exp��jzij22`2 � d2zi: (16)With Eqs. (9) and (14), we write the quantum velo
ityoperators of vorti
es asm�vi = �2i~�zi + i~Xi 6=j �zi � zj ;_zi = vi; � = ��1: (17)We would like to emphasize a subtlety in quantizing ve-lo
ities. Velo
ities are not the linear operators. Theya
t on the phase of wave fun
tions rather than on thewave fun
tion itself,vi exp (iArg ) = j j�10��i~�zi + i~Xj 6=i �zi � zj1A :The linear operators are the momentapi = �i~0��zi �Xj 6=i �zi � zj1A : (18)Equations (9)�(18) are the quantum 
hiral Kir
hho�equations. They 
an be generalized to a sphere or atorus without di�
ulty.4. QUANTUM CHIRAL KIRCHHOFFEQUATIONS AND THE FQHEThe quantum 
hiral Kir
hho� equations are readilyidenti�ed with the FQHE.The ground state of the vortex liquid is the statewhere the vorti
es are at rest. We repeat that this

state is a highly ex
ited state of the �uid. It is a stateof the �uid at a very high angular moment. When vor-ti
es are in the ground state, the �uid moves with avery high energy.The ground state is an analyti
 fun
tion whosephase is annihilated by all momenta operators. The
ommon solution of the set of �rst-order PDEspi 0 = 0in the 
lass of holomorphi
 polynomials is the Laughlinwave fun
tion in the Bargmann representation 0(z1; : : : ; zN ) =Yi>j(zi � zj)� ; � = 1=�: (19)The wave fun
tion is single-valued if � is a integer, an-tisymmetri
 if � is an odd integer, symmetri
 if � is aneven integer.The 
orresponden
e is 
ompleted when we assignthe ele
troni
 
harge to vorti
es and identify the angu-lar velo
ity with the e�e
tive 
y
lotron frequen
y
 = eBm�
 = mbm�!
:The hydrodynami
 interpretation of the FQHE is sub-tly di�erent from Laughlin's original interpretation.There, the 
oordinates entering the Laughlin wavefun
tion were interpreted as bare band ele
trons. The�uid itself is absent in the Laughlin pi
ture. The hy-drodynami
 interpretation suggests that ele
trons (andtheir 
harge) are lo
alized on topologi
al ex
itations(vorti
es) of a neutral in
ompressible �uid. The neu-tral �uid is real. It serves as the agent of the intera
tionbetween ele
trons.In the hydrodynami
 interpretation, a quasihole [15℄is a hole in the uniform ba
kground of vorti
es. It 
orre-sponds to state (2) 
hara
terized by a polynomial withsimple zeros at a given point z,Q(z1; : : : ; zN) = NYi (z � zi): (20)The momentum of this state ispijQi = i� �zi � z jQi:This shows that the Magnus for
e between vorti
es andthe quasihole is the opposite to the fra
tion � of theMagnus for
es between vorti
es. Hen
e, in the hydro-dynami
 interpretation, the quasihole appears as a vor-tex with the fra
tional negative 
ir
ulation ��.621
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es and ele
tri
 
harges, we mustassume that the external �elds (the potential well, gra-dients of temperature, et
.) are 
oupled to the vorti
es,not to the �uid.We examine how vorti
es move in an external po-tential well U(r). The potential adds the termPi U(ri)to the Hamiltonian, where ri are 
oordinates of vor-ti
es, and adds the for
e�i[U; �zi℄ = i2`2�ziUto the Kir
hho� equationspi = �i~�zi + i~Xi 6=j �zi � zj + im�`2eE(zi); (21)where eE = �rU is the ele
tri
 �eld.Fra
tionally quantized Hall 
ondu
tan
e followsfrom the Kir
hho� equations easily. We assume thatthe ele
tri
 �eld is uniform. Then the 
enter of massof the �uid stays at the origin, Pi �zi = 0. Summing(21) over all vorti
es, we obtain the Hall 
urrent perparti
le N�1Xi evi = ie2`2Eand the 
urrent per volume ie2`2��E. We 
on
lude thatthe Hall 
ondu
tan
e equals to the fra
tion e2=h:�xy = � e2h : (22)Our next step is to develop the hydrodynami
s of asystem of quantum vorti
es des
ribed by the Kir
hho�equations. To the best of our knowledge, this has notbeen done even for the 
lassi
al �uids. We start by thesummary of main results. The derivation and detailsthen follow.5. SUMMARY OF THE MAIN RESULTS ANDDISCUSSIONQuantum hydrodynami
s of a 
hiral vortex �ow
onsists of three sets of data: the operator 
ontent andtheir algebra, the 
hiral 
onstituen
y relation betweenoperators, and the dynami
 equation. We summarizethem below, but �rst we 
omment on the notation.5.1. NotationWe use holomorphi
 
oordinatesz = x+ iy; � = 12(rx � iry):

We use the roman s
ript for 
omplex ve
tors. For ex-ample, the velo
ity of the �uidu = (ux; uy); u = ux � iuy:We denote the velo
ity of the vortex �uidv = vx � ivy;the momentum �ux for the vortex �uidP = Px � iPy;and holomorphi
 
omponents of symmetri
 �ux ten-sors �ab:� = �xx ��yy � 2i�xy; �z�z = �xx +�yy:We emphasize the di�eren
e between Hermitian
onjugation vy and 
omplex 
onjugation �v, but stillmay use the 
lassi
al notation for the divergen
e andthe 
url of the velo
ity. In parti
ular, the divergen
eand the 
url abbreviated as r � v = 0 a
tually meansr � v = ��v + �vy; r� v = i(��v � �vy):Similarly, the term v�r� in (4) is understood as vy ���++ ��� � v.The divergen
e-free velo
ity of an in
ompressibleliquid is expressed in terms of the stream fun
tion op-erator v = �2i�	: (23)We de�ne the momentum �ux of the vortex �ow asP = m��v: (24)The vortex �ux operators annihilate the ground state:Pj0i = h0jPy = 0: (25)Throughout the paper we set m� = 1, measuring themomentum per parti
le in units of velo
ity, or equiva-lently, treating the parti
le density as a mass density.We emphasize that m� is not related to the band ele
-troni
 mass.5.2. Commutation relationCommutation relations of the vortex �ux opera-tors di�er from the 
anoni
al 
ommutation relations ofquantum hydrodynami
s of Landau [13℄ by the anoma-lous terms~�1[P(r);Py(r0)℄ = �12(P�r)Æ(r � r0) ++ ~2� �2��2Æ(r � r0) + 14r [� � rÆ(r � r0)℄�| {z }anomalous term : (26)622
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s of fra
tional quantum Hall statesThe 
ommutation relation between the �ux and thedensity is 
anoni
al:[P(r); �(r0)℄ = �i~��Æ(r � r0): (27)The vortex �ux operator 
an be 
onveniently repre-sented in terms of the 
anoni
al �elds u and uy�u(r); uy(r0)� = �~2� Æ(r � r0);[u(r); �(r0)℄ = �i~�Æ(r � r0): (28)We introdu
e the axillary operatorJ = �u; (29)whi
h we 
all the vorti
ity �ux. The hydrodynami
 in-terpretation of this operator is to be given below. Ithas a 
anoni
al 
ommutation relation with itself andwith the density, but does not annihilate the va
uum.The vortex �ux P does.We show that the vortex �ux and the vorti
ity �uxdi�er by the anomalous termP = J + i ~2� ��: (30)The anomalous term adds to the diamagneti
 energyof the �ow in the ba
kground ele
tromagneti
 �eld,e
 Z (A � P ) d2r = e
 Z (A � J)d2r + ~4� e
 Z B �d2r;e�e
tively redu
ing the orbital moment of parti
les.Similarly, the anomalous term 
ontributes to the an-gular momentum of the �ow asN�1 Z (r � P ) d2r = N�1 Z (r � J)d2r + ~4� :The meaning of the anomalous term 
an be seen di-re
tly from the monodromy of FQH states (2). Themonodromy with respe
t to a 
losed path is the phasea
quired by the wave fun
tion when a parti
le is movedalong that path. That is a 
ir
ulation of the parti-
le. It equals to the number of zeros of the wave fun
-tion with respe
t to ea
h 
oordinate. This number is(n� 1)=�, where n is the number of parti
les en
losedby the path. It is less by ��1 from the number of mag-neti
 �ux quanta pier
ing the system, simply be
ausethe vortex does not interfere with itself. The anomalousterm a

ounts for that di�eren
e. The anomalous term
an be regarded as a lo
al version of the global relationbetween the monodromy of states and the number ofparti
les. The di�eren
e, often 
alled the shift 2�s, hasbeen emphasized in Ref. [22℄. For the Laughlin states,�2s = ��1.

5.3. Anomalous term in the 
hiral 
onstituen
yrelationUnlike in a regular �uid me
hani
s, where the den-sity � and velo
ity v are independent �elds, they arerelated by the 
hiral 
onstituen
y relation in the 
hiral�ow. This means that the set of states on the lowestLandau level is restri
ted su
h that the velo
ity opera-tor a
ts as a 
ertain fun
tional of the density operator.In a very rough approximation, the 
hiral relationstates that the vorti
ity per parti
le is the inverse �ll-ing fa
tor in units of the Plan
k 
onstant, as suggestedin [6℄. This view refers to a popular pi
ture of the FQHstates as ele
troni
 states with an additional amountof �ux atta
hed to ea
h parti
le. The a
tual relationbetween the vorti
ity and the density is more 
ompli-
ated. It involves the anomalous termr� v = h� 26664�� ��+ 14� �12 � ��� log �| {z }anomalous term 37775 ; (31)where �� = �(2�`2)�1 = � eh
Bis the mean density of ele
trons and h = 2�~.An a

urate reading of this relation is: the a
tionof the operators in the right-hand side and the left-hand side of (31) on the Bargmann �bra� state hQj areequal. They are not equal if the �bra� state is not inthe Bargmann state.In parti
ular, a quasihole, a sour
e for vorti
-ity lo
alized at r0, 
orresponds to the polynomialQ = Qi(z0 � zi). It deforms the density outside the
ore r = r0 a

ording to the equation4)��Æ(r � r0) = �� ��+ 14� �12 � ��� log �:An equivalent form of the 
hiral relation 
onne
ts thestream fun
tion and the density,va = ��abrb	; 	 = ~2� �'��12 � �� log �� ; (32)where the �regular part� of the stream fun
tion ' is asolution of the Poisson equation�' = �4�(�� ��): (33)4) In
identally, a similar equation exists inside the vortex
ore. There, the quantum 
orre
tions 
hange the last term to�(1=4�)�� log �. A

identally, a similar equation followed fromthe e�e
tive a
tion in Refs. [3; 4℄ erroneously featuring the term�(1=4�)�� log � inside and outside the vortex.623



P. Wiegmann ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013We 
omment that the 
hiral relation readily extendsto the 
ase of an inhomogeneous magneti
 �eld. Inthis 
ase, the mean density �� = �(e=h
)B in (31) and(33) is a fun
tion of 
oordinates. There are no other
hanges. In parti
ular, in the ground state, where thevelo
ity vanishes, the density in a nonuniform magneti
�eld obeys the �Liouville equation with a ba
kground�.That is Eq. (31) with zero in the left-hand side. In theleading order in gradients, the ground-state density a
-quires the universal 
orre
tion� = � eh
B � 14� �12 � ��� logB + : : : (34)The integrated form of (31) is the sum rule 
onne
tingthe angular momentum (per parti
le in units of ~)L = (~N)�1 Z (r�P ) d2rto the gyration per parti
leN�1G = Z r2(�� ��) d2r:It is given by `2�L��1� � 2�� = G: (35)The ground-state version of this formula is the familiarsum rule for the Laughlin wave fun
tion:�h0jXi jzij2j0i = `2N(N � 1 + 2�):. 5.4. Anomalous term in the Euler equation:Lorentz shear stressConstituen
y relation (24), 
hiral 
ondition (31),
ontinuity equation (4), and the operator algebra in(26) and (27) 
onstitute the full set of hydrodynami
sequations for the 
hiral in
ompressible quantum �uid.The 
hiral 
ondition helps to write the 
ontinuityequation (4) as a nonlinear equation of the densityalone:�t�� ~2�r'�r� = 0; �' = �4�(�� ��): (36)The equation is identi
al to the Euler equation forthe vorti
ity in an in
ompressible �uid. Naturally, theanomalous term disappears from this equation. It ap-pears in the boundary 
onditions, in the response toexternal �elds, and also determines for
es a
ting in the�uid.

For
es are rendered by the momentum �ux tensor�ab entering the Euler equation, written in the form ofthe 
onservation law�tPa +r��ab = �Fa: (37)Here, F = eE � e
B � vis the Lorentz for
e.The anomalous vis
ous stress emerges in the mo-mentum stress tensor. A general �uid momentum �uxtensor of in
ompressible �uid 
onsists of the kineti
part, the stress, and the tra
eless vis
ous stress �0ab. Inthe in
ompressible �uid the stress is expe
ted throughthe velo
ity. We write�ab = �ab � �0ab; (38)where �ab a

ounts for the kineti
 part and the stress.At the �xed density �ab is symmetri
 with respe
t toa 
hange of the dire
tion of the velo
ity v ! �v. Thevis
ous term is linear in gradients of the velo
ity. It
hanges the sign under this transformation. With theex
eption of the diamagneti
 term, the vis
ous termhas a lesser degree of velo
ity among terms of the �uxtensor. This is the only term enters the linear responsetheory.Our �uid is dissipation-free. Therefore, the anoma-lous vis
ous stress produ
es no work. This is possible ifthe vis
ous stress represents for
es a
ting normally toa shear. Su
h stress 
an only be a tra
eless pseudoten-sor. It 
hanges sign under the spatial re�e
tion. In the
hiral �ow, the anomalous vis
ous stress is given by�0ab = � ~2� ��rar� � 12Æab��	: (39)There is a noti
eable di�eren
e from the dissipativeshear vis
ous stress. That stress is given by the sameformula but with the stream fun
tion repla
ed by thehydrodynami
 potential.Components of the anomalous vis
ous stress tensorare �0xx = ��0yy = � ~4� �(rxvy +ryvx);�0xy = �0yx = ~4� �(rxvx �ryvy): (40)The divergen
y of the Lorentz shear stress is theLorentz shear for
erb�0ab = ~4� �ra(r� v)624
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s of fra
tional quantum Hall statesexerted by the �ow on the volume element of the liq-uid. It is proportional to the gradient of the vorti
ity.A notable feature of the anomalous stress is that thekineti
 
oe�
ient 1=4� (in units of ~) is universal andhas a geometri
 origin. The anomalous 
onservativevis
osity is referred to as the odd vis
osity, or Hall vis-
osity. It was introdu
ed in Ref. [8℄ for the integer Halle�e
t as a linear response to a shear. Its notion hasbeen extended to the FQHE in [9; 10℄ (see [8�12℄ forin
omplete set of referen
es). In this paper, we showhow the anomalous vis
osity appears in the nonlinearhydrodynami
s of the 
hiral �ow.Anomalous term (39) represents the for
e a
tingnormally to the shear (in 
ontrast, the shear vis
ousfor
e a
ts in the dire
tion parallel and opposite to theshear). The stress is also referred as the Lorentz stress,and the for
e is referred as the Lorentz shear for
e [9℄.The emergen
e of the Lorentz shear stress 
an be in-terpreted in terms of semi
lassi
al motion of ele
trons.The motion of ele
trons 
onsists in the fast motionalong small orbits and the slow motion of orbits. Ashear �ow strains orbits, elongating them normally tothe shear, boundaries, and vorti
es. The elongationyields an additional Lorentz shear stress.5.5. Topologi
al se
torThe topologi
al se
tor 
onsists of �ows driven byslow long-wave external �elds, su
h as the 
urvature ofspa
e, a nonuniform ele
tri
 and magneti
 �elds, et
.,whi
h do not produ
e ex
itations over the gap. TheHall 
urrent is the most familiar example.The topologi
al se
tor 
an be singled out in thelimit m� ! 1. In this limit, the momentum �ux ten-sor redu
es to the anomalous vis
ous stress modi�edby quantum 
orre
tions. Then the dynami
s redu
esto the balan
e between the Lorentz shear for
e and theLorentz for
e.In the linear approximation, the stationary Eulerequation is� 14� � 12�r(r� v) = eEa � e
B � v: (41)Solution of this equation in the leading gradient ap-proximation yields the universal 
orre
tion to the Hall
ondu
tan
e [11℄:�xy(k)�xy = 1 +� 14� � 12� (k`)2; �xy = �e2h : (42)The Hall 
urrent in
reases with the wave ve
tor. Thefa
tor 1=2 in these equations represents the diamag-neti
 energy. This energy does not appear expli
itly in

the momentum �ux tensor in (38). Rather, it is hiddenin the normal ordering of the kineti
 part of the vortex�ux tensor. If in addition, parti
les prosses an orbitalmoment M , whi
h is intrinsi
ally related to the band,the term (m�=mb)M is added to the fa
tor �1=2 inboth equations. Apart from this e�e
t, the 
orre
tionto the Hall 
ondu
tan
e is universal.5.6. Tra
e and mixed anomalyThe meaning of the Lorentz shear stress is best il-lustrated when the �uid is pla
ed into a 
urved spa
e.In this 
ase, the energy re
eives an additionH 0 = �12 Z gab�0abpgd2�from the vis
ous tensor, where gab is the spatial met-ri
. At a 
onstant density, this term has the suggestiveform H 0 = ~4� ��Z R	pgd2�;where R is the spatial 
urvature. This addition yieldsthe tra
e anomaly: the �ux tensor a
quires a tra
e pro-portional to the 
urvature:��0aa = �� ~216��R: (43)It is tra
eless if the spa
e is �at.The tra
e anomaly yields a uniform for
e a
ting to-ward the region with the a

ess 
urvature. This for
esqueeze parti
les toward the 
urved regions (mixedanomaly) Æ� = 18�Rpg: (44)A

umulation of 
harges at 
urved parts of spa
e wassuggested in [22℄ and further dis
ussed in [11℄.These formulas represent the e�e
t of the anoma-lous terms valid in the semi
lassi
al approximationat large ��1. They experien
e quantum 
orre
tions,whi
h e�e
tively repla
e ��1 in the formulas with��1 � 2.5.7. Dispersion of density modulationThe anomalous term in the 
ommutation relations(26) yields a universal 
orre
tion to the kineti
 energyof small density modulationsjki =Xi eikri j0i12 ÆÝÒÔ, âûï. 3 (9) 625



P. Wiegmann ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013(see footnote3) on page 3) of the form��(k) = 1m��2 hkjP(r)Py(r)jki: (45)We will show that at small wave ve
tors the dispersionis negative��(k) = ��(0)�1� 12 � 12� � 1� (k`)2� ;��(0) = ~22m�`2 : (46)Su
h behavior signals the magneto-roton minimum dis-
ussed in Ref. [2℄, similar to the roton minimum knownin super�uid helium. The dispersion of the ex
itationhas been measured in the re
ent work [23℄. There theex
itation spe
trum has been probed through the res-onant absorption in the regime where surfa
e a
ousti
waves propagate a
ross the sample.5.8. Boundary double layer and dispersion ofedge modesA striking manifestation of the anomalous terms isseen on the boundary. The Lorentz shear for
e squeezes�ow lines with di�erent velo
ities. As a result the
harge there is an a

umulation of density on the adge.The density at the edge r = R forms the double layer�(r) = �+ 1� �4� rnÆ(r �R): (47)Here the derivative is taken in the dire
tion normal tothe boundary.A 
onsequen
e of the double layer is the 
orre
tionto the spe
trum of edge modes!(k) = 
0k + 12�� �1� � 1� sign(k)(k`)2;
0 = 
EB : (48)These results where obtained in [14℄.In the rest of the paper, we obtain these (and someother) properties starting from the quantized 
hiral�uid. It turns out that many 
al
ulations are merelyidenti
al in the 
lassi
al and quantum 
ases. To sim-plify the matter, we �rst derive the hydrodynami
s ofthe vortex �uid in the 
lassi
al 
ase, and then 
onsiderthe quantum 
ase.6. RELATION BETWEEN THE VORTEX FLOWVELOCITY AND THE FLUID VELOCITYEulerian hydrodynami
s of the vortex �ow des
ribesthe �ow in terms of the density and the velo
ity �eld

v(r) of vorti
es. We 
onstru
t the velo
ity �eld startingfrom velo
ities of individual vorti
es. The 
al
ulationsare merely identi
al in the 
lassi
al and quantum 
ases.We pro
eed with the 
lassi
al 
al
ulations.We denote density of vorti
es as�(r) =Xi Æ(r � ri) = ��+ 12��(r� u): (49)The stream fun
tion of the �uid is the potential 'in (33): u = �2i��'; �' = �4�(�� ��): (50)The obje
t of interest is the vortex �uxP(r) =Xi Æ(r � ri)vi: (51)Having the �ux, we de�ne the velo
ity �eld of the vor-tex �uid as P = �v:We want to 
ompute the velo
ity ofthe vortex �ow v(r) and to 
ompare it with the velo
ityof the original �uid u(r). Obviously, they are di�erent.The former des
ribes the slow motion of vorti
es, andthe latter, the fast motion of the �uid around vorti
esand the drift together with the vorti
es. Nevertheless,there is a simple relation between the two.We 
ompute the vortex �ux P and 
ompare it withthe vorti
ity �ux J = �u; where the velo
ity of the�uid u is given by (7). Using (9) and the ��-formula�Æ = ��(1=z), we writeP(r) =Xi Æ(r � ri)24�i
�zi + i NXi;i 6=j �zi � zj 35 == �i
�z�(r) + i�� �� NXi 6=j 1z � zi 1zi � zj : (52)Then use the identity2Xi 6=j 1z�zi 1zi�zj =  Xi 1z�zi!2�Xi � 1z�zi�2 ==  Xi 1z � zi!2 + �Xi 1z � zi (53)and apply ��:�v = �i
�z�+ iXi Æ(r � ri)Xj �z � zj ++ i�2 �X Æ(r � ri): (54)626
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s of fra
tional quantum Hall statesWe obtain the relationsP = �u + �2 i��; v = u + �2 ��1i��: (55)The di�eren
e between the velo
ity of the vortex �uidand the velo
ity of the �uid has a simple meaning. Thevelo
ity of the �uid u diverges at the 
ore of an isolatedvortex (as 
an be seen in (7)). But the velo
ities ofvorti
es are �nite. The anomalous term removes thatsingularity.The anomalous term 
hanges only the transversepart of the velo
ity, and therefore the �ow of vorti
esis in
ompressible like the �uid itself, rv = ru = 0.Also, the anomalous term does not 
hange the diver-gen
y of the �ux: rP = vr� = r(�u) = ur�.7. CLASSICAL HYDRODYNAMICS OF THEVORTEX MATTERGlobal symmetries of spa
e and time, su
h as trans-lation and rotation, yield familiar 
onservation laws ofthe �ux, energy, and angular momentum. In addition,the 2D in
ompressible �ows with a 
onstant densitypossess 
onservation laws that are not dire
tly relatedto global symmetries. One 
onservation law is familiar.This is the 
onservation of vorti
ity. With the helpof (55), the Euler equation in form (6) 
an be writtenas the 
ontinuity equation for the mass density of thevortex �uid: Dt� � � ��t + v � r� � = 0: (56)In addition to the 
onservation of vorti
ity, the vorti
-ity �ux J and the vortex �ux P are also 
onserved:J = �u; P = �v: (57)The 
onservation of vorti
ity and vortex �ux is obvi-ous in the Kir
hho� pi
ture. This is the 
onservationof mass and mass �ux of the vortex system. In 
on-tinuum �uid me
hani
s, 
onservation of the vorti
ity�ux and, 
onsequently, of the vortex �ux are, perhaps,less obvious. Nevertheless, they easily follow from theobservation that the vorti
ity �ux is the divergen
e ofa tensor:Ja = �ua + 12���ab�
tb
; tb
 = ubu
 � 12Æb
u2: (58)The tensor is symmetri
 and tra
eless.We write the 
onservation law for the the vorti
ity�ux �tJa +rb�ab = �e
 (B � u)a (59)

and determine the vorti
ity �ux tensor �b
. Theright-hand side of this equation is the Lorentz for
e.The vorti
ity �ux tensor 
an be lo
ally and expli
-itly expressed through the velosity and the pressure.Expression is 
umbersome and we do not need in forthe purpose of this paper. In the leadind approxima-tion in the density gradients the se
ond term in (56)
ould be dropped. Then the vorti
ity �ux tensor isidenti
al to the �ux tensor of the in
ompressible �uidwith the 
onstant density�ab � �uaub + pÆab:The next step is to determine the vortex �ux tensor�ab. It enters into the 
onservation law for the vortex�ux �tPa +rb�ab = �e
 (B � v)a: (60)We see it as a transformation of the vorti
ity �ux tensorindu
ed by the transformation of the velo
ity (55)u! v; J ! P; � ! �: (61)Under the shift (55) we have_Pa = _Ja + �4 �abrb _�:With the help of the 
ontinuity equation (56), we ob-tain the transformation�ab ! �ab = �ab + �4 [�a
r
(�vb) + �b
r
(�va)℄ :In the leading approximation in gradients we repla
ethe density in the last equation by its mean �. Weobserve that the stress tensor a
quires the anomalousvis
ous term�ab � �ab � �0ab;�0ab = ��4 � (�a
r
vb + �b
rav
) : (62)This is the Lorentz shear stress [14℄.We see that the Lorentz shear stress naturally ap-pears in the vortex liquid. Chiral �ows 
onsists of a fastmotion along small orbits around vortex 
ores and aslow drift of 
enters of these orbits. A shear �ow strainsorbits elongating them normal to the shear, boundariesand vorti
es. Elongation yields to the Lorentz shearstress.8. QUANTUM HYDRODYNAMICS OF THEVORTEX MATTERWe start by quantizing the in
ompressible 
hiral 2D�uid and then pro
eed with the quantization of the vor-tex �ow.627 12*
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s ofin
ompressible liquidThe 
anoni
al �elds in hydrodynami
s are densityand velo
ity. In the 
hiral �uid with a 
onstant �uiddensity, the 
anoni
al hydrodynami
 variables are thevelo
ity u and the vorti
ity �, or rather, holomor-phi
 and antiholomorphi
 
omponents of the velo
ityu and uy.We note a subtlety in quantizing hydrodynami
s inthe Bargmann spa
e. The density in (49) is real andtherefore 
onsists of holomorphi
 and antiholomorphi
variables. We �de
ompose� it into the holomorphi
 andantiholomorphi
 parts using the ��-formula�Æ(r) = ���1z� = � �1�z� (63)as�(r) = �++�� = 12� ��Xi 1z�zi+ 12��Xi 1�z��zi : (64)In the Bargmann spa
e, the a
tion of the holomorphi
operator 2�zi on the density is not just a di�erentia-tion over 
oordinates �xi � i�yi , as it may seem fromthe notation. The operator a
ts only on the holomor-phi
 part �+. Hen
e, 2�zi� = ��Æ(r � ri) is half theregular derivative. We already en
ountered this sub-tlety in Se
. 3.3 in dis
ussing the a
tion of velo
ity inthe ��rst quantized� formalism.With this nuan
e, the quantization of the �uid ve-lo
ity amounts to the repla
ement of the term �i
�z in(7) with ���, where �� = �i~ ÆÆ�is the 
anoni
al momentum of the density. We alsorepla
e the sum in (7) with the integral,Xi �z � zi ! � Z �(�)z � � d2� == �i~� �('+ ���jzj2): (65)We obtain the velo
ity of the quantum 
hiral �uidu = � ��� � i~� ('+ ���jzj2)� : (66)This formula yields the 
anoni
al 
ommutation relationbetween vorti
ity and velo
ity and between the velo
ity
omponents: [u(r); �(r0)℄ = �i~�Æ(r � r0);r� u = i(��u� �uy) = h� (�� ��): (67)

The 
ommutation relations between velo
ity 
ompo-nents are the 
anoni
al Heisenberg algebra, as is knownto be the 
ase in a quantizing magneti
 �eld:[u(r); uy(r0)℄ = h2�� Æ(r � r0); [u(r); u(r0)℄ = 0: (68)The algebra is 
ompleted by the equal-point 
om-mutator [u(r); �(r)℄ = �i~��(r): (69)The remaining element of the quantization isthe 
hiral 
ondition. The holomorphi
 deriva-tive �zi a
ting to the left on the antiholomorphi
�bra� states of Bargmann spa
e (2) di�erentiatesonly the fa
tor exp ��Pi jzij2=2`2� of the mea-sure, hQj �2`2�Tzi + �zi� = 0: Similarly, the operator��� a
ting on the left a
ts only on the fa
torexp ��(1=2`2) R �d2r�:hQj���� + i ~̀2 �z� = 0: (70)Therefore, when the holomorphi
 velo
ity operator a
tson the antiholomorphi
 �bra� state, the �rst two termsin (66) 
an
el. We return to the 
lassi
al formula (50):hQju + i~� �'jQ0i = 0: (71)We emphasize that this relation does not hold unlessthe operator is sandwi
hed between antiholomorphi
and holomorphi
 states.The 
hiral 
ondition proje
ts all operators onto thelowest Landau level. The proje
ted velo
ity is mani-festly divergen
e-free. Proje
tion onto the lowest Lan-dau level is summarized by the 
ondition ��� = �4���.Heisenberg algebra of velo
ities (68), 
ontinuityequation for the vorti
ity Dt� = 0 (56), and 
hiral
ondition (71) summarize the quantization of hydro-dynami
s of an in
ompressible 
hiral �ow.Finally, we are ready to pro
eed with quantizationof the vortex �uid.8.2. Quantization of the vortex �uidThe 
lassi
al formula for the �ux, Eq. (51), must betreated as an ordered produ
t of operators,P(r) =Xi Æ(r�ri)pi =Xi (pi+i~�zi)Æ(r�ri); (72)where the momenta pi are given by (21). The rela-tion between the velo
ity in (55) holds on the quantumlevel: P = �u + i ~2� ��: (73)628
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s of fra
tional quantum Hall statesThe 
hiral 
ondition is obtained by pla
ing u to theleft. Using (69), or equivalently (72), we pull u to theleft and redu
e it to its 
lassi
al value (50). This yieldsthe 
hiral 
onditions in Se
. 5.3:P = �i~� ��'+ i~� 12� � 1���: (74)The 
ommutation relations for �ux 
omponents pre-sented in Se
. 5.2, Eqs. (26) and (27), now follow.The 
omputation of the quantum vortex �ux ten-sor is not mu
h di�erent from the 
lassi
al version inSe
. 7. All the formulas remain the same if the normalordering of operators is respe
ted. But when the velo
-ity in all terms of the vortex �ux is pulled to the left,the 
oe�
ient in front of the Lorentz for
e a
quires thequantum 
orre
tion 1=2� ! 1=2� � 1.9. APPLICATIONS9.1. Stru
ture fa
torAnomalous 
ommutation relations allow 
omputingthe stru
ture fa
tor. This issk = N�1h0j�k��kj0i;where �k =PNi exp(ikri) is the Fourier mode of a smalldensity modulation with the wave ve
tor k.The 
hiral 
ondition 
onne
ts the density and �uxmodes. We evaluate it in the linear approximation indensity modes. Using k2'k = 4��k in (74), we writethe Fourier mode of the �ux in terms of the densitymodes:Pk= ~k(`k)2 �1� 12 � 12� � 1� (k`)2� �k;k = kx � iky: (75)On the other hand, 
ommutation relation (27) yields[Pk; ��k℄= 12N~k: (76)Sin
e Pk annihilates the ground state,h0j[Pk; ��k℄j0i = h0jPk��kj0i:We obtain the relationh0jPk��kj0i = ~k(`k)2 �1� 12 � 12� � 1� (k`)2��� h0j�k��kj0i = 12~kN: (77)

The known result [2℄ for the spe
tral fa
tor follows:sk = h0j�k��kj0i �� 12(k`)2 �1 + 12 � 12� � 1� (k`)2�+ : : : (78)We see that the anomalous term a

ounts for the uni-versalO(k4) in the stru
ture fa
tor. The spe
tral fa
toris involved in a number of important physi
al obje
ts.A few are dis
ussed below.9.2. Variational ex
itation spe
trumIn this se
tion we evaluate the variational energy ofwaves. That is the energy per parti
le of a state withthe density modulation with the wave ve
tor k:�(k) = 1m���2 h0jPk Pkyj0i(in this subse
tion, we restore the inertia m�). Com-mutation relation (26) prompts the relation betweenthe kineti
 energy of small density modulations andthe stru
ture fa
tor. We take the va
uum expe
tationvalue of the anomalous 
ommutation relations (26) andexpress it through the Fourier modes. The right-handside be
omes h0jPk Pkyj0i. Computing the expe
tationvalue of the term �2 in the right-hand side of (26), weuse the quantum version of relation (49),� = ��+ i �h(��u� �uy);and pull the holomorphi
 (antiholomorphi
) velo
ity
omponent to the left (right) with the help of (69) andapply the 
hiral 
ondition. We obtain�2 = ��2 + �4���:This term (the quantum 
orre
tion) e�e
tively shiftsthe 
oe�
ient in front of the last term of 
ommutationrelation (69). We obtain�(k) = �(0)�1� 12 � 12� � 1� (k`)2� ;�(0) = ~22m�`2 : (79)The 
omparison with (78) yields a variational Feyn-man�Bijl formula [7℄ for the ex
itation spe
trum629
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ourse, all these formulas make sense in the leadingorder in (k`)2.We observe that the ex
itation spe
trum is gappedand has a negative dispersion. The energy starts toin
rease at larger (k`)2. It os
illates at intermediatewavelengths. Su
h behavior signals the magneto-rotonminimum, similar to the roton minimum known in su-per�uid helium, as it has been suggested in Ref. [2℄.The dispersion of the ex
itation was re
ently measuredin [23℄. There, the ex
itation spe
trum was probedthrough the resonant absorption in the regime wheresurfa
e a
ousti
 waves propagate a
ross the sample.To avoid possible 
onfusion, we emphasize that weevaluated the kineti
 energy over the states jki ==PNi exp(ikri)j0i: These states are di�erent from the�proje
ted waves� in Ref. [2℄. Proje
ted plane wavesare 
reated by the normal-ordered wave operatorXi exp(�ik`2�zi) exp��i�k2zi� j0i:Operators expanded in that basis are a separate inter-esting question. We will address it elsewhere. Here, we
omment that the a
ousti
 waves used in the experi-ment in [23℄ are argued to be proje
ted plane waves.Rather, they are regular waves jki =PNi exp(ikri)j0i.9.3. Hall 
ondu
tan
e in a nonuniformba
kgroundThe formulas in the previous se
tion are readilyadapted to study transport in the topologi
al se
tor,e. g., in a nonuniform ele
tri
 �eld.An ele
tri
 �eld a
ts only on vorti
es as the Lorentzfor
e in (21). We therefore add it to the 
onservationlaw for the vortex �ux:�tPa +rb�ab = � �eE � e
B � v�a : (81)In the topologi
al se
tor (m� !1), the �ow is steady,and the anomalous vis
ous tensor is the only term ofthe �ux tensor that survives in the limit:�rb�0ab = ��eE � e
B � v�a : (82)Pulling the velo
ity to the left, in the linear approxi-mation, we obtain Eq. (41) in Se
. 5.5. That equationyields a universal 
orre
tion to Hall 
ondu
tan
e (42).

Comparing the expressions for spe
tral fun
tion (78)and the Hall 
ondu
tan
e, we observe a simple relationbetween the two obje
ts. It 
an be obtained from thegeneral theory of linear response.Dis
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