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We propose a comprehensive framework for quantum hydrodynamics of the fractional quantum Hall (FQH)
states. We suggest that the electronic fluid in the FQH regime can be phenomenologically described by the
quantized hydrodynamics of vortices in an incompressible rotating liquid. We demonstrate that such hydro-
dynamics captures all major features of FQH states, including the subtle effect of the Lorentz shear stress.
We present a consistent quantization of the hydrodynamics of an incompressible fluid, providing a powerful
framework to study the FQH effect and superfluids. We obtain the quantum hydrodynamics of the vortex flow
by quantizing the Kirchhoff equations for vortex dynamics.
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1. INTRODUCTION

Quantum systems with the effectively strong inter-
action form liquids whose flows are coherent quantum
collective motions. Among them, there are interest-
ing notable cases where such liquids allow a hydrody-
namics description. That is when the long-wave, slow
flows can be effectively described solely in terms of
a macroscopic, but quantum, pair of canonical fields
of density p(r,t) and velocity v(r,t). Such quantum
flows are the subject of quantum hydrodynamics. In
the classical case, the principle of local equilibrium re-
duces the Boltzmann kinetic equation for the distribu-
tion function to the hydrodynamics equations for the
density and the velocity (see, e.g., [1]). Local equilib-
rium occurs when the characteristic time of the flow
exceeds the characteristic time of collisions, and the
characteristic scale of the flow exceeds the mean free
path of particles. A quantum analog of the principle
of local equilibrium is yet to be understood, but when
it comes to effect, it involves long-range coherent ef-
fects. Strong coherence emerges as a result of inter-
actions. Notable examples of quantum hydrodynamics
are superfluid helium, superconductors, trapped cooled
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atomic gases, and Luttinger liquids. A fractional quan-
tum Hall (FQH) liquid is yet another case.

Electronic states confined within the lowest Landau
level by the quantizing magnetic field are holomorphic.
The holomorphic nature of states makes the hydrody-
namic description possible.

A quest for the hydrodynamics of a FQH liquid orig-
inated in a seminal paper [2]. Earlier approaches to
FQH states in Refs. [3-5] are somewhat related to the
hydrodynamics, as noted in Ref. [6]. Hydrodynamics
of FQH states is in the focus of a renewed interest.

In hydrodynamics, a few basic principles, symme-
tries, and a few phenomenological parameters are suf-
ficient to formulate the fundamental equations. In the
case of the FQH effect (FQHE), we already possess suf-
ficient characterizations of states. They can be used as
a basis of the hydrodynamics approach. For this, a mi-
croscopical Hamiltonian and a deeper understanding of
the underlying microscopic mechanisms of emergence of
correlated liquid states are, in fact, not necessary.

In this paper, we formulate a minimal number of
principles sufficient to develop the hydrodynamics of
FQH bulk states in a close similarity to Feynman’s the-
ory of superfluid helium [7], and the magneto-roton the-
ory of collective excitations in FQH states in Ref. [2].
We discuss only the simplest Laughlin states. Else-
where, we hope to be able to address the hydrodynam-
ics of other, richer FQH states, possessing additional
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symmetries, such as the 5/2 state. They can be stud-
ied within the framework developed here.

We argue that states of the FQH liquid can be
treated as flows of quantized vortices in a quantum in-
compressible rotating inviscid liquid. On this basis, we
obtain the major features of the FQHE including subtle
effects such as the Lorentz shear stress?), missed by the
previous approaches [3—6]. In particular, the Laughlin
wave function

Yo(z1,...,2N) = exp (—4—22 Z|Zl|2> X
<[[G-=7 =2, M

- v
1>]

emerges as the ground state of the vortex fluid. Here,
¢ = \/hc/eB is the magnetic length.

To the author’s knowledge, a hydrodynamics of vor-
tex flows has not been developed. It is an interesting
subject in and of itself. Apart from the FQHE, it is
also relevant in the theory of superfluids and classical
hydrodynamics. In this paper, we present a consistent
quantum hydrodynamics of such a fluid.

The hydrodynamics of vortex matter differs from
the Euler hydrodynamics. Its quantum version differs
from the canonical quantum hydrodynamics of Lan-
dau [13]. The major difference is the anomalous terms.
These terms represent the Lorentz shear force. The
emergence of such forces in hydrodynamics, classical
and quantum alike, is the major focus of this paper.

In Sec. 3, we start from the observation that the
FQH states can be interpreted as the states of quan-
tized Kirchhoff vortex matter and then develop the hy-
drodynamics of vortex matter in Sec. 4. We summarize
the main results in Sec. 5, and then give the details of
derivations in Secs. [6-9].

Some results presented below were obtained in col-
laboration with Alexander Abanov. This paper is an
extended version of Ref. [14].

2. FOUNDATIONAL PRINCIPLES OF
HYDRODYNAMICS OF THE FQH LIQUID

2.1. Characterization of fractional quantum
Hall states

Electrons in a quantizing magnetic field confined in
2D heterostructures in the regime dominated by the
Coulomb interaction form FQH states. The most ro-
bust FQH states occur at the filling fraction v = 1/3;

1) For developments on this subject see [8-12].

that are the Laughlin states. The FQH states form a
quantum liquid. This liquid can be characterized as
follows.

e Flows are incompressible [15], and almost dissipa-
tion-free [16, 17].

e The spectrum of bulk excitations is gapped [2, 17].
The gap is less than the cyclotron energy, hiw. > A,.
Only edge states — excitations localized on the bound-
ary — are soft [18].

e The Hall conductance is fractionally quan-
tized [16].

e Elementary excitations in the bulk of the fluid are
vortices. Vortices carry fractionally quantized negative
electronic charge [15].

More subtle features recently discussed in the literature
are as follows.

e Fdge excitations consist of two branches of non-
linear solitons: subsonic solitons with a fractional neg-
ative electronic charge and supersonic solitons with the
unit electronic charge [19].

e Quantized double layers of the density at bound-
aries and vortices [19].

e The Lorentz shear stress and anomalous viscosity

(or odd viscosity, or Hall viscosity) [8-12].
From the listed properties, we select a set of the foun-
dational principles and attempt to obtain others as
consequences. The set of basic principles is remark-
ably small. We only assume that electrons in the FQH
regime form a quantum fluid and that the fluid is in-
compressible and flows possess a macroscopic number
of equally oriented vortices.

We refer to such flow as chiral flow. Since in a
quantum fluid, vorticity is quantized, a unit volume of
the fluid contains the quantum of vorticity. We want
to demonstrate that the chiral flow captures all known
physics of the FQHE.

We start with a general discussion of scales of FQH
(bulk) states.

2.2. Scales, holomorphic states, and
incompressibility

There are two distinct energy scales: the cyclotron
energy hiw,. = ehB/myc, which defines the distance be-
tween Landau levels, and the gap in the bulk excitation
spectrum A,. The former is determined by the band
electronic mass my and by the magnetic field. The lat-
ter is a characteristic of the Coulomb energy. From
the theoretical standpoint, the very existence of FQH
states assumes that the cyclotron energy is larger than
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the gap, A, < fiw,. If this limit holds?, the flows with
an energy FE exceeding the gap can still be comprised
of states on the lowest Landau level, A, < F < hw,.
Such motion does not depend on the band electronic
mass msp.

We consider a small modulation of the electronic
density p(r) and ignore the electrostatic interaction of
a nonuniform charged fluid®. Such a flow has a mo-
mentum flux P(r) and propagates with a velocity v(r).
We assume that at small modulations, the momentum
flux is equal to P = m,pv, where m, is the inertia of
the flow. It seems natural to assume that the inertia is
set by the scale provided by the gap, A, ~ h%/m.(>.
The mass m, exceeds that of a band electron:

my/my ~ hw./A, > 1.

Generally, waves propagating through the bulk of
the FQH liquid are essentially nonlinear. However,
stationary linear waves in the bulk are possible in the
nonuniform electric and magnetic fields, or in a curved
space. The sector of stationary linear waves some time
is called topological.

Wave functions of states with the energy less than
the the cyclotron energy (the lowest Landau level) are
holomorphic. It is customary to describe the set of
states on the lowest Landau level as the Bargmann
space [20]. Coherent states of the Bargmann space are
labeled by symmetric polynomials in the holomorphic
coordinates of particles z; = z; + iy; and the holomor-
phic momenta

0., —in,).

0. 5

Let @ be such a polynomial and Q! be the Hermitian
conjugate polynomial, which depends on antiholomor-
phic coordinates Z; = x; —iy; and antiholomorphic mo-
menta

1 T - AT
o1, = -5 (0], +id]).

The symbol “T™ is the transposition. Then in the nota-
tion of the Bargmann space, the “bra” and “ket” states

()
(2)

QI[Gi =) =1@).
i>j

2) In experiments, the cyclotron energy is only a few times
larger than the gap.

3) In FQH liquids, the Coulomb forces essentially block prop-
agating waves in the bulk. In this paper, we neglect Coulomb
forces in order to unmask laws of quantum hydrodynamics.

1
B 20% &

(3

Q= [[G -z Q" exp

1>]
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Flows within the first Landau level are incompressible.
The term “incompressible flow” is sometimes attributed
to the gapped spectrum. Rather, the incompressibility
reflects the holomorphic nature of FQH states. This
is seen from the following argument. For simplicity,
we consider a coherent state characterized by a poly-
nomial ) that depends only on coordinates z;. The
phase of the wave function of such a state differs from
the phase of the ground state by the phase of the holo-
morphic polynomial Imlog@. Since the velocity is a
gradient of the phase, the phase is a hydrodynamic
potential. The phase is harmonic everywhere except
points where the wave function vanishes. Since the
wave function is single-valued, it vanishes as an inte-
ger power of holomorphic coordinates. Therefore, the
allowed singularities of the phase correspond to quan-
tized vortices. There are no sources, and hence the
gradient of the phase is divergence-free,
V.v=0. (3)
There are two immediate consequences of incompress-
ibility. Oneis that the material derivative of the density

vanishes,
0
Dyp = < ) p=0.

a +v-V

The other is that flows in homogeneous 2D incompres-
sible liquids do not possess linear waves. Only available
bulk flows are nonlinear flows of vorticity. The flow can
be viewed as a motion of a neutral gas of quasiholes and
quasiparticles.

In the next section, we identify the FQH states with
vortices in a quantum incompressible rotating fluid.

We — 00:

(4)

3. KIRCHHOFF EQUATIONS

We start by recalling the classical Kirchhoff equa-
tions for rotating incompressible inviscid Euler flows
with constant density (see e.g., [21]), and then proceed
with the quantization.

3.1. Classical Kirchhoff equations for an
incompressible fluid

In two dimensions, an incompressible fluid with a
constant density is fully characterized by its vorticity.
The curl of the Euler equation for the incompressible
fluid with a constant density,

Diu = (8t +u- V)U vp7 (5)
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yields a single (pseudo) scalar equation for the vortic-
ity:

Dy(V x u) =0. (6)

In this form, the Euler equation has a simple geomet-
rical meaning: the material derivative of the vorticity
vanishes. Vorticity is transported along the divergence-
free velocity field wu.

Helmholtz, and later Kirchhoff realized that there
is a class of solutions of vorticity equation (6) that con-
sists of a finite number of point-like vortices. In this
case, the complex velocity of the fluid u = u, — tu, is
the meromorphic function

N r.
u(z,t)=—iQz+iy ———— 7
(2,1) > (7)
where () is the angular velocity of the rotating fluid, N
is the number of vortices, and T'; and z;(t) are circula-
tions and positions of vortices.
Substituting this “pole ansatz” into Euler equation
(6) shows that the number of vortices N and the cir-
culations T'; do not change in time, while the moving

positions of vortices z;(t) obey the Kirchhoff equations:

N
0% +iy

i#]

L

zi(t) = z(1)

% (8)
The Kirchhoff equations replace nonlinear partial dif-
ferential equation (PDE) (6) by a dynamical system.
They can be used for different purposes. The equations
describe chaotic motions of a finite number of vortices
if N > 3. If N is large, Kirchhoff equation can be used
to approximate virtually any flow.

3.2. Chiral flow

The flows relevant for the FQHE are such that a
large number of vortices largely compensates rotation.
We refer to such flows as the chiral flow.

Bearing the quantum case in mind, we assume that
vortices have the same (minimal) circulation T'; = T
Then the Kirchhoff equations become

We want to study the vortex system in the limit of
a large number of vortices distributed with the mean
density p:

(10)
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The chiral flow is a very special flow in fluid mechan-
ics. We distinguish two types of motion there: the fast
motion of the fluid around vortex cores and the slow
motion of vortices. In this respect, vortices themselves
can be considered a (secondary) fluid. In the ground
state of the vortex fluid, vortices do not move, but the
fluid does.

Circulation of vortices in units of the Planck con-
stant has the dimension inverse to the mass unit. We
introduce the dimensionless parameter

h

m,[

v= (11)
We show in what follows that the quantized chiral flow
models the FQHE with a filling fraction v. We set
B=v"l

3.3. Quantum Kirchhoff equations

Kirchhoff himself wrote Egs. (9) in the Hamiltonian
form, identifying the holomorphic and antiholomorphic
coordinates of vortices as canonical variables. In the
case of the rotating fluid the canonical variables are
myQ7z; and z;. The Hamiltonian of the chiral vortex
system is given by

H :m*Q Z[Q|ZZ|2 —F210g|2i—2j|2 N
i J#i

l (12)
(mQ){z;, z;}p.B. = —idyj.

We emphasize that the Kirchhoff Hamiltonian is only
a part of the energy of the fluid. This part of energy
is transported by vortices. Another part of the energy
is related to the vortices at rest. It diverges at vortex
cores. This part is omitted in Eq. (12).

The parameter m, introduced into the Hamiltonian
and Poisson brackets sets the scale of energy. It is a
phenomenological parameter that does not appear in
the Kirchhoff equations.

The Kirchhoff vortex system is readily canonically
quantized. We replace the Poisson brackets by the com-
mutators

ih{zi, Zj}p_B. — [Ei, Zj] = 2625”. (13)
The parameter 20> = h/Qm, has the dimension of area.
It is a phenomenological parameter arising in quanti-
zation. We measure it in units of area per particle
22 = v/np. The dimensionless number v in (11) is a
semiclassical parameter. We see in what follows that
v is identified with the filling fraction and ¢ with the
magnetic length.
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The next step is the choice of states. We assume
that states are holomorphic polynomials in z;. Then
the operators z; are canonical momenta:

z; = 20°0,,. (14)

Finally, we have to specify the inner product. We im-
pose the chiral condition: the operators z; and z; are
Hermitian conjugate,

Zp = Z;.

(15)

This condition combined with representation (14) iden-
tifies the space of states with the Bargmann space [20]
(see also [2]). This is the Hilbert space of analytic poly-
nomials 1(z1, ..., zn) with the inner product

W) = / du ',
( |Zz|2> 2
dp = Hexp — d°z;.

202
With Eqs. (9) and (14), we write the quantum velocity
operators of vortices as

(16)

mav; = —2ih0., +ihy
i#j
B=v1t

We would like to emphasize a subtlety in quantizing ve-
locities. Velocities are not the linear operators. They
act on the phase of wave functions rather than on the
wave function itself,

Zi—Z]'7

(17)

Zj = Vi,

viexp (iArge) = [ 7" | —ih0s, +ih Y 0.
— 2 — Zj
J#i
The linear operators are the momenta
pi=—ih |0, — Y b (18)
- i Zi —Zj

Equations (9)—(18) are the quantum chiral Kirchhoff
equations. They can be generalized to a sphere or a
torus without difficulty.

4. QUANTUM CHIRAL KIRCHHOFF
EQUATIONS AND THE FQHE

The quantum chiral Kirchhoff equations are readily
identified with the FQHE.

The ground state of the vortex liquid is the state
where the vortices are at rest. We repeat that this

621

state is a highly excited state of the fluid. It is a state
of the fluid at a very high angular moment. When vor-
tices are in the ground state, the fluid moves with a
very high energy.

The ground state is an analytic function whose
phase is annihilated by all momenta operators. The
common solution of the set of first-order PDEs

pivo =0

in the class of holomorphic polynomials is the Laughlin
wave function in the Bargmann representation

H(Z’ — zj)B, g=1/v.

i>]

Yo(z1,-.-,2N) (19)

The wave function is single-valued if 3 is a integer, an-
tisymmetric if 8 is an odd integer, symmetric if 5 is an
even integer.

The correspondence is completed when we assign
the electronic charge to vortices and identify the angu-
lar velocity with the effective cyclotron frequency

eB my

mxC

0=

We.
™

The hydrodynamic interpretation of the FQHE is sub-
tly different from Laughlin’s original interpretation.
There, the coordinates entering the Laughlin wave
function were interpreted as bare band electrons. The
fluid itself is absent in the Laughlin picture. The hy-
drodynamic interpretation suggests that electrons (and
their charge) are localized on topological excitations
(vortices) of a neutral incompressible fluid. The neu-
tral fluid is real. It serves as the agent of the interaction
between electrons.

In the hydrodynamic interpretation, a quasihole [15]
is a hole in the uniform background of vortices. It corre-
sponds to state (2) characterized by a polynomial with
simple zeros at a given point z,

N

JEN) = H(z —zi)-

i

Qz1,. .. (20)

The momentum of this state is

0ilQ) = iv——1@)

(3
This shows that the Magnus force between vortices and
the quasihole is the opposite to the fraction v of the
Magnus forces between vortices. Hence, in the hydro-
dynamic interpretation, the quasihole appears as a vor-
tex with the fractional negative circulation —v.



P. Wiegmann

MKIOT®, Tom 144, Bom. 3(9), 2013

Identifying vortices and electric charges, we must
assume that the external fields (the potential well, gra-
dients of temperature, etc.) are coupled to the vortices,
not to the fluid.

We examine how vortices move in an external po-
tential well U(r). The potential adds the term ), U(r;)
to the Hamiltonian, where r; are coordinates of vor-
tices, and adds the force

—i[U, 2] = i20°0.,U

to the Kirchhoff equations

p; = —ihd., +ihy +im.eE(z),  (21)

2]
i#] J

where el = —VU is the electric field.

Fractionally quantized Hall conductance follows
from the Kirchhoff equations easily. We assume that
the electric field is uniform. Then the center of mass
of the fluid stays at the origin, ), 9., = 0. Summing
(21) over all vortices, we obtain the Hall current per
particle

N1 Zevi = ie®(’E

and the current per volume ie2¢?pE. We conclude that
the Hall conductance equals to the fraction e2/h:
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Tay =V (22)

Our next step is to develop the hydrodynamics of a
system of quantum vortices described by the Kirchhoff
equations. To the best of our knowledge, this has not
been done even for the classical fluids. We start by the
summary of main results. The derivation and details

then follow.

5. SUMMARY OF THE MAIN RESULTS AND
DISCUSSION

Quantum hydrodynamics of a chiral vortex flow
consists of three sets of data: the operator content and
their algebra, the chiral constituency relation between
operators, and the dynamic equation. We summarize
them below, but first we comment on the notation.

5.1. Notation

We use holomorphic coordinates

1
z=x+1y, 0= i(vx —iVy).

We use the roman script for complex vectors. For ex-
ample, the velocity of the fluid

U= (Ug,Uy), U= Uy — iUy.
We denote the velocity of the vortex fluid
V= U, — 10y,
the momentum flux for the vortex fluid
P=P, —iP,,

and holomorphic components of symmetric flux ten-
sors I,p:

0 =1l — I, — 2ill,,, .:=1,,+]II,,

We emphasize the difference between Hermitian
conjugation vi and complex conjugation @, but still
may use the classical notation for the divergence and
the curl of the velocity. In particular, the divergence
and the curl abbreviated as V - v = 0 actually means

V.v=0v+0ovl, Vxov=idv—oavh).

Similarly, the term v-Vp in (4) is understood as vi-9p+
+ 5p “V.

The divergence-free velocity of an incompressible
liquid is expressed in terms of the stream function op-
erator

v =—2i07. (23)

We define the momentum flux of the vortex flow as
P = m.pv. (24)
The vortex flux operators annihilate the ground state:
P|0) = (0|PT = 0. (25)

Throughout the paper we set m, = 1, measuring the
momentum per particle in units of velocity, or equiva-
lently, treating the particle density as a mass density.
We emphasize that m, is not related to the band elec-
tronic mass.

5.2. Commutation relation

Commutation relations of the vortex flux opera-
tors differ from the canonical commutation relations of
quantum hydrodynamics of Landau [13] by the anoma-
lous terms

WP (), P = —%(Px V)o(r — ') +

anomalous term
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The commutation relation between the flux and the
density is canonical:

[P(r), p(r")] = —ihpdd(r —r'"). (27)

The vortex flux operator can be conveniently repre-
sented in terms of the canonical fields u and u'

2

[u(r),uT(r')] = 7rh75(7' -r'),

(28)
[u(r), p(r')] = —ihd8(r — ).
We introduce the axillary operator
J = pu, (29)

which we call the vorticity flux. The hydrodynamic in-
terpretation of this operator is to be given below. It
has a canonical commutation relation with itself and
with the density, but does not annihilate the vacuum.
The vortex flux P does.

We show that the vortex flux and the vorticity flux
differ by the anomalous term

h
P = . —Op.
J+12V8p (30)

The anomalous term adds to the diamagnetic energy
of the flow in the background electromagnetic field,

h
f/(A-P)d%: f/(A-J)d2r+—f/de2r,
c c dv ¢
effectively reducing the orbital moment of particles.
Similarly, the anomalous term contributes to the an-
gular momentum of the flow as

Nt /(7‘><P)d27‘:N*1 /(r X J)d2r+4£.
v

The meaning of the anomalous term can be seen di-
rectly from the monodromy of FQH states (2). The
monodromy with respect to a closed path is the phase
acquired by the wave function when a particle is moved
along that path. That is a circulation of the parti-
cle. It equals to the number of zeros of the wave func-
tion with respect to each coordinate. This number is
(n — 1)/v, where n is the number of particles enclosed
by the path. It is less by v~! from the number of mag-
netic flux quanta piercing the system, simply because
the vortex does not interfere with itself. The anomalous
term accounts for that difference. The anomalous term
can be regarded as a local version of the global relation
between the monodromy of states and the number of
particles. The difference, often called the shift 25, has
been emphasized in Ref. [22]. For the Laughlin states,
2s =v L,

5.3. Anomalous term in the chiral constituency
relation

Unlike in a regular fluid mechanics, where the den-
sity p and velocity v are independent fields, they are
related by the chiral constituency relation in the chiral
flow. This means that the set of states on the lowest
Landau level is restricted such that the velocity opera-
tor acts as a certain functional of the density operator.

In a very rough approximation, the chiral relation
states that the vorticity per particle is the inverse fill-
ing factor in units of the Planck constant, as suggested
in [6]. This view refers to a popular picture of the FQH
states as electronic states with an additional amount
of flux attached to each particle. The actual relation
between the vorticity and the density is more compli-
cated. It involves the anomalous term

1

h _ 1
VXU—; P—P+E(§—V)A10gp ) (31)

anomalous term

where

=v(2rl®) t =v—B
p=rv(2nl?) v

is the mean density of electrons and h = 27h.

An accurate reading of this relation is: the action
of the operators in the right-hand side and the left-
hand side of (31) on the Bargmann “bra” state (Q| are
equal. They are not equal if the “bra” state is not in
the Bargmann state.

In particular, a quasihole, a source for vortic-
ity localized at rg, corresponds to the polynomial
Q = [I;(20 — z). It deforms the density outside the
core r = 1o according to the equation®

_ 1 /1
—vd(r—rg)=p—p+ yp <§ —l/) Alog p.

An equivalent form of the chiral relation connects the
stream function and the density,

h

1
Vo = —€ap V¥, V= > {99 - <§ - V) 108;/)] , (32)

where the “regular part” of the stream function ¢ is a
solution of the Poisson equation

Ap = —4Ar(p—p). (33)

4) Incidentally, a similar equation exists inside the vortex
core. There, the quantum corrections change the last term to
—(1/4m)vAlog p. Accidentally, a similar equation followed from
the effective action in Refs. [3,4] erroneously featuring the term
—(1/4m)vAlog p inside and outside the vortex.
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We comment that the chiral relation readily extends
to the case of an inhomogeneous magnetic field. In
this case, the mean density p = v(e/he)B in (31) and
(33) is a function of coordinates. There are no other
changes. In particular, in the ground state, where the
velocity vanishes, the density in a nonuniform magnetic
field obeys the “Liouville equation with a background”.
That is Eq. (31) with zero in the left-hand side. In the
leading order in gradients, the ground-state density ac-
quires the universal correction

(

The integrated form of (31) is the sum rule connecting
the angular momentum (per particle in units of )

1

41

1
- —v

2

e

pZU%B )AlogB+... (34)

L= (hN)"! /(TXP) d*r

to the gyration per particle

It is given by

N7'G = /rQ(p—ﬁ) d’r.
1o,

()]0

The ground-state version of this formula is the familiar
sum rule for the Laughlin wave function:

(35)

(0] S |2i210) = 2N(N — 1+ 2).

5.4. Anomalous term in the Euler equation:
Lorentz shear stress

Constituency relation (24), chiral condition (31),
continuity equation (4), and the operator algebra in
(26) and (27) constitute the full set of hydrodynamics
equations for the chiral incompressible quantum fluid.

The chiral condition helps to write the continuity
equation (4) as a nonlinear equation of the density
alone:

h
8tp - 5V(p X Vp = 07 ASD = —471'(p - ﬁ) (36)

The equation is identical to the Euler equation for
the vorticity in an incompressible fluid. Naturally, the
anomalous term disappears from this equation. It ap-
pears in the boundary conditions, in the response to
external fields, and also determines forces acting in the
fluid.
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Forces are rendered by the momentum flux tensor
I1,, entering the Euler equation, written in the form of
the conservation law

&Py + V, I,y = pF,. (37)

Here,
F=¢E—-SBxuo
C

is the Lorentz force.

The anomalous viscous stress emerges in the mo-
mentum stress tensor. A general fluid momentum flux
tensor of incompressible fluid consists of the kinetic
part, the stress, and the traceless viscous stress o7,. In
the incompressible fluid the stress is expected through
the velocity. We write

Hab = Tab — O'Zlb, (38)
where 7., accounts for the kinetic part and the stress.
At the fixed density 7., is symmetric with respect to
a change of the direction of the velocity v — —v. The
viscous term is linear in gradients of the velocity. It
changes the sign under this transformation. With the
exception of the diamagnetic term, the viscous term
has a lesser degree of velocity among terms of the flux
tensor. This is the only term enters the linear response
theory.

Our fluid is dissipation-free. Therefore, the anoma-
lous viscous stress produces no work. This is possible if
the viscous stress represents forces acting normally to
a shear. Such stress can only be a traceless pseudoten-
sor. It changes sign under the spatial reflection. In the
chiral flow, the anomalous viscous stress is given by

h

2v

!

T (vavy - %MA) v (39)
There is a noticeable difference from the dissipative
shear viscous stress. That stress is given by the same
formula but with the stream function replaced by the
hydrodynamic potential.

Components of the anomalous viscous stress tensor
are

h
—Ep(vxvy + Vy’l}x),
h
= —p(Vav, — Vyu,).

4v

(40)

_ !

The divergency of the Lorentz shear stress is the
Lorentz shear force

h
Vioay = Eﬁva(v X v)
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exerted by the flow on the volume element of the lig-
uid. It is proportional to the gradient of the vorticity.
A notable feature of the anomalous stress is that the
kinetic coefficient 1/4v (in units of &) is universal and
has a geometric origin. The anomalous conservative
viscosity is referred to as the odd viscosity, or Hall vis-
cosity. It was introduced in Ref. [8] for the integer Hall
effect as a linear response to a shear. Its notion has
been extended to the FQHE in [9,10] (see [8-12] for
incomplete set of references). In this paper, we show
how the anomalous viscosity appears in the nonlinear
hydrodynamics of the chiral flow.

Anomalous term (39) represents the force acting
normally to the shear (in contrast, the shear viscous
force acts in the direction parallel and opposite to the
shear). The stress is also referred as the Lorentz stress,
and the force is referred as the Lorentz shear force [9].

The emergence of the Lorentz shear stress can be in-
terpreted in terms of semiclassical motion of electrons.
The motion of electrons consists in the fast motion
along small orbits and the slow motion of orbits. A
shear flow strains orbits, elongating them normally to
the shear, boundaries, and vortices. The elongation
yields an additional Lorentz shear stress.

5.5. Topological sector

The topological sector consists of flows driven by
slow long-wave external fields, such as the curvature of
space, a nonuniform electric and magnetic fields, etc.,
which do not produce excitations over the gap. The
Hall current is the most familiar example.

The topological sector can be singled out in the
limit m, — oo. In this limit, the momentum flux ten-
sor reduces to the anomalous viscous stress modified
by quantum corrections. Then the dynamics reduces
to the balance between the Lorentz shear force and the
Lorentz force.

In the linear approximation, the stationary Euler
equation is

1 1
<E - 5) V(V xv) =eE, — EB X V. (41)
Solution of this equation in the leading gradient ap-
proximation yields the universal correction to the Hall
conductance [11]:

“L("“)zu(i_l)(u)?, axyz%& (42)

Ory v 2

The Hall current increases with the wave vector. The
factor 1/2 in these equations represents the diamag-
netic energy. This energy does not appear explicitly in

12 ZK3T®, Bem. 3 (9)

the momentum flux tensor in (38). Rather, it is hidden
in the normal ordering of the kinetic part of the vortex
flux tensor. If in addition, particles prosses an orbital
moment, M, which is intrinsically related to the band,
the term (m./my)M is added to the factor —1/2 in
both equations. Apart from this effect, the correction
to the Hall conductance is universal.

5.6. Trace and mixed anomaly

The meaning of the Lorentz shear stress is best il-
lustrated when the fluid is placed into a curved space.
In this case, the energy receives an addition

1 a
H' = —5/9 Yol /9d7E

from the viscous tensor, where g, is the spatial met-
ric. At a constant density, this term has the suggestive
form

h
H' = Eﬁ/Rw\/gd%,

where R is the spatial curvature. This addition yields
the trace anomaly: the flux tensor acquires a trace pro-
portional to the curvature:

h2
1671'1/R

_U;a =p (43)
It is traceless if the space is flat.

The trace anomaly yields a uniform force acting to-
ward the region with the access curvature. This force
squeeze particles toward the curved regions (mixed
anomaly)

1

Accumulation of charges at curved parts of space was
suggested in [22] and further discussed in [11].

These formulas represent the effect of the anoma-
lous terms valid in the semiclassical approximation

at large v—!'. They experience quantum corrections,
which effectively replace v~! in the formulas with
-1

v —2.

5.7. Dispersion of density modulation

The anomalous term in the commutation relations
(26) yields a universal correction to the kinetic energy
of small density modulations

|k> — Z eikri

0)
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(see footnote®) on page 3) of the form

) = (PRI ()

*

We will show that at small wave vectors the dispersion
is negative

A (k) = A, (0) (1 —% <2—1U - 1) (kﬂ)z) S

h2

A, (0) = I

Such behavior signals the magneto-roton minimum dis-
cussed in Ref. [2], similar to the roton minimum known
in superfluid helium. The dispersion of the excitation
has been measured in the recent work [23]. There the
excitation spectrum has been probed through the res-
onant absorption in the regime where surface acoustic
waves propagate across the sample.

5.8. Boundary double layer and dispersion of
edge modes

A striking manifestation of the anomalous terms is
seen on the boundary. The Lorentz shear force squeezes
flow lines with different velocities. As a result the
charge there is an accumulation of density on the adge.
The density at the edge » = R forms the double layer

1_

p(r) =7+ ?”vna(r ~R). (47)

Here the derivative is taken in the direction normal to
the boundary.

A consequence of the double layer is the correction
to the spectrum of edge modes

o(h) = cak+ 3, (= 1) sgn(h) (k07
E

Cop = CE.
These results where obtained in [14].

In the rest of the paper, we obtain these (and some
other) properties starting from the quantized chiral
fluid. It turns out that many calculations are merely
identical in the classical and quantum cases. To sim-
plify the matter, we first derive the hydrodynamics of
the vortex fluid in the classical case, and then consider
the quantum case.

(48)

6. RELATION BETWEEN THE VORTEX FLOW
VELOCITY AND THE FLUID VELOCITY

Eulerian hydrodynamics of the vortex flow describes
the flow in terms of the density and the velocity field

v(r) of vortices. We construct the velocity field starting
from velocities of individual vortices. The calculations
are merely identical in the classical and quantum cases.
We proceed with the classical calculations.

We denote density of vortices as

1
p(r)=zi:5(r—m):p+ s (Vxuw. (49

The stream function of the fluid is the potential ¢
in (33):

u=—-2il0p, Ap=—4r(p—p). (50)

The object of interest is the vortex flux

P(r) = Za(r — 73)vi. (51)

Having the flux, we define the velocity field of the vor-
tex fluid as P = pv. We want to compute the velocity of
the vortex flow v(r) and to compare it with the velocity
of the original fluid u(r). Obviously, they are different.
The former describes the slow motion of vortices, and
the latter, the fast motion of the fluid around vortices
and the drift together with the vortices. Nevertheless,
there is a simple relation between the two.

We compute the vortex flux P and compare it with
the vorticity flux J = pu, where the velocity of the
fluid u is given by (7). Using (9) and the d-formula,
76 = d(1/2), we write

~oor
P(r):Z&(r—m) —iQ%+i Yy =

T ]
i,iF ] J

1 1

z—2i2— 2

r_ X
= —iQzp(r) +z;8;

(52)

Then use the identity

2
11 1 1\’
QZZ—Z,'Z,'—ZJ':<ZZ—Z,'> _Z<Z_Zi> -
i#] i i
2
1 1
:<Zz_z> +8Zi:z—zi (53)

and apply 0:

r
pv:—i02p+i25(r—m)zz_z_
i j J

+ igaz Sr—ri). (54)
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We obtain the relations

P = pu+ giap, v=u+ g ~Lidp. (55)
The difference between the velocity of the vortex fluid
and the velocity of the fluid has a simple meaning. The
velocity of the fluid u diverges at the core of an isolated
vortex (as can be seen in (7)). But the velocities of
vortices are finite. The anomalous term removes that
singularity.

The anomalous term changes only the transverse
part of the velocity, and therefore the flow of vortices
is incompressible like the fluid itself, Vo = Vu = 0.
Also, the anomalous term does not change the diver-
gency of the flux: VP = vVp = V(pu) = uVp.

7. CLASSICAL HYDRODYNAMICS OF THE
VORTEX MATTER

Global symmetries of space and time, such as trans-
lation and rotation, yield familiar conservation laws of
the flux, energy, and angular momentum. In addition,
the 2D incompressible flows with a constant density
possess conservation laws that are not directly related
to global symmetries. One conservation law is familiar.
This is the conservation of vorticity. With the help
of (55), the Euler equation in form (6) can be written
as the continuity equation for the mass density of the
vortex fluid:

g,
D”JE(E-I-l%V)p:O. (56)

In addition to the conservation of vorticity, the vortic-
ity flux J and the vortex flux P are also conserved:

J=pu, P =pv. (57)

The conservation of vorticity and vortex flux is obvi-
ous in the Kirchhoff picture. This is the conservation
of mass and mass flux of the vortex system. In con-
tinuum fluid mechanics, conservation of the vorticity
flux and, consequently, of the vortex flux are, perhaps,
less obvious. Nevertheless, they easily follow from the
observation that the vorticity flux is the divergence of
a tensor:

1 1
Ja = ﬁua + —eabactbca the = Uplle — §6bcu2- (58)

2l

The tensor is symmetric and traceless.
We write the conservation law for the the vorticity
flux

By T+ ViTap = —E(B X U (59)
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and determine the vorticity flux tensor .. The
right-hand side of this equation is the Lorentz force.

The vorticity flux tensor can be locally and explic-
itly expressed through the velosity and the pressure.
Expression is cumbersome and we do not need in for
the purpose of this paper. In the leadind approxima-
tion in the density gradients the second term in (56)
could be dropped. Then the vorticity flux tensor is
identical to the flux tensor of the incompressible fluid
with the constant density

Tab R PUagUp + POab-

The next step is to determine the vortex flux tensor
II,,. It enters into the conservation law for the vortex
flux

0Py + VIl = —E(B X 0)a. (60)

We see it as a transformation of the vorticity flux tensor
induced by the transformation of the velocity (55)

u—v, J—=>P w—=IL (61)
Under the shift (55) we have

. . T )
P, =J, + Zeabvbp.

With the help of the continuity equation (56), we ob-

tain the transformation

r
Tap — Hap = Tap + Z [facvc (va) + € Ve (pva)] .

In the leading approximation in gradients we replace
the density in the last equation by its mean p. We
observe that the stress tensor acquires the anomalous
viscous term

Moy & map — U;ba

r (62)
Tap = —Zﬁ (€acV e + €5eVave) .

This is the Lorentz shear stress [14].

We see that the Lorentz shear stress naturally ap-
pears in the vortex liquid. Chiral flows consists of a fast
motion along small orbits around vortex cores and a
slow drift of centers of these orbits. A shear flow strains
orbits elongating them normal to the shear, boundaries
and vortices. Elongation yields to the Lorentz shear
stress.

8. QUANTUM HYDRODYNAMICS OF THE
VORTEX MATTER

We start by quantizing the incompressible chiral 2D
fluid and then proceed with the quantization of the vor-
tex flow.

12*
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8.1. Quantum hydrodynamics of
incompressible liquid

The canonical fields in hydrodynamics are density
and velocity. In the chiral fluid with a constant fluid
density, the canonical hydrodynamic variables are the
velocity u and the vorticity p, or rather, holomor-
phic and antiholomorphic components of the velocity
u and uf.

We note a subtlety in quantizing hydrodynamics in
the Bargmann space. The density in (49) is real and
therefore consists of holomorphic and antiholomorphic
variables. We “decompose” it into the holomorphic and
antiholomorphic parts using the d-formula

75(r) = & (%) —0 (%) (63)
as

1 - 1 1 1
= - = — —_— . 4
plr) = pitp 271'8; Z—Zi+27'ra; zZ—2z; (64)

In the Bargmann space, the action of the holomorphic
operator 20, on the density is not just a differentia-
tion over coordinates d,, — i0y,, as it may seem from
the notation. The operator acts only on the holomor-
phic part py. Hence, 20,,p = —96(r — r;) is half the
regular derivative. We already encountered this sub-
tlety in Sec. 3.3 in discussing the action of velocity in
the “first quantized” formalism.

With this nuance, the quantization of the fluid ve-
locity amounts to the replacement of the term —i{2Z in
(7) with Or,, where

0

T, = _Zh6_p

is the canonical momentum of the density. We also
replace the sum in (7) with the integral,

r P& o,
;Z—Zi %F/Z——fd%_

h _
i20(p + mpl=?). (65)

We obtain the velocity of the quantum chiral fluid
h 2
u=20 7r,,—z;(<,9—|—7rp|z| ) ). (66)

This formula yields the canonical commutation relation
between vorticity and velocity and between the velocity
components:

[u(r), p(r')] = —ihdé(r — "),
7
quzi(éu—auT)zh(p—ﬁ). (67)

14

The commutation relations between velocity compo-

nents are the canonical Heisenberg algebra, as is known
to be the case in a quantizing magnetic field:
h2

[u(r),uf ()] = —6(r —1"),

N
p— [u(r),u(r)] =0. (68)
The algebra is completed by the equal-point com-

mutator

fu(r). p(r)] = —ihdp(r). (69)

The remaining element of the quantization is
the chiral condition. The holomorphic deriva-
tive 0., acting to the left on the antiholomorphic
“bra” states of Bargmann space (2) differentiates
only the factor exp(—3,[2]?/2¢*) of the mea-
sure, (Q (26282 +2i) = 0. Similarly, the operator
Om, acting on the left acts only on the factor
exp (—(1/20%) [ pdr):

@I (87rp + zgz) =0. (70)

Therefore, when the holomorphic velocity operator acts
on the antiholomorphic “bra” state, the first two terms
in (66) cancel. We return to the classical formula (50):

(@l +ita01Q) =0, (71)

We emphasize that this relation does not hold unless
the operator is sandwiched between antiholomorphic
and holomorphic states.

The chiral condition projects all operators onto the
lowest Landau level. The projected velocity is mani-
festly divergence-free. Projection onto the lowest Lan-
dau level is summarized by the condition Ar, = —4mp.

Heisenberg algebra of velocities (68), continuity
equation for the vorticity D¢p = 0 (56), and chiral
condition (71) summarize the quantization of hydro-
dynamics of an incompressible chiral flow.

Finally, we are ready to proceed with quantization
of the vortex fluid.

8.2. Quantization of the vortex fluid

The classical formula for the flux, Eq. (51), must be
treated as an ordered product of operators,

P(r) = 25(7”—7‘i)13i = Z(Pi+ihazi)5(7‘—ri)» (72)

2

where the momenta p; are given by (21). The rela-
tion between the velocity in (55) holds on the quantum
level:

h
P = i 9p.
pu + 12]/8/) (73)
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The chiral condition is obtained by placing u to the
left. Using (69), or equivalently (72), we pull u to the
left and reduce it to its classical value (50). This yields
the chiral conditions in Sec. 5.3:
I . 1
P =—i—pdp +ih <— - 1) Op. (74)
v 2v
The commutation relations for flux components pre-
sented in Sec. 5.2, Egs. (26) and (27), now follow.
The computation of the quantum vortex flux ten-
sor is not much different from the classical version in
Sec. 7. All the formulas remain the same if the normal
ordering of operators is respected. But when the veloc-
ity in all terms of the vortex flux is pulled to the left,
the coefficient in front of the Lorentz force acquires the
quantum correction 1/2v — 1/2v — 1.

9. APPLICATIONS

9.1. Structure factor

Anomalous commutation relations allow computing
the structure factor. This is

sk = N7 (0| pep—r|0),
where pp = Ziv exp(ikr;) is the Fourier mode of a small
density modulation with the wave vector k.

The chiral condition connects the density and flux
modes. We evaluate it in the linear approximation in
density modes. Using k%py, = 4mpy in (74), we write
the Fourier mode of the flux in terms of the density

modes:
(1-5 (55 -1) 002) .

k =k, —iky.
On the other hand, commutation relation (27) yields

hk
(Ck)?

1
1—=
2

1
— -1

P.=
k 2v

(75)

1
[Pk, p-k]= 5 N1k (76)

Since Py annihilates the ground state,

(OI[P&, p—£]10) = (O|Pp—k|0).

We obtain the relation
(1 < 1) (k€)2> X

hk 1
1
X (Olpkpil0) = SHEN. (77)

2

1

0|Prp_r|0) = — —
(0P % p—£|0) 57

(Ck)?
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The known result [2] for the spectral factor follows:

st = (0lprp—1|0) =

1

— -1
2

1, 1
~ 5 (kO) (1+ <2U

) (k€)2) +...
We see that the anomalous term accounts for the uni-
versal O(k?) in the structure factor. The spectral factor
is involved in a number of important physical objects.
A few are discussed below.

(78)

9.2. Variational excitation spectrum

In this section we evaluate the variational energy of
waves. That is the energy per particle of a state with
the density modulation with the wave vector k:

1

My P>

A(k) (0[P, P, |0)

(in this subsection, we restore the inertia m,). Com-
mutation relation (26) prompts the relation between
the kinetic energy of small density modulations and
the structure factor. We take the vacuum expectation
value of the anomalous commutation relations (26) and
express it through the Fourier modes. The right-hand
side becomes (0|Py, P ']0). Computing the expectation
value of the term p? in the right-hand side of (26), we
use the quantum version of relation (49),

p=p+ i%(éu —oul),
and pull the holomorphic (antiholomorphic) velocity
component to the left (right) with the help of (69) and

apply the chiral condition. We obtain
v
PP =0+ A
T
This term (the quantum correction) effectively shifts

the coefficient in front of the last term of commutation
relation (69). We obtain

A(k) = A(0) <1 - % <2—1U - 1) (k€)2) ,
(79)
A0) = %

The comparison with (78) yields a variational Feyn-
man-Bijl formula [7] for the excitation spectrum
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27.2
Ak = hk

= . 80
2My S (80)

Of course, all these formulas make sense in the leading
order in (k()2.

We observe that the excitation spectrum is gapped
and has a negative dispersion. The energy starts to
increase at larger (k). Tt oscillates at intermediate
wavelengths. Such behavior signals the magneto-roton
minimum, similar to the roton minimum known in su-
perfluid helium, as it has been suggested in Ref. [2].
The dispersion of the excitation was recently measured
in [23]. There, the excitation spectrum was probed
through the resonant absorption in the regime where
surface acoustic waves propagate across the sample.

To avoid possible confusion, we emphasize that we
evaluated the kinetic energy over the states |k) =
= Ziv exp(ikr;)|0). These states are different from the
“projected waves” in Ref. [2]. Projected plane waves
are created by the normal-ordered wave operator

Z exp(—ik(*d.,) exp (—igzi) |0).

Operators expanded in that basis are a separate inter-
esting question. We will address it elsewhere. Here, we
comment that the acoustic waves used in the experi-
ment in [23] are argued to be projected plane waves.
Rather, they are regular waves |k) = 327 exp(ikr;)|0).

(3

9.3. Hall conductance in a nonuniform
background

The formulas in the previous section are readily
adapted to study transport in the topological sector,
e.g., in a nonuniform electric field.

An electric field acts only on vortices as the Lorentz
force in (21). We therefore add it to the conservation
law for the vortex flux:

e
O Po + Viplly, = p (eE — -Bx ’U) . (81)
C a
In the topological sector (m, — o), the flow is steady,
and the anomalous viscous tensor is the only term of
the flux tensor that survives in the limit:

—Voo, =p (eE ~ B x v) . (82)

C a
Pulling the velocity to the left, in the linear approxi-
mation, we obtain Eq. (41) in Sec. 5.5. That equation
yields a universal correction to Hall conductance (42).

Comparing the expressions for spectral function (78)
and the Hall conductance, we observe a simple relation
between the two objects. It can be obtained from the
general theory of linear response.
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