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ANOMALOUS HYDRODYNAMICSOF FRACTIONAL QUANTUM HALL STATESP. Wiegmann *Department of Physis, University of ChiagoChiago, IL 60637, USAReeived May 16, 2013Dediated to the memory of Professor Anatoly LarkinWe propose a omprehensive framework for quantum hydrodynamis of the frational quantum Hall (FQH)states. We suggest that the eletroni �uid in the FQH regime an be phenomenologially desribed by thequantized hydrodynamis of vorties in an inompressible rotating liquid. We demonstrate that suh hydro-dynamis aptures all major features of FQH states, inluding the subtle e�et of the Lorentz shear stress.We present a onsistent quantization of the hydrodynamis of an inompressible �uid, providing a powerfulframework to study the FQH e�et and super�uids. We obtain the quantum hydrodynamis of the vortex �owby quantizing the Kirhho� equations for vortex dynamis.DOI: 10.7868/S00444510130901371. INTRODUCTIONQuantum systems with the e�etively strong inter-ation form liquids whose �ows are oherent quantumolletive motions. Among them, there are interest-ing notable ases where suh liquids allow a hydrody-namis desription. That is when the long-wave, slow�ows an be e�etively desribed solely in terms ofa marosopi, but quantum, pair of anonial �eldsof density �(r; t) and veloity v(r; t). Suh quantum�ows are the subjet of quantum hydrodynamis. Inthe lassial ase, the priniple of loal equilibrium re-dues the Boltzmann kineti equation for the distribu-tion funtion to the hydrodynamis equations for thedensity and the veloity (see, e. g., [1℄). Loal equilib-rium ours when the harateristi time of the �owexeeds the harateristi time of ollisions, and theharateristi sale of the �ow exeeds the mean freepath of partiles. A quantum analog of the prinipleof loal equilibrium is yet to be understood, but whenit omes to e�et, it involves long-range oherent ef-fets. Strong oherene emerges as a result of inter-ations. Notable examples of quantum hydrodynamisare super�uid helium, superondutors, trapped ooled*E-mail: wiegmann�uhiago.edu

atomi gases, and Luttinger liquids. A frational quan-tum Hall (FQH) liquid is yet another ase.Eletroni states on�ned within the lowest Landaulevel by the quantizing magneti �eld are holomorphi.The holomorphi nature of states makes the hydrody-nami desription possible.A quest for the hydrodynamis of a FQH liquid orig-inated in a seminal paper [2℄. Earlier approahes toFQH states in Refs. [3�5℄ are somewhat related to thehydrodynamis, as noted in Ref. [6℄. Hydrodynamisof FQH states is in the fous of a renewed interest.In hydrodynamis, a few basi priniples, symme-tries, and a few phenomenologial parameters are suf-�ient to formulate the fundamental equations. In thease of the FQH e�et (FQHE), we already possess suf-�ient haraterizations of states. They an be used asa basis of the hydrodynamis approah. For this, a mi-rosopial Hamiltonian and a deeper understanding ofthe underlying mirosopi mehanisms of emergene oforrelated liquid states are, in fat, not neessary.In this paper, we formulate a minimal number ofpriniples su�ient to develop the hydrodynamis ofFQH bulk states in a lose similarity to Feynman's the-ory of super�uid helium [7℄, and the magneto-roton the-ory of olletive exitations in FQH states in Ref. [2℄.We disuss only the simplest Laughlin states. Else-where, we hope to be able to address the hydrodynam-is of other, riher FQH states, possessing additional617



P. Wiegmann ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013symmetries, suh as the 5=2 state. They an be stud-ied within the framework developed here.We argue that states of the FQH liquid an betreated as �ows of quantized vorties in a quantum in-ompressible rotating invisid liquid. On this basis, weobtain the major features of the FQHE inluding subtlee�ets suh as the Lorentz shear stress1), missed by theprevious approahes [3�6℄. In partiular, the Laughlinwave funtion 0(z1; : : : ; zN ) = exp � 14`2 Xi jzij2!��Yi>j(zi � zj)� ; � = 1� ; (1)emerges as the ground state of the vortex �uid. Here,` =p~=eB is the magneti length.To the author's knowledge, a hydrodynamis of vor-tex �ows has not been developed. It is an interestingsubjet in and of itself. Apart from the FQHE, it isalso relevant in the theory of super�uids and lassialhydrodynamis. In this paper, we present a onsistentquantum hydrodynamis of suh a �uid.The hydrodynamis of vortex matter di�ers fromthe Euler hydrodynamis. Its quantum version di�ersfrom the anonial quantum hydrodynamis of Lan-dau [13℄. The major di�erene is the anomalous terms.These terms represent the Lorentz shear fore. Theemergene of suh fores in hydrodynamis, lassialand quantum alike, is the major fous of this paper.In Se. 3, we start from the observation that theFQH states an be interpreted as the states of quan-tized Kirhho� vortex matter and then develop the hy-drodynamis of vortex matter in Se. 4. We summarizethe main results in Se. 5, and then give the details ofderivations in Ses. [6�9℄.Some results presented below were obtained in ol-laboration with Alexander Abanov. This paper is anextended version of Ref. [14℄.2. FOUNDATIONAL PRINCIPLES OFHYDRODYNAMICS OF THE FQH LIQUID2.1. Charaterization of frational quantumHall statesEletrons in a quantizing magneti �eld on�ned in2D heterostrutures in the regime dominated by theCoulomb interation form FQH states. The most ro-bust FQH states our at the �lling fration � = 1=3;1) For developments on this subjet see [8�12℄.

that are the Laughlin states. The FQH states form aquantum liquid. This liquid an be haraterized asfollows.� Flows are inompressible [15℄, and almost dissipa-tion-free [16; 17℄.� The spetrum of bulk exitations is gapped [2; 17℄.The gap is less than the ylotron energy, ~! > �� .Only edge states � exitations loalized on the bound-ary � are soft [18℄.� The Hall ondutane is frationally quan-tized [16℄.� Elementary exitations in the bulk of the �uid arevorties. Vorties arry frationally quantized negativeeletroni harge [15℄.More subtle features reently disussed in the literatureare as follows.� Edge exitations onsist of two branhes of non-linear solitons: subsoni solitons with a frational neg-ative eletroni harge and supersoni solitons with theunit eletroni harge [19℄.� Quantized double layers of the density at bound-aries and vorties [19℄.� The Lorentz shear stress and anomalous visosity(or odd visosity, or Hall visosity) [8�12℄.From the listed properties, we selet a set of the foun-dational priniples and attempt to obtain others asonsequenes. The set of basi priniples is remark-ably small. We only assume that eletrons in the FQHregime form a quantum �uid and that the �uid is in-ompressible and �ows possess a marosopi numberof equally oriented vorties.We refer to suh �ow as hiral �ow. Sine in aquantum �uid, vortiity is quantized, a unit volume ofthe �uid ontains the quantum of vortiity. We wantto demonstrate that the hiral �ow aptures all knownphysis of the FQHE.We start with a general disussion of sales of FQH(bulk) states.2.2. Sales, holomorphi states, andinompressibilityThere are two distint energy sales: the ylotronenergy ~! = e~B=mb, whih de�nes the distane be-tween Landau levels, and the gap in the bulk exitationspetrum �� . The former is determined by the bandeletroni mass mb and by the magneti �eld. The lat-ter is a harateristi of the Coulomb energy. Fromthe theoretial standpoint, the very existene of FQHstates assumes that the ylotron energy is larger than618



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Anomalous hydrodynamis of frational quantum Hall statesthe gap, �� � ~!. If this limit holds2), the �ows withan energy E exeeding the gap an still be omprisedof states on the lowest Landau level, �� � E � ~!.Suh motion does not depend on the band eletronimass mb.We onsider a small modulation of the eletronidensity �(r) and ignore the eletrostati interation ofa nonuniform harged �uid3). Suh a �ow has a mo-mentum �ux P (r) and propagates with a veloity v(r).We assume that at small modulations, the momentum�ux is equal to P = m��v, where m� is the inertia ofthe �ow. It seems natural to assume that the inertia isset by the sale provided by the gap, �� � ~2=m�`2.The mass m� exeeds that of a band eletron:m�=mb � ~!=�� > 1:Generally, waves propagating through the bulk ofthe FQH liquid are essentially nonlinear. However,stationary linear waves in the bulk are possible in thenonuniform eletri and magneti �elds, or in a urvedspae. The setor of stationary linear waves some timeis alled topologial.Wave funtions of states with the energy less thanthe the ylotron energy (the lowest Landau level) areholomorphi. It is ustomary to desribe the set ofstates on the lowest Landau level as the Bargmannspae [20℄. Coherent states of the Bargmann spae arelabeled by symmetri polynomials in the holomorphioordinates of partiles zi = xi + iyi and the holomor-phi momenta �zi = 12 (�xi � i�yi) :Let Q be suh a polynomial and Qy be the Hermitianonjugate polynomial, whih depends on antiholomor-phi oordinates �zi = xi� iyi and antiholomorphi mo-menta �yzi = �12(�Txi + i�Tyi):The symbol �T � is the transposition. Then in the nota-tion of the Bargmann spae, the �bra� and �ket� statesare hQj = Yi>j(�zi � �zj)�Qy exp � 12`2 Xi jzij2! ;QYi>j(zi � zj)� = jQi: (2)2) In experiments, the ylotron energy is only a few timeslarger than the gap.3) In FQH liquids, the Coulomb fores essentially blok prop-agating waves in the bulk. In this paper, we neglet Coulombfores in order to unmask laws of quantum hydrodynamis.

Flows within the �rst Landau level are inompressible.The term �inompressible �ow� is sometimes attributedto the gapped spetrum. Rather, the inompressibilityre�ets the holomorphi nature of FQH states. Thisis seen from the following argument. For simpliity,we onsider a oherent state haraterized by a poly-nomial Q that depends only on oordinates zi. Thephase of the wave funtion of suh a state di�ers fromthe phase of the ground state by the phase of the holo-morphi polynomial Im logQ. Sine the veloity is agradient of the phase, the phase is a hydrodynamipotential. The phase is harmoni everywhere exeptpoints where the wave funtion vanishes. Sine thewave funtion is single-valued, it vanishes as an inte-ger power of holomorphi oordinates. Therefore, theallowed singularities of the phase orrespond to quan-tized vorties. There are no soures, and hene thegradient of the phase is divergene-free,! !1: r � v = 0: (3)There are two immediate onsequenes of inompress-ibility. One is that the material derivative of the densityvanishes, Dt� � � ��t + v � r� � = 0: (4)The other is that �ows in homogeneous 2D inompres-sible liquids do not possess linear waves. Only availablebulk �ows are nonlinear �ows of vortiity. The �ow anbe viewed as a motion of a neutral gas of quasiholes andquasipartiles.In the next setion, we identify the FQH states withvorties in a quantum inompressible rotating �uid.3. KIRCHHOFF EQUATIONSWe start by realling the lassial Kirhho� equa-tions for rotating inompressible invisid Euler �owswith onstant density (see e. g., [21℄), and then proeedwith the quantization.3.1. Classial Kirhho� equations for aninompressible �uidIn two dimensions, an inompressible �uid with aonstant density is fully haraterized by its vortiity.The url of the Euler equation for the inompressible�uid with a onstant density,Dtu � (�t + u � r)u = �rp; (5)619



P. Wiegmann ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013yields a single (pseudo) salar equation for the vorti-ity: Dt(r� u) = 0: (6)In this form, the Euler equation has a simple geomet-rial meaning: the material derivative of the vortiityvanishes. Vortiity is transported along the divergene-free veloity �eld u.Helmholtz, and later Kirhho� realized that thereis a lass of solutions of vortiity equation (6) that on-sists of a �nite number of point-like vorties. In thisase, the omplex veloity of the �uid u = ux � iuy isthe meromorphi funtionu(z; t) = �i
�z + i NXi=1 �iz � zi(t) ; (7)where 
 is the angular veloity of the rotating �uid, Nis the number of vorties, and �i and zi(t) are irula-tions and positions of vorties.Substituting this �pole ansatz� into Euler equation(6) shows that the number of vorties N and the ir-ulations �i do not hange in time, while the movingpositions of vorties zi(t) obey the Kirhho� equations:_zi = �i
�zi + i NXi 6=j �jzi(t)� zj(t) : (8)The Kirhho� equations replae nonlinear partial dif-ferential equation (PDE) (6) by a dynamial system.They an be used for di�erent purposes. The equationsdesribe haoti motions of a �nite number of vortiesif N > 3. If N is large, Kirhho� equation an be usedto approximate virtually any �ow.3.2. Chiral �owThe �ows relevant for the FQHE are suh that alarge number of vorties largely ompensates rotation.We refer to suh �ows as the hiral �ow.Bearing the quantum ase in mind, we assume thatvorties have the same (minimal) irulation �i = �.Then the Kirhho� equations beomevi � _zi = �i
�zi + i NXi 6=j �zi(t)� zj(t) : (9)We want to study the vortex system in the limit ofa large number of vorties distributed with the meandensity ��: N !1: �� = 
�� : (10)

The hiral �ow is a very speial �ow in �uid mehan-is. We distinguish two types of motion there: the fastmotion of the �uid around vortex ores and the slowmotion of vorties. In this respet, vorties themselvesan be onsidered a (seondary) �uid. In the groundstate of the vortex �uid, vorties do not move, but the�uid does.Cirulation of vorties in units of the Plank on-stant has the dimension inverse to the mass unit. Weintrodue the dimensionless parameter� = ~m�� : (11)We show in what follows that the quantized hiral �owmodels the FQHE with a �lling fration �. We set� = ��1.3.3. Quantum Kirhho� equationsKirhho� himself wrote Eqs. (9) in the Hamiltonianform, identifying the holomorphi and antiholomorphioordinates of vorties as anonial variables. In thease of the rotating �uid the anonial variables arem�
�zi and zi. The Hamiltonian of the hiral vortexsystem is given byH = m�
0�Xi [
jzij2 � �Xj 6=i log jzi � zj j21A ;(m�
)f�zi; zjgP:B: = �iÆij : (12)We emphasize that the Kirhho� Hamiltonian is onlya part of the energy of the �uid. This part of energyis transported by vorties. Another part of the energyis related to the vorties at rest. It diverges at vortexores. This part is omitted in Eq. (12).The parameterm� introdued into the Hamiltonianand Poisson brakets sets the sale of energy. It is aphenomenologial parameter that does not appear inthe Kirhho� equations.The Kirhho� vortex system is readily anoniallyquantized. We replae the Poisson brakets by the om-mutators i~f�zi; zjgP:B: ! [�zi; zj ℄ = 2`2Æij : (13)The parameter 2`2 = ~=
m� has the dimension of area.It is a phenomenologial parameter arising in quanti-zation. We measure it in units of area per partile2`2 = �=���. The dimensionless number � in (11) is asemilassial parameter. We see in what follows that� is identi�ed with the �lling fration and ` with themagneti length.620



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Anomalous hydrodynamis of frational quantum Hall statesThe next step is the hoie of states. We assumethat states are holomorphi polynomials in zi. Thenthe operators �zi are anonial momenta:�zi = 2`2�zi : (14)Finally, we have to speify the inner produt. We im-pose the hiral ondition: the operators �zi and zi areHermitian onjugate, �zi = zyi : (15)This ondition ombined with representation (14) iden-ti�es the spae of states with the Bargmann spae [20℄(see also [2℄). This is the Hilbert spae of analyti poly-nomials  (z1; : : : ; zN) with the inner produth 0j i = Z d� � 0 ;d� =Yi exp��jzij22`2 � d2zi: (16)With Eqs. (9) and (14), we write the quantum veloityoperators of vorties asm�vi = �2i~�zi + i~Xi 6=j �zi � zj ;_zi = vi; � = ��1: (17)We would like to emphasize a subtlety in quantizing ve-loities. Veloities are not the linear operators. Theyat on the phase of wave funtions rather than on thewave funtion itself,vi exp (iArg ) = j j�10��i~�zi + i~Xj 6=i �zi � zj1A :The linear operators are the momentapi = �i~0��zi �Xj 6=i �zi � zj1A : (18)Equations (9)�(18) are the quantum hiral Kirhho�equations. They an be generalized to a sphere or atorus without di�ulty.4. QUANTUM CHIRAL KIRCHHOFFEQUATIONS AND THE FQHEThe quantum hiral Kirhho� equations are readilyidenti�ed with the FQHE.The ground state of the vortex liquid is the statewhere the vorties are at rest. We repeat that this

state is a highly exited state of the �uid. It is a stateof the �uid at a very high angular moment. When vor-ties are in the ground state, the �uid moves with avery high energy.The ground state is an analyti funtion whosephase is annihilated by all momenta operators. Theommon solution of the set of �rst-order PDEspi 0 = 0in the lass of holomorphi polynomials is the Laughlinwave funtion in the Bargmann representation 0(z1; : : : ; zN ) =Yi>j(zi � zj)� ; � = 1=�: (19)The wave funtion is single-valued if � is a integer, an-tisymmetri if � is an odd integer, symmetri if � is aneven integer.The orrespondene is ompleted when we assignthe eletroni harge to vorties and identify the angu-lar veloity with the e�etive ylotron frequeny
 = eBm� = mbm�!:The hydrodynami interpretation of the FQHE is sub-tly di�erent from Laughlin's original interpretation.There, the oordinates entering the Laughlin wavefuntion were interpreted as bare band eletrons. The�uid itself is absent in the Laughlin piture. The hy-drodynami interpretation suggests that eletrons (andtheir harge) are loalized on topologial exitations(vorties) of a neutral inompressible �uid. The neu-tral �uid is real. It serves as the agent of the interationbetween eletrons.In the hydrodynami interpretation, a quasihole [15℄is a hole in the uniform bakground of vorties. It orre-sponds to state (2) haraterized by a polynomial withsimple zeros at a given point z,Q(z1; : : : ; zN) = NYi (z � zi): (20)The momentum of this state ispijQi = i� �zi � z jQi:This shows that the Magnus fore between vorties andthe quasihole is the opposite to the fration � of theMagnus fores between vorties. Hene, in the hydro-dynami interpretation, the quasihole appears as a vor-tex with the frational negative irulation ��.621



P. Wiegmann ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013Identifying vorties and eletri harges, we mustassume that the external �elds (the potential well, gra-dients of temperature, et.) are oupled to the vorties,not to the �uid.We examine how vorties move in an external po-tential well U(r). The potential adds the termPi U(ri)to the Hamiltonian, where ri are oordinates of vor-ties, and adds the fore�i[U; �zi℄ = i2`2�ziUto the Kirhho� equationspi = �i~�zi + i~Xi 6=j �zi � zj + im�`2eE(zi); (21)where eE = �rU is the eletri �eld.Frationally quantized Hall ondutane followsfrom the Kirhho� equations easily. We assume thatthe eletri �eld is uniform. Then the enter of massof the �uid stays at the origin, Pi �zi = 0. Summing(21) over all vorties, we obtain the Hall urrent perpartile N�1Xi evi = ie2`2Eand the urrent per volume ie2`2��E. We onlude thatthe Hall ondutane equals to the fration e2=h:�xy = � e2h : (22)Our next step is to develop the hydrodynamis of asystem of quantum vorties desribed by the Kirhho�equations. To the best of our knowledge, this has notbeen done even for the lassial �uids. We start by thesummary of main results. The derivation and detailsthen follow.5. SUMMARY OF THE MAIN RESULTS ANDDISCUSSIONQuantum hydrodynamis of a hiral vortex �owonsists of three sets of data: the operator ontent andtheir algebra, the hiral onstitueny relation betweenoperators, and the dynami equation. We summarizethem below, but �rst we omment on the notation.5.1. NotationWe use holomorphi oordinatesz = x+ iy; � = 12(rx � iry):

We use the roman sript for omplex vetors. For ex-ample, the veloity of the �uidu = (ux; uy); u = ux � iuy:We denote the veloity of the vortex �uidv = vx � ivy;the momentum �ux for the vortex �uidP = Px � iPy;and holomorphi omponents of symmetri �ux ten-sors �ab:� = �xx ��yy � 2i�xy; �z�z = �xx +�yy:We emphasize the di�erene between Hermitianonjugation vy and omplex onjugation �v, but stillmay use the lassial notation for the divergene andthe url of the veloity. In partiular, the divergeneand the url abbreviated as r � v = 0 atually meansr � v = ��v + �vy; r� v = i(��v � �vy):Similarly, the term v�r� in (4) is understood as vy ���++ ��� � v.The divergene-free veloity of an inompressibleliquid is expressed in terms of the stream funtion op-erator v = �2i�	: (23)We de�ne the momentum �ux of the vortex �ow asP = m��v: (24)The vortex �ux operators annihilate the ground state:Pj0i = h0jPy = 0: (25)Throughout the paper we set m� = 1, measuring themomentum per partile in units of veloity, or equiva-lently, treating the partile density as a mass density.We emphasize that m� is not related to the band ele-troni mass.5.2. Commutation relationCommutation relations of the vortex �ux opera-tors di�er from the anonial ommutation relations ofquantum hydrodynamis of Landau [13℄ by the anoma-lous terms~�1[P(r);Py(r0)℄ = �12(P�r)Æ(r � r0) ++ ~2� �2��2Æ(r � r0) + 14r [� � rÆ(r � r0)℄�| {z }anomalous term : (26)622



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Anomalous hydrodynamis of frational quantum Hall statesThe ommutation relation between the �ux and thedensity is anonial:[P(r); �(r0)℄ = �i~��Æ(r � r0): (27)The vortex �ux operator an be onveniently repre-sented in terms of the anonial �elds u and uy�u(r); uy(r0)� = �~2� Æ(r � r0);[u(r); �(r0)℄ = �i~�Æ(r � r0): (28)We introdue the axillary operatorJ = �u; (29)whih we all the vortiity �ux. The hydrodynami in-terpretation of this operator is to be given below. Ithas a anonial ommutation relation with itself andwith the density, but does not annihilate the vauum.The vortex �ux P does.We show that the vortex �ux and the vortiity �uxdi�er by the anomalous termP = J + i ~2� ��: (30)The anomalous term adds to the diamagneti energyof the �ow in the bakground eletromagneti �eld,e Z (A � P ) d2r = e Z (A � J)d2r + ~4� e Z B �d2r;e�etively reduing the orbital moment of partiles.Similarly, the anomalous term ontributes to the an-gular momentum of the �ow asN�1 Z (r � P ) d2r = N�1 Z (r � J)d2r + ~4� :The meaning of the anomalous term an be seen di-retly from the monodromy of FQH states (2). Themonodromy with respet to a losed path is the phaseaquired by the wave funtion when a partile is movedalong that path. That is a irulation of the parti-le. It equals to the number of zeros of the wave fun-tion with respet to eah oordinate. This number is(n� 1)=�, where n is the number of partiles enlosedby the path. It is less by ��1 from the number of mag-neti �ux quanta piering the system, simply beausethe vortex does not interfere with itself. The anomalousterm aounts for that di�erene. The anomalous terman be regarded as a loal version of the global relationbetween the monodromy of states and the number ofpartiles. The di�erene, often alled the shift 2�s, hasbeen emphasized in Ref. [22℄. For the Laughlin states,�2s = ��1.

5.3. Anomalous term in the hiral onstituenyrelationUnlike in a regular �uid mehanis, where the den-sity � and veloity v are independent �elds, they arerelated by the hiral onstitueny relation in the hiral�ow. This means that the set of states on the lowestLandau level is restrited suh that the veloity opera-tor ats as a ertain funtional of the density operator.In a very rough approximation, the hiral relationstates that the vortiity per partile is the inverse �ll-ing fator in units of the Plank onstant, as suggestedin [6℄. This view refers to a popular piture of the FQHstates as eletroni states with an additional amountof �ux attahed to eah partile. The atual relationbetween the vortiity and the density is more ompli-ated. It involves the anomalous termr� v = h� 26664�� ��+ 14� �12 � ��� log �| {z }anomalous term 37775 ; (31)where �� = �(2�`2)�1 = � ehBis the mean density of eletrons and h = 2�~.An aurate reading of this relation is: the ationof the operators in the right-hand side and the left-hand side of (31) on the Bargmann �bra� state hQj areequal. They are not equal if the �bra� state is not inthe Bargmann state.In partiular, a quasihole, a soure for vorti-ity loalized at r0, orresponds to the polynomialQ = Qi(z0 � zi). It deforms the density outside theore r = r0 aording to the equation4)��Æ(r � r0) = �� ��+ 14� �12 � ��� log �:An equivalent form of the hiral relation onnets thestream funtion and the density,va = ��abrb	; 	 = ~2� �'��12 � �� log �� ; (32)where the �regular part� of the stream funtion ' is asolution of the Poisson equation�' = �4�(�� ��): (33)4) Inidentally, a similar equation exists inside the vortexore. There, the quantum orretions hange the last term to�(1=4�)�� log �. Aidentally, a similar equation followed fromthe e�etive ation in Refs. [3; 4℄ erroneously featuring the term�(1=4�)�� log � inside and outside the vortex.623



P. Wiegmann ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013We omment that the hiral relation readily extendsto the ase of an inhomogeneous magneti �eld. Inthis ase, the mean density �� = �(e=h)B in (31) and(33) is a funtion of oordinates. There are no otherhanges. In partiular, in the ground state, where theveloity vanishes, the density in a nonuniform magneti�eld obeys the �Liouville equation with a bakground�.That is Eq. (31) with zero in the left-hand side. In theleading order in gradients, the ground-state density a-quires the universal orretion� = � ehB � 14� �12 � ��� logB + : : : (34)The integrated form of (31) is the sum rule onnetingthe angular momentum (per partile in units of ~)L = (~N)�1 Z (r�P ) d2rto the gyration per partileN�1G = Z r2(�� ��) d2r:It is given by `2�L��1� � 2�� = G: (35)The ground-state version of this formula is the familiarsum rule for the Laughlin wave funtion:�h0jXi jzij2j0i = `2N(N � 1 + 2�):. 5.4. Anomalous term in the Euler equation:Lorentz shear stressConstitueny relation (24), hiral ondition (31),ontinuity equation (4), and the operator algebra in(26) and (27) onstitute the full set of hydrodynamisequations for the hiral inompressible quantum �uid.The hiral ondition helps to write the ontinuityequation (4) as a nonlinear equation of the densityalone:�t�� ~2�r'�r� = 0; �' = �4�(�� ��): (36)The equation is idential to the Euler equation forthe vortiity in an inompressible �uid. Naturally, theanomalous term disappears from this equation. It ap-pears in the boundary onditions, in the response toexternal �elds, and also determines fores ating in the�uid.

Fores are rendered by the momentum �ux tensor�ab entering the Euler equation, written in the form ofthe onservation law�tPa +r��ab = �Fa: (37)Here, F = eE � eB � vis the Lorentz fore.The anomalous visous stress emerges in the mo-mentum stress tensor. A general �uid momentum �uxtensor of inompressible �uid onsists of the kinetipart, the stress, and the traeless visous stress �0ab. Inthe inompressible �uid the stress is expeted throughthe veloity. We write�ab = �ab � �0ab; (38)where �ab aounts for the kineti part and the stress.At the �xed density �ab is symmetri with respet toa hange of the diretion of the veloity v ! �v. Thevisous term is linear in gradients of the veloity. Ithanges the sign under this transformation. With theexeption of the diamagneti term, the visous termhas a lesser degree of veloity among terms of the �uxtensor. This is the only term enters the linear responsetheory.Our �uid is dissipation-free. Therefore, the anoma-lous visous stress produes no work. This is possible ifthe visous stress represents fores ating normally toa shear. Suh stress an only be a traeless pseudoten-sor. It hanges sign under the spatial re�etion. In thehiral �ow, the anomalous visous stress is given by�0ab = � ~2� ��rar� � 12Æab��	: (39)There is a notieable di�erene from the dissipativeshear visous stress. That stress is given by the sameformula but with the stream funtion replaed by thehydrodynami potential.Components of the anomalous visous stress tensorare �0xx = ��0yy = � ~4� �(rxvy +ryvx);�0xy = �0yx = ~4� �(rxvx �ryvy): (40)The divergeny of the Lorentz shear stress is theLorentz shear forerb�0ab = ~4� �ra(r� v)624



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Anomalous hydrodynamis of frational quantum Hall statesexerted by the �ow on the volume element of the liq-uid. It is proportional to the gradient of the vortiity.A notable feature of the anomalous stress is that thekineti oe�ient 1=4� (in units of ~) is universal andhas a geometri origin. The anomalous onservativevisosity is referred to as the odd visosity, or Hall vis-osity. It was introdued in Ref. [8℄ for the integer Halle�et as a linear response to a shear. Its notion hasbeen extended to the FQHE in [9; 10℄ (see [8�12℄ forinomplete set of referenes). In this paper, we showhow the anomalous visosity appears in the nonlinearhydrodynamis of the hiral �ow.Anomalous term (39) represents the fore atingnormally to the shear (in ontrast, the shear visousfore ats in the diretion parallel and opposite to theshear). The stress is also referred as the Lorentz stress,and the fore is referred as the Lorentz shear fore [9℄.The emergene of the Lorentz shear stress an be in-terpreted in terms of semilassial motion of eletrons.The motion of eletrons onsists in the fast motionalong small orbits and the slow motion of orbits. Ashear �ow strains orbits, elongating them normally tothe shear, boundaries, and vorties. The elongationyields an additional Lorentz shear stress.5.5. Topologial setorThe topologial setor onsists of �ows driven byslow long-wave external �elds, suh as the urvature ofspae, a nonuniform eletri and magneti �elds, et.,whih do not produe exitations over the gap. TheHall urrent is the most familiar example.The topologial setor an be singled out in thelimit m� ! 1. In this limit, the momentum �ux ten-sor redues to the anomalous visous stress modi�edby quantum orretions. Then the dynamis reduesto the balane between the Lorentz shear fore and theLorentz fore.In the linear approximation, the stationary Eulerequation is� 14� � 12�r(r� v) = eEa � eB � v: (41)Solution of this equation in the leading gradient ap-proximation yields the universal orretion to the Hallondutane [11℄:�xy(k)�xy = 1 +� 14� � 12� (k`)2; �xy = �e2h : (42)The Hall urrent inreases with the wave vetor. Thefator 1=2 in these equations represents the diamag-neti energy. This energy does not appear expliitly in

the momentum �ux tensor in (38). Rather, it is hiddenin the normal ordering of the kineti part of the vortex�ux tensor. If in addition, partiles prosses an orbitalmoment M , whih is intrinsially related to the band,the term (m�=mb)M is added to the fator �1=2 inboth equations. Apart from this e�et, the orretionto the Hall ondutane is universal.5.6. Trae and mixed anomalyThe meaning of the Lorentz shear stress is best il-lustrated when the �uid is plaed into a urved spae.In this ase, the energy reeives an additionH 0 = �12 Z gab�0abpgd2�from the visous tensor, where gab is the spatial met-ri. At a onstant density, this term has the suggestiveform H 0 = ~4� ��Z R	pgd2�;where R is the spatial urvature. This addition yieldsthe trae anomaly: the �ux tensor aquires a trae pro-portional to the urvature:��0aa = �� ~216��R: (43)It is traeless if the spae is �at.The trae anomaly yields a uniform fore ating to-ward the region with the aess urvature. This foresqueeze partiles toward the urved regions (mixedanomaly) Æ� = 18�Rpg: (44)Aumulation of harges at urved parts of spae wassuggested in [22℄ and further disussed in [11℄.These formulas represent the e�et of the anoma-lous terms valid in the semilassial approximationat large ��1. They experiene quantum orretions,whih e�etively replae ��1 in the formulas with��1 � 2.5.7. Dispersion of density modulationThe anomalous term in the ommutation relations(26) yields a universal orretion to the kineti energyof small density modulationsjki =Xi eikri j0i12 ÆÝÒÔ, âûï. 3 (9) 625



P. Wiegmann ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013(see footnote3) on page 3) of the form��(k) = 1m��2 hkjP(r)Py(r)jki: (45)We will show that at small wave vetors the dispersionis negative��(k) = ��(0)�1� 12 � 12� � 1� (k`)2� ;��(0) = ~22m�`2 : (46)Suh behavior signals the magneto-roton minimum dis-ussed in Ref. [2℄, similar to the roton minimum knownin super�uid helium. The dispersion of the exitationhas been measured in the reent work [23℄. There theexitation spetrum has been probed through the res-onant absorption in the regime where surfae aoustiwaves propagate aross the sample.5.8. Boundary double layer and dispersion ofedge modesA striking manifestation of the anomalous terms isseen on the boundary. The Lorentz shear fore squeezes�ow lines with di�erent veloities. As a result theharge there is an aumulation of density on the adge.The density at the edge r = R forms the double layer�(r) = �+ 1� �4� rnÆ(r �R): (47)Here the derivative is taken in the diretion normal tothe boundary.A onsequene of the double layer is the orretionto the spetrum of edge modes!(k) = 0k + 12�� �1� � 1� sign(k)(k`)2;0 = EB : (48)These results where obtained in [14℄.In the rest of the paper, we obtain these (and someother) properties starting from the quantized hiral�uid. It turns out that many alulations are merelyidential in the lassial and quantum ases. To sim-plify the matter, we �rst derive the hydrodynamis ofthe vortex �uid in the lassial ase, and then onsiderthe quantum ase.6. RELATION BETWEEN THE VORTEX FLOWVELOCITY AND THE FLUID VELOCITYEulerian hydrodynamis of the vortex �ow desribesthe �ow in terms of the density and the veloity �eld

v(r) of vorties. We onstrut the veloity �eld startingfrom veloities of individual vorties. The alulationsare merely idential in the lassial and quantum ases.We proeed with the lassial alulations.We denote density of vorties as�(r) =Xi Æ(r � ri) = ��+ 12��(r� u): (49)The stream funtion of the �uid is the potential 'in (33): u = �2i��'; �' = �4�(�� ��): (50)The objet of interest is the vortex �uxP(r) =Xi Æ(r � ri)vi: (51)Having the �ux, we de�ne the veloity �eld of the vor-tex �uid as P = �v:We want to ompute the veloity ofthe vortex �ow v(r) and to ompare it with the veloityof the original �uid u(r). Obviously, they are di�erent.The former desribes the slow motion of vorties, andthe latter, the fast motion of the �uid around vortiesand the drift together with the vorties. Nevertheless,there is a simple relation between the two.We ompute the vortex �ux P and ompare it withthe vortiity �ux J = �u; where the veloity of the�uid u is given by (7). Using (9) and the ��-formula�Æ = ��(1=z), we writeP(r) =Xi Æ(r � ri)24�i
�zi + i NXi;i 6=j �zi � zj 35 == �i
�z�(r) + i�� �� NXi 6=j 1z � zi 1zi � zj : (52)Then use the identity2Xi 6=j 1z�zi 1zi�zj =  Xi 1z�zi!2�Xi � 1z�zi�2 ==  Xi 1z � zi!2 + �Xi 1z � zi (53)and apply ��:�v = �i
�z�+ iXi Æ(r � ri)Xj �z � zj ++ i�2 �X Æ(r � ri): (54)626



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Anomalous hydrodynamis of frational quantum Hall statesWe obtain the relationsP = �u + �2 i��; v = u + �2 ��1i��: (55)The di�erene between the veloity of the vortex �uidand the veloity of the �uid has a simple meaning. Theveloity of the �uid u diverges at the ore of an isolatedvortex (as an be seen in (7)). But the veloities ofvorties are �nite. The anomalous term removes thatsingularity.The anomalous term hanges only the transversepart of the veloity, and therefore the �ow of vortiesis inompressible like the �uid itself, rv = ru = 0.Also, the anomalous term does not hange the diver-geny of the �ux: rP = vr� = r(�u) = ur�.7. CLASSICAL HYDRODYNAMICS OF THEVORTEX MATTERGlobal symmetries of spae and time, suh as trans-lation and rotation, yield familiar onservation laws ofthe �ux, energy, and angular momentum. In addition,the 2D inompressible �ows with a onstant densitypossess onservation laws that are not diretly relatedto global symmetries. One onservation law is familiar.This is the onservation of vortiity. With the helpof (55), the Euler equation in form (6) an be writtenas the ontinuity equation for the mass density of thevortex �uid: Dt� � � ��t + v � r� � = 0: (56)In addition to the onservation of vortiity, the vorti-ity �ux J and the vortex �ux P are also onserved:J = �u; P = �v: (57)The onservation of vortiity and vortex �ux is obvi-ous in the Kirhho� piture. This is the onservationof mass and mass �ux of the vortex system. In on-tinuum �uid mehanis, onservation of the vortiity�ux and, onsequently, of the vortex �ux are, perhaps,less obvious. Nevertheless, they easily follow from theobservation that the vortiity �ux is the divergene ofa tensor:Ja = �ua + 12���ab�tb; tb = ubu � 12Æbu2: (58)The tensor is symmetri and traeless.We write the onservation law for the the vortiity�ux �tJa +rb�ab = �e (B � u)a (59)

and determine the vortiity �ux tensor �b. Theright-hand side of this equation is the Lorentz fore.The vortiity �ux tensor an be loally and expli-itly expressed through the velosity and the pressure.Expression is umbersome and we do not need in forthe purpose of this paper. In the leadind approxima-tion in the density gradients the seond term in (56)ould be dropped. Then the vortiity �ux tensor isidential to the �ux tensor of the inompressible �uidwith the onstant density�ab � �uaub + pÆab:The next step is to determine the vortex �ux tensor�ab. It enters into the onservation law for the vortex�ux �tPa +rb�ab = �e (B � v)a: (60)We see it as a transformation of the vortiity �ux tensorindued by the transformation of the veloity (55)u! v; J ! P; � ! �: (61)Under the shift (55) we have_Pa = _Ja + �4 �abrb _�:With the help of the ontinuity equation (56), we ob-tain the transformation�ab ! �ab = �ab + �4 [�ar(�vb) + �br(�va)℄ :In the leading approximation in gradients we replaethe density in the last equation by its mean �. Weobserve that the stress tensor aquires the anomalousvisous term�ab � �ab � �0ab;�0ab = ��4 � (�arvb + �brav) : (62)This is the Lorentz shear stress [14℄.We see that the Lorentz shear stress naturally ap-pears in the vortex liquid. Chiral �ows onsists of a fastmotion along small orbits around vortex ores and aslow drift of enters of these orbits. A shear �ow strainsorbits elongating them normal to the shear, boundariesand vorties. Elongation yields to the Lorentz shearstress.8. QUANTUM HYDRODYNAMICS OF THEVORTEX MATTERWe start by quantizing the inompressible hiral 2D�uid and then proeed with the quantization of the vor-tex �ow.627 12*



P. Wiegmann ÆÝÒÔ, òîì 144, âûï. 3 (9), 20138.1. Quantum hydrodynamis ofinompressible liquidThe anonial �elds in hydrodynamis are densityand veloity. In the hiral �uid with a onstant �uiddensity, the anonial hydrodynami variables are theveloity u and the vortiity �, or rather, holomor-phi and antiholomorphi omponents of the veloityu and uy.We note a subtlety in quantizing hydrodynamis inthe Bargmann spae. The density in (49) is real andtherefore onsists of holomorphi and antiholomorphivariables. We �deompose� it into the holomorphi andantiholomorphi parts using the ��-formula�Æ(r) = ���1z� = � �1�z� (63)as�(r) = �++�� = 12� ��Xi 1z�zi+ 12��Xi 1�z��zi : (64)In the Bargmann spae, the ation of the holomorphioperator 2�zi on the density is not just a di�erentia-tion over oordinates �xi � i�yi , as it may seem fromthe notation. The operator ats only on the holomor-phi part �+. Hene, 2�zi� = ��Æ(r � ri) is half theregular derivative. We already enountered this sub-tlety in Se. 3.3 in disussing the ation of veloity inthe ��rst quantized� formalism.With this nuane, the quantization of the �uid ve-loity amounts to the replaement of the term �i
�z in(7) with ���, where �� = �i~ ÆÆ�is the anonial momentum of the density. We alsoreplae the sum in (7) with the integral,Xi �z � zi ! � Z �(�)z � � d2� == �i~� �('+ ���jzj2): (65)We obtain the veloity of the quantum hiral �uidu = � ��� � i~� ('+ ���jzj2)� : (66)This formula yields the anonial ommutation relationbetween vortiity and veloity and between the veloityomponents: [u(r); �(r0)℄ = �i~�Æ(r � r0);r� u = i(��u� �uy) = h� (�� ��): (67)

The ommutation relations between veloity ompo-nents are the anonial Heisenberg algebra, as is knownto be the ase in a quantizing magneti �eld:[u(r); uy(r0)℄ = h2�� Æ(r � r0); [u(r); u(r0)℄ = 0: (68)The algebra is ompleted by the equal-point om-mutator [u(r); �(r)℄ = �i~��(r): (69)The remaining element of the quantization isthe hiral ondition. The holomorphi deriva-tive �zi ating to the left on the antiholomorphi�bra� states of Bargmann spae (2) di�erentiatesonly the fator exp ��Pi jzij2=2`2� of the mea-sure, hQj �2`2�Tzi + �zi� = 0: Similarly, the operator��� ating on the left ats only on the fatorexp ��(1=2`2) R �d2r�:hQj���� + i ~̀2 �z� = 0: (70)Therefore, when the holomorphi veloity operator atson the antiholomorphi �bra� state, the �rst two termsin (66) anel. We return to the lassial formula (50):hQju + i~� �'jQ0i = 0: (71)We emphasize that this relation does not hold unlessthe operator is sandwihed between antiholomorphiand holomorphi states.The hiral ondition projets all operators onto thelowest Landau level. The projeted veloity is mani-festly divergene-free. Projetion onto the lowest Lan-dau level is summarized by the ondition ��� = �4���.Heisenberg algebra of veloities (68), ontinuityequation for the vortiity Dt� = 0 (56), and hiralondition (71) summarize the quantization of hydro-dynamis of an inompressible hiral �ow.Finally, we are ready to proeed with quantizationof the vortex �uid.8.2. Quantization of the vortex �uidThe lassial formula for the �ux, Eq. (51), must betreated as an ordered produt of operators,P(r) =Xi Æ(r�ri)pi =Xi (pi+i~�zi)Æ(r�ri); (72)where the momenta pi are given by (21). The rela-tion between the veloity in (55) holds on the quantumlevel: P = �u + i ~2� ��: (73)628



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Anomalous hydrodynamis of frational quantum Hall statesThe hiral ondition is obtained by plaing u to theleft. Using (69), or equivalently (72), we pull u to theleft and redue it to its lassial value (50). This yieldsthe hiral onditions in Se. 5.3:P = �i~� ��'+ i~� 12� � 1���: (74)The ommutation relations for �ux omponents pre-sented in Se. 5.2, Eqs. (26) and (27), now follow.The omputation of the quantum vortex �ux ten-sor is not muh di�erent from the lassial version inSe. 7. All the formulas remain the same if the normalordering of operators is respeted. But when the velo-ity in all terms of the vortex �ux is pulled to the left,the oe�ient in front of the Lorentz fore aquires thequantum orretion 1=2� ! 1=2� � 1.9. APPLICATIONS9.1. Struture fatorAnomalous ommutation relations allow omputingthe struture fator. This issk = N�1h0j�k��kj0i;where �k =PNi exp(ikri) is the Fourier mode of a smalldensity modulation with the wave vetor k.The hiral ondition onnets the density and �uxmodes. We evaluate it in the linear approximation indensity modes. Using k2'k = 4��k in (74), we writethe Fourier mode of the �ux in terms of the densitymodes:Pk= ~k(`k)2 �1� 12 � 12� � 1� (k`)2� �k;k = kx � iky: (75)On the other hand, ommutation relation (27) yields[Pk; ��k℄= 12N~k: (76)Sine Pk annihilates the ground state,h0j[Pk; ��k℄j0i = h0jPk��kj0i:We obtain the relationh0jPk��kj0i = ~k(`k)2 �1� 12 � 12� � 1� (k`)2��� h0j�k��kj0i = 12~kN: (77)

The known result [2℄ for the spetral fator follows:sk = h0j�k��kj0i �� 12(k`)2 �1 + 12 � 12� � 1� (k`)2�+ : : : (78)We see that the anomalous term aounts for the uni-versalO(k4) in the struture fator. The spetral fatoris involved in a number of important physial objets.A few are disussed below.9.2. Variational exitation spetrumIn this setion we evaluate the variational energy ofwaves. That is the energy per partile of a state withthe density modulation with the wave vetor k:�(k) = 1m���2 h0jPk Pkyj0i(in this subsetion, we restore the inertia m�). Com-mutation relation (26) prompts the relation betweenthe kineti energy of small density modulations andthe struture fator. We take the vauum expetationvalue of the anomalous ommutation relations (26) andexpress it through the Fourier modes. The right-handside beomes h0jPk Pkyj0i. Computing the expetationvalue of the term �2 in the right-hand side of (26), weuse the quantum version of relation (49),� = ��+ i �h(��u� �uy);and pull the holomorphi (antiholomorphi) veloityomponent to the left (right) with the help of (69) andapply the hiral ondition. We obtain�2 = ��2 + �4���:This term (the quantum orretion) e�etively shiftsthe oe�ient in front of the last term of ommutationrelation (69). We obtain�(k) = �(0)�1� 12 � 12� � 1� (k`)2� ;�(0) = ~22m�`2 : (79)The omparison with (78) yields a variational Feyn-man�Bijl formula [7℄ for the exitation spetrum629



P. Wiegmann ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013�(k) = ~2k22m�sk : (80)Of ourse, all these formulas make sense in the leadingorder in (k`)2.We observe that the exitation spetrum is gappedand has a negative dispersion. The energy starts toinrease at larger (k`)2. It osillates at intermediatewavelengths. Suh behavior signals the magneto-rotonminimum, similar to the roton minimum known in su-per�uid helium, as it has been suggested in Ref. [2℄.The dispersion of the exitation was reently measuredin [23℄. There, the exitation spetrum was probedthrough the resonant absorption in the regime wheresurfae aousti waves propagate aross the sample.To avoid possible onfusion, we emphasize that weevaluated the kineti energy over the states jki ==PNi exp(ikri)j0i: These states are di�erent from the�projeted waves� in Ref. [2℄. Projeted plane wavesare reated by the normal-ordered wave operatorXi exp(�ik`2�zi) exp��i�k2zi� j0i:Operators expanded in that basis are a separate inter-esting question. We will address it elsewhere. Here, weomment that the aousti waves used in the experi-ment in [23℄ are argued to be projeted plane waves.Rather, they are regular waves jki =PNi exp(ikri)j0i.9.3. Hall ondutane in a nonuniformbakgroundThe formulas in the previous setion are readilyadapted to study transport in the topologial setor,e. g., in a nonuniform eletri �eld.An eletri �eld ats only on vorties as the Lorentzfore in (21). We therefore add it to the onservationlaw for the vortex �ux:�tPa +rb�ab = � �eE � eB � v�a : (81)In the topologial setor (m� !1), the �ow is steady,and the anomalous visous tensor is the only term ofthe �ux tensor that survives in the limit:�rb�0ab = ��eE � eB � v�a : (82)Pulling the veloity to the left, in the linear approxi-mation, we obtain Eq. (41) in Se. 5.5. That equationyields a universal orretion to Hall ondutane (42).
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