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EQUILIBRATION OF A ONE-DIMENSIONAL QUANTUM LIQUIDK. A. Matveev *Materials S
ien
e Division, Argonne National LaboratoryArgonne, Illinois 60439, USARe
eived April 9, 2013Dedi
ated to the memory of Professor Anatoly LarkinWe review some of the re
ent results on equilibration of one-dimensional quantum liquids. The low-energyproperties of these systems are des
ribed by the Luttinger liquid theory, in whi
h the ex
itations are bosoni
quasiparti
les. At low temperatures, the relaxation of the gas of ex
itations toward full equilibrium is exponen-tially slow. In ele
troni
 Luttinger liquids, these relaxation pro
esses involve ba
ks
attering of ele
trons andgive rise to interesting 
orre
tions to the transport properties of one-dimensional 
ondu
tors. We fo
us on thephenomenologi
al theory of the equilibration of a quantum liquid and obtain an expression for the relaxationrate in terms of the ex
itation spe
trum.DOI: 10.7868/S00444510130901131. INTRODUCTIONThe low-energy properties of one-dimensional quan-tum systems are 
ommonly des
ribed in the frame-work of the so-
alled Tomonaga�Luttinger liquid [1�9℄.This des
ription applies to systems of either bosons orfermions, but regardless of the statisti
s of the 
on-stituent parti
les, the ex
itations of the Luttinger liquidare bosons with a linear spe
trum. The Hamiltonian ofa Luttinger liquid is given byH =Xq vjqjbyqbq + �~2L �vN (N �N0)2 + vJJ2� ; (1)where bq is the annihilation operator of a bosoni
 ex-
itation with momentum q propagating with velo
-ity v [8℄. Hamiltonian (1) assumes that the systemhas a �nite size L and periodi
 boundary 
onditionsare imposed. Apart from the o

upation numbers ofbosoni
 states, the energy of the system depends ontwo integer numbers, N and J . For fermioni
 Lut-tinger liquids, these numbers 
an be interpreted interms of the numbers of right- and left-moving par-ti
les as N = NR + NL and J = NR � NL. Theparameters vN and vJ have the dimension of velo
ityand depend on the intera
tions between the parti
les;*E-mail: matveev�anl.gov

N0 is some referen
e number of parti
les in the sys-tem. The Luttinger liquid theory des
ribed by Hamil-tonian (1) has been su

essful in predi
ting a numberof interesting phenomena, su
h as the renormalizationof impurity s
attering in intera
ting one-dimensionalele
tron systems [10; 11℄, subsequently observed in ex-periments [12�15℄.An interesting feature of the model in (1) is the
omplete absen
e of 
oupling between the bosons. Asa result, the lifetimes of bosoni
 ex
itations are in�niteand the system does not relax toward thermal equilib-rium. It is important to keep in mind, however, thatEq. (1) is the exa
t Hamiltonian of the system onlyfor the so-
alled Luttinger model [2℄, where the spe
-trum of the fermions 
onsists of two linear bran
hes�p = �vF p. In a generi
 situation, this is an approxi-mation appli
able only in the vi
inity of the two Fermipoints, and hen
e the Luttinger theory (1) applies onlyat low energies. In other words, Eq. (1) represents a�xed-point Hamiltonian in the renormalization groupsense, whi
h should, in prin
iple, be amended by addi-tional 
ontributions des
ribing various irrelevant per-turbations. The latter are the operators of third andhigher degrees in bq and byq, whi
h result in s
atteringof bosoni
 ex
itations. They adequately a

ount forthe 
urvature of the spe
trum near the Fermi points,whi
h gives rise to a multitude of interesting phenom-ena studied in the last few years (see [16℄ for a re
entreview).585



K. A. Matveev ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013Another important aspe
t of the Luttinger modelis that the original fermions are 
lassi�ed as belong-ing to one of two spe
ies, the right- and left-movingparti
les. In realisti
 systems, there is no fundamen-tal di�eren
e between the parti
les moving in oppositedire
tions, and a right-moving fermion 
an be
ome aleft-moving one upon s
attering. These ba
ks
atteringpro
esses give rise to several interesting phenomena not
aptured by the Luttinger liquid theory.One example is the e�e
t of ba
ks
attering on thetransport properties of the system. Experimentally,transport 
an be studied in quantum wire devi
es[17; 18℄, where a one-dimensional system is smoothly
onne
ted to two-dimensional leads. In the absen
eof intera
tions, the 
ondu
tan
e of a quantum wire isquantized in units of e2=h, where e is the elementary
harge and h is the Plan
k 
onstant. Intera
tions be-tween ele
trons in
luded into the Luttinger liquid the-ory do not a�e
t 
ondu
tan
e quantization [19�21℄. Onthe other hand, the ba
ks
attering pro
esses ex
ludedfrom model (1) redu
e the 
ondu
tan
e [22℄. More de-tailed theories of 
ondu
tan
e of long uniform quan-tum wires relate the 
orre
tion to 
ondu
tan
e due toele
tron�ele
tron intera
tions to the rate of equilibra-tion of the ele
tron liquid [23; 24℄.The physi
s of equilibration of a liquid of one-dimensional fermions is the main subje
t of this paper.It is another example of a problem where ba
ks
atter-ing pro
esses are 
ru
ial. For parti
les with a realisti
spe
trum, su
h as �p = p2=2m, the relaxation of thesystem to equilibrium involves ba
ks
attering pro
esses
hanging the numbers NR andNL. On the other hand,in a Luttinger liquid, the di�eren
e J = NR � NL is
onserved, even if the irrelevant perturbations are takeninto a

ount. As a result, equilibrium states of the sys-tem des
ribed by Hamiltonian (1) are 
hara
terized bydi�erent 
hemi
al potentials of the two spe
ies of par-ti
les, �R and �L, and their relaxation to a single value� is negle
ted.Below, we dis
uss the me
hanism of equilibrationof one-dimensional quantum liquids beyond the Lut-tinger liquid approximation. An expression for the
orresponding equilibration rate ��1 was obtained mi-
ros
opi
ally for the regimes of both weak [23℄ andstrong [25℄ intera
tions. An alternative phenomeno-logi
al approa
h [26; 27℄ based on the Luttinger liquidtheory is appli
able at any intera
tion strength and re-sults in an expression for the equilibration rate ��1in terms of the ex
itation spe
trum of the system. Thelatter 
an be either measured experimentally or derivedmi
ros
opi
ally for spe
i�
 models. In Se
s. 2�5, we re-view the phenomenologi
al approa
h in [26; 27℄ and dis-


uss the impli
ations of the results for the equilibrationrate to experiments with quantum wires.2. EQUILIBRIUM STATE OF A UNIFORMLUTTINGER LIQUIDWe �rst dis
uss the possible equilibrium states ofa Luttinger liquid. In general, the equilibrium distri-bution is determined by the integrals of motion of thesystem [28℄. We assume that the irrelevant perturba-tions resulting in weak s
attering of bosons are addedto Hamiltonian (1). Then there are four integrals ofmotion: energy, momentum, and the numbers of right-and left-moving parti
les, NR = (N + J)=2 and NL == (N � J)=2. The Gibbs probability of a realization ofa given many-parti
le state i is then given bywi = 1Z exp��Ei + uPi � �LNL � �RNRT � ; (2)where Ei and Pi are the values of the momentum of thesystem in state i. Obtaining the equilibrium distribu-tion of Bose ex
itations also requires the expression [8℄for the momentum of the Luttinger liquidP = pFJ +Xq q byqbq; (3)where the Fermi momentum is de�ned in terms of theparti
le density, pF = �~N=L.Using expression (2), we easily obtain the equilib-rium form of the o

upation numbers of the bosonstates: Nq = 1exp((vjqj � uq)=T )� 1 : (4)We note that as a result of momentum 
onservation,the Bose distribution depends not only on temperaturebut also on the parameter u, whi
h 
an be regarded asthe velo
ity of the gas of bosoni
 ex
itations.In addition to the bosoni
 o

upation numbers, thestate of the liquid depends on the zero modes N andJ . In thermal equilibrium, a

ording to Eq. (2) thelatter is peaked sharply near an average value J , whi
hsatis�es �~vJJL = upF + 12��; (5)where �� = �R � �L. In a Luttinger liquid, the ra-tio j = vJJ=L has the meaning of the parti
le 
ur-rent [8℄. Expressing it in terms of the drift velo
ity vdas j = (N=L)vd, we �ndvd = u+ ��2pF : (6)586



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Equilibration of a one-dimensional quantum liquidThis expression shows that in an equilibrium of theLuttinger liquid, the gas of ex
itations moves at a ve-lo
ity u di�erent from the velo
ity vd of the system asa whole. This de
oupling is a result of the 
onservationof J , whi
h allows for the possibility of �� 6= 0. In arealisti
 system, the ba
ks
attering pro
esses result inthe relaxation of �� to zero, and the velo
ities u andvd equilibrate.3. EQUILIBRATION RATETo study the kineti
s of equilibration of a Luttingerliquid, we have to 
onsider the 
orre
tions to the �xed-point Hamiltonian (1). In the 
ase of a spinless Lut-tinger liquid, the irrelevant perturbations are terms ofthird and higher orders in bosoni
 operators, su
h asbyq1+q2bq1bq2 ; byq1+q2�q3byq3bq1bq2 ; et
.Su
h perturbations give rise to s
attering of the bosoni
ex
itations and to relaxation of their distribution fun
-tion toward equilibrium distribution (4). Sin
e thes
attering of bosons 
onserves their total momentum,the resulting distribution is 
hara
terized by a velo
ityu, whi
h 
an be easily obtained from the initial mo-mentum of the whole gas of ex
itations. When thedistribution approa
hes the equilibrium form (4), thetypi
al s
attering events involve bosons with energiesof the order of temperature, and the s
attering rate��10 s
ales as a power of T . For instan
e, in the 
ase ofa strongly intera
ting system, the equilibration rate ofthe gas of ex
itations s
ales at ��10 / T 5 [29℄.
ǫp

p

EF
T

Fig. 1. In the model of weakly intera
ting fermions, thedominant ba
ks
attering pro
ess involves three parti-
les: one near the bottom of the band and the othertwo near the left and right Fermi points [22℄

The ba
ks
attering pro
esses required for the re-laxation of the velo
ity u toward vd have been stud-ied mi
ros
opi
ally in the regime of weak intera
tion inRef. [22℄. Be
ause of the 
onstraints imposed by themomentum and energy 
onservation, the simplest non-trivial pro
ess involves three parti
les, as we show inFig. 1. The Fermi statisti
s requires that in the dom-inant ba
ks
attering pro
ess, two parti
les be withinthe energy range of the order of temperature from theleft and right Fermi points, whereas the third one bewithin T from the bottom of the band. As a resultof su
h a s
attering event, the third parti
le ba
ks
at-ters, i. e., the numbers of right- and left-moving parti-
les 
hange by one. Sin
e the ba
ks
attering parti
le�lls a hole deep below the Fermi level, the rate of su
hpro
esses is exponentially small, ��1 / e�EF =T [22; 23℄.We see below that the ba
ks
attering rate is exponen-tially suppressed at low temperatures for any intera
-tion strength.The strong suppression of the ba
ks
attering ratemeans that at low temperatures, the equilibration ofthe quantum liquid pro
eeds in two steps. First, thebosoni
 ex
itations 
ome to thermal equilibrium withea
h other and their distribution fun
tion takes form(4). This thermalization takes a relatively short timeof the order of �0. Se
ond, over a mu
h longer time � ,the ba
ks
attering pro
esses equilibrate the zero modeJ with the bosons. During this time, the velo
ity u ofthe gas of bosoni
 ex
itations approa
hes the velo
ityvd of the liquid as the di�eren
e of the 
hemi
al poten-tials of the right and left movers�� relaxes to zero (seeEq. (6)). The time dependen
es of u and �� shouldfollow the usual relaxation lawdudt = �u� vd� ; ddt�� = ���� : (7)Expression (7) gives the formal de�nition of the equili-bration time � .To study the relaxation rate ��1 at an arbitrary in-tera
tion strength, it is tempting to use the Luttingerliquid des
ription of the system. But this approa
h isin
apable of des
ribing the parti
les near the bottomof the band (see Fig. 1), whi
h are 
ru
ial for the equi-libration of the system. More pre
isely, bosoni
 Hamil-tonian (1) provides 
orre
t des
ription of the ex
ita-tion spe
trum of a quantum liquid only at low energies,namely, for j"j < D, where the bandwidth D � vpF .Indeed, for su
h ex
itations, the spe
trum 
an be lin-earized and 
onsists of two independent bran
hes, asrequired in the Luttinger model. On the other hand,any ex
itation with the energy j"j � vpF is not a
-
ounted for by Hamiltonian (1).587
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D�
�Q q1 q2

Q0 pF 2pFFig. 2. Spe
trum of a hole ex
itation in a quantumliquid. The states with energies below D are treated asex
itations of the Luttinger liquid, whereas the higher-energy states are modeled as a mobile impurity. Thehole 
an 
hange its momentum by ÆQ = q1 � q2 byabsorbing a boson with a momentum q1 and emittingone with a momentum q2This di�
ulty 
an be over
ome as follows [26℄. Be-
ause the small probability of an empty state near thebottom of the band plays the 
ru
ial role in the physi
sof equilibration, we �rst 
onsider the spe
trum of thehole ex
itations. For nonintera
ting fermions, a holewith a momentum Q 
an be de�ned as an ex
itationof the system obtained by moving a fermion from thestate pF �Q to pF . For a system with a 
on
ave spe
-trum, su
h as the one in Fig. 1, the hole represents theground state of the system with the total momentumQ. We use this observation to generalize the 
on
eptof a hole ex
itation to the 
ase of an arbitrary intera
-tion strength, and de�ne the hole as the ground state ofthe system with the momentum Q. Be
ause moving afermion from one Fermi point to the other 
hanges themomentum by 2pF without 
hanging the energy of thesystem, the energy "Q of the hole is a periodi
 fun
tionof momentum and vanishes at Q = 0, �2pF , �4pF ; : : :The holes with energies below the bandwidth Dhave a nearly linear spe
trum. They are a

ounted forin Hamiltonian (1) as superpositions of various bosoni
ex
itations with the same momentum. The holes withenergies above D are not in
luded in Hamiltonian (1)and are treated as mobile impurities in the Luttingerliquid [30�38℄. The exa
t value of the 
rossover energys
ale D is not important as long as it is small 
om-pared to the maximum energy of the hole "pF � vpFand large 
ompared to the temperature T .The me
hanism of equilibration 
an be des
ribedas follows. For simpli
ity, we assume from now on thatthe liquid is at rest, vd = 0. The gas of bosoni
 ex
ita-

tions equilibrates relatively qui
kly, and the o

upationnumbers of bosoni
 states take form (4), whi
h appliesin the region jqj < D=v represented by two straightdashed lines in Fig. 2. In the generi
 
ase, the to-tal momentum of the ex
itations in the initial state isnot zero, and hen
e the Bose distribution in (4) has aboost velo
ity u 6= 0. As a result of intera
tions be-tween the bosons, a small fra
tion of the parti
les arepromoted above the energyD, where they are no longerdes
ribed by Hamiltonian (1). At an arbitrary intera
-tion strength, the properties of these higher-energy ex-
itations are rather 
ompli
ated, but the lowest-energyex
itation at a given momentum Q is a hole. Be
ause"Q � T , the o

upation of the hole states is given bythe Boltzmann fa
torf(Q) = exp��"Q � uQT � : (8)The presen
e of the 
orre
tion �uQ in the exponentis assured by the fa
t that the hole intera
ts and ex-
hanges momentum with the thermalized bosons. Asa result of many su
h 
ollisions, the hole, with a smallprobability, 
an in
rease its momentum Q above pF , af-ter whi
h it is more likely to fall toward Q = 2pF thanreturn to the vi
inity of Q = 0 (see Fig. 2). As the holeapproa
hes Q = 2pF , it enters the linear spe
trum re-gion at "Q < D, shown by dotted lines in Fig. 2. Thereit 
an again be viewed as a superposition of bosoni
ex
itations.As a result of this rare sequen
e of s
attering events,the bosons have transferred the momentum 2pF to thehole. Due to the 
onservation of the total momen-tum (3), this de
rease in the momentum of the gasof ex
itations means that the zero mode J = NR�NLhas in
reased by 2, i. e., one fermion has been ba
ks
at-tered. Also, the de
rease in the total momentum of thebosons means that the velo
ity u has also de
reased, ina

ordan
e with relaxation law (7).The equilibration pro
eeds very slowly be
ause thehole must pass the point Q = pF in the momentumspa
e, where the o

upation numbers are exponentiallysmall. We therefore expe
t��1 = Ce��=T ; � = "pF : (9)To obtain the prefa
tor C, the kineti
s of the s
atteringpro
esses should be 
onsidered in more detail.We start by noting that the equilibration rate is
ontrolled by a small region of momentum spa
e nearq = pF where the energy of the hole is 
lose to themaximum, � � "Q . T . The width of this region 
an588



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Equilibration of a one-dimensional quantum liquidbe estimated as (m�T )1=2, where we introdu
e the ef-fe
tive mass of the hole as1m� = �d2"QdQ2 ����Q=pF : (10)Although the region is narrow 
ompared to pF , it iswide 
ompared to the typi
al 
hange of the momentumof the hole in a single 
ollision with bosoni
 ex
ita-tions. Indeed, an elementary s
attering event 
onsistsof the hole absorbing one boson and emitting another(see Fig. 2). Sin
e the bosons are thermalized, the typ-i
al 
hange of Q is of the order of T=v, whi
h is mu
hsmaller than (m�T )1=2 at T � �. This estimate allowssimplifying the problem 
onsiderably.The motion of the hole in momentum spa
e is ran-dom and o

urs in steps that are small 
ompared to thesize of the 
riti
al region near the barrier. Su
h di�u-sion in momentum spa
e is des
ribed by the Fokker�Plan
k equation [39℄ for the time-dependent distribu-tion fun
tion f(Q; t):�tf = ��QF; (11)where the probability 
urrent F has the formF = �B(Q)2 �"0QT + �Q� f: (12)Here, the prime denotes the derivative with respe
t toQ and B(Q) has the meaning of the di�usion 
onstantin momentum spa
e. It is de�ned asB(Q) =XÆQ [ÆQ℄2WQ;Q+ÆQ (13)in terms of the rate WQ;Q0 of hole s
attering from thestate Q to Q0.In the steady-state regime, Fokker�Plan
k equation(11) is solved by demanding that the probability 
ur-rent F be independent of Q. Finding the value of F re-quires imposing boundary 
onditions on the o

upationnumbers f(Q) on the two sides of the barrier. Assum-ing that the size of the 
rossover region in momentumspa
e (m�T )1=2 is small 
ompared with pF , we 
an ap-proximate Eq. (8) asf(Q) = exp��"Q � upFT � ;pF �Q� (m�T )1=2: (14)This expression spe
i�es the boundary 
ondition onf(Q) to the left of the barrier. To �nd the boundary
ondition to the right of the barrier, we noti
e that thehole states with momenta Q and Q+2pF are identi
al,

and the o

upation of states with Q between pF and2pF is given by Eq. (8) with Q! Q� 2pF . This yieldsf(Q) = exp��"Q + upFT � ;Q� pF � (m�T )1=2: (15)Solving �rst-order di�erential equation (12) with a 
on-stant F , we �nd that boundary 
onditions (14) and (15)are satis�ed forF = u pFB(2�m�T 3)1=2 e��=T ; (16)where we take the limit u! 0 and set B = B(2pF ).A nonvanishing 
onstant F means that (L=h)Fholes are passing any given point in momentum spa
ein unit time. Ea
h hole moving from the vi
inity ofQ = 0 to that of Q = 2pF takes the momentum 2pFout of the bosoni
 ex
itations. We therefore 
on
ludethat the total momentum of the bosons 
hanges withtime at the rate _Pb = �2pF LhF:Given that the momentum of the bosons distributed ina

ordan
e with Eq. (4) is Pb = (�LT 2=3~v3)u, we �nd_u = �u=� with1� = 3B�5=2p2F �vpFT �3� p2F2m�T �1=2 e��=T : (17)As expe
ted, the equilibration rate has the exponen-tial form (9). To fully evaluate the prefa
tor, however,we need to study the hole s
attering rate WQ;Q0 andobtain di�usion 
onstant (13).4. HOLE SCATTERING RATEThe s
attering of a hole by bosoni
 ex
itations is aspe
ial 
ase of the problem of dynami
s of a mobile im-purity in a Luttinger liquid [31℄. At low temperatures,the leading s
attering pro
ess involves two bosons mov-ing in the opposite dire
tions. By absorbing one bosonand emitting the other, the impurity 
an s
atter from astate Q to a new state Q0 without violating the momen-tum and energy 
onservation (Fig. 2). The authors ofRef. [31℄ obtained the temperature dependen
e of themobility of the impurity in a Luttinger liquid in thisregime, � / T�4. Using the expression � = T=B forthe mobility (see [39℄, � 21), we 
on
lude thatB = �T 5: (18)589



K. A. Matveev ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013The evaluation of the 
oe�
ient � presents an inter-esting problem. Mi
ros
opi
 
al
ulations 
an be per-formed in the spe
ial 
ases of either weak or strongintera
tions [23; 25℄. Interestingly, a phenomenologi
alexpression for � 
an also be obtained in terms of thespe
trum of the mobile impurity (hole) in the Luttingerliquid [26; 27℄. Here, we review the last approa
h.The di�usion 
onstant B in expression (17) for theequilibration rate should be evaluated at Q = pF . Onthe other hand, it is instru
tive to 
onsider a moregeneral problem and study the hole s
attering rateWQ;Q+ÆQ in Eq. (13) for arbitrary Q. This s
atteringrate 
an be found from Fermi's Golden ruleWQ;Q+ÆQ = 2�~ Xq1;q2jtq1;q2 j2Nq1(Nq2+1) Æq1�q2;ÆQ�� Æ("Q � "Q+ÆQ + ~vjq1j � ~vjq2j); (19)where tq1;q2 is the matrix element of the pro
ess inwhi
h the hole absorbs the boson q1 and emits theboson q2 (Fig. 2). Sin
e the typi
al energies of thebosons are of the order of temperature, we assume thatjÆQj � pF . In this 
ase, we 
an easily obtain the mo-menta q1 and q2 from the 
onservation laws:q1 = 12ÆQ+ vQ2v jÆQj; q2 = �12ÆQ+ vQ2v jÆQj: (20)Here, vQ = "0Q is the velo
ity of the hole with the mo-mentum Q. Using Eq. (20), we easily express the s
at-tering rate asWQ;Q+ÆQ = L~2v Nq1(Nq2 + 1)jtq1;q2 j2: (21)To evaluate the matrix element tq1;q2 , we need to dis-
uss the Hamiltonian of the Luttinger liquid in the pres-en
e of a mobile impurity.We start by writing Hamiltonian (1) in the alterna-tive form [9℄H0 = ~v2� Z dx[K(r�)2 +K�1(r�)2℄; (22)where the two bosoni
 �elds �(x) and �(x) satisfy the
ommutation relation[�(x);r�(x0)℄ = i�Æ(x� x0) (23)and the Luttinger-liquid parameter K depends on theintera
tions between parti
les. The 
ase of noninter-a
ting fermions 
orresponds to K = 1.Hamiltonian (22) 
an be brought to form (1) withthe help of the following expressions for the �elds � and� in terms of the bosoni
 operators:r�(x) = �iXq r�Kjqj2~L sgn(q)(bq + by�q)eiqx=~; (24)

r�(x) = iXq r �jqj2~KL (bq � by�q)eiqx=~: (25)The advantage of the form (22) of the Hamiltonian isthat the �elds � and � have 
lear meanings in terms ofthe observables 
hara
terizing the quantum liquid. Forinstan
e, the �eld �(x) a

ounts for �u
tuations of thedensity of the liquid,n(x) = n0 + 1�r�(x); (26)where n0 = N=L is the average density [9℄. Similarly,the �eld � is related to the momentum � of the liquidper parti
le, �(x) = �~r�(x) (27)(see, e.g., Ref. [27℄).The 
oupling of the hole to bosoni
 ex
itations inthe Luttinger liquid 
an now be obtained by 
onsider-ing the dependen
e "Q(n; �) of the energy of the holeon the density and momentum of the liquid. UsingEqs. (26) and (27), we expand "Q(n; �) in powers ofthe bosoni
 �elds,"Q(n; �) = "Q(n0; 0) + 1��n"Qr�� ~ ��"Qr� ++ 12�2 �2n"Q(r�)2 + ~22 �2�"Q(r�)2 �� ~��n��"Qr�r� + : : : (28)All derivatives of "Q(n; �) are here taken at n = n0 and� = 0. Taking into a

ount Eqs. (24) and (25), we seethat the se
ond-order terms in Eq. (28) 
ontain 
ontri-butions in whi
h a boson q1 is absorbed and a boson q2on the opposite bran
h is emitted. The 
orrespondingmatrix element has the formt(a)q1;q2 = �pjq1q2j2�~L �2LR"Q; (29)where we assume that the hole is at x = 0 and intro-du
e the notation�2LR = K�2n � (�~)2K �2�: (30)In addition to the terms 
oupling the hole to twobosons, Eq. (28) 
ontains the 
ontribution linear inbosoni
 operators:i�L"QXq<0r jqj2�~L (bq � byq)�� i�R"QXq>0r jqj2�~L (bq � byq); (31)590



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Equilibration of a one-dimensional quantum liquidwhere�L = pK�n � �~pK��; �R = pK�n + �~pK��: (32)Linear 
oupling terms (31) also 
ontribute to the ma-trix element tq1;q2 , but in the se
ond-order perturbationtheory,t(b)q1;q2 = �pjq1q2j2�~L � �L"Q+q1�R"Q"Q + vq1 � "Q+q1 ++ �R"Q�q2�L"Q"Q � "Q�q2 � vjq2j� ; (33)where we assume that q1 > 0 and q2 < 0, i. e., pos-itive ÆQ as in Fig. 2. It is important to a

ount forthe 
orre
tions to the momentum of the hole in the nu-merator, whi
h o

ur be
ause the two perturbations ofform (31) a
t on the states of the hole with di�erentvalues of Q.Expression (33) 
an be simpli�ed by using thesmallness of q1 � q2 � ÆQ � pF . The expression inthe bra
kets appears to s
ale as 1=ÆQ. This term is ob-tained by negle
ting 
orre
tions to Q in the numeratorand linearizing the denominators in q1 and q2. How-ever, for the spe
i�
 values (20) of the boson momenta,the two 
ontributions in the bra
kets 
an
el ea
h other.Evaluating the next order terms in q1 and q2, we �ndt(b)q1;q2 = �pjq1q2j2�~L " 1m�Q �L"Qv + vQ �R"Qv � vQ ++ �LvQ �R"Qv � vQ � �RvQ �L"Qv + vQ #; (34)where the momentum-dependent e�e
tive mass of thehole is de�ned by 1=m�Q = �"00Q. The �rst term inEq. (34) originates from the expansion of the denom-inators in Eq. (33) to the se
ond order in q1 and q2,whereas the remaining two terms are obtained by a
-
ounting for linear 
orre
tions in the numerators.Finally, one more 
ontribution to the s
attering ma-trix element tq1;q2 is obtained when the hole 
ouples toa single boson, Eq. (31), whi
h in turn splits into two.The matrix element involves three bosons and shouldtherefore originate from 
orre
tions to the Hamiltonianthat are 
ubi
 in � and �. For a �uid at rest, the sym-metry allows only for even powers of �, and hen
e the
orre
tion must have the formH� = Z dx���(r�)(r�)2 + ��(r�)3�: (35)The values of the 
oe�
ients �� and �� 
an be relatedto the density dependen
es of the parameters v and K

Q� q2Q q2 Q+ q1 � q2q1Q+ q1 q2q1Q b Q+ q1 � q2q1Q q2 Qq1 q2q1 � q2a 
Q+ q1 � q2 Q+ q1 � q2Fig. 3. The three types of pro
esses 
ontributing tothe s
attering matrix element tq1;q2 . a) The �rst-or-der pro
ess, in whi
h the hole 
ouples to two bosons.b ) The se
ond-order pro
esses involving two perturba-tions, ea
h 
oupling the hole to one of the two bosons.
) The se
ond-order pro
ess where the hole 
ouples toa virtual boson, whi
h is separately 
oupled to bosonsq1 and q2of quadrati
 Hamiltonian (22) by 
onsidering the 
or-re
tion to the total Hamiltonian H0 +H� 
aused by asmall 
hange of the parti
le density Æn. This yields [27℄�� = ~2�2 �n(vK); �� = ~6�2 �n � vK� : (36)To �nd a 
ontribution to tq1;q2 , we need the matrix ele-ment of H� that absorbs a boson with the momentumq1 on one bran
h and emits a boson q2 on the otherbran
h. Using Eq. (36), we obtaini sgn(q1)p2�~L v�nKpK pjq1q2(q1 � q2)j �� byq2bq1�bq2�q1 + byq1�q2�: (37)The se
ond-order 
al
ulation of the matrix elementtq1;q2 with perturbations (37) and (31) yieldst(
)q1;q2 = �pjq1q2j2�~L v�nKpK � �R"Qv � vQ + �L"Qv + vQ�: (38)The three types of pro
esses leading to hole s
atter-ing with absorption of the boson q1 and emission of theboson q2 are illustrated in Fig. 3. Their total is givenby tq1;q2 = �pjq1q2j2�~L YQ; (39)whereYQ = �2LR"Q+ 1m�Q �L"Qv+vQ �R"Qv�vQ+�LvQ �R"Qv�vQ �� �RvQ �L"Qv + vQ + v�nKpK � �R"Qv � vQ + �L"Qv + vQ�: (40)591



K. A. Matveev ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013An alternative way of evaluating the s
attering matrixelement involves performing a unitary transformationthat eliminates the linear 
oupling (31) of the hole tothe bosons [27℄. After this transformation, only thequadrati
 
oupling remains, whi
h is then evaluated inthe �rst order, similarly to Eq. (29). The resultingexpression given by Eqs. (49) and (50) in Ref. [27℄ isequivalent to Eq. (39).Using expression (39) for the s
attering matrix ele-ment in 
ombination with Eqs. (21) and (13), we easilyre
over the temperature dependen
e (18). The 
oe�-
ient � takes the form� = 4�Y 2pF15~5v6 : (41)Equations (17), (18), and (41) provide a 
omplete ex-pression for the equilibration rate of a one-dimensionalquantum liquid in terms of the spe
trum of hole ex
i-tations and its dependen
es on the parti
le density nand the momentum per parti
le �.5. DISCUSSIONIn this paper, we dis
ussed the equilibrationof a one-dimensional quantum liquid of intera
tingfermions. The 
onventional Luttinger liquid theo-ry [8; 9℄ of these systems negle
ts the pro
esses ofba
ks
attering. In many 
ases, this is an ex
ellentapproximation be
ause the 
orresponding s
atteringrates are exponentially small at low temperatures,Eq. (17). But the Luttinger liquid approximation doesnot allow treating a number of interesting phenomenain whi
h the ba
ks
attering plays the 
ru
ial role.One example is the 
ondu
tan
e of a long uniformquantum wire. The Luttinger liquid theory predi
tsperfe
t 
ondu
tan
e quantization in these devi
es, re-gardless of the intera
tion strength [19�21℄. On theother hand, it is easy to show that at weak ele
tron�ele
tron intera
tions, a 
orre
tion to the 
ondu
tan
eappears due to the ba
ks
attering pro
esses [22; 23℄.Interestingly, an expression for the 
ondu
tan
e of aquantum wire 
an be obtained for any intera
tionstrength [24℄,G = e2h �1� �23 T 2v2p2F LL+ 2v� � : (42)The ba
ks
attering gives rise to a negative 
orre
tionto the quantized 
ondu
tan
e, whi
h grows with tem-perature and with the length of the wire L. In shortwires, the 
orre
tion ÆG / ��1 is exponentially small,but it saturates at

ÆG � �e2h � TvpF �2in long wires.Temperature-dependent 
orre
tions to 
ondu
tan
eof quantum wire devi
es have been observed in multipleexperiments [40�42℄. The data shows ex
ellent quan-tization of 
ondu
tan
e at lowest temperatures and anegative 
orre
tion developing as the temperature isin
reased. These observations are in qualitative agree-ment with Eq. (42). In 
omparing the data with theory,it is important to keep in mind that our dis
ussion hasignored spins, whi
h appear to play an important rolein experiments. The result (42) 
an be generalized toin
lude spins [24℄, but the evaluation of the equilibra-tion rate of a system with spins is still an open problem.Another 
ompli
ation is that most experiments studyrather short wires, whi
h 
annot be treated as uniform.Our dis
ussion of the equilibration rate did notassume the Galilean invarian
e of the system. Onthe other hand, momentum 
onservation was assumed.Hen
e, the results do not automati
ally apply to sys-tems of intera
ting parti
les in periodi
 potentials, su
has spin 
hains. In su
h systems, umklapp s
attering bythe external potential may fa
ilitate equilibration. Onthe other hand, ele
trons in GaAs quantum wires havean essentially quadrati
 spe
trum �p = p2=2m, wherem is the e�e
tive mass of the ele
tron in this material.Su
h an ele
tron system is Galilei invariant, whi
h leadsto a few simpli�
ations. First, the Luttinger liquid pa-rameter in this 
ase is determined by the velo
ity of thebosons, K = �~n=mv. Se
ond, the dependen
e of theex
itation energy on the momentum � has the simpleform [43℄ "Q(n; �) = "Q(n) +Q �m: (43)For momenta Q in the vi
inity of pF , we 
an expand"Q(n) = �(n)� (Q� pF )22m�and �nd YpF = K ��00 + �02m�v2 � 2v0v �0� : (44)Substituting this in Eq. (41) re
overs the results inRef. [26℄ for the equilibration rate in Galilei-invariantsystems obtained by a di�erent te
hnique. It is worthnoting that in this 
ase, the equilibration rate is fullydetermined by the density dependen
es of the velo
ityof bosoni
 ex
itations v and the maximum energy ofthe hole �.592



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Equilibration of a one-dimensional quantum liquidAlthough our main fo
us was on intera
ting sys-tems of fermions, the approa
h and the results shouldbe equally appli
able to systems of bosons. Similarte
hniques have been re
ently applied to dynami
s ofdark solitons and mobile impurities in bosoni
 �u-ids [37; 38℄. Finally, it is worth mentioning that inintegrable models, apart from energy and momentum,there are multiple additional 
onserved quantities, andone expe
ts that no equilibration of the system shouldtake pla
e. In parti
ular one should �nd ��1 = 0. This
onje
ture has been 
he
ked [26℄ for the Calogero�Sutherland [44℄ and Lieb�Liniger [45℄ models. Moregenerally, one expe
ts [27℄ that for integrable models,the quantity YQ given by Eq. (40) should vanish forany Q.The author is grateful to A. V. Andreev and A. Fu-rusaki for dis
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