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EQUILIBRATION OF A ONE-DIMENSIONAL QUANTUM LIQUIDK. A. Matveev *Materials Siene Division, Argonne National LaboratoryArgonne, Illinois 60439, USAReeived April 9, 2013Dediated to the memory of Professor Anatoly LarkinWe review some of the reent results on equilibration of one-dimensional quantum liquids. The low-energyproperties of these systems are desribed by the Luttinger liquid theory, in whih the exitations are bosoniquasipartiles. At low temperatures, the relaxation of the gas of exitations toward full equilibrium is exponen-tially slow. In eletroni Luttinger liquids, these relaxation proesses involve baksattering of eletrons andgive rise to interesting orretions to the transport properties of one-dimensional ondutors. We fous on thephenomenologial theory of the equilibration of a quantum liquid and obtain an expression for the relaxationrate in terms of the exitation spetrum.DOI: 10.7868/S00444510130901131. INTRODUCTIONThe low-energy properties of one-dimensional quan-tum systems are ommonly desribed in the frame-work of the so-alled Tomonaga�Luttinger liquid [1�9℄.This desription applies to systems of either bosons orfermions, but regardless of the statistis of the on-stituent partiles, the exitations of the Luttinger liquidare bosons with a linear spetrum. The Hamiltonian ofa Luttinger liquid is given byH =Xq vjqjbyqbq + �~2L �vN (N �N0)2 + vJJ2� ; (1)where bq is the annihilation operator of a bosoni ex-itation with momentum q propagating with velo-ity v [8℄. Hamiltonian (1) assumes that the systemhas a �nite size L and periodi boundary onditionsare imposed. Apart from the oupation numbers ofbosoni states, the energy of the system depends ontwo integer numbers, N and J . For fermioni Lut-tinger liquids, these numbers an be interpreted interms of the numbers of right- and left-moving par-tiles as N = NR + NL and J = NR � NL. Theparameters vN and vJ have the dimension of veloityand depend on the interations between the partiles;*E-mail: matveev�anl.gov

N0 is some referene number of partiles in the sys-tem. The Luttinger liquid theory desribed by Hamil-tonian (1) has been suessful in prediting a numberof interesting phenomena, suh as the renormalizationof impurity sattering in interating one-dimensionaleletron systems [10; 11℄, subsequently observed in ex-periments [12�15℄.An interesting feature of the model in (1) is theomplete absene of oupling between the bosons. Asa result, the lifetimes of bosoni exitations are in�niteand the system does not relax toward thermal equilib-rium. It is important to keep in mind, however, thatEq. (1) is the exat Hamiltonian of the system onlyfor the so-alled Luttinger model [2℄, where the spe-trum of the fermions onsists of two linear branhes�p = �vF p. In a generi situation, this is an approxi-mation appliable only in the viinity of the two Fermipoints, and hene the Luttinger theory (1) applies onlyat low energies. In other words, Eq. (1) represents a�xed-point Hamiltonian in the renormalization groupsense, whih should, in priniple, be amended by addi-tional ontributions desribing various irrelevant per-turbations. The latter are the operators of third andhigher degrees in bq and byq, whih result in satteringof bosoni exitations. They adequately aount forthe urvature of the spetrum near the Fermi points,whih gives rise to a multitude of interesting phenom-ena studied in the last few years (see [16℄ for a reentreview).585



K. A. Matveev ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013Another important aspet of the Luttinger modelis that the original fermions are lassi�ed as belong-ing to one of two speies, the right- and left-movingpartiles. In realisti systems, there is no fundamen-tal di�erene between the partiles moving in oppositediretions, and a right-moving fermion an beome aleft-moving one upon sattering. These baksatteringproesses give rise to several interesting phenomena notaptured by the Luttinger liquid theory.One example is the e�et of baksattering on thetransport properties of the system. Experimentally,transport an be studied in quantum wire devies[17; 18℄, where a one-dimensional system is smoothlyonneted to two-dimensional leads. In the abseneof interations, the ondutane of a quantum wire isquantized in units of e2=h, where e is the elementaryharge and h is the Plank onstant. Interations be-tween eletrons inluded into the Luttinger liquid the-ory do not a�et ondutane quantization [19�21℄. Onthe other hand, the baksattering proesses exludedfrom model (1) redue the ondutane [22℄. More de-tailed theories of ondutane of long uniform quan-tum wires relate the orretion to ondutane due toeletron�eletron interations to the rate of equilibra-tion of the eletron liquid [23; 24℄.The physis of equilibration of a liquid of one-dimensional fermions is the main subjet of this paper.It is another example of a problem where baksatter-ing proesses are ruial. For partiles with a realistispetrum, suh as �p = p2=2m, the relaxation of thesystem to equilibrium involves baksattering proesseshanging the numbers NR andNL. On the other hand,in a Luttinger liquid, the di�erene J = NR � NL isonserved, even if the irrelevant perturbations are takeninto aount. As a result, equilibrium states of the sys-tem desribed by Hamiltonian (1) are haraterized bydi�erent hemial potentials of the two speies of par-tiles, �R and �L, and their relaxation to a single value� is negleted.Below, we disuss the mehanism of equilibrationof one-dimensional quantum liquids beyond the Lut-tinger liquid approximation. An expression for theorresponding equilibration rate ��1 was obtained mi-rosopially for the regimes of both weak [23℄ andstrong [25℄ interations. An alternative phenomeno-logial approah [26; 27℄ based on the Luttinger liquidtheory is appliable at any interation strength and re-sults in an expression for the equilibration rate ��1in terms of the exitation spetrum of the system. Thelatter an be either measured experimentally or derivedmirosopially for spei� models. In Ses. 2�5, we re-view the phenomenologial approah in [26; 27℄ and dis-

uss the impliations of the results for the equilibrationrate to experiments with quantum wires.2. EQUILIBRIUM STATE OF A UNIFORMLUTTINGER LIQUIDWe �rst disuss the possible equilibrium states ofa Luttinger liquid. In general, the equilibrium distri-bution is determined by the integrals of motion of thesystem [28℄. We assume that the irrelevant perturba-tions resulting in weak sattering of bosons are addedto Hamiltonian (1). Then there are four integrals ofmotion: energy, momentum, and the numbers of right-and left-moving partiles, NR = (N + J)=2 and NL == (N � J)=2. The Gibbs probability of a realization ofa given many-partile state i is then given bywi = 1Z exp��Ei + uPi � �LNL � �RNRT � ; (2)where Ei and Pi are the values of the momentum of thesystem in state i. Obtaining the equilibrium distribu-tion of Bose exitations also requires the expression [8℄for the momentum of the Luttinger liquidP = pFJ +Xq q byqbq; (3)where the Fermi momentum is de�ned in terms of thepartile density, pF = �~N=L.Using expression (2), we easily obtain the equilib-rium form of the oupation numbers of the bosonstates: Nq = 1exp((vjqj � uq)=T )� 1 : (4)We note that as a result of momentum onservation,the Bose distribution depends not only on temperaturebut also on the parameter u, whih an be regarded asthe veloity of the gas of bosoni exitations.In addition to the bosoni oupation numbers, thestate of the liquid depends on the zero modes N andJ . In thermal equilibrium, aording to Eq. (2) thelatter is peaked sharply near an average value J , whihsatis�es �~vJJL = upF + 12��; (5)where �� = �R � �L. In a Luttinger liquid, the ra-tio j = vJJ=L has the meaning of the partile ur-rent [8℄. Expressing it in terms of the drift veloity vdas j = (N=L)vd, we �ndvd = u+ ��2pF : (6)586



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Equilibration of a one-dimensional quantum liquidThis expression shows that in an equilibrium of theLuttinger liquid, the gas of exitations moves at a ve-loity u di�erent from the veloity vd of the system asa whole. This deoupling is a result of the onservationof J , whih allows for the possibility of �� 6= 0. In arealisti system, the baksattering proesses result inthe relaxation of �� to zero, and the veloities u andvd equilibrate.3. EQUILIBRATION RATETo study the kinetis of equilibration of a Luttingerliquid, we have to onsider the orretions to the �xed-point Hamiltonian (1). In the ase of a spinless Lut-tinger liquid, the irrelevant perturbations are terms ofthird and higher orders in bosoni operators, suh asbyq1+q2bq1bq2 ; byq1+q2�q3byq3bq1bq2 ; et.Suh perturbations give rise to sattering of the bosoniexitations and to relaxation of their distribution fun-tion toward equilibrium distribution (4). Sine thesattering of bosons onserves their total momentum,the resulting distribution is haraterized by a veloityu, whih an be easily obtained from the initial mo-mentum of the whole gas of exitations. When thedistribution approahes the equilibrium form (4), thetypial sattering events involve bosons with energiesof the order of temperature, and the sattering rate��10 sales as a power of T . For instane, in the ase ofa strongly interating system, the equilibration rate ofthe gas of exitations sales at ��10 / T 5 [29℄.
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Fig. 1. In the model of weakly interating fermions, thedominant baksattering proess involves three parti-les: one near the bottom of the band and the othertwo near the left and right Fermi points [22℄

The baksattering proesses required for the re-laxation of the veloity u toward vd have been stud-ied mirosopially in the regime of weak interation inRef. [22℄. Beause of the onstraints imposed by themomentum and energy onservation, the simplest non-trivial proess involves three partiles, as we show inFig. 1. The Fermi statistis requires that in the dom-inant baksattering proess, two partiles be withinthe energy range of the order of temperature from theleft and right Fermi points, whereas the third one bewithin T from the bottom of the band. As a resultof suh a sattering event, the third partile baksat-ters, i. e., the numbers of right- and left-moving parti-les hange by one. Sine the baksattering partile�lls a hole deep below the Fermi level, the rate of suhproesses is exponentially small, ��1 / e�EF =T [22; 23℄.We see below that the baksattering rate is exponen-tially suppressed at low temperatures for any intera-tion strength.The strong suppression of the baksattering ratemeans that at low temperatures, the equilibration ofthe quantum liquid proeeds in two steps. First, thebosoni exitations ome to thermal equilibrium witheah other and their distribution funtion takes form(4). This thermalization takes a relatively short timeof the order of �0. Seond, over a muh longer time � ,the baksattering proesses equilibrate the zero modeJ with the bosons. During this time, the veloity u ofthe gas of bosoni exitations approahes the veloityvd of the liquid as the di�erene of the hemial poten-tials of the right and left movers�� relaxes to zero (seeEq. (6)). The time dependenes of u and �� shouldfollow the usual relaxation lawdudt = �u� vd� ; ddt�� = ���� : (7)Expression (7) gives the formal de�nition of the equili-bration time � .To study the relaxation rate ��1 at an arbitrary in-teration strength, it is tempting to use the Luttingerliquid desription of the system. But this approah isinapable of desribing the partiles near the bottomof the band (see Fig. 1), whih are ruial for the equi-libration of the system. More preisely, bosoni Hamil-tonian (1) provides orret desription of the exita-tion spetrum of a quantum liquid only at low energies,namely, for j"j < D, where the bandwidth D � vpF .Indeed, for suh exitations, the spetrum an be lin-earized and onsists of two independent branhes, asrequired in the Luttinger model. On the other hand,any exitation with the energy j"j � vpF is not a-ounted for by Hamiltonian (1).587
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Q0 pF 2pFFig. 2. Spetrum of a hole exitation in a quantumliquid. The states with energies below D are treated asexitations of the Luttinger liquid, whereas the higher-energy states are modeled as a mobile impurity. Thehole an hange its momentum by ÆQ = q1 � q2 byabsorbing a boson with a momentum q1 and emittingone with a momentum q2This di�ulty an be overome as follows [26℄. Be-ause the small probability of an empty state near thebottom of the band plays the ruial role in the physisof equilibration, we �rst onsider the spetrum of thehole exitations. For noninterating fermions, a holewith a momentum Q an be de�ned as an exitationof the system obtained by moving a fermion from thestate pF �Q to pF . For a system with a onave spe-trum, suh as the one in Fig. 1, the hole represents theground state of the system with the total momentumQ. We use this observation to generalize the oneptof a hole exitation to the ase of an arbitrary intera-tion strength, and de�ne the hole as the ground state ofthe system with the momentum Q. Beause moving afermion from one Fermi point to the other hanges themomentum by 2pF without hanging the energy of thesystem, the energy "Q of the hole is a periodi funtionof momentum and vanishes at Q = 0, �2pF , �4pF ; : : :The holes with energies below the bandwidth Dhave a nearly linear spetrum. They are aounted forin Hamiltonian (1) as superpositions of various bosoniexitations with the same momentum. The holes withenergies above D are not inluded in Hamiltonian (1)and are treated as mobile impurities in the Luttingerliquid [30�38℄. The exat value of the rossover energysale D is not important as long as it is small om-pared to the maximum energy of the hole "pF � vpFand large ompared to the temperature T .The mehanism of equilibration an be desribedas follows. For simpliity, we assume from now on thatthe liquid is at rest, vd = 0. The gas of bosoni exita-

tions equilibrates relatively quikly, and the oupationnumbers of bosoni states take form (4), whih appliesin the region jqj < D=v represented by two straightdashed lines in Fig. 2. In the generi ase, the to-tal momentum of the exitations in the initial state isnot zero, and hene the Bose distribution in (4) has aboost veloity u 6= 0. As a result of interations be-tween the bosons, a small fration of the partiles arepromoted above the energyD, where they are no longerdesribed by Hamiltonian (1). At an arbitrary intera-tion strength, the properties of these higher-energy ex-itations are rather ompliated, but the lowest-energyexitation at a given momentum Q is a hole. Beause"Q � T , the oupation of the hole states is given bythe Boltzmann fatorf(Q) = exp��"Q � uQT � : (8)The presene of the orretion �uQ in the exponentis assured by the fat that the hole interats and ex-hanges momentum with the thermalized bosons. Asa result of many suh ollisions, the hole, with a smallprobability, an inrease its momentum Q above pF , af-ter whih it is more likely to fall toward Q = 2pF thanreturn to the viinity of Q = 0 (see Fig. 2). As the holeapproahes Q = 2pF , it enters the linear spetrum re-gion at "Q < D, shown by dotted lines in Fig. 2. Thereit an again be viewed as a superposition of bosoniexitations.As a result of this rare sequene of sattering events,the bosons have transferred the momentum 2pF to thehole. Due to the onservation of the total momen-tum (3), this derease in the momentum of the gasof exitations means that the zero mode J = NR�NLhas inreased by 2, i. e., one fermion has been baksat-tered. Also, the derease in the total momentum of thebosons means that the veloity u has also dereased, inaordane with relaxation law (7).The equilibration proeeds very slowly beause thehole must pass the point Q = pF in the momentumspae, where the oupation numbers are exponentiallysmall. We therefore expet��1 = Ce��=T ; � = "pF : (9)To obtain the prefator C, the kinetis of the satteringproesses should be onsidered in more detail.We start by noting that the equilibration rate isontrolled by a small region of momentum spae nearq = pF where the energy of the hole is lose to themaximum, � � "Q . T . The width of this region an588



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Equilibration of a one-dimensional quantum liquidbe estimated as (m�T )1=2, where we introdue the ef-fetive mass of the hole as1m� = �d2"QdQ2 ����Q=pF : (10)Although the region is narrow ompared to pF , it iswide ompared to the typial hange of the momentumof the hole in a single ollision with bosoni exita-tions. Indeed, an elementary sattering event onsistsof the hole absorbing one boson and emitting another(see Fig. 2). Sine the bosons are thermalized, the typ-ial hange of Q is of the order of T=v, whih is muhsmaller than (m�T )1=2 at T � �. This estimate allowssimplifying the problem onsiderably.The motion of the hole in momentum spae is ran-dom and ours in steps that are small ompared to thesize of the ritial region near the barrier. Suh di�u-sion in momentum spae is desribed by the Fokker�Plank equation [39℄ for the time-dependent distribu-tion funtion f(Q; t):�tf = ��QF; (11)where the probability urrent F has the formF = �B(Q)2 �"0QT + �Q� f: (12)Here, the prime denotes the derivative with respet toQ and B(Q) has the meaning of the di�usion onstantin momentum spae. It is de�ned asB(Q) =XÆQ [ÆQ℄2WQ;Q+ÆQ (13)in terms of the rate WQ;Q0 of hole sattering from thestate Q to Q0.In the steady-state regime, Fokker�Plank equation(11) is solved by demanding that the probability ur-rent F be independent of Q. Finding the value of F re-quires imposing boundary onditions on the oupationnumbers f(Q) on the two sides of the barrier. Assum-ing that the size of the rossover region in momentumspae (m�T )1=2 is small ompared with pF , we an ap-proximate Eq. (8) asf(Q) = exp��"Q � upFT � ;pF �Q� (m�T )1=2: (14)This expression spei�es the boundary ondition onf(Q) to the left of the barrier. To �nd the boundaryondition to the right of the barrier, we notie that thehole states with momenta Q and Q+2pF are idential,

and the oupation of states with Q between pF and2pF is given by Eq. (8) with Q! Q� 2pF . This yieldsf(Q) = exp��"Q + upFT � ;Q� pF � (m�T )1=2: (15)Solving �rst-order di�erential equation (12) with a on-stant F , we �nd that boundary onditions (14) and (15)are satis�ed forF = u pFB(2�m�T 3)1=2 e��=T ; (16)where we take the limit u! 0 and set B = B(2pF ).A nonvanishing onstant F means that (L=h)Fholes are passing any given point in momentum spaein unit time. Eah hole moving from the viinity ofQ = 0 to that of Q = 2pF takes the momentum 2pFout of the bosoni exitations. We therefore onludethat the total momentum of the bosons hanges withtime at the rate _Pb = �2pF LhF:Given that the momentum of the bosons distributed inaordane with Eq. (4) is Pb = (�LT 2=3~v3)u, we �nd_u = �u=� with1� = 3B�5=2p2F �vpFT �3� p2F2m�T �1=2 e��=T : (17)As expeted, the equilibration rate has the exponen-tial form (9). To fully evaluate the prefator, however,we need to study the hole sattering rate WQ;Q0 andobtain di�usion onstant (13).4. HOLE SCATTERING RATEThe sattering of a hole by bosoni exitations is aspeial ase of the problem of dynamis of a mobile im-purity in a Luttinger liquid [31℄. At low temperatures,the leading sattering proess involves two bosons mov-ing in the opposite diretions. By absorbing one bosonand emitting the other, the impurity an satter from astate Q to a new state Q0 without violating the momen-tum and energy onservation (Fig. 2). The authors ofRef. [31℄ obtained the temperature dependene of themobility of the impurity in a Luttinger liquid in thisregime, � / T�4. Using the expression � = T=B forthe mobility (see [39℄, � 21), we onlude thatB = �T 5: (18)589



K. A. Matveev ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013The evaluation of the oe�ient � presents an inter-esting problem. Mirosopi alulations an be per-formed in the speial ases of either weak or stronginterations [23; 25℄. Interestingly, a phenomenologialexpression for � an also be obtained in terms of thespetrum of the mobile impurity (hole) in the Luttingerliquid [26; 27℄. Here, we review the last approah.The di�usion onstant B in expression (17) for theequilibration rate should be evaluated at Q = pF . Onthe other hand, it is instrutive to onsider a moregeneral problem and study the hole sattering rateWQ;Q+ÆQ in Eq. (13) for arbitrary Q. This satteringrate an be found from Fermi's Golden ruleWQ;Q+ÆQ = 2�~ Xq1;q2jtq1;q2 j2Nq1(Nq2+1) Æq1�q2;ÆQ�� Æ("Q � "Q+ÆQ + ~vjq1j � ~vjq2j); (19)where tq1;q2 is the matrix element of the proess inwhih the hole absorbs the boson q1 and emits theboson q2 (Fig. 2). Sine the typial energies of thebosons are of the order of temperature, we assume thatjÆQj � pF . In this ase, we an easily obtain the mo-menta q1 and q2 from the onservation laws:q1 = 12ÆQ+ vQ2v jÆQj; q2 = �12ÆQ+ vQ2v jÆQj: (20)Here, vQ = "0Q is the veloity of the hole with the mo-mentum Q. Using Eq. (20), we easily express the sat-tering rate asWQ;Q+ÆQ = L~2v Nq1(Nq2 + 1)jtq1;q2 j2: (21)To evaluate the matrix element tq1;q2 , we need to dis-uss the Hamiltonian of the Luttinger liquid in the pres-ene of a mobile impurity.We start by writing Hamiltonian (1) in the alterna-tive form [9℄H0 = ~v2� Z dx[K(r�)2 +K�1(r�)2℄; (22)where the two bosoni �elds �(x) and �(x) satisfy theommutation relation[�(x);r�(x0)℄ = i�Æ(x� x0) (23)and the Luttinger-liquid parameter K depends on theinterations between partiles. The ase of noninter-ating fermions orresponds to K = 1.Hamiltonian (22) an be brought to form (1) withthe help of the following expressions for the �elds � and� in terms of the bosoni operators:r�(x) = �iXq r�Kjqj2~L sgn(q)(bq + by�q)eiqx=~; (24)

r�(x) = iXq r �jqj2~KL (bq � by�q)eiqx=~: (25)The advantage of the form (22) of the Hamiltonian isthat the �elds � and � have lear meanings in terms ofthe observables haraterizing the quantum liquid. Forinstane, the �eld �(x) aounts for �utuations of thedensity of the liquid,n(x) = n0 + 1�r�(x); (26)where n0 = N=L is the average density [9℄. Similarly,the �eld � is related to the momentum � of the liquidper partile, �(x) = �~r�(x) (27)(see, e.g., Ref. [27℄).The oupling of the hole to bosoni exitations inthe Luttinger liquid an now be obtained by onsider-ing the dependene "Q(n; �) of the energy of the holeon the density and momentum of the liquid. UsingEqs. (26) and (27), we expand "Q(n; �) in powers ofthe bosoni �elds,"Q(n; �) = "Q(n0; 0) + 1��n"Qr�� ~ ��"Qr� ++ 12�2 �2n"Q(r�)2 + ~22 �2�"Q(r�)2 �� ~��n��"Qr�r� + : : : (28)All derivatives of "Q(n; �) are here taken at n = n0 and� = 0. Taking into aount Eqs. (24) and (25), we seethat the seond-order terms in Eq. (28) ontain ontri-butions in whih a boson q1 is absorbed and a boson q2on the opposite branh is emitted. The orrespondingmatrix element has the formt(a)q1;q2 = �pjq1q2j2�~L �2LR"Q; (29)where we assume that the hole is at x = 0 and intro-due the notation�2LR = K�2n � (�~)2K �2�: (30)In addition to the terms oupling the hole to twobosons, Eq. (28) ontains the ontribution linear inbosoni operators:i�L"QXq<0r jqj2�~L (bq � byq)�� i�R"QXq>0r jqj2�~L (bq � byq); (31)590



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Equilibration of a one-dimensional quantum liquidwhere�L = pK�n � �~pK��; �R = pK�n + �~pK��: (32)Linear oupling terms (31) also ontribute to the ma-trix element tq1;q2 , but in the seond-order perturbationtheory,t(b)q1;q2 = �pjq1q2j2�~L � �L"Q+q1�R"Q"Q + vq1 � "Q+q1 ++ �R"Q�q2�L"Q"Q � "Q�q2 � vjq2j� ; (33)where we assume that q1 > 0 and q2 < 0, i. e., pos-itive ÆQ as in Fig. 2. It is important to aount forthe orretions to the momentum of the hole in the nu-merator, whih our beause the two perturbations ofform (31) at on the states of the hole with di�erentvalues of Q.Expression (33) an be simpli�ed by using thesmallness of q1 � q2 � ÆQ � pF . The expression inthe brakets appears to sale as 1=ÆQ. This term is ob-tained by negleting orretions to Q in the numeratorand linearizing the denominators in q1 and q2. How-ever, for the spei� values (20) of the boson momenta,the two ontributions in the brakets anel eah other.Evaluating the next order terms in q1 and q2, we �ndt(b)q1;q2 = �pjq1q2j2�~L " 1m�Q �L"Qv + vQ �R"Qv � vQ ++ �LvQ �R"Qv � vQ � �RvQ �L"Qv + vQ #; (34)where the momentum-dependent e�etive mass of thehole is de�ned by 1=m�Q = �"00Q. The �rst term inEq. (34) originates from the expansion of the denom-inators in Eq. (33) to the seond order in q1 and q2,whereas the remaining two terms are obtained by a-ounting for linear orretions in the numerators.Finally, one more ontribution to the sattering ma-trix element tq1;q2 is obtained when the hole ouples toa single boson, Eq. (31), whih in turn splits into two.The matrix element involves three bosons and shouldtherefore originate from orretions to the Hamiltonianthat are ubi in � and �. For a �uid at rest, the sym-metry allows only for even powers of �, and hene theorretion must have the formH� = Z dx���(r�)(r�)2 + ��(r�)3�: (35)The values of the oe�ients �� and �� an be relatedto the density dependenes of the parameters v and K

Q� q2Q q2 Q+ q1 � q2q1Q+ q1 q2q1Q b Q+ q1 � q2q1Q q2 Qq1 q2q1 � q2a Q+ q1 � q2 Q+ q1 � q2Fig. 3. The three types of proesses ontributing tothe sattering matrix element tq1;q2 . a) The �rst-or-der proess, in whih the hole ouples to two bosons.b ) The seond-order proesses involving two perturba-tions, eah oupling the hole to one of the two bosons.) The seond-order proess where the hole ouples toa virtual boson, whih is separately oupled to bosonsq1 and q2of quadrati Hamiltonian (22) by onsidering the or-retion to the total Hamiltonian H0 +H� aused by asmall hange of the partile density Æn. This yields [27℄�� = ~2�2 �n(vK); �� = ~6�2 �n � vK� : (36)To �nd a ontribution to tq1;q2 , we need the matrix ele-ment of H� that absorbs a boson with the momentumq1 on one branh and emits a boson q2 on the otherbranh. Using Eq. (36), we obtaini sgn(q1)p2�~L v�nKpK pjq1q2(q1 � q2)j �� byq2bq1�bq2�q1 + byq1�q2�: (37)The seond-order alulation of the matrix elementtq1;q2 with perturbations (37) and (31) yieldst()q1;q2 = �pjq1q2j2�~L v�nKpK � �R"Qv � vQ + �L"Qv + vQ�: (38)The three types of proesses leading to hole satter-ing with absorption of the boson q1 and emission of theboson q2 are illustrated in Fig. 3. Their total is givenby tq1;q2 = �pjq1q2j2�~L YQ; (39)whereYQ = �2LR"Q+ 1m�Q �L"Qv+vQ �R"Qv�vQ+�LvQ �R"Qv�vQ �� �RvQ �L"Qv + vQ + v�nKpK � �R"Qv � vQ + �L"Qv + vQ�: (40)591



K. A. Matveev ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013An alternative way of evaluating the sattering matrixelement involves performing a unitary transformationthat eliminates the linear oupling (31) of the hole tothe bosons [27℄. After this transformation, only thequadrati oupling remains, whih is then evaluated inthe �rst order, similarly to Eq. (29). The resultingexpression given by Eqs. (49) and (50) in Ref. [27℄ isequivalent to Eq. (39).Using expression (39) for the sattering matrix ele-ment in ombination with Eqs. (21) and (13), we easilyreover the temperature dependene (18). The oe�-ient � takes the form� = 4�Y 2pF15~5v6 : (41)Equations (17), (18), and (41) provide a omplete ex-pression for the equilibration rate of a one-dimensionalquantum liquid in terms of the spetrum of hole exi-tations and its dependenes on the partile density nand the momentum per partile �.5. DISCUSSIONIn this paper, we disussed the equilibrationof a one-dimensional quantum liquid of interatingfermions. The onventional Luttinger liquid theo-ry [8; 9℄ of these systems neglets the proesses ofbaksattering. In many ases, this is an exellentapproximation beause the orresponding satteringrates are exponentially small at low temperatures,Eq. (17). But the Luttinger liquid approximation doesnot allow treating a number of interesting phenomenain whih the baksattering plays the ruial role.One example is the ondutane of a long uniformquantum wire. The Luttinger liquid theory preditsperfet ondutane quantization in these devies, re-gardless of the interation strength [19�21℄. On theother hand, it is easy to show that at weak eletron�eletron interations, a orretion to the ondutaneappears due to the baksattering proesses [22; 23℄.Interestingly, an expression for the ondutane of aquantum wire an be obtained for any interationstrength [24℄,G = e2h �1� �23 T 2v2p2F LL+ 2v� � : (42)The baksattering gives rise to a negative orretionto the quantized ondutane, whih grows with tem-perature and with the length of the wire L. In shortwires, the orretion ÆG / ��1 is exponentially small,but it saturates at

ÆG � �e2h � TvpF �2in long wires.Temperature-dependent orretions to ondutaneof quantum wire devies have been observed in multipleexperiments [40�42℄. The data shows exellent quan-tization of ondutane at lowest temperatures and anegative orretion developing as the temperature isinreased. These observations are in qualitative agree-ment with Eq. (42). In omparing the data with theory,it is important to keep in mind that our disussion hasignored spins, whih appear to play an important rolein experiments. The result (42) an be generalized toinlude spins [24℄, but the evaluation of the equilibra-tion rate of a system with spins is still an open problem.Another ompliation is that most experiments studyrather short wires, whih annot be treated as uniform.Our disussion of the equilibration rate did notassume the Galilean invariane of the system. Onthe other hand, momentum onservation was assumed.Hene, the results do not automatially apply to sys-tems of interating partiles in periodi potentials, suhas spin hains. In suh systems, umklapp sattering bythe external potential may failitate equilibration. Onthe other hand, eletrons in GaAs quantum wires havean essentially quadrati spetrum �p = p2=2m, wherem is the e�etive mass of the eletron in this material.Suh an eletron system is Galilei invariant, whih leadsto a few simpli�ations. First, the Luttinger liquid pa-rameter in this ase is determined by the veloity of thebosons, K = �~n=mv. Seond, the dependene of theexitation energy on the momentum � has the simpleform [43℄ "Q(n; �) = "Q(n) +Q �m: (43)For momenta Q in the viinity of pF , we an expand"Q(n) = �(n)� (Q� pF )22m�and �nd YpF = K ��00 + �02m�v2 � 2v0v �0� : (44)Substituting this in Eq. (41) reovers the results inRef. [26℄ for the equilibration rate in Galilei-invariantsystems obtained by a di�erent tehnique. It is worthnoting that in this ase, the equilibration rate is fullydetermined by the density dependenes of the veloityof bosoni exitations v and the maximum energy ofthe hole �.592
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