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We review some of the recent results on equilibration of one-dimensional quantum liquids.
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The low-energy

properties of these systems are described by the Luttinger liquid theory, in which the excitations are bosonic
quasiparticles. At low temperatures, the relaxation of the gas of excitations toward full equilibrium is exponen-

tially slow.

In electronic Luttinger liquids, these relaxation processes involve backscattering of electrons and

give rise to interesting corrections to the transport properties of one-dimensional conductors. We focus on the
phenomenological theory of the equilibration of a quantum liquid and obtain an expression for the relaxation

rate in terms of the excitation spectrum.
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1. INTRODUCTION

The low-energy properties of one-dimensional quan-
tum systems are commonly described in the frame-
work of the so-called Tomonaga-Luttinger liquid [1-9].
This description applies to systems of either bosons or
fermions, but regardless of the statistics of the con-
stituent particles, the excitations of the Luttinger liquid
are bosons with a linear spectrum. The Hamiltonian of
a Luttinger liquid is given by

H = Zv|q|bfb +— [on (N = No)? + vy 0], (1)

where b, is the annihilation operator of a bosonic ex-
citation with momentum ¢ propagating with veloc-
ity v [8]. Hamiltonian (1) assumes that the system
has a finite size L and periodic boundary conditions
are imposed. Apart from the occupation numbers of
bosonic states, the energy of the system depends on
two integer numbers, N and .J. For fermionic Lut-
tinger liquids, these numbers can be interpreted in
terms of the numbers of right- and left-moving par-
ticles as N = N + NI and J = N® — NL. The
parameters vy and vy have the dimension of velocity
and depend on the interactions between the particles;
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Ny is some reference number of particles in the sys-
tem. The Luttinger liquid theory described by Hamil-
tonian (1) has been successful in predicting a number
of interesting phenomena, such as the renormalization
of impurity scattering in interacting one-dimensional
electron systems [10, 11], subsequently observed in ex-
periments [12-15].

An interesting feature of the model in (1) is the
complete absence of coupling between the bosons. As
a result, the lifetimes of bosonic excitations are infinite
and the system does not relax toward thermal equilib-
rium. It is important to keep in mind, however, that
Eq. (1) is the exact Hamiltonian of the system only
for the so-called Luttinger model [2], where the spec-
trum of the fermions consists of two linear branches
€p = vpp. In a generic situation, this is an approxi-
mation applicable only in the vicinity of the two Fermi
points, and hence the Luttinger theory (1) applies only
at low energies. In other words, Eq. (1) represents a
fixed-point Hamiltonian in the renormalization group
sense, which should, in principle, be amended by addi-
tional contributions describing various irrelevant per-
turbations. The latter are the operators of third and
higher degrees in b, and b} 7> which result in scattering
of bosonic excitations. They adequately account for
the curvature of the spectrum near the Fermi points,
which gives rise to a multitude of interesting phenom-
ena studied in the last few years (see [16] for a recent
review).
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Another important aspect of the Luttinger model
is that the original fermions are classified as belong-
ing to one of two species, the right- and left-moving
particles. In realistic systems, there is no fundamen-
tal difference between the particles moving in opposite
directions, and a right-moving fermion can become a
left-moving one upon scattering. These backscattering
processes give rise to several interesting phenomena not
captured by the Luttinger liquid theory.

One example is the effect of backscattering on the
transport properties of the system. FExperimentally,
transport can be studied in quantum wire devices
[17,18], where a one-dimensional system is smoothly
connected to two-dimensional leads. In the absence
of interactions, the conductance of a quantum wire is
quantized in units of e2/h, where e is the elementary
charge and h is the Planck constant. Interactions be-
tween electrons included into the Luttinger liquid the-
ory do not affect conductance quantization [19-21]. On
the other hand, the backscattering processes excluded
from model (1) reduce the conductance [22]. More de-
tailed theories of conductance of long uniform quan-
tum wires relate the correction to conductance due to
electron—electron interactions to the rate of equilibra-
tion of the electron liquid [23, 24].

The physics of equilibration of a liquid of one-
dimensional fermions is the main subject of this paper.
It is another example of a problem where backscatter-
ing processes are crucial. For particles with a realistic
spectrum, such as €, = p?/2m, the relaxation of the
system to equilibrium involves backscattering processes
changing the numbers N® and N”. On the other hand,
in a Luttinger liquid, the difference J = N® — NT is
conserved, even if the irrelevant perturbations are taken
into account. As a result, equilibrium states of the sys-
tem described by Hamiltonian (1) are characterized by
different chemical potentials of the two species of par-
ticles, uf* and p”, and their relaxation to a single value
1 is neglected.

Below, we discuss the mechanism of equilibration
of one-dimensional quantum liquids beyond the Lut-
tinger liquid approximation. An expression for the
corresponding equilibration rate 7—! was obtained mi-
croscopically for the regimes of both weak [23] and
strong [25] interactions. An alternative phenomeno-
logical approach [26,27] based on the Luttinger liquid
theory is applicable at any interaction strength and re-
sults in an expression for the equilibration rate 71
in terms of the excitation spectrum of the system. The
latter can be either measured experimentally or derived
microscopically for specific models. In Secs. 2-5, we re-
view the phenomenological approach in [26, 27] and dis-

cuss the implications of the results for the equilibration
rate to experiments with quantum wires.

2. EQUILIBRIUM STATE OF A UNIFORM
LUTTINGER LIQUID

We first discuss the possible equilibrium states of
a Luttinger liquid. In general, the equilibrium distri-
bution is determined by the integrals of motion of the
system [28]. We assume that the irrelevant perturba-
tions resulting in weak scattering of bosons are added
to Hamiltonian (1). Then there are four integrals of
motion: energy, momentum, and the numbers of right-
and left-moving particles, N® = (N + J)/2 and NL =
= (N —.J)/2. The Gibbs probability of a realization of
a given many-particle state i is then given by

7o
w; = s exp | —

Z

Ei—l—uPi—,uLNL —/JRNR (2)
T b

where E; and P; are the values of the momentum of the
system in state 7. Obtaining the equilibrium distribu-
tion of Bose excitations also requires the expression [8]
for the momentum of the Luttinger liquid

P=ppJ+> qblb,, (3)
q

where the Fermi momentum is defined in terms of the
particle density, pr = mhN/L.

Using expression (2), we easily obtain the equilib-
rium form of the occupation numbers of the boson
states:

1
A= Sl — /7)1
We note that as a result of momentum conservation,
the Bose distribution depends not only on temperature
but also on the parameter u, which can be regarded as
the velocity of the gas of bosonic excitations.

In addition to the bosonic occupation numbers, the
state of the liquid depends on the zero modes N and
J. In thermal equilibrium, according to Eq. (2) the
latter is peaked sharply near an average value .J, which
satisfies

(4)

vyd 1
Th—— = A
h i7 upr + 5 1y (5)

where Ay = pft — . In a Luttinger liquid, the ra-
tio 5 = vyJ/L has the meaning of the particle cur-
rent [8]. Expressing it in terms of the drift velocity vq
as j = (N/L)vg, we find

Ap
Vg = u+ —. 6
p=ut gt (6)
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This expression shows that in an equilibrium of the
Luttinger liquid, the gas of excitations moves at a ve-
locity w different from the velocity vy of the system as
a whole. This decoupling is a result of the conservation
of J, which allows for the possibility of Ay # 0. In a
realistic system, the backscattering processes result in
the relaxation of Ay to zero, and the velocities u and
vq equilibrate.

3. EQUILIBRATION RATE

To study the kinetics of equilibration of a Luttinger
liquid, we have to consider the corrections to the fixed-
point Hamiltonian (1). In the case of a spinless Lut-
tinger liquid, the irrelevant perturbations are terms of
third and higher orders in bosonic operators, such as

bt bt

q1+492—q37q3

bbby b

q1+q27a17q2>

by, by, etc.

Such perturbations give rise to scattering of the bosonic
excitations and to relaxation of their distribution func-
tion toward equilibrium distribution (4). Since the
scattering of bosons conserves their total momentum,
the resulting distribution is characterized by a velocity
u, which can be easily obtained from the initial mo-
mentum of the whole gas of excitations. When the
distribution approaches the equilibrium form (4), the
typical scattering events involve bosons with energies
of the order of temperature, and the scattering rate
To ! scales as a power of T'. For instance, in the case of
a strongly interacting system, the equilibration rate of
the gas of excitations scales at 7, ' oc T? [29)].

€p 4

p

Fig.1. In the model of weakly interacting fermions, the

dominant backscattering process involves three parti-

cles: one near the bottom of the band and the other
two near the left and right Fermi points [22]
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The backscattering processes required for the re-
laxation of the velocity u toward vy have been stud-
ied microscopically in the regime of weak interaction in
Ref. [22]. Because of the constraints imposed by the
momentum and energy conservation, the simplest non-
trivial process involves three particles, as we show in
Fig. 1. The Fermi statistics requires that in the dom-
inant backscattering process, two particles be within
the energy range of the order of temperature from the
left and right Fermi points, whereas the third one be
within 7' from the bottom of the band. As a result
of such a scattering event, the third particle backscat-
ters, i.e., the numbers of right- and left-moving parti-
cles change by one. Since the backscattering particle
fills a hole deep below the Fermi level, the rate of such
processes is exponentially small, 7= oc e=Fr/T [22,23].
We see below that the backscattering rate is exponen-
tially suppressed at low temperatures for any interac-
tion strength.

The strong suppression of the backscattering rate
means that at low temperatures, the equilibration of
the quantum liquid proceeds in two steps. First, the
bosonic excitations come to thermal equilibrium with
each other and their distribution function takes form
(4). This thermalization takes a relatively short time
of the order of 79. Second, over a much longer time 7,
the backscattering processes equilibrate the zero mode
J with the bosons. During this time, the velocity u of
the gas of bosonic excitations approaches the velocity
vq of the liquid as the difference of the chemical poten-
tials of the right and left movers Ay relaxes to zero (see

Eq. (6)). The time dependences of u and Ay should
follow the usual relaxation law
du U — vy d Ap
— = —Ap=—— 7
dt r @t T @

Expression (7) gives the formal definition of the equili-
bration time 7.

To study the relaxation rate 7! at an arbitrary in-
teraction strength, it is tempting to use the Luttinger
liquid description of the system. But this approach is
incapable of describing the particles near the bottom
of the band (see Fig. 1), which are crucial for the equi-
libration of the system. More precisely, bosonic Hamil-
tonian (1) provides correct description of the excita-
tion spectrum of a quantum liquid only at low energies,
namely, for |¢| < D, where the bandwidth D < vpp.
Indeed, for such excitations, the spectrum can be lin-
earized and consists of two independent branches, as
required in the Luttinger model. On the other hand,
any excitation with the energy |e| ~ vpp is not ac-
counted for by Hamiltonian (1).
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Fig.2. Spectrum of a hole excitation in a quantum

liquid. The states with energies below D are treated as

excitations of the Luttinger liquid, whereas the higher-

energy states are modeled as a mobile impurity. The

hole can change its momentum by 6QQ = ¢1 — ¢2 by

absorbing a boson with a momentum ¢; and emitting
one with a momentum ¢2

This difficulty can be overcome as follows [26]. Be-
cause the small probability of an empty state near the
bottom of the band plays the crucial role in the physics
of equilibration, we first consider the spectrum of the
hole excitations. For noninteracting fermions, a hole
with a momentum @ can be defined as an excitation
of the system obtained by moving a fermion from the
state pp — @ to pr. For a system with a concave spec-
trum, such as the one in Fig. 1, the hole represents the
ground state of the system with the total momentum
Q. We use this observation to generalize the concept
of a hole excitation to the case of an arbitrary interac-
tion strength, and define the hole as the ground state of
the system with the momentum ). Because moving a
fermion from one Fermi point to the other changes the
momentum by 2pr without changing the energy of the
system, the energy ¢4, of the hole is a periodic function
of momentum and vanishes at Q = 0, +2pp, +4pp,. ..

The holes with energies below the bandwidth D
have a nearly linear spectrum. They are accounted for
in Hamiltonian (1) as superpositions of various bosonic
excitations with the same momentum. The holes with
energies above D are not included in Hamiltonian (1)
and are treated as mobile impurities in the Luttinger
liquid [30-38]. The exact value of the crossover energy
scale D is not important as long as it is small com-
pared to the maximum energy of the hole ¢, ~ vpp
and large compared to the temperature 7.

The mechanism of equilibration can be described
as follows. For simplicity, we assume from now on that
the liquid is at rest, v4 = 0. The gas of bosonic excita-
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tions equilibrates relatively quickly, and the occupation
numbers of bosonic states take form (4), which applies
in the region |¢| < D/v represented by two straight
dashed lines in Fig. 2. In the generic case, the to-
tal momentum of the excitations in the initial state is
not zero, and hence the Bose distribution in (4) has a
boost velocity u # 0. As a result of interactions be-
tween the bosons, a small fraction of the particles are
promoted above the energy D, where they are no longer
described by Hamiltonian (1). At an arbitrary interac-
tion strength, the properties of these higher-energy ex-
citations are rather complicated, but the lowest-energy
excitation at a given momentum @ is a hole. Because
eg > T, the occupation of the hole states is given by
the Boltzmann factor

The presence of the correction —u() in the exponent
is assured by the fact that the hole interacts and ex-
changes momentum with the thermalized bosons. As
a result of many such collisions, the hole, with a small
probability, can increase its momentum () above pg, af-
ter which it is more likely to fall toward @ = 2pp than
return to the vicinity of @ = 0 (see Fig. 2). As the hole
approaches () = 2pp, it enters the linear spectrum re-
gion at eg < D, shown by dotted lines in Fig. 2. There
it can again be viewed as a superposition of bosonic
excitations.

g —u®

p (5)

7(@) = exp (—

Ag a result of this rare sequence of scattering events,
the bosons have transferred the momentum 2pg to the
hole. Due to the conservation of the total momen-
tum (3), this decrease in the momentum of the gas
of excitations means that the zero mode J = NE — N
has increased by 2, i.e., one fermion has been backscat-
tered. Also, the decrease in the total momentum of the
bosons means that the velocity v has also decreased, in
accordance with relaxation law (7).

The equilibration proceeds very slowly because the
hole must pass the point ) = pg in the momentum
space, where the occupation numbers are exponentially
small. We therefore expect

Tl=Ce T, A=¢,,. 9)
To obtain the prefactor C', the kinetics of the scattering
processes should be considered in more detail.

We start by noting that the equilibration rate is
controlled by a small region of momentum space near
q = pr where the energy of the hole is close to the
maximum, A —eg < T. The width of this region can
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be estimated as (m*T)'/?, where we introduce the ef-
fective mass of the hole as

1

m*

_ d’sq
dQ2 Q=pr

Although the region is narrow compared to pp, it is
wide compared to the typical change of the momentum
of the hole in a single collision with bosonic excita-
tions. Indeed, an elementary scattering event consists
of the hole absorbing one boson and emitting another
(see Fig. 2). Since the bosons are thermalized, the typ-
ical change of @ is of the order of T'/v, which is much
smaller than (m*T)'/? at T < A. This estimate allows
simplifying the problem considerably.

The motion of the hole in momentum space is ran-
dom and occurs in steps that are small compared to the
size of the critical region near the barrier. Such diffu-
sion in momentum space is described by the Fokker—
Planck equation [39] for the time-dependent distribu-
tion function f(Q,t):

(10)

Ouf = ~0qF, (11)
where the probability current F' has the form
B(Q) [=q
F=-—< |2 . 12
32 | B+ 0] 1 (12)

Here, the prime denotes the derivative with respect to
@ and B(Q) has the meaning of the diffusion constant
in momentum space. It is defined as

B(Q) = > [0QI*Wa.q+s0
5Q

(13)

in terms of the rate Wg o/ of hole scattering from the
state Q to Q.

In the steady-state regime, Fokker—Planck equation
(11) is solved by demanding that the probability cur-
rent F' be independent of Q. Finding the value of F' re-
quires imposing boundary conditions on the occupation
numbers f(Q) on the two sides of the barrier. Assum-
ing that the size of the crossover region in momentum
space (m*T)'/? is small compared with pr, we can ap-
proximate Eq. (8) as

) )

This expression specifies the boundary condition on
f(Q) to the left of the barrier. To find the boundary
condition to the right of the barrier, we notice that the
hole states with momenta () and Q) + 2pp are identical,

_€Q —upr

1@ =exp (-2

pr— Q> (m*T)l/Z-

(14)
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and the occupation of states with ) between pp and
2pr is given by Eq. (8) with @ — @ — 2pp. This yields

).

Solving first-order differential equation (12) with a con-
stant F', we find that boundary conditions (14) and (15)
are satisfied for

Q) = exp (-5

Q —pp > (m*T)1/2.

(15)

prB

w— PFD AT
(2rm*T3)1/2

F= e , (16)
where we take the limit v — 0 and set B = B(2pp).

A nonvanishing constant F means that (L/h)F
holes are passing any given point in momentum space
in unit time. Each hole moving from the vicinity of
@ = 0 to that of ) = 2pp takes the momentum 2pg
out of the bosonic excitations. We therefore conclude
that the total momentum of the bosons changes with
time at the rate

P,

L

Given that the momentum of the bosons distributed in
accordance with Eq. (4) is P, = (rLT?/3hv3)u, we find

@ = —u/T with
1/2
Lo 3B () (B ) s
T ml2p2 \ T 2m*T '

As expected, the equilibration rate has the exponen-
tial form (9). To fully evaluate the prefactor, however,
we need to study the hole scattering rate Wg o/ and
obtain diffusion constant (13).

4. HOLE SCATTERING RATE

The scattering of a hole by bosonic excitations is a
special case of the problem of dynamics of a mobile im-
purity in a Luttinger liquid [31]. At low temperatures,
the leading scattering process involves two bosons mov-
ing in the opposite directions. By absorbing one boson
and emitting the other, the impurity can scatter from a
state Q to a new state Q' without violating the momen-
tum and energy conservation (Fig. 2). The authors of
Ref. [31] obtained the temperature dependence of the
mobility of the impurity in a Luttinger liquid in this
regime, p o< T—*. Using the expression y = T/B for
the mobility (see [39], §21), we conclude that

B = \T". (18)
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The evaluation of the coefficient y presents an inter-
esting problem. Microscopic calculations can be per-
formed in the special cases of either weak or strong
interactions [23,25]. Interestingly, a phenomenological
expression for y can also be obtained in terms of the
spectrum of the mobile impurity (hole) in the Luttinger
liquid [26,27]. Here, we review the last approach.

The diffusion constant B in expression (17) for the
equilibration rate should be evaluated at @ = pr. On
the other hand, it is instructive to consider a more
general problem and study the hole scattering rate
Wg,0+s0 in Eq. (13) for arbitrary Q. This scattering
rate can be found from Fermi’s Golden rule

27
Wao,@+éq = T Z |ttI1,qz |2NQ1 (qu+1) 0g1—42,0Q X
q1,q2

X 8(eQ — eqQ+sq + w|q1| — hwlgz]),  (19)

where t,, 4, is the matrix element of the process in
which the hole absorbs the boson ¢; and emits the
boson ¢» (Fig. 2). Since the typical energies of the
bosons are of the order of temperature, we assume that
[0Q] < pr. In this case, we can easily obtain the mo-
menta ¢; and ¢» from the conservation laws:

_! vQ _ 1 vQ
Q1—25Q+2U|5Q|a Q2 = 25Q+2v|5Q|- (20)

Here, vy = s’Q is the velocity of the hole with the mo-
mentum Q. Using Eq. (20), we easily express the scat-
tering rate as

L
WQ,Q+5Q = % N!h (NQ2 + 1)|t111’(I2|2' (21)

To evaluate the matrix element ¢4, 4,, we need to dis-
cuss the Hamiltonian of the Luttinger liquid in the pres-
ence of a mobile impurity.

We start by writing Hamiltonian (1) in the alterna-
tive form [9]

i

H, /dx[K(VG)2 + K~1(Vo)?], (22)

™

where the two bosonic fields ¢(x) and 6(z) satisfy the
commutation relation

[6(x), VO(x')] = ind(x — 2) (23)

and the Luttinger-liquid parameter K depends on the
interactions between particles. The case of noninter-
acting fermions corresponds to K = 1.

Hamiltonian (22) can be brought to form (1) with
the help of the following expressions for the fields ¢ and
# in terms of the bosonic operators:

Vo(z) = —i Z \/ ﬂ;;;? sgn(q)(by + btq)eiqw/h, (24)
q
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. g iqx
Vo(z) =i 4/ %'K'L (bg — bL)el /™. (25)
q

The advantage of the form (22) of the Hamiltonian is
that the fields ¢ and # have clear meanings in terms of
the observables characterizing the quantum liquid. For
instance, the field ¢(z) accounts for fluctuations of the
density of the liquid,
1

n(x) = no + Vo), (26)
where ng = N/L is the average density [9]. Similarly,
the field 6 is related to the momentum x of the liquid
per particle,

k(z) = —hVo(z) (27)

(see, e.g., Ref. [27]).

The coupling of the hole to bosonic excitations in
the Luttinger liquid can now be obtained by consider-
ing the dependence eg(n, k) of the energy of the hole
on the density and momentum of the liquid. Using
Eqs. (26) and (27), we expand eg(n, ) in powers of
the bosonic fields,

1
eqg(n, k) =eg(noe,0) + ;8n6QV¢ — hokeqVo +
L 2c0(vVe)y h282 Vo)
+W n‘gQ( ¢) +7 naQ( ) -
_ Zananange o (28)

All derivatives of eg(n, k) are here taken at n = ng and
k = 0. Taking into account Eqs. (24) and (25), we see
that the second-order terms in Eq. (28) contain contri-
butions in which a boson ¢; is absorbed and a boson ¢»
on the opposite branch is emitted. The corresponding
matrix element has the form

vV |Q1 q2|
2whL

where we assume that the hole is at x = 0 and intro-
duce the notation

t(a)

q1,q2

07 REQs (29)

(xh)
e

In addition to the terms coupling the hole to two
bosons, Eq. (28) contains the contribution linear in
bosonic operators:

2
=Ko - T g2,

(30)
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where

o1 = VRO, - mh

wh

—=0, —=0s.
\/E Ky \/X K
Linear coupling terms (31) also contribute to the ma-
trix element ¢, 4,, but in the second-order perturbation
theory,

Or = VKO, + (32)

vV |Q1Q2|

2whL

ILEQ+a 9rEQ
€Q + V41 —EQ+a:
6R6Q7q28L5Q
£Q — EQ-q2 — V|¢2]

$(b)

q1,492

| o

where we assume that ¢g; > 0 and ¢» < 0, i.e., pos-
itive 0@ as in Fig. 2. It is important to account for
the corrections to the momentum of the hole in the nu-
merator, which occur because the two perturbations of
form (31) act on the states of the hole with different
values of Q.

Expression (33) can be simplified by using the
smallness of ¢1 ~ ¢2 ~ 0Q < pr. The expression in
the brackets appears to scale as 1/6@Q. This term is ob-
tained by neglecting corrections to () in the numerator
and linearizing the denominators in ¢; and ¢». How-
ever, for the specific values (20) of the boson momenta,
the two contributions in the brackets cancel each other.
Evaluating the next order terms in ¢; and ¢o, we find

o — Vool 1 9ieq Oreq
712 2nhL | mg v+vg v —vQ
ORre 8LEQ
0 - —, (34
* LUQU—’U RUQU—l—vQ (34)

where the momentum-dependent effective mass of the
hole is defined by 1/myg, —cg- The first term in
Eq. (34) originates from the expansion of the denom-
inators in Eq. (33) to the second order in ¢; and ¢,
whereas the remaining two terms are obtained by ac-
counting for linear corrections in the numerators.

Finally, one more contribution to the scattering ma-
trix element ¢4, 4, is obtained when the hole couples to
a single boson, Eq. (31), which in turn splits into two.
The matrix element involves three bosons and should
therefore originate from corrections to the Hamiltonian
that are cubic in ¢ and #. For a fluid at rest, the sym-
metry allows only for even powers of 8, and hence the
correction must have the form

H, = / dz[ag(Ve)(V0)? + as(Ve)?]. (35)

The values of the coefficients ag and a4 can be related
to the density dependences of the parameters v and K

591

g b
“ Q q;, Q ¢ p
A
&' g UQ+a N\ v
A1 Q+qp—q |
Q Yaqr —q
\(]}2 ql’/
Q+q —q Q/\
QA Q—q2 X
Q+q — ¢ @te-e

Fig.3. The three types of processes contributing to
the scattering matrix element ¢4, 4,. @) The first-or-
der process, in which the hole couples to two bosons.
b) The second-order processes involving two perturba-
tions, each coupling the hole to one of the two bosons.
¢) The second-order process where the hole couples to
a virtual boson, which is separately coupled to bosons
q1 and q2

of quadratic Hamiltonian (22) by considering the cor-
rection to the total Hamiltonian Hy + H, caused by a
small change of the particle density dn. This yields [27]

(%)

To find a contribution to ¢4, 4,, we need the matrix ele-
ment of H, that absorbs a boson with the momentum
¢1 on one branch and emits a boson ¢» on the other
branch. Using Eq. (36), we obtain

h

6m2 "

v

87’1 (UIX’) , E

h
Qg = F Qgp = (36)

isgn(q1) vO, K
V2rhL VK

vV |Q1Q2(Q1 - Q2) X

X bSQbm (blhflh + bT

q1—q2

). (37)

The second-order calculation of the matrix element
tg, .- With perturbations (37) and (31) yields

o __V lg1q2] VO K [ Oreq 0LeQ (38)
q1,q2 2thL K \v—vg v+uvg .

The three types of processes leading to hole scatter-
ing with absorption of the boson ¢; and emission of the
boson ¢» are illustrated in Fig. 3. Their total is given

\/|Q1Q2|

tgr.ae = T Tonhl Yo, (39)
where
1 Oreq Ore Ore
Yo = O peqt— —2 Q45012
mg v+vQ v-uQ V—UQ
0 oK (0 0
—8RUQ LEQ VOp 1L ( REQ LEQ > (40)
v+v VK \v—vg v+uvg
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An alternative way of evaluating the scattering matrix
element involves performing a unitary transformation
that eliminates the linear coupling (31) of the hole to
the bosons [27]. After this transformation, only the
quadratic coupling remains, which is then evaluated in
the first order, similarly to Eq. (29). The resulting
expression given by Eqs. (49) and (50) in Ref. [27] is
equivalent to Eq. (39).

Using expression (39) for the scattering matrix ele-
ment in combination with Eqs. (21) and (13), we easily
recover the temperature dependence (18). The coeffi-
cient y takes the form

4
~ 15h508°
Equations (17), (18), and (41) provide a complete ex-
pression for the equilibration rate of a one-dimensional
quantum liquid in terms of the spectrum of hole exci-
tations and its dependences on the particle density n
and the momentum per particle .

X (41)

5. DISCUSSION

In this paper, we discussed the equilibration
of a one-dimensional quantum liquid of interacting
fermions. The conventional Luttinger liquid theo-
ry [8,9] of these systems neglects the processes of
backscattering. In many cases, this is an excellent
approximation because the corresponding scattering
rates are exponentially small at low temperatures,
Eq. (17). But the Luttinger liquid approximation does
not allow treating a number of interesting phenomena
in which the backscattering plays the crucial role.

One example is the conductance of a long uniform
quantum wire. The Luttinger liquid theory predicts
perfect conductance quantization in these devices, re-
gardless of the interaction strength [19-21]. On the
other hand, it is easy to show that at weak electron—
electron interactions, a correction to the conductance
appears due to the backscattering processes [22,23].
Interestingly, an expression for the conductance of a
quantum wire can be obtained for any interaction

strength [24],
(- )

The backscattering gives rise to a negative correction
to the quantized conductance, which grows with tem-
perature and with the length of the wire L. In short
wires, the correction 6G o 77! is exponentially small,
but it saturates at

62

G:%

w2 T2 L

s 42
3 v2p% L+ 2v7 (42)
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in long wires.

Temperature-dependent corrections to conductance
of quantum wire devices have been observed in multiple
experiments [40-42]. The data shows excellent quan-
tization of conductance at lowest temperatures and a
negative correction developing as the temperature is
increased. These observations are in qualitative agree-
ment with Eq. (42). In comparing the data with theory,
it is important to keep in mind that our discussion has
ignored spins, which appear to play an important role
in experiments. The result (42) can be generalized to
include spins [24], but the evaluation of the equilibra-
tion rate of a system with spins is still an open problem.
Another complication is that most experiments study
rather short wires, which cannot be treated as uniform.

Our discussion of the equilibration rate did not
assume the Galilean invariance of the system. On
the other hand, momentum conservation was assumed.
Hence, the results do not automatically apply to sys-
tems of interacting particles in periodic potentials, such
as spin chains. In such systems, umklapp scattering by
the external potential may facilitate equilibration. On
the other hand, electrons in GaAs quantum wires have
an essentially quadratic spectrum €, = p?/2m, where
m is the effective mass of the electron in this material.
Such an electron system is Galilei invariant, which leads
to a few simplifications. First, the Luttinger liquid pa-
rameter in this case is determined by the velocity of the
bosons, K = whn/muv. Second, the dependence of the
excitation energy on the momentum x has the simple
form [43]

cq(n, k) = =o(n) + Q. (43)

For momenta @ in the vicinity of pr, we can expand

(Q —pr)?
= A(n) — X _PF)
caln) = An) — 2L
and find
A2 20’

2N
v

Y, = K <A” + (44)

Substituting this in Eq. (41) recovers the results in
Ref. [26] for the equilibration rate in Galilei-invariant
systems obtained by a different technique. It is worth
noting that in this case, the equilibration rate is fully
determined by the density dependences of the velocity

of bosonic excitations v and the maximum energy of
the hole A.

m*v?
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Although our main focus was on interacting sys-
tems of fermions, the approach and the results should
be equally applicable to systems of bosons. Similar
techniques have been recently applied to dynamics of
dark solitons and mobile impurities in bosonic flu-
ids [37,38]. Finally, it is worth mentioning that in
integrable models, apart from energy and momentum,
there are multiple additional conserved quantities, and
one expects that no equilibration of the system should
take place. In particular one should find 7=! = 0. This
conjecture has been checked [26] for the Calogero—
Sutherland [44] and Lieb—Liniger [45] models. More
generally, one expects [27] that for integrable models,
the quantity Yo given by Eq. (40) should vanish for

any Q.
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