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SUBGAP STATES IN DISORDERED SUPERCONDUCTORSM. A. Skvortsov *, M. V. Feigel'man **Landau Institute for Theoretial Physis, Russian Aademy of Sienes142432, Chernogolovka, Mosow Region, RussiaMosow Institute of Physis and Tehnology141700, Mosow, RussiaReeived May 22, 2013Dediated to the memory of Professor Anatoly LarkinWe revise the problem of the density of states in disordered superondutors. Randomness of loal sampleharateristis translates to the quenhed spatial inhomogeneity of the spetral gap, smearing the BCS oher-ene peak. We show that various mirosopi models of potential and magneti disorder an be redued to auniversal phenomenologial random order parameter model, whereas the details of the mirosopi desriptionare enoded in the orrelation funtion of the order parameter �utuations. The resulting form of the densityof states is generally desribed by two parameters: the width � measuring the broadening of the BCS peak andthe energy sale �tail that ontrols the exponential deay of the density of subgap states. We re�ne the existinginstanton approahes for determination of �tail and show that they appear as limiting ases of a uni�ed theoryof optimal �utuations in a nonlinear system. The appliation to various types of disorder is disussed.DOI: 10.7868/S00444510130900951. INTRODUCTIONFormation of the superondutive state is inti-mately related to the suppression of the quasipartiledensity of states (DOS) in the viinity of the Fermi en-ergy. This e�et is most pronouned for s-wave paring,leading to a hard gap in the quasipartile spetrum.If the time-reversal invariane is not broken, the DOSfollows the standard BCS expression�BCS(E) = �0Re EpE2 ��2 ; (1)where �0 is the normal-metal DOS. Equation (1) ap-plies to both lean and disordered systems [1, 2℄, indi-ating that thermodynamis of superondutors is in-sensitive to single-partile dynamis if a trajetory hasits time-reversed ounterpart needed to form a Cooperpair (the Anderson theorem).Breaking the time-reversal symmetry (e. g., by mag-neti impurities [3℄, a superurrent [4℄, or a magneti�eld in small superonduting grains/�lms [5℄) lowers*E-mail: skvor�itp.a.ru**E-mail: feigel�landau.a.ru

the ritial temperature of the transition and smearsthe oherene peak in (1). Various depairing senariosare to a large extent equivalent [6℄ and an be desribedby a single dimensionless parameter� = 1�dep�0 ; (2)where ��1dep is the depairing rate assoiated with a par-tiular mehanism of time-reversal symmetry breakingand �0 is the average value of the order parameter.Aording to the general analysis of Abrikosov andGor'kov (AG) [3℄, the quasipartile spetrum remainsgapful for a su�iently weak pair breaking � < 1 (oth-erwise, gapless superondutivity is expeted). A newrenormalized gap edge is loated atEg(�) = (1� �2=3)3=2�0; (3)with the DOS vanishing as �(E) / (E � Eg)1=2 (seedotted line in Fig. 1).In their seminal paper in 1971, Larkin and Ovhin-nikov reognized that the BCS-like form of the DOSmay be smeared even if the time-reversal invariane isnot broken [7℄. They onsidered a phenomenologialmodel with a spatially varying Cooper-hannel inter-ation onstant �(r) = �0 + Æ�(r), and showed that560
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Fig. 1. Shemati view of the average DOS in a dirtysuperondutor (solid line). Broadening of the BCSpeak (dashed line) is mainly desribed by the semilas-sial approximation (dotted line), with the full DOSontaining a signi�ant tail of subgap statesshort-sale disorder in �(r) has two e�ets on the DOSpro�le: First, at the mean-�eld level, it is equivalent tothe AG model [3℄ with some e�etive deparing parame-ter �, thus leading to the oherene peak smearing, butstill with the hard gap at E = Eg . Seond, this hardgap is also smeared due to optimal �utuations of the�eld �(r), leading to the Lifshitz-type [8, 9℄ tail of �(E)in the subgap region E < Eg .The resulting form of the average DOS in a disor-dered superondutor is shown shematially in Fig. 1.Its main part is given by the AG theory (dotted line),with the oherent peak smearing ontrolled by an en-ergy sale � = �0 � Eg . This region orresponds touniform on�gurations of the superonduting orderparameter. By ontrast, the DOS tail at E < Eg origi-nates from the states loalized in traps where the orderparameter is lower than its average value �0. In thisregime, �(E) strongly �utuates in spae, with the aver-age DOS deaying typially as a strethed exponentialat an energy sale �tail < �:h�(E)i / exp"��Eg �E�tail ��# : (4)The appearane of su�iently deep traps is a rearevent, whih is naturally identi�ed with an instanton inthe semilassial equations of superondutivity. Work-ing in the dirty limit and studying optimal �utuationsin the Usadel equation [10℄, Larkin and Ovhinnikov(LO) [7℄ alulated the average subgap DOS,h�(E)iLO / exp���d(�) �20�df(0) "(8�d)=4� ; (5)

whih behaves as a strethed exponential of the dimen-sionless distane " from the gap edge," = Eg �EEg ; (6)with the power �LO = (8�d)=4 dependent on the spaedimensionality d1). In Eq. (5), �0 is the average valueof the order parameter, � =pD=2�0 is the superon-duting oherene length (D is the di�usion oe�ient),f(0) is the zero Fourier harmoni of the orrelationfuntion of the order parameter �utuations induedby quenhed disorder in �(r) (see Eq. (17) below), and�d(�) is a funtion of the dimensionless depairing pa-rameter � (see Eqs. (18) and (52) below).The power of " in Eq. (5) an be easily understoodwithin the optimal �utuation approah. Near the AGthreshold, as E ! Eg , the system is haraterized bya diverging length sale LE � �"�1=4 [7℄. To have aquasipartile state with an energy E = (1�")Eg belowthe mean-�eld gap, one has to loally redue the orderparameter by an amount Æ� � "�0 in a volume spe-i�ed by the length LE. The prie to be paid for suhan optimal �utuation sales as (Æ�)2LdE � "2�d=4; inaordane with the result (5).Preisely the same model of a �utuating Cooperonstant [7℄ in a dirty superondutor was reonsideredthirty years later by Meyer and Simons (MS) [11℄ in theframework of the nonlinear � model approah. Usingthe instanton analysis of the � model, they obtaineda somewhat di�erent optimal �utuation leading to adi�erent result for the tail of the subgap states:h�(E)iMS / exp���d(�) g� "(6�d)=4� ; (7)whih is also a strethed exponential but with a di�er-ent power �MS = (6 � d)=4. In addition, the instan-ton ation of Meyer and Simons is independent of theorder-parameter orrelation funtion f(r). Instead, itontains some funtion �d(�) of the depairing parame-ter � (see Eq. (43) below) and the dimensionless on-dutane g� (in units of e2=h) of the region of size �:g� = 4��D�d�2 = 8���0�d: (8)The appearane of the ondutane g� in the exponentin Eq. (7) indiates that this expression annot be ob-tained at the level of the saddle-point (Usadel) equationbut requires the use of the full nonlinear �eld theory.1) In Ref. [7℄ only the 3D ase with weak disorder, � � 1, wasonsidered, but generalization of this result to arbitrary dimen-sionality d is straightforward.8 ÆÝÒÔ, âûï. 3 (9) 561



M. A. Skvortsov, M. V. Feigel'man ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013Expression (7) for the density of subgap states hasbeen obtained for a variety of disordered superon-duting systems [11�15℄, where the semilassial ap-proximation predits a square-root vanishing of theDOS, �(E) / pE �Eg . In partiular, it was ob-served in hybrid normal-metal�superondutor (NS)systems [13; 14℄ and in bulk superondutors with mag-neti impurities [12; 15℄. Mathematially, it bears alose analogy to the Tray�Widom distribution for theDOS tail in the randommatrix theory (RMT) [16℄, gen-eralizing it from d = 0 to an arbitrary dimensionalityd. Based on these �ndings, it is widely believed thatEq. (7) provides a universal desription of the subgapDOS tail in disordered superondutors. However, thedisrepany with the analysis of Larkin and Ovhin-nikov existing at least for the model of the randomCooper hannel onstant remains unresolved.The purpose of this paper is to �ll this gap by lar-ifying the origin of the two types of instantons dis-ussed in Refs. [7℄ and [11℄ (leading to Eqs. (5) and (7)).We show that they orrespond to di�erent limits of aunique instanton solution realized for small and large ",respetively. Hene, the Larkin�Ovhinnikov instantonan be ontinuously deformed into the Meyer�Simonsinstanton by hanging the distane to the gap, ". Suhan unusual situation is a onsequene of the nonlinear-ity of the Usadel equation. Therefore, averaging overthe random order parameter �eld �(r) produes a non-linear term [8℄, whih ompetes with the intrinsi non-linearity of the problem. This should be ontrastedwith the problem of �utuation bound states in theShrödinger equation with a random potential [8, 9℄,where the only soure of nonlinearity is due to averag-ing over disorder.This paper is organized as follows. In Se. 2, weintrodue the random order parameter (ROP) modeland derive its e�etive ation in the large-sale limit.In Se. 3, we analyze the instanton solutions with thebroken replia symmetry and reover results (5) and (7)in di�erent limits. The summary and appliations ofthe ROP model are disussed in Se. 4. Gap smearingin superondutors with magneti impurities is reon-sidered in Se. 5. We onlude with a disussion of theresults in Se. 6. Tehnial details are relegated to theAppendix.2. RANDOM ORDER PARAMETER MODEL2.1. The modelWe start with the simplest example where the gapsmearing results from quenhed inhomogeneity in the

pairing potential,�(r) = �0 +�1(r); (9)whih is assumed to be a real Gaussian random �eldspei�ed by the orrelation funtionh�1(r)�1(r0)i = f(r� r0): (10)The funtion f(r) is supposed to be short-range, withthe orrelation length r shorter than the superon-duting oherene length2):r < �: (11)The superondutor is assumed to be in the dirty limitT� � 1, where � is the elasti sattering time.The main simpli�ation of this model, whih will bereferred to as the ROP model, is that �(r) is regardedas a given external �eld that should not be determinedself-onsistently.The phenomenologial ROP model universallyemerges as an intermediate step in studying varioustypes of disorder in the singlet ase, where spin e�etsan be negleted [7; 11; 17℄ (a more general situation isonsidered in Se. 5). The funtion f(r) in Eq. (10)then bears information on the original inhomogeneityin a partiular mirosopi model, see Se. 4.3.2.2. Sigma modelThe ROP model was treated by Larkin and Ovhin-nikov [7℄ in terms of the equations of motion (Usadelequation), and by Simons and o-authors [11; 12; 15℄within the nonlinear �-model formulation. Aiming toompare the two approahes, we hoose to work in thefuntional language of the di�usive �-model. To studythe DOS in a �eld of a given �(r) at a partiular en-ergy E, one an use either its supersymmetri or repliaversion. We prefer to deal with the real-energy replia�-model formulated in terms of the �eld Q(r) atingin the diret produt of the replia, Nambu, and spinspaes (the spin spae is redundant in the singlet aseonsidered here, but is used in studying magneti im-purities in Se. 5) [12; 18�21℄.Choosing the order parameter to be real, we writethe �-model ation asS = ��4 Z dr tr �D(rQ)2+4(iE�3��(r)�1)Q� ; (12)where �i are Pauli matries in the Nambu spae.2) The inequality (11) an be replaed by a weaker inequalityr < LE , where LE is given by Eq. (32).562



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Subgap states in disordered superondutorsAveraging over quenhed disorder in �(r) with thehelp of Eqs. (9) and (10), we arrive at the ation forthe �eld Q: S = S0 + Sdis; (13)whereS0 = ��4 Z dr tr �D(rQ)2+4(iE�3��0�1)Q� ; (14)Sdis = � (��)22 �� Z dr dr0 f(r�r0) tr[�1Q(r)℄ tr[�1Q(r0)℄: (15)2.3. E�etive long-wavelength ationThe term Sdis in Eq. (15) ontains an additionaltrae in the replia spae and therefore does not on-tribute to the replia-diagonal saddle-point equationof motion. Aording to Larkin and Ovhinnikov [7℄,in order to see the e�ets of disorder at the saddle-point level in the long-wavelength limit (with momentaq < q0), one has to average Sdis over fast �utuations ofthe �eld Q (ooperons and di�usons). This proeduregenerates an e�etive depairing term [11; 21℄S� = ����0�4 Z dr tr(�3Q)2; (16)where the oe�ient � is expressed in terms of theFourier transform of the order-parameter orrelationfuntion f(q) = h�1�1iq (17)as � = 2�0 Z f(q)Dq2 ddq(2�)d : (18)It is assumed in this derivation that the regions oflarge momenta (q > q0) ontributing to Eq. (18) andsmall momenta (q < q0) for whih we derive an e�e-tive theory are well separated. This is true in 3D [7℄,marginally true in 2D [17℄ and wrong in 1D (see Se. 4.2for the details).Having eliminated short-range degrees of freedom,we obtain an e�etive long-range (r � r) ation forthe �eld Q: S = S0 + S� + Sdis; (19)where S0 is given by Eq. (14), S� is given by Eq. (16),and Sdis an be written in the loal form

Sdis = � (��)22 f(0) Z dr [tr �1Q(r)℄2: (20)At this stage, we an trae the di�erene betweenthe approahes in Refs. [7℄ and [11℄. To reproduethe analysis of Larkin and Ovhinnikov [7℄, we haveto deouple the term Sdis (Eq. (20)) with the Gaus-sian white-noise order parameter �eld �1(r) and treatthe resulting problem in the saddle-point approxima-tion assuming the solution to be replia symmetri. Aswe see in Se. 3.4, in terms of the Q-only ation in (19)this orresponds to instanton solutions with in�nitesi-mally small replia symmetry breaking. On the otherhand, Meyer and Simons [11℄ did not use the saddle-point approximation but ompletely negleted the termSdis that aounts for long-range �utuations of theorder-parameter �eld. Their instanton solution orig-inating from the nonlinearity of the underlying �eldtheory has a nontrivial replia struture disussed inSe. 3.3. Below, we analyze the ation in (19) andlarify the validity of approximations used in Refs. [7℄and [11℄.3. OPTIMAL FLUCTUATIONS IN ANONLINEAR SYSTEM3.1. Saddle-point equationsHere, we analyze the saddle points of ation (19)that have the replia-diagonal form:(Q0)ab = Æab [�3 os �a + �1 sin �a℄ ; (21)where Latin indies refer to the replia spae and thespetral angle �a(E) depends on the energy onsidered.The simplest is the replia-symmetri saddle point,with �a = �0 for all a = 1; : : : ; n. For a replia-symmetri solution, the ations S0 and S� are propor-tional to the number of replias n, whereas the ationSdis is proportional to n2 and does not ontribute tothe saddle-point (Usadel) equation in the replia limitn ! 0. Then the saddle-point equation for a uniformQ0 immediately reprodues the AG equation for thespetral angle in the model of magneti impurities [3℄:iE sin �0 +�0 os �0 ��0� os �0 sin �0 = 0: (22)The orresponding DOS �(E) = �0Re os �0, hara-terized by the hard gap at Eg (Eq. (3)), is shown bythe dotted line in Fig. 1.The subgap states are assoiated with loalizedsaddle-point solutions with broken replia symme-try [11℄. To study them, it is onvenient to write [12; 14℄�a = �=2 + i a: (23)563 8*



M. A. Skvortsov, M. V. Feigel'man ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013The replia-symmetri mean-�eld solution  a =  0 isreal for E < Eg , and the appearane of a �nite DOS isrelated to on�gurations with omplex  .The set of saddle-point equations for ation (19) interms of the angle  takes the form��2r2 a + F ( a) + � sh aXb h b = 0; (24)where � is the oherene length, �2 = D=2�0, the pa-rameter � is related to the low-momentum orrelatorof the order parameter �utuations:� = 4��f(0)�0 = g�2 f(0)�20�d ; (25)and the funtion F ( ) is given byF ( ) = � E�0 h + sh � � sh h : (26)The equation F ( ) = 0 is equivalent to AG equa-tion (22).Behavior of the funtion F ( ) for real argumentsdepends on the relation between E and Eg . Below thegap (E < Eg), the equation F ( ) = 0 has two solu-tions:  0 (the AG solution) and  0 >  0. They mergeat E = Eg, where an analyti solution is possible, yield-ing h g = ��1=3: (27)Above the gap (E > Eg), the equation F ( ) = 0 hasno real solutions. For small deviation from the gap,E ! Eg , the funtion F ( ) an be expanded near theAG solution asF ( ) � 
( �  0)� �( �  0)2; (28)with the dimensionless parameters
 = (1� �2=3)p6"; � = 32�1=3p1� �2=3; (29)where " is de�ned in Eq. (6).3.2. Instantons with broken replia symmetryWe now onentrate on solutions of Eqs. (24)with the simplest nontrivial struture in the repliaspae [11℄:  a(r) = ( 1(r); a = 1; 2(r); a = 2; : : : ; n: (30)

Suh a solution is haraterized by two funtions,  1(r)and  2(r), whih satisfy the system of two oupled non-linear equations (24), whereXb h b = h 1 � h 2 (31)in the replia limit (n! 0).System (24) simpli�es in the viinity of the gapedge, E ! Eg , where variations of  1(r) and  2(r) aresmall and the replia-mixing term an be linearized.To write the resulting equations in dimensionless form,we measure distane in units of the divergent lengthsale [7℄ LE = �p
 � �� EgEg �E�1=4 (32)and write  1;2(r) =  0 + (
=�)�1;2(r): (33)As a result, we arrive at the system�r2�1 + �1 � �21 = K(")(�2 � �1); (34a)�r2�2 + �2 � �22 = K(")(�2 � �1): (34b)The replia mixing is ontrolled by the single dimen-sionless parameter K("):K(") =r"�" ; (35)where the energy sale "� is given by"� = �26�4=3 = g2�24�4=3 � f(0)�20�d�2 : (36)Su�iently lose to the gap edge, at " . "�, theparameter K(") is large and equations for �1(r) and�2(r) are strongly oupled. Small values of K(") anbe realized only for large deviations from the gap, at" & "�.With the exponential auray, the subgap DOS isdetermined by the instanton ation:h�(E)i / exp��d(�) g� "(6�d)=4S0[K(")℄� ; (37)where g� given by Eq. (8) is the dimensionless ondu-tane of the region of size �,d(�) = 43 6(2�d)=4 (1� �2=3)2�d=2�2=3 ; (38)and S0(K) = 16 Z (�32 � �31) dr (39)is the dimensionless instanton ation.564



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Subgap states in disordered superondutorsWe note that the energy dependene of the averageDOS in (37) omes from both the fator "(6�d)=4 andthe energy dependene of the parameter K("). Below,we analyze solutions of Eqs. (34) in the limit ases ofsmall and large values of K and identify them with theMeyer�Simons and Larkin�Ovhinnikov instantons, re-spetively.3.3. Instanton in the limit K! 0In the limit K ! 0, Eqs. (34) deouple, yielding asingle equation �r2�+ �� �2 = 0 (40)for both �1(r) and �2(r). This equation has three solu-tions: two onstant solutions �(r) = 0 (orrespondingto the AG solution) and �(r) = 1, and a spheriallysymmetri boune �(d)inst(r) vanishing as r ! 1. Theboune solution of Eq. (40) is known expliitly in the1D geometry: '(1)inst(r) = 32 h2(r=2) ; (41)and an be obtained numerially for other dimensional-ities. The instanton ation is determined by the num-ber sd � 16 Z ['(d)inst(r)℄3dr =8><>:6=5; d = 1;7:75; d = 2;43:7; d = 3: (42)To minimize ation (39), we take the trivial AGsolution �1(r) = 0 for the �rst replia and hoose aboune solution, �2(r) = '(d)inst(r), for the other repli-as. Hene, S0(0) = sd and Eq. (37) reprodues theresult (7) of Refs. [11℄ and [12℄ with�d(�) = sdd(�): (43)3.4. Instanton for K!1, optimal �utuation,and dimensional redutionIn the limit K ! 1, the last terms in Eqs. (34a)and (34b) render �1(r) and �2(r) nearly equal. So wemay expand their di�erene in powers ofK�1 and write�1(r) = �(r); �2(r) = �(r) +K�1�(r) + : : : (44)Substituting this expansion in Eqs. (34a) and (34b), weobtain �r2�+ �� �2 = �; (45a)�r2�+ �� 2�� = 0: (45b)

Eliminating �(r), we ome to a fourth-order di�erentialequation for �(r):[�r2 + 1� 2�℄[�r2�+ �� �2℄ = 0: (46)Equation (46) naturally appears in the study of op-timal �utuations in the nonlinear equation�r2�+ F (�) = h(r); (47)where F (�) = ���2 and h(r) is a Gaussian Æ-orrelatedrandom �eld [7℄. Optimal �utuation arguments [8, 9℄lead to the minimization of the funtionalZ h2dr = Z [�r2�+ F (�)℄2dr;and hene to the saddle-point equation[�r2 + F 0(�)℄[�r2�+ F (�)℄ = 0; (48)oiniding with Eq. (46). Thus we see that in thereplia formalism, the role of the random �eld h(r) isplayed by the mismath of solutions for di�erent repli-as: �(r) / �2(r)� �1(r):We note that those �(r) solving Eq. (40) also solveEq. (46). But none of them orrespond to an optimal�utuation sine they have h = 0 and do not lead toa �nite DOS. Therefore, we have to look for anothersolution of Eq. (46). Quite surprisingly, for the spheri-ally symmetri solutions �(r), there exists an identityvalid for an arbitrary funtion F (�) and an arbitraryd [22℄:���(d)rad + F 0(�)����(d)rad�+ F (�)� == ���(d+2)rad + F 0(�)����(d�2)rad �+ F (�)�; (49)where �(d)rad = 1rd�1 ��r rd�1 ��r (50)is the radial part of the Laplae operator in d dimen-sions.Hene, there is a kind of dimensional redution: anontrivial optimal �utuation in d dimensions solvingEq. (46) is just the boune solution of Eq. (40) in d� 2dimensions. We note that a somewhat similar dimen-sional redution was obtained in Ref. [23℄ for the ritialbehavior of spin systems in a random magneti �eld.The instanton ation (39) is given byS0(K) = 12K Z �2�dr = 12K Z �2 dr; (51)565



M. A. Skvortsov, M. V. Feigel'man ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013where the last relation follows from Eqs. (45a)and (45b). In the optimal �utuation language,exp[�S(K)℄ is just the probability density for theGaussian random �eld �(r). Substituting Eq. (51) inthe general expression (37), we arrive at the result (5),where �d(�) = 16 � 6�d=4d (1� �2=3)2�d=2; (52)and d = limK!1KS0(K) is a d-dependent onstant:d = 2 Z ��'(d�2)inst (r)�r �2 drr2 = 8><>:0:266; d = 1;2:09; d = 2;24�=5; d = 3: (53)In the 3D ase and at � � 1, Eq. (5) oinideswith the result of Ref. [7℄ (where only this limit wasonsidered). Therefore, our instantons in the limitK ! 1 diretly orrespond to the optimal �utua-tions of Larkin and Ovhinnikov, and dimensional re-dution (49) explains why they managed to �nd an ex-pliit analyti expression for the optimal �utuation inthe 3D ase: �(3)(r) = '(1)inst(r), with the right-handside given by Eq. (41).3.5. Intermediate values of KTwo types of instantons analyzed above ontinu-ously interpolate between eah other with variation ofK. As an example, we show numerial solutions of 1Dequations (34a) and (34b) for some intermediate valuesof K in Fig. 2. For small but �nite K, the respetivesolutions �1(r) and �2(r) start to deviate from 0 and'(d)inst(r), moving towards eah other. Already atK = 1they are lose, approahing the asymptote '(d�2)inst (r) asK !1.Hene, inreasing the deviation from the gap edgeinto the lassially forbidden region leads to a grad-ual rossover from the Larkin�Ovhinnikov to theMeyer�Simons instanton. The rossover takes plae atthe dimensionless energy "� given by Eq. (36). Equi-valently, the energy an be estimated just by equatingthe results (5) and (7).4. RANDOM ORDER PARAMETER MODEL:SUMMARY AND APPLICATIONSHaving established the replia struture of the in-stantons in the ROP model, we now omment on thelimits of validity of the above analysis and onsider var-ious appliations of the ROP model in a more generalontext.
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Fig. 2. Numerial solutions of Eqs. (34a) and (34b) in1D geometry (d = 1) for various values of the replia-mixing parameter K. For K = 0, �1(x) = 0 and�2(x) = '(1)inst(x) (the upper thik urve). Solutionsfor intermediate values (K = 0:2 and K = 1) areshown by the thin solid lines. In the limit K ! 1,�1(x) and �2(x) approah the asymptote '(�1)inst (x) (thethik dashed line)4.1. Validity of the instanton analysisOur analysis was based on two impliit assump-tions: 1) the large instanton ation allowing the use ofthe saddle-point approximation, and 2) a small devia-tion from the gap edge, " � 1, that allows expandingEq. (26) and obtaining the universal system (34). Onewe know the resulting expressions (5) and (7) for theDOS tails (at " � "� and " � "�, respetively), wean verify these assumptions a posteriori. Dependingon the relations between the parameters of the ROPmodel, we an identify the following regimes.I: f(0)�20�d < ��2=3g� �(8�d)=(6�d) :The tail is desribed by Eq. (7) for all ". The Larkin�Ovhinnikov tail does not exist beause the orrespond-ing ation is smaller than 1.IIA. ��2=3g� �(8�d)=(6�d) < f(0)�20�d < �2=3g� :The main part of the tail (for small " < "�) followsLarkin�Ovhinnikov result (5). Tail (7) exists at large" > "�, where it is extremely small.IIB. �2=3g� < f(0)�20�d :The tail follows Larkin�Ovhinnikov result (5) for all". Tail (7) does not exist.566



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Subgap states in disordered superondutorsIn eah regime, only one type of instantons is im-portant. The other one is either nonexistent or unob-servable. 4.2. Role of dimensionalityLarkin and Ovhinnikov's approah [7℄ to the ROPmodel is based on the idea of separation of sales: short-sale �utuations of �(r) produe an e�etive depair-ing � leading to the formation of the AG-like hard gap,whereas long-sale �utuations are responsible for thegap smearing. Due to the presene of the di�usive polein the integrand in Eq. (18) for �, the possibility ofsuh separation depends on the dimensionality of theproblem.In 3D, the integral in Eq. (18) is determined by largemomenta, q � r�1 , where r is the orrelation lengthof the �utuating �eld �1(r), leading to the estimate�3D = 12�2�20�2 1Z0 f(q)dq � f(0)2�2�20�2r : (54)The long-wavelength theory in (19) is then appliablealready for sales r & r.The 2D ase is marginal beause the integral inEq. (18) is logarithmi. Its upper uto� is again givenby r�1 , whereas the lower limit must be determinedwith are. Aording to Ref. [17℄, with logarithmi a-uray an appropriate uto� is established by replaingDq2 ! Dq2 +D=L2E;where the length LE is de�ned in Eq. (32). As a result,the depairing fator beomes energy-dependent:�2D(E) = 12� f(0)�20�2 ln min(LE; Lg)r ; (55)where we had to introdue an infrared length saleLg in order to regularize the otherwise divergent�2D(E ! Eg). Its appearane is related to the break-down of the mean-�eld approximation in the narrowregion jE � Eg j . �tail, where proliferation of instan-tons generates a �nite orrelation lengthLg � �(Eg=�tail)1=4:Here, the Meyer�Simons (Larkin�Ovhinnikov) expres-sion for �tail must be used if regime I (II) is realized(see the disussion in Se. 4.1).In 1D, integral (18) is divergent in the infrared, in-diating that analyti treatment based on the idea ofsale separation is not possible, and �tail � �.

4.3. Appliations of the ROP model4.3.1. Random oupling onstant modelThis is the model initially onsidered by Larkin andOvhinnikov [7℄. It an be redued to the ROP modelin the following way. A �utuating Cooper onstantintrodues quenhed �utuations in the order param-eter �eld, whih should be determined from the self-onsisteny equation. The latter an be written in theMatsubara representation and solved perturbatively.In the linear order, we have [7℄��10 �1(q) + Æ��1(q)�0 == �TX" �F (";q)��(q) �1(q); (56)where F (";q) is the Fourier transform of the semi-lassial Gor'kov funtion F ("; r) = sin �("; r), and itsderivative with respet to �1 an be obtained from theUsadel equation. Solving for �1(q), we arrive at thelinear relation�1(q) = ��0L0(q) Æ��1(q); (57)where L0(q) is the stati propagator of superonduting�utuations in the BCS theory,L�10 (q) = �TX" �20 + E(")Dq2=2E2(")[E(") +Dq2=2℄ ; (58)and E(") =q"2 +�20: (59)At zero temperature, integration over Matsubara en-ergies " an be performed analytially [7; 11℄, leadingtoL0(q) = 2~q2� � 4p1� ~q4 artgs1� ~q21 + ~q2 == (1� �~q2=4 + : : : ; ~q � 1;1= ln ~q2 + : : : ; ~q � 1; (60)where ~q = q�.We thus arrive at the ROP model spei�ed by theorrelation funtionf(q) � h�1�1iq = �20L2(q)hÆ��1Æ��1iq: (61)The random oupling onstant model an bemapped onto the ROP model as long as �utuationsof �(r) are weak (the resulting depairing parameter� � 1). Otherwise, it is not su�ient to use the�rst-order perturbation theory in Eq. (56).567



M. A. Skvortsov, M. V. Feigel'man ÆÝÒÔ, òîì 144, âûï. 3 (9), 20134.3.2. Gap �utuations in NS systemsThe simplest setup where disorder leads to the for-mation of subgap states is the model of the NS jun-tion [13; 14℄. Here, superondutive orrelations areindued into the normal metal due to the proximitye�et, opening the (mini)gap in the exitation spe-trum [24℄. In a long di�usive juntion (with a sizeL � �), the minigap is of the order of the Thoulessenergy: Eg � ETh = D=L2 [25; 26℄. In the normal partof the juntion, the order parameter is absent and theonly soure of disorder is due to the random positionof potential impurities. These mesosopi �utuations(MF) are known to be responsible for various sample-to-sample �utuations suh as universal ondutane�utuations [27℄, mesosopi �utuations of the Joseph-son urrent [28; 29℄, et. [30℄.The DOS tail due to mesosopi �utuations in NShybrid systems [13; 14℄ follows the result (7). Thissheds light on the physial origin of the instanton ofthe ation S0 + S� disussed in Se. 3.3: it desribesthe DOS smearing due to mesosopi �utuations of thequasipartile response to a onstant (for this partiu-lar problem, zero) order parameter. In other words,randomness of the impurity positions translates into�utuations of the quasipartile Green's funtion Q(r).4.3.3. Mesosopi �utuations of the orderparameterIn disordered superondutors, mesosopi �u-tuations lead to �utuations of the order parame-ter [17; 31℄. These are generated by �utuations of Q(r)if the self-onsisteny equation is taken into aount.In the 2D ase and in the presene of the Coulombinteration, the order parameter orrelation funtionwas alulated in Ref. [17℄. The orrelation lengthof these �utuations is of the order of the zero-temperature oherene length, r � �(0). Their mag-nitude at T = 0 and q = 0 is given byfMF+Coulomb2D (0)�20�2 = 2�g(g � g) ; (62)where g = ln2(~=T0�)=2� is the ritial ondutanefor the fermioni mehanism of superondutivity sup-pression [32℄ (T0 is the transition temperature in thelean system and � is the elasti sattering time).Evaluating the depairing parameter from Eq. (55),we �nd that regime IIB is always realized (see Se. 4.1).Therefore, gap smearing in homogeneously disorderedsuperonduting �lms is always desribed by theLarkin�Ovhinnikov mehanism leading to Eq. (5), andthere is no room for the Meyer�Simons instanton [17℄.

For ompleteness, we present here the general ex-pression for the orrelation funtion of the order pa-rameter due to mesosopi �utuations at an arbitraryspae dimensionality d but in the absene of Coulombe�ets:fMF (q) = L20(q)�20T 2�2 ��X";" Z �""0(k)�""0 (k � q)E(")E("0) ddk(2�)d ; (63)where E(") is de�ned in Eq. (59) and�""0 (k) = [Dk2 + E(") + E("0)℄�1is the di�usion propagator on top of the BCS state. Inpartiular, at T = 0 and q = 0, we obtainfMF (0)�20�d � 1g2� : (64)Sine mesosopi �utuations are inevitably present inany disordered system, Eq. (64) is the lower bound forthe order parameter �utuations in disordered super-ondutors.5. MAGNETIC IMPURITIES5.1. Abrikosov�Gor'kov modelWe now turn to the situation where the BCS oher-ene peak is smeared by magneti disorder. We restritourselves to the AG model [3℄ of Gaussian point-likemagneti impurities (a more general ase will be on-sidered elsewhere [33℄) spei�ed by the orrelation fun-tion of the exhange �eld:hhi(r)hj(r0)i = Æij Æ(r� r0)6���s ; (65)where �s is the spin-�ip sattering time, whih playsthe role of the pair-breaking time that determines thepair-breaking parameter� = 1�s�0 : (66)The vetor h is three-dimensional, while the e�etivedimensionality of the sample may be di�erent.Formation of the subgap states in a superondu-tor with weak magneti impurities was studied byLamaraft and Simons [12℄, who ame to the result es-sentially oiniding with Eq. (7). However, inspired bythe preeding analysis of the ROP model, we may ex-pet that there should be instantons related to optimal568



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Subgap states in disordered superondutors�utuations of the exhange �eld h and/or the orderparameter �eld �(r), leading to the Larkin�Ovhinni-kov tail (5). Below, we study this instanton ontribu-tion and demonstrate that the main part of the subgapDOS tail an be desribed either by the Lamaraft�Simons or by the Larkin�Ovhinnikov results, depend-ing of the values of g� and � (see Se. 5.4). In thease where the tail is due to the Larkin�Ovhinnikovoptimal �utuation, it arises as a result of mesosopi�utuations of the order parameter.5.2. Sigma-model ationWe use the real-energy replia �-model introduedin Se. 2.2. Before averaging over magneti disorder,the initial ation expanded to the seond order in theimpurity magnetization h(r) takes the form [21℄S = S0 + S1 + S2; (67)where S0 is the ation for the uniform superondutorgiven by Eq. (14) and the terms S1;2 desribe magnetiimpurities: S1 = �i�� Z dr h(r) tr(�3�Q); (68)S2 = � (��)22 Z drhi(r)hj(r0) tr��3�iQ�3�jQ�; (69)where �i are Pauli matries in the spin spae.Averaging over h with the orrelation funtion (65)generates two terms, S� = hS2i and Sdis = �hS21i=2,with di�erent strutures in the replia spae:S� = ����0�12 Z dr tr(�3�Q)2; (70)Sdis = ���0�12 Z dr (tr �3�Q)2; (71)where the depairing parameter � is given by Eq. (66).As a result, the e�etive ation desribing gap �utu-ations in the presene of a Gaussian short-range mag-neti disorder takes the formS = S0 + S� + Sdis: (72)The struture of the terms S� (Eq. (70)) and Sdis(Eq. (71)) is quite similar to that of the analogousterms, (16) and (15), in the ROP model. We notethat in ontrast to the ROP model, the depairing termS� is generated automatially after averaging over Æ-orrelated magneti disorder.In the analysis of ation (72), Lamaraft and Si-mons [12℄ onsidered only singlet on�gurations of the�eld Q(r). Then the term Sdis an be disarded, while

the term S� just oinides with the analogous term (16)in the ROP model. In the absene of a �eld responsi-ble for optimal �utuations, the authors of Ref. [12℄reprodued the result (7).5.3. E�etive �utuators in the singlet setorTo go beyond the analysis of Ref. [12℄, we have toidentify an e�etive �utuator in the singlet setor thatmight be responsible for the Larkin�Ovhinnikov op-timal �utuation at " � "� (K ! 1). We fouson the singlet setor beause it beomes massless asE ! Eg , whereas the triplet does not (see Eqs. (A.3)and (A.11)). Therefore, the instanton solution with thestrethed-exponential ation of type (4) an arise onlyin the singlet omponent of Q(r).There are several soures of �utuations in the sin-glet setor.1) Mesosopi �utuations of the order parameterwith the orrelation funtion given by Eq. (64). Theyarise due to �utuations of potential impurities and areinsensitive to weak magneti disorder.2) Flutuations in the singlet omponent of theGreen's funtion Q(r) generated via its triplet om-ponent due to the nonlinearity of the Usadel equation(referred to as diret �utuations). These �utuationsan be desribed in terms of an e�etive order param-eter �eld �(�)1 (r). Its orrelation funtion is alulatedin the Appendix. In the limit T = 0 and q = 0, it anbe estimated as f (�)(0)�20�d � �(4+d)=6g2� : (73)3) Flutuations of the order parameter due to ran-domness in h (referred to as indiret �utuations) al-ulated in the Appendix. In the limit T = 0 andq = 0, the orresponding orrelation funtion an beestimated as f(0)�20�d � �2g2� : (74)The presene of the fators g2� in the denominators ofEqs. (73) and (74) an be easily explained. Due to thevetor struture of the random �eld h(r), an e�etive�utuator in the singlet setor is proportional to h2,with its variane f saling as hh2i2 / ��2 / g�2� :5.4. The resultComparing Eqs. (64), (73), and (74), we onludethat mesosopi �utuations of the order parameter arethe leading soure of disorder in �(r) for the magneti569



M. A. Skvortsov, M. V. Feigel'man ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013impurities model. Therefore, there is a ompetitionof Larkin�Ovhinnikov result (5) with f(0) given byEq. (64) and Lamaraft�Simons dependene (7). A-ording to Se. 4.1, the winner depends on the valuesof g� and �.Regime I is realized forg� > ��2(8�d)=3(4�d):The subgap DOS follows Eq. (7).Regime II is realized forg� < ��2(8�d)=3(4�d):The subgap DOS follows Eq. (5).6. CONCLUSIONThis work was motivated by the disrepany be-tween the two instanton approahes to the problem ofthe subgap states in disordered superondutors. Wehave analyzed the replia struture of a generi in-stanton solution and demonstrated that the instan-ton of Larkin and Ovhinnikov [7℄ an be ontinu-ously deformed to the instanton of Simons and oth-ers [11; 12; 15℄ with dereasing the energy into the las-sially forbidden region.The existene of two di�erent instanton types is re-lated to the presene of two types of disorder in the sys-tem: (i) the potential disorder responsible for di�usivemotion of eletrons and (ii) extra randomness in someother harateristis of the sample, e. g., the Cooperoupling onstant, the order parameter �eld, the ran-dom spin exhange �eld, et. In the semilassial the-ory of dirty superondutors, the potential (type-i) dis-order is averaged out at the very beginning. The re-sulting Usadel equations are nonlinear already in theabsene of type-ii disorder. Averaging over disorderbrings an additional nonlinearity, whih ompetes withthe intrinsi nonlinearity of the problem. The relativestrength of the two nonlinear terms is ontrolled bythe proximity to the gap edge. For " � "�, intrinsinonlinearity is not important and the situation is sim-ilar to the problem of the linear Shrödinger equationwith disorder. The instanton then orresponds to theoptimal �utuation of the random �eld, yielding theLarkin�Ovhinnikov result (5). In the opposite limit" � "�, only the intrinsi nonlinearity of the problemis relevant. The nonlinear equations of motion still al-low a boune solution orresponding to the instantonof Simons and others.Physially, the instanton of Larkin and Ovhinnikovdesribes an optimal �utuation of the order parameter

�eld, whih dereases the loal value of the gap. Theinstanton of Simons and others desribes mesosopi�utuations of quasipartile response at a �xed valueof the order parameter.Depending on the parameters of the problem, itmight happen that the instanton ation at the rossoverenergy " � "� would be smaller than 1. In this situa-tion, the Larkin�Ovhinnikov instanton does not existand the density of subgap states is desribed by Eq. (7).Otherwise, the main part of the tail is desribed byEq. (5), while its far asymptoti form (7) is pratiallyunobservable.This general struture of the subgap DOS tail is an-alyzed for a number of superonduting problems withdisorder. In partiular, we reonsidered the gap smear-ing in the Abrikosov�Gor'kov model of weak paramag-neti impurities [12℄ and showed that depending on theparameters of the problem, the DOS tail is desribedeither by Eq. (5) or by Eq. (7).Finally, we emphasize that our analysis applies todirty superondutors and NS hybrids with di�usiveeletron dynamis desribed by the Usadel equation.Muh less is known on the nature of the proximity gapin ballisti haoti systems whih is determined bythe ompetition of the mean free time, the Ehrenfesttime, and the esape time [34�36℄. Going beyond themean-�eld analysis and generalizing our �ndings tothat type of systems remains an open problem.We thank Ya. V. Fominov and S. E. Korshunovfor useful disussions. This work was supported inpart by the Russian Ministry of Eduation and Siene(Contrat � 8678), the program �Quantum mesosopiand disordered strutures� of the RAS, and the RFBR(grant � 13-02-01389).APPENDIXDisorder in the singlet setor due to magnetiimpuritiesIn this Appendix, we alulate the orrelation fun-tions of e�etive disorder in the singlet setor due torandomness in h(r).1. Triplet Usadel equationIndued magnetization an be desribed with thehelp of the triplet Usadel equations. FollowingRef. [37℄, we parameterize the Q matrix in terms of570



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Subgap states in disordered superondutorsthe spetral angle � and the magnetization vetor MasQ0 =M0�0(�3 os � + �1 sin �) ++ iM � �(�3 sin � � �1 os �); (A.1)whereM0 = p1 +M2. The resulting equations for thesinglet (�) and triplet (M) omponents in the Matsub-ara representation have the form [21℄D2 r2� +M0 (�" sin � +�0 os �)� (h �M) os � ���0��1 + 23M2� sin � os � = 0; (A.2a)D2 �Mr2M0 �M0r2M�+M(" os � +�0 sin �)��M0h sin �0 + 13�0�M0M os 2� = 0: (A.2b)In the absene of h, we haveM = 0 and the spetral an-gle �0(") should be obtained from AG equation (22) an-alytially ontinued to Matsubara energies, iE ! �".The linear response of the magnetization M to the�eld h an be found from triplet equation (A.2b), whihin the momentum representation yieldsM(q) = sin �0�2q2 + �t(") h(q)�0 ; (A.3)where�t(") = "�0 os �0(") + sin �0(") + �3 os 2�0(") (A.4)has the meaning of a mass of the triplet modes. Ex-panding singlet equation (A.2a) to the seond order inh and using Eq. (22) we then obtain� �2r2� + ("=�0) sin � �� os � + � sin � os � = �(r); (A.5)where�"(r) = ��M26 sin �0(") os �0(")�� h �M�0 os �0(") (A.6)ats as an e�etive soure of singlet �utuations.A nonzero average h�"(r)i leads to a renormaliza-tion of �0 and �, while the strength of disorder in the

singlet setor is determined by the irreduible orrela-torhh�"�"0iiq = �2 sin 2�0 sin 2�0096(���0)2 �� Z Z"(k; q)Z"0(k; q) ddk(2�)d ; (A.7)where �0 = �0("), �00 = �0("0),Z"(k; q) = �"(k) + �"(k � q) ++ � sin2 �0(")3 �"(k)�"(k � q); (A.8)and �"(q) = 1�2q2 + �t(") (A.9)is the triplet di�usion propagator on top of the AGstate.Further analysis goes di�erently for diret and in-diret �utuations of �(r).2. Diret �utuations of �Aording to Eq. (A.5), the behavior of quasiparti-les with energy " in the �eld of a �utuating �"(r) andonstant �(r) = �0 is formally equivalent to behaviorin the �eld of a �utuating order parameter with�(�)1 (r) = �0�"(r)os �0(") : (A.10)For the problem of the DOS tail, we need real energiesnear the gap edge, " = �iE ! �iEg . Sine the tripletsetor remains massive at the edge, we an simply eval-uate �" right at " = �iEg , when�t(�iEg) � �2r�2s = 43�1=3�1� 12�2=3� : (A.11)Here, rs is the spin-rigidity length at the gap edge,whih is �nite in ontrast to the divergent length LEin the singlet setor (Eq. (32)).Flutuations of the �eld �(�)1 (r) are haraterizedby the irreduible orrelatorf (�)(q) = hh�(�)1 �(�)1 iiq;whih an be extrated from Eqs. (27), (A.7),and (A.10):f (�)(q) = �4=324(��)2 Z Z2�iEg(k; q) ddk(2�)d ; (A.12)571



M. A. Skvortsov, M. V. Feigel'man ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013where in alulating Z�iEg(k; q) it should be taken intoaount thatsin �0(�iEg) = h g = ��1=3:The orrelation length of the �eld �(�)1 (r) is of the or-der of rs, and the zero-momentum orrelation funtionan be estimated asf (�)(0)�20�d � �4=3g2� �rs� �4�d ; (A.13)leading to Eq. (73).3. Indiret �utuations of �The �eld �"(r) also a�ets quasipartile behaviorindiretly by induing quenhed inhomogeneity in theorder parameter �eld. Flutuations of �(r) an be ob-tained from the linearized self-onsisteny equation (f.Eq. (56)):��1�1(q) == �TX" ��F (";q)��(q) �1(q) + ÆF (";q)� ; (A.14)where ÆF (";q) = Æ sin �(";q) is a �utuating part ofthe anomalous Matsubara Green's funtion evaluatedat a onstant �(r) = �0. Solving for �1(q), we obtain�1(q) = L0(q)�TX" ÆF (";q); (A.15)where L0(q) is the stati �utuation propagator on topof the AG solution with a �nite � (note that Eq. (60)refers to the BCS ase with � = 0). It is given byL�10 (q) = �T�0 X" �sin �0(")� os2 �0(")�2q2 + �s(")� ; (A.16)where �s(") is the mass of the singlet modes (f.Eq. (A.4)):�s(") = "�0 os �0(")+ sin �0(")+� os 2�0("): (A.17)In the nonmagneti ase (� = 0), Eq. (A.16) redues toEq. (60).The orretionÆF (";q) = os �0(") Æ�(";q)indued by magneti disorder follows from Eq. (A.5):ÆF (";q) = os �0(") �"(q)�2q2 + �s(") : (A.18)

For the irreduible orrelator f(q) = hh�1�1iiq, weobtainf(q) = L20(q)(�T )2 ��X";"0 os �0(") os �0("0)hh�"�"0iiq[�2q2 + �s(")℄[�2q2 + �s("0)℄ : (A.19)The �eld �1(r) is orrelated at the sale of the zero-temperature oherene length, r � �(0), and its orre-lation funtion at T = 0 and q = 0 is given by Eq. (74).We note that in the limit � � 1, the orrela-tion funtion of indiret �utuations is muh smallerthan the orrelation funtion of diret �utuations(Eq. (A.13)). This is a onsequene of the fat that�(�)1 aumulates �utuations from the region of thesize of the spin length rs, whereas �1 aumulates �u-tuations from the muh smaller region of the size of theoherene length �.REFERENCES1. A. A. Abrikosov and L. P. Gor'kov, Zh. Eksp. Teor.Fiz. 35, 1558 (1958); 36, 319 (1959) [JETP 8, 1090(1959); 9, 220 (1959)℄.2. P. W. Anderson, J. Phys. Chem. Sol. 11, 26 (1959).3. A. A. Abrikosov and L. P. Gor'kov, Zh. Eksp. Teor.Fiz. 39, 1781 (1960) [JETP 12, 1243 (1961)℄.4. A. Anthore, H. Pothier, and D. Esteve, Phys. Rev.Lett. 90, 127001 (2003).5. K. Maki, Prog. Teor. Phys. (Kyoto) 29, 333 (1963);31, 731 (1964).6. K. Maki, in Superondutivity, ed. by R. D. Parks, Mar-el Dekker, New York (1969), p. 1035.7. A. I. Larkin and Yu. N. Ovhinnikov, Zh. Eksp. Teor.Fiz. 61, 2147 (1971) [JETP 34, 1144 (1972)℄.8. J. Zittartz and J. S. Langer, Phys. Rev. 148, 741(1966).9. I. M. Lifshitz, Zh. Eksp. Teor. Fiz. 53, 743 (1968)[JETP 26, 462 (1972)℄.10. K. Usadel, Phys. Rev. Lett. 25, 507 (1970).11. J. S. Meyer and B. D. Simons, Phys. Rev. B 64, 134516(2001).12. A. Lamaraft and B. D. Simons, Phys. Rev. Lett. 85,4783 (2000); Phys. Rev. B 64, 014514 (2001).572
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