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SUBGAP STATES IN DISORDERED SUPERCONDUCTORSM. A. Skvortsov *, M. V. Feigel'man **Landau Institute for Theoreti
al Physi
s, Russian A
ademy of S
ien
es142432, Chernogolovka, Mos
ow Region, RussiaMos
ow Institute of Physi
s and Te
hnology141700, Mos
ow, RussiaRe
eived May 22, 2013Dedi
ated to the memory of Professor Anatoly LarkinWe revise the problem of the density of states in disordered super
ondu
tors. Randomness of lo
al sample
hara
teristi
s translates to the quen
hed spatial inhomogeneity of the spe
tral gap, smearing the BCS 
oher-en
e peak. We show that various mi
ros
opi
 models of potential and magneti
 disorder 
an be redu
ed to auniversal phenomenologi
al random order parameter model, whereas the details of the mi
ros
opi
 des
riptionare en
oded in the 
orrelation fun
tion of the order parameter �u
tuations. The resulting form of the densityof states is generally des
ribed by two parameters: the width � measuring the broadening of the BCS peak andthe energy s
ale �tail that 
ontrols the exponential de
ay of the density of subgap states. We re�ne the existinginstanton approa
hes for determination of �tail and show that they appear as limiting 
ases of a uni�ed theoryof optimal �u
tuations in a nonlinear system. The appli
ation to various types of disorder is dis
ussed.DOI: 10.7868/S00444510130900951. INTRODUCTIONFormation of the super
ondu
tive state is inti-mately related to the suppression of the quasiparti
ledensity of states (DOS) in the vi
inity of the Fermi en-ergy. This e�e
t is most pronoun
ed for s-wave paring,leading to a hard gap in the quasiparti
le spe
trum.If the time-reversal invarian
e is not broken, the DOSfollows the standard BCS expression�BCS(E) = �0Re EpE2 ��2 ; (1)where �0 is the normal-metal DOS. Equation (1) ap-plies to both 
lean and disordered systems [1, 2℄, indi-
ating that thermodynami
s of super
ondu
tors is in-sensitive to single-parti
le dynami
s if a traje
tory hasits time-reversed 
ounterpart needed to form a Cooperpair (the Anderson theorem).Breaking the time-reversal symmetry (e. g., by mag-neti
 impurities [3℄, a super
urrent [4℄, or a magneti
�eld in small super
ondu
ting grains/�lms [5℄) lowers*E-mail: skvor�itp.a
.ru**E-mail: feigel�landau.a
.ru

the 
riti
al temperature of the transition and smearsthe 
oheren
e peak in (1). Various depairing s
enariosare to a large extent equivalent [6℄ and 
an be des
ribedby a single dimensionless parameter� = 1�dep�0 ; (2)where ��1dep is the depairing rate asso
iated with a par-ti
ular me
hanism of time-reversal symmetry breakingand �0 is the average value of the order parameter.A

ording to the general analysis of Abrikosov andGor'kov (AG) [3℄, the quasiparti
le spe
trum remainsgapful for a su�
iently weak pair breaking � < 1 (oth-erwise, gapless super
ondu
tivity is expe
ted). A newrenormalized gap edge is lo
ated atEg(�) = (1� �2=3)3=2�0; (3)with the DOS vanishing as �(E) / (E � Eg)1=2 (seedotted line in Fig. 1).In their seminal paper in 1971, Larkin and Ov
hin-nikov re
ognized that the BCS-like form of the DOSmay be smeared even if the time-reversal invarian
e isnot broken [7℄. They 
onsidered a phenomenologi
almodel with a spatially varying Cooper-
hannel inter-a
tion 
onstant �(r) = �0 + Æ�(r), and showed that560
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Fig. 1. S
hemati
 view of the average DOS in a dirtysuper
ondu
tor (solid line). Broadening of the BCSpeak (dashed line) is mainly des
ribed by the semi
las-si
al approximation (dotted line), with the full DOS
ontaining a signi�
ant tail of subgap statesshort-s
ale disorder in �(r) has two e�e
ts on the DOSpro�le: First, at the mean-�eld level, it is equivalent tothe AG model [3℄ with some e�e
tive deparing parame-ter �, thus leading to the 
oheren
e peak smearing, butstill with the hard gap at E = Eg . Se
ond, this hardgap is also smeared due to optimal �u
tuations of the�eld �(r), leading to the Lifshitz-type [8, 9℄ tail of �(E)in the subgap region E < Eg .The resulting form of the average DOS in a disor-dered super
ondu
tor is shown s
hemati
ally in Fig. 1.Its main part is given by the AG theory (dotted line),with the 
oherent peak smearing 
ontrolled by an en-ergy s
ale � = �0 � Eg . This region 
orresponds touniform 
on�gurations of the super
ondu
ting orderparameter. By 
ontrast, the DOS tail at E < Eg origi-nates from the states lo
alized in traps where the orderparameter is lower than its average value �0. In thisregime, �(E) strongly �u
tuates in spa
e, with the aver-age DOS de
aying typi
ally as a stret
hed exponentialat an energy s
ale �tail < �:h�(E)i / exp"��Eg �E�tail ��# : (4)The appearan
e of su�
iently deep traps is a rearevent, whi
h is naturally identi�ed with an instanton inthe semi
lassi
al equations of super
ondu
tivity. Work-ing in the dirty limit and studying optimal �u
tuationsin the Usadel equation [10℄, Larkin and Ov
hinnikov(LO) [7℄ 
al
ulated the average subgap DOS,h�(E)iLO / exp���d(�) �20�df(0) "(8�d)=4� ; (5)

whi
h behaves as a stret
hed exponential of the dimen-sionless distan
e " from the gap edge," = Eg �EEg ; (6)with the power �LO = (8�d)=4 dependent on the spa
edimensionality d1). In Eq. (5), �0 is the average valueof the order parameter, � =pD=2�0 is the super
on-du
ting 
oheren
e length (D is the di�usion 
oe�
ient),f(0) is the zero Fourier harmoni
 of the 
orrelationfun
tion of the order parameter �u
tuations indu
edby quen
hed disorder in �(r) (see Eq. (17) below), and�d(�) is a fun
tion of the dimensionless depairing pa-rameter � (see Eqs. (18) and (52) below).The power of " in Eq. (5) 
an be easily understoodwithin the optimal �u
tuation approa
h. Near the AGthreshold, as E ! Eg , the system is 
hara
terized bya diverging length s
ale LE � �"�1=4 [7℄. To have aquasiparti
le state with an energy E = (1�")Eg belowthe mean-�eld gap, one has to lo
ally redu
e the orderparameter by an amount Æ� � "�0 in a volume spe
-i�ed by the length LE. The pri
e to be paid for su
han optimal �u
tuation s
ales as (Æ�)2LdE � "2�d=4; ina

ordan
e with the result (5).Pre
isely the same model of a �u
tuating Cooper
onstant [7℄ in a dirty super
ondu
tor was re
onsideredthirty years later by Meyer and Simons (MS) [11℄ in theframework of the nonlinear � model approa
h. Usingthe instanton analysis of the � model, they obtaineda somewhat di�erent optimal �u
tuation leading to adi�erent result for the tail of the subgap states:h�(E)iMS / exp���d(�) g� "(6�d)=4� ; (7)whi
h is also a stret
hed exponential but with a di�er-ent power �MS = (6 � d)=4. In addition, the instan-ton a
tion of Meyer and Simons is independent of theorder-parameter 
orrelation fun
tion f(r). Instead, it
ontains some fun
tion �d(�) of the depairing parame-ter � (see Eq. (43) below) and the dimensionless 
on-du
tan
e g� (in units of e2=h) of the region of size �:g� = 4��D�d�2 = 8���0�d: (8)The appearan
e of the 
ondu
tan
e g� in the exponentin Eq. (7) indi
ates that this expression 
annot be ob-tained at the level of the saddle-point (Usadel) equationbut requires the use of the full nonlinear �eld theory.1) In Ref. [7℄ only the 3D 
ase with weak disorder, � � 1, was
onsidered, but generalization of this result to arbitrary dimen-sionality d is straightforward.8 ÆÝÒÔ, âûï. 3 (9) 561



M. A. Skvortsov, M. V. Feigel'man ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013Expression (7) for the density of subgap states hasbeen obtained for a variety of disordered super
on-du
ting systems [11�15℄, where the semi
lassi
al ap-proximation predi
ts a square-root vanishing of theDOS, �(E) / pE �Eg . In parti
ular, it was ob-served in hybrid normal-metal�super
ondu
tor (NS)systems [13; 14℄ and in bulk super
ondu
tors with mag-neti
 impurities [12; 15℄. Mathemati
ally, it bears a
lose analogy to the Tra
y�Widom distribution for theDOS tail in the randommatrix theory (RMT) [16℄, gen-eralizing it from d = 0 to an arbitrary dimensionalityd. Based on these �ndings, it is widely believed thatEq. (7) provides a universal des
ription of the subgapDOS tail in disordered super
ondu
tors. However, thedis
repan
y with the analysis of Larkin and Ov
hin-nikov existing at least for the model of the randomCooper 
hannel 
onstant remains unresolved.The purpose of this paper is to �ll this gap by 
lar-ifying the origin of the two types of instantons dis-
ussed in Refs. [7℄ and [11℄ (leading to Eqs. (5) and (7)).We show that they 
orrespond to di�erent limits of aunique instanton solution realized for small and large ",respe
tively. Hen
e, the Larkin�Ov
hinnikov instanton
an be 
ontinuously deformed into the Meyer�Simonsinstanton by 
hanging the distan
e to the gap, ". Su
han unusual situation is a 
onsequen
e of the nonlinear-ity of the Usadel equation. Therefore, averaging overthe random order parameter �eld �(r) produ
es a non-linear term [8℄, whi
h 
ompetes with the intrinsi
 non-linearity of the problem. This should be 
ontrastedwith the problem of �u
tuation bound states in theS
hrödinger equation with a random potential [8, 9℄,where the only sour
e of nonlinearity is due to averag-ing over disorder.This paper is organized as follows. In Se
. 2, weintrodu
e the random order parameter (ROP) modeland derive its e�e
tive a
tion in the large-s
ale limit.In Se
. 3, we analyze the instanton solutions with thebroken repli
a symmetry and re
over results (5) and (7)in di�erent limits. The summary and appli
ations ofthe ROP model are dis
ussed in Se
. 4. Gap smearingin super
ondu
tors with magneti
 impurities is re
on-sidered in Se
. 5. We 
on
lude with a dis
ussion of theresults in Se
. 6. Te
hni
al details are relegated to theAppendix.2. RANDOM ORDER PARAMETER MODEL2.1. The modelWe start with the simplest example where the gapsmearing results from quen
hed inhomogeneity in the

pairing potential,�(r) = �0 +�1(r); (9)whi
h is assumed to be a real Gaussian random �eldspe
i�ed by the 
orrelation fun
tionh�1(r)�1(r0)i = f(r� r0): (10)The fun
tion f(r) is supposed to be short-range, withthe 
orrelation length r
 shorter than the super
on-du
ting 
oheren
e length2):r
 < �: (11)The super
ondu
tor is assumed to be in the dirty limitT
� � 1, where � is the elasti
 s
attering time.The main simpli�
ation of this model, whi
h will bereferred to as the ROP model, is that �(r) is regardedas a given external �eld that should not be determinedself-
onsistently.The phenomenologi
al ROP model universallyemerges as an intermediate step in studying varioustypes of disorder in the singlet 
ase, where spin e�e
ts
an be negle
ted [7; 11; 17℄ (a more general situation is
onsidered in Se
. 5). The fun
tion f(r) in Eq. (10)then bears information on the original inhomogeneityin a parti
ular mi
ros
opi
 model, see Se
. 4.3.2.2. Sigma modelThe ROP model was treated by Larkin and Ov
hin-nikov [7℄ in terms of the equations of motion (Usadelequation), and by Simons and 
o-authors [11; 12; 15℄within the nonlinear �-model formulation. Aiming to
ompare the two approa
hes, we 
hoose to work in thefun
tional language of the di�usive �-model. To studythe DOS in a �eld of a given �(r) at a parti
ular en-ergy E, one 
an use either its supersymmetri
 or repli
aversion. We prefer to deal with the real-energy repli
a�-model formulated in terms of the �eld Q(r) a
tingin the dire
t produ
t of the repli
a, Nambu, and spinspa
es (the spin spa
e is redundant in the singlet 
ase
onsidered here, but is used in studying magneti
 im-purities in Se
. 5) [12; 18�21℄.Choosing the order parameter to be real, we writethe �-model a
tion asS = ��4 Z dr tr �D(rQ)2+4(iE�3��(r)�1)Q� ; (12)where �i are Pauli matri
es in the Nambu spa
e.2) The inequality (11) 
an be repla
ed by a weaker inequalityr
 < LE , where LE is given by Eq. (32).562
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ondu
torsAveraging over quen
hed disorder in �(r) with thehelp of Eqs. (9) and (10), we arrive at the a
tion forthe �eld Q: S = S0 + Sdis; (13)whereS0 = ��4 Z dr tr �D(rQ)2+4(iE�3��0�1)Q� ; (14)Sdis = � (��)22 �� Z dr dr0 f(r�r0) tr[�1Q(r)℄ tr[�1Q(r0)℄: (15)2.3. E�e
tive long-wavelength a
tionThe term Sdis in Eq. (15) 
ontains an additionaltra
e in the repli
a spa
e and therefore does not 
on-tribute to the repli
a-diagonal saddle-point equationof motion. A

ording to Larkin and Ov
hinnikov [7℄,in order to see the e�e
ts of disorder at the saddle-point level in the long-wavelength limit (with momentaq < q0), one has to average Sdis over fast �u
tuations ofthe �eld Q (
ooperons and di�usons). This pro
eduregenerates an e�e
tive depairing term [11; 21℄S� = ����0�4 Z dr tr(�3Q)2; (16)where the 
oe�
ient � is expressed in terms of theFourier transform of the order-parameter 
orrelationfun
tion f(q) = h�1�1iq (17)as � = 2�0 Z f(q)Dq2 ddq(2�)d : (18)It is assumed in this derivation that the regions oflarge momenta (q > q0) 
ontributing to Eq. (18) andsmall momenta (q < q0) for whi
h we derive an e�e
-tive theory are well separated. This is true in 3D [7℄,marginally true in 2D [17℄ and wrong in 1D (see Se
. 4.2for the details).Having eliminated short-range degrees of freedom,we obtain an e�e
tive long-range (r � r
) a
tion forthe �eld Q: S = S0 + S� + Sdis; (19)where S0 is given by Eq. (14), S� is given by Eq. (16),and Sdis 
an be written in the lo
al form

Sdis = � (��)22 f(0) Z dr [tr �1Q(r)℄2: (20)At this stage, we 
an tra
e the di�eren
e betweenthe approa
hes in Refs. [7℄ and [11℄. To reprodu
ethe analysis of Larkin and Ov
hinnikov [7℄, we haveto de
ouple the term Sdis (Eq. (20)) with the Gaus-sian white-noise order parameter �eld �1(r) and treatthe resulting problem in the saddle-point approxima-tion assuming the solution to be repli
a symmetri
. Aswe see in Se
. 3.4, in terms of the Q-only a
tion in (19)this 
orresponds to instanton solutions with in�nitesi-mally small repli
a symmetry breaking. On the otherhand, Meyer and Simons [11℄ did not use the saddle-point approximation but 
ompletely negle
ted the termSdis that a

ounts for long-range �u
tuations of theorder-parameter �eld. Their instanton solution orig-inating from the nonlinearity of the underlying �eldtheory has a nontrivial repli
a stru
ture dis
ussed inSe
. 3.3. Below, we analyze the a
tion in (19) and
larify the validity of approximations used in Refs. [7℄and [11℄.3. OPTIMAL FLUCTUATIONS IN ANONLINEAR SYSTEM3.1. Saddle-point equationsHere, we analyze the saddle points of a
tion (19)that have the repli
a-diagonal form:(Q0)ab = Æab [�3 
os �a + �1 sin �a℄ ; (21)where Latin indi
es refer to the repli
a spa
e and thespe
tral angle �a(E) depends on the energy 
onsidered.The simplest is the repli
a-symmetri
 saddle point,with �a = �0 for all a = 1; : : : ; n. For a repli
a-symmetri
 solution, the a
tions S0 and S� are propor-tional to the number of repli
as n, whereas the a
tionSdis is proportional to n2 and does not 
ontribute tothe saddle-point (Usadel) equation in the repli
a limitn ! 0. Then the saddle-point equation for a uniformQ0 immediately reprodu
es the AG equation for thespe
tral angle in the model of magneti
 impurities [3℄:iE sin �0 +�0 
os �0 ��0� 
os �0 sin �0 = 0: (22)The 
orresponding DOS �(E) = �0Re 
os �0, 
hara
-terized by the hard gap at Eg (Eq. (3)), is shown bythe dotted line in Fig. 1.The subgap states are asso
iated with lo
alizedsaddle-point solutions with broken repli
a symme-try [11℄. To study them, it is 
onvenient to write [12; 14℄�a = �=2 + i a: (23)563 8*
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a-symmetri
 mean-�eld solution  a =  0 isreal for E < Eg , and the appearan
e of a �nite DOS isrelated to 
on�gurations with 
omplex  .The set of saddle-point equations for a
tion (19) interms of the angle  takes the form��2r2 a + F ( a) + � sh aXb 
h b = 0; (24)where � is the 
oheren
e length, �2 = D=2�0, the pa-rameter � is related to the low-momentum 
orrelatorof the order parameter �u
tuations:� = 4��f(0)�0 = g�2 f(0)�20�d ; (25)and the fun
tion F ( ) is given byF ( ) = � E�0 
h + sh � � sh 
h : (26)The equation F ( ) = 0 is equivalent to AG equa-tion (22).Behavior of the fun
tion F ( ) for real argumentsdepends on the relation between E and Eg . Below thegap (E < Eg), the equation F ( ) = 0 has two solu-tions:  0 (the AG solution) and  0 >  0. They mergeat E = Eg, where an analyti
 solution is possible, yield-ing 
h g = ��1=3: (27)Above the gap (E > Eg), the equation F ( ) = 0 hasno real solutions. For small deviation from the gap,E ! Eg , the fun
tion F ( ) 
an be expanded near theAG solution asF ( ) � 
( �  0)� �( �  0)2; (28)with the dimensionless parameters
 = (1� �2=3)p6"; � = 32�1=3p1� �2=3; (29)where " is de�ned in Eq. (6).3.2. Instantons with broken repli
a symmetryWe now 
on
entrate on solutions of Eqs. (24)with the simplest nontrivial stru
ture in the repli
aspa
e [11℄:  a(r) = ( 1(r); a = 1; 2(r); a = 2; : : : ; n: (30)

Su
h a solution is 
hara
terized by two fun
tions,  1(r)and  2(r), whi
h satisfy the system of two 
oupled non-linear equations (24), whereXb 
h b = 
h 1 � 
h 2 (31)in the repli
a limit (n! 0).System (24) simpli�es in the vi
inity of the gapedge, E ! Eg , where variations of  1(r) and  2(r) aresmall and the repli
a-mixing term 
an be linearized.To write the resulting equations in dimensionless form,we measure distan
e in units of the divergent lengths
ale [7℄ LE = �p
 � �� EgEg �E�1=4 (32)and write  1;2(r) =  0 + (
=�)�1;2(r): (33)As a result, we arrive at the system�r2�1 + �1 � �21 = K(")(�2 � �1); (34a)�r2�2 + �2 � �22 = K(")(�2 � �1): (34b)The repli
a mixing is 
ontrolled by the single dimen-sionless parameter K("):K(") =r"�" ; (35)where the energy s
ale "� is given by"� = �26�4=3 = g2�24�4=3 � f(0)�20�d�2 : (36)Su�
iently 
lose to the gap edge, at " . "�, theparameter K(") is large and equations for �1(r) and�2(r) are strongly 
oupled. Small values of K(") 
anbe realized only for large deviations from the gap, at" & "�.With the exponential a

ura
y, the subgap DOS isdetermined by the instanton a
tion:h�(E)i / exp��
d(�) g� "(6�d)=4S0[K(")℄� ; (37)where g� given by Eq. (8) is the dimensionless 
ondu
-tan
e of the region of size �,
d(�) = 43 6(2�d)=4 (1� �2=3)2�d=2�2=3 ; (38)and S0(K) = 16 Z (�32 � �31) dr (39)is the dimensionless instanton a
tion.564
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ondu
torsWe note that the energy dependen
e of the averageDOS in (37) 
omes from both the fa
tor "(6�d)=4 andthe energy dependen
e of the parameter K("). Below,we analyze solutions of Eqs. (34) in the limit 
ases ofsmall and large values of K and identify them with theMeyer�Simons and Larkin�Ov
hinnikov instantons, re-spe
tively.3.3. Instanton in the limit K! 0In the limit K ! 0, Eqs. (34) de
ouple, yielding asingle equation �r2�+ �� �2 = 0 (40)for both �1(r) and �2(r). This equation has three solu-tions: two 
onstant solutions �(r) = 0 (
orrespondingto the AG solution) and �(r) = 1, and a spheri
allysymmetri
 boun
e �(d)inst(r) vanishing as r ! 1. Theboun
e solution of Eq. (40) is known expli
itly in the1D geometry: '(1)inst(r) = 32 
h2(r=2) ; (41)and 
an be obtained numeri
ally for other dimensional-ities. The instanton a
tion is determined by the num-ber sd � 16 Z ['(d)inst(r)℄3dr =8><>:6=5; d = 1;7:75; d = 2;43:7; d = 3: (42)To minimize a
tion (39), we take the trivial AGsolution �1(r) = 0 for the �rst repli
a and 
hoose aboun
e solution, �2(r) = '(d)inst(r), for the other repli-
as. Hen
e, S0(0) = sd and Eq. (37) reprodu
es theresult (7) of Refs. [11℄ and [12℄ with�d(�) = sd
d(�): (43)3.4. Instanton for K!1, optimal �u
tuation,and dimensional redu
tionIn the limit K ! 1, the last terms in Eqs. (34a)and (34b) render �1(r) and �2(r) nearly equal. So wemay expand their di�eren
e in powers ofK�1 and write�1(r) = �(r); �2(r) = �(r) +K�1�(r) + : : : (44)Substituting this expansion in Eqs. (34a) and (34b), weobtain �r2�+ �� �2 = �; (45a)�r2�+ �� 2�� = 0: (45b)

Eliminating �(r), we 
ome to a fourth-order di�erentialequation for �(r):[�r2 + 1� 2�℄[�r2�+ �� �2℄ = 0: (46)Equation (46) naturally appears in the study of op-timal �u
tuations in the nonlinear equation�r2�+ F (�) = h(r); (47)where F (�) = ���2 and h(r) is a Gaussian Æ-
orrelatedrandom �eld [7℄. Optimal �u
tuation arguments [8, 9℄lead to the minimization of the fun
tionalZ h2dr = Z [�r2�+ F (�)℄2dr;and hen
e to the saddle-point equation[�r2 + F 0(�)℄[�r2�+ F (�)℄ = 0; (48)
oin
iding with Eq. (46). Thus we see that in therepli
a formalism, the role of the random �eld h(r) isplayed by the mismat
h of solutions for di�erent repli-
as: �(r) / �2(r)� �1(r):We note that those �(r) solving Eq. (40) also solveEq. (46). But none of them 
orrespond to an optimal�u
tuation sin
e they have h = 0 and do not lead toa �nite DOS. Therefore, we have to look for anothersolution of Eq. (46). Quite surprisingly, for the spheri-
ally symmetri
 solutions �(r), there exists an identityvalid for an arbitrary fun
tion F (�) and an arbitraryd [22℄:���(d)rad + F 0(�)����(d)rad�+ F (�)� == ���(d+2)rad + F 0(�)����(d�2)rad �+ F (�)�; (49)where �(d)rad = 1rd�1 ��r rd�1 ��r (50)is the radial part of the Lapla
e operator in d dimen-sions.Hen
e, there is a kind of dimensional redu
tion: anontrivial optimal �u
tuation in d dimensions solvingEq. (46) is just the boun
e solution of Eq. (40) in d� 2dimensions. We note that a somewhat similar dimen-sional redu
tion was obtained in Ref. [23℄ for the 
riti
albehavior of spin systems in a random magneti
 �eld.The instanton a
tion (39) is given byS0(K) = 12K Z �2�dr = 12K Z �2 dr; (51)565
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tuation language,exp[�S(K)℄ is just the probability density for theGaussian random �eld �(r). Substituting Eq. (51) inthe general expression (37), we arrive at the result (5),where �d(�) = 16 � 6�d=4
d (1� �2=3)2�d=2; (52)and 
d = limK!1KS0(K) is a d-dependent 
onstant:
d = 2 Z ��'(d�2)inst (r)�r �2 drr2 = 8><>:0:266; d = 1;2:09; d = 2;24�=5; d = 3: (53)In the 3D 
ase and at � � 1, Eq. (5) 
oin
ideswith the result of Ref. [7℄ (where only this limit was
onsidered). Therefore, our instantons in the limitK ! 1 dire
tly 
orrespond to the optimal �u
tua-tions of Larkin and Ov
hinnikov, and dimensional re-du
tion (49) explains why they managed to �nd an ex-pli
it analyti
 expression for the optimal �u
tuation inthe 3D 
ase: �(3)(r) = '(1)inst(r), with the right-handside given by Eq. (41).3.5. Intermediate values of KTwo types of instantons analyzed above 
ontinu-ously interpolate between ea
h other with variation ofK. As an example, we show numeri
al solutions of 1Dequations (34a) and (34b) for some intermediate valuesof K in Fig. 2. For small but �nite K, the respe
tivesolutions �1(r) and �2(r) start to deviate from 0 and'(d)inst(r), moving towards ea
h other. Already atK = 1they are 
lose, approa
hing the asymptote '(d�2)inst (r) asK !1.Hen
e, in
reasing the deviation from the gap edgeinto the 
lassi
ally forbidden region leads to a grad-ual 
rossover from the Larkin�Ov
hinnikov to theMeyer�Simons instanton. The 
rossover takes pla
e atthe dimensionless energy "� given by Eq. (36). Equi-valently, the energy 
an be estimated just by equatingthe results (5) and (7).4. RANDOM ORDER PARAMETER MODEL:SUMMARY AND APPLICATIONSHaving established the repli
a stru
ture of the in-stantons in the ROP model, we now 
omment on thelimits of validity of the above analysis and 
onsider var-ious appli
ations of the ROP model in a more general
ontext.

1 2 3 400:20:40:6
0:81:01:21:4
�1; �2

x
1K = 00:210:21

Fig. 2. Numeri
al solutions of Eqs. (34a) and (34b) in1D geometry (d = 1) for various values of the repli
a-mixing parameter K. For K = 0, �1(x) = 0 and�2(x) = '(1)inst(x) (the upper thi
k 
urve). Solutionsfor intermediate values (K = 0:2 and K = 1) areshown by the thin solid lines. In the limit K ! 1,�1(x) and �2(x) approa
h the asymptote '(�1)inst (x) (thethi
k dashed line)4.1. Validity of the instanton analysisOur analysis was based on two impli
it assump-tions: 1) the large instanton a
tion allowing the use ofthe saddle-point approximation, and 2) a small devia-tion from the gap edge, " � 1, that allows expandingEq. (26) and obtaining the universal system (34). On
ewe know the resulting expressions (5) and (7) for theDOS tails (at " � "� and " � "�, respe
tively), we
an verify these assumptions a posteriori. Dependingon the relations between the parameters of the ROPmodel, we 
an identify the following regimes.I: f(0)�20�d < ��2=3g� �(8�d)=(6�d) :The tail is des
ribed by Eq. (7) for all ". The Larkin�Ov
hinnikov tail does not exist be
ause the 
orrespond-ing a
tion is smaller than 1.IIA. ��2=3g� �(8�d)=(6�d) < f(0)�20�d < �2=3g� :The main part of the tail (for small " < "�) followsLarkin�Ov
hinnikov result (5). Tail (7) exists at large" > "�, where it is extremely small.IIB. �2=3g� < f(0)�20�d :The tail follows Larkin�Ov
hinnikov result (5) for all". Tail (7) does not exist.566
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ondu
torsIn ea
h regime, only one type of instantons is im-portant. The other one is either nonexistent or unob-servable. 4.2. Role of dimensionalityLarkin and Ov
hinnikov's approa
h [7℄ to the ROPmodel is based on the idea of separation of s
ales: short-s
ale �u
tuations of �(r) produ
e an e�e
tive depair-ing � leading to the formation of the AG-like hard gap,whereas long-s
ale �u
tuations are responsible for thegap smearing. Due to the presen
e of the di�usive polein the integrand in Eq. (18) for �, the possibility ofsu
h separation depends on the dimensionality of theproblem.In 3D, the integral in Eq. (18) is determined by largemomenta, q � r�1
 , where r
 is the 
orrelation lengthof the �u
tuating �eld �1(r), leading to the estimate�3D = 12�2�20�2 1Z0 f(q)dq � f(0)2�2�20�2r
 : (54)The long-wavelength theory in (19) is then appli
ablealready for s
ales r & r
.The 2D 
ase is marginal be
ause the integral inEq. (18) is logarithmi
. Its upper 
uto� is again givenby r�1
 , whereas the lower limit must be determinedwith 
are. A

ording to Ref. [17℄, with logarithmi
 a
-
ura
y an appropriate 
uto� is established by repla
ingDq2 ! Dq2 +D=L2E;where the length LE is de�ned in Eq. (32). As a result,the depairing fa
tor be
omes energy-dependent:�2D(E) = 12� f(0)�20�2 ln min(LE; Lg)r
 ; (55)where we had to introdu
e an infrared length s
aleLg in order to regularize the otherwise divergent�2D(E ! Eg). Its appearan
e is related to the break-down of the mean-�eld approximation in the narrowregion jE � Eg j . �tail, where proliferation of instan-tons generates a �nite 
orrelation lengthLg � �(Eg=�tail)1=4:Here, the Meyer�Simons (Larkin�Ov
hinnikov) expres-sion for �tail must be used if regime I (II) is realized(see the dis
ussion in Se
. 4.1).In 1D, integral (18) is divergent in the infrared, in-di
ating that analyti
 treatment based on the idea ofs
ale separation is not possible, and �tail � �.

4.3. Appli
ations of the ROP model4.3.1. Random 
oupling 
onstant modelThis is the model initially 
onsidered by Larkin andOv
hinnikov [7℄. It 
an be redu
ed to the ROP modelin the following way. A �u
tuating Cooper 
onstantintrodu
es quen
hed �u
tuations in the order param-eter �eld, whi
h should be determined from the self-
onsisten
y equation. The latter 
an be written in theMatsubara representation and solved perturbatively.In the linear order, we have [7℄��10 �1(q) + Æ��1(q)�0 == �TX" �F (";q)��(q) �1(q); (56)where F (";q) is the Fourier transform of the semi-
lassi
al Gor'kov fun
tion F ("; r) = sin �("; r), and itsderivative with respe
t to �1 
an be obtained from theUsadel equation. Solving for �1(q), we arrive at thelinear relation�1(q) = ��0L0(q) Æ��1(q); (57)where L0(q) is the stati
 propagator of super
ondu
ting�u
tuations in the BCS theory,L�10 (q) = �TX" �20 + E(")Dq2=2E2(")[E(") +Dq2=2℄ ; (58)and E(") =q"2 +�20: (59)At zero temperature, integration over Matsubara en-ergies " 
an be performed analyti
ally [7; 11℄, leadingtoL0(q) = 2~q2� � 4p1� ~q4 ar
tgs1� ~q21 + ~q2 == (1� �~q2=4 + : : : ; ~q � 1;1= ln ~q2 + : : : ; ~q � 1; (60)where ~q = q�.We thus arrive at the ROP model spe
i�ed by the
orrelation fun
tionf(q) � h�1�1iq = �20L2(q)hÆ��1Æ��1iq: (61)The random 
oupling 
onstant model 
an bemapped onto the ROP model as long as �u
tuationsof �(r) are weak (the resulting depairing parameter� � 1). Otherwise, it is not su�
ient to use the�rst-order perturbation theory in Eq. (56).567
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tuations in NS systemsThe simplest setup where disorder leads to the for-mation of subgap states is the model of the NS jun
-tion [13; 14℄. Here, super
ondu
tive 
orrelations areindu
ed into the normal metal due to the proximitye�e
t, opening the (mini)gap in the ex
itation spe
-trum [24℄. In a long di�usive jun
tion (with a sizeL � �), the minigap is of the order of the Thoulessenergy: Eg � ETh = D=L2 [25; 26℄. In the normal partof the jun
tion, the order parameter is absent and theonly sour
e of disorder is due to the random positionof potential impurities. These mesos
opi
 �u
tuations(MF) are known to be responsible for various sample-to-sample �u
tuations su
h as universal 
ondu
tan
e�u
tuations [27℄, mesos
opi
 �u
tuations of the Joseph-son 
urrent [28; 29℄, et
. [30℄.The DOS tail due to mesos
opi
 �u
tuations in NShybrid systems [13; 14℄ follows the result (7). Thissheds light on the physi
al origin of the instanton ofthe a
tion S0 + S� dis
ussed in Se
. 3.3: it des
ribesthe DOS smearing due to mesos
opi
 �u
tuations of thequasiparti
le response to a 
onstant (for this parti
u-lar problem, zero) order parameter. In other words,randomness of the impurity positions translates into�u
tuations of the quasiparti
le Green's fun
tion Q(r).4.3.3. Mesos
opi
 �u
tuations of the orderparameterIn disordered super
ondu
tors, mesos
opi
 �u
-tuations lead to �u
tuations of the order parame-ter [17; 31℄. These are generated by �u
tuations of Q(r)if the self-
onsisten
y equation is taken into a

ount.In the 2D 
ase and in the presen
e of the Coulombintera
tion, the order parameter 
orrelation fun
tionwas 
al
ulated in Ref. [17℄. The 
orrelation lengthof these �u
tuations is of the order of the zero-temperature 
oheren
e length, r
 � �(0). Their mag-nitude at T = 0 and q = 0 is given byfMF+Coulomb2D (0)�20�2 = 2�g(g � g
) ; (62)where g
 = ln2(~=T
0�)=2� is the 
riti
al 
ondu
tan
efor the fermioni
 me
hanism of super
ondu
tivity sup-pression [32℄ (T
0 is the transition temperature in the
lean system and � is the elasti
 s
attering time).Evaluating the depairing parameter from Eq. (55),we �nd that regime IIB is always realized (see Se
. 4.1).Therefore, gap smearing in homogeneously disorderedsuper
ondu
ting �lms is always des
ribed by theLarkin�Ov
hinnikov me
hanism leading to Eq. (5), andthere is no room for the Meyer�Simons instanton [17℄.

For 
ompleteness, we present here the general ex-pression for the 
orrelation fun
tion of the order pa-rameter due to mesos
opi
 �u
tuations at an arbitraryspa
e dimensionality d but in the absen
e of Coulombe�e
ts:fMF (q) = L20(q)�20T 2�2 ��X";" Z �""0(k)�""0 (k � q)E(")E("0) ddk(2�)d ; (63)where E(") is de�ned in Eq. (59) and�""0 (k) = [Dk2 + E(") + E("0)℄�1is the di�usion propagator on top of the BCS state. Inparti
ular, at T = 0 and q = 0, we obtainfMF (0)�20�d � 1g2� : (64)Sin
e mesos
opi
 �u
tuations are inevitably present inany disordered system, Eq. (64) is the lower bound forthe order parameter �u
tuations in disordered super-
ondu
tors.5. MAGNETIC IMPURITIES5.1. Abrikosov�Gor'kov modelWe now turn to the situation where the BCS 
oher-en
e peak is smeared by magneti
 disorder. We restri
tourselves to the AG model [3℄ of Gaussian point-likemagneti
 impurities (a more general 
ase will be 
on-sidered elsewhere [33℄) spe
i�ed by the 
orrelation fun
-tion of the ex
hange �eld:hhi(r)hj(r0)i = Æij Æ(r� r0)6���s ; (65)where �s is the spin-�ip s
attering time, whi
h playsthe role of the pair-breaking time that determines thepair-breaking parameter� = 1�s�0 : (66)The ve
tor h is three-dimensional, while the e�e
tivedimensionality of the sample may be di�erent.Formation of the subgap states in a super
ondu
-tor with weak magneti
 impurities was studied byLama
raft and Simons [12℄, who 
ame to the result es-sentially 
oin
iding with Eq. (7). However, inspired bythe pre
eding analysis of the ROP model, we may ex-pe
t that there should be instantons related to optimal568
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ondu
tors�u
tuations of the ex
hange �eld h and/or the orderparameter �eld �(r), leading to the Larkin�Ov
hinni-kov tail (5). Below, we study this instanton 
ontribu-tion and demonstrate that the main part of the subgapDOS tail 
an be des
ribed either by the Lama
raft�Simons or by the Larkin�Ov
hinnikov results, depend-ing of the values of g� and � (see Se
. 5.4). In the
ase where the tail is due to the Larkin�Ov
hinnikovoptimal �u
tuation, it arises as a result of mesos
opi
�u
tuations of the order parameter.5.2. Sigma-model a
tionWe use the real-energy repli
a �-model introdu
edin Se
. 2.2. Before averaging over magneti
 disorder,the initial a
tion expanded to the se
ond order in theimpurity magnetization h(r) takes the form [21℄S = S0 + S1 + S2; (67)where S0 is the a
tion for the uniform super
ondu
torgiven by Eq. (14) and the terms S1;2 des
ribe magneti
impurities: S1 = �i�� Z dr h(r) tr(�3�Q); (68)S2 = � (��)22 Z drhi(r)hj(r0) tr��3�iQ�3�jQ�; (69)where �i are Pauli matri
es in the spin spa
e.Averaging over h with the 
orrelation fun
tion (65)generates two terms, S� = hS2i and Sdis = �hS21i=2,with di�erent stru
tures in the repli
a spa
e:S� = ����0�12 Z dr tr(�3�Q)2; (70)Sdis = ���0�12 Z dr (tr �3�Q)2; (71)where the depairing parameter � is given by Eq. (66).As a result, the e�e
tive a
tion des
ribing gap �u
tu-ations in the presen
e of a Gaussian short-range mag-neti
 disorder takes the formS = S0 + S� + Sdis: (72)The stru
ture of the terms S� (Eq. (70)) and Sdis(Eq. (71)) is quite similar to that of the analogousterms, (16) and (15), in the ROP model. We notethat in 
ontrast to the ROP model, the depairing termS� is generated automati
ally after averaging over Æ-
orrelated magneti
 disorder.In the analysis of a
tion (72), Lama
raft and Si-mons [12℄ 
onsidered only singlet 
on�gurations of the�eld Q(r). Then the term Sdis 
an be dis
arded, while

the term S� just 
oin
ides with the analogous term (16)in the ROP model. In the absen
e of a �eld responsi-ble for optimal �u
tuations, the authors of Ref. [12℄reprodu
ed the result (7).5.3. E�e
tive �u
tuators in the singlet se
torTo go beyond the analysis of Ref. [12℄, we have toidentify an e�e
tive �u
tuator in the singlet se
tor thatmight be responsible for the Larkin�Ov
hinnikov op-timal �u
tuation at " � "� (K ! 1). We fo
uson the singlet se
tor be
ause it be
omes massless asE ! Eg , whereas the triplet does not (see Eqs. (A.3)and (A.11)). Therefore, the instanton solution with thestret
hed-exponential a
tion of type (4) 
an arise onlyin the singlet 
omponent of Q(r).There are several sour
es of �u
tuations in the sin-glet se
tor.1) Mesos
opi
 �u
tuations of the order parameterwith the 
orrelation fun
tion given by Eq. (64). Theyarise due to �u
tuations of potential impurities and areinsensitive to weak magneti
 disorder.2) Flu
tuations in the singlet 
omponent of theGreen's fun
tion Q(r) generated via its triplet 
om-ponent due to the nonlinearity of the Usadel equation(referred to as dire
t �u
tuations). These �u
tuations
an be des
ribed in terms of an e�e
tive order param-eter �eld �(�)1 (r). Its 
orrelation fun
tion is 
al
ulatedin the Appendix. In the limit T = 0 and q = 0, it 
anbe estimated as f (�)(0)�20�d � �(4+d)=6g2� : (73)3) Flu
tuations of the order parameter due to ran-domness in h (referred to as indire
t �u
tuations) 
al-
ulated in the Appendix. In the limit T = 0 andq = 0, the 
orresponding 
orrelation fun
tion 
an beestimated as f(0)�20�d � �2g2� : (74)The presen
e of the fa
tors g2� in the denominators ofEqs. (73) and (74) 
an be easily explained. Due to theve
tor stru
ture of the random �eld h(r), an e�e
tive�u
tuator in the singlet se
tor is proportional to h2,with its varian
e f s
aling as hh2i2 / ��2 / g�2� :5.4. The resultComparing Eqs. (64), (73), and (74), we 
on
ludethat mesos
opi
 �u
tuations of the order parameter arethe leading sour
e of disorder in �(r) for the magneti
569
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ompetitionof Larkin�Ov
hinnikov result (5) with f(0) given byEq. (64) and Lama
raft�Simons dependen
e (7). A
-
ording to Se
. 4.1, the winner depends on the valuesof g� and �.Regime I is realized forg� > ��2(8�d)=3(4�d):The subgap DOS follows Eq. (7).Regime II is realized forg� < ��2(8�d)=3(4�d):The subgap DOS follows Eq. (5).6. CONCLUSIONThis work was motivated by the dis
repan
y be-tween the two instanton approa
hes to the problem ofthe subgap states in disordered super
ondu
tors. Wehave analyzed the repli
a stru
ture of a generi
 in-stanton solution and demonstrated that the instan-ton of Larkin and Ov
hinnikov [7℄ 
an be 
ontinu-ously deformed to the instanton of Simons and oth-ers [11; 12; 15℄ with de
reasing the energy into the 
las-si
ally forbidden region.The existen
e of two di�erent instanton types is re-lated to the presen
e of two types of disorder in the sys-tem: (i) the potential disorder responsible for di�usivemotion of ele
trons and (ii) extra randomness in someother 
hara
teristi
s of the sample, e. g., the Cooper
oupling 
onstant, the order parameter �eld, the ran-dom spin ex
hange �eld, et
. In the semi
lassi
al the-ory of dirty super
ondu
tors, the potential (type-i) dis-order is averaged out at the very beginning. The re-sulting Usadel equations are nonlinear already in theabsen
e of type-ii disorder. Averaging over disorderbrings an additional nonlinearity, whi
h 
ompetes withthe intrinsi
 nonlinearity of the problem. The relativestrength of the two nonlinear terms is 
ontrolled bythe proximity to the gap edge. For " � "�, intrinsi
nonlinearity is not important and the situation is sim-ilar to the problem of the linear S
hrödinger equationwith disorder. The instanton then 
orresponds to theoptimal �u
tuation of the random �eld, yielding theLarkin�Ov
hinnikov result (5). In the opposite limit" � "�, only the intrinsi
 nonlinearity of the problemis relevant. The nonlinear equations of motion still al-low a boun
e solution 
orresponding to the instantonof Simons and others.Physi
ally, the instanton of Larkin and Ov
hinnikovdes
ribes an optimal �u
tuation of the order parameter

�eld, whi
h de
reases the lo
al value of the gap. Theinstanton of Simons and others des
ribes mesos
opi
�u
tuations of quasiparti
le response at a �xed valueof the order parameter.Depending on the parameters of the problem, itmight happen that the instanton a
tion at the 
rossoverenergy " � "� would be smaller than 1. In this situa-tion, the Larkin�Ov
hinnikov instanton does not existand the density of subgap states is des
ribed by Eq. (7).Otherwise, the main part of the tail is des
ribed byEq. (5), while its far asymptoti
 form (7) is pra
ti
allyunobservable.This general stru
ture of the subgap DOS tail is an-alyzed for a number of super
ondu
ting problems withdisorder. In parti
ular, we re
onsidered the gap smear-ing in the Abrikosov�Gor'kov model of weak paramag-neti
 impurities [12℄ and showed that depending on theparameters of the problem, the DOS tail is des
ribedeither by Eq. (5) or by Eq. (7).Finally, we emphasize that our analysis applies todirty super
ondu
tors and NS hybrids with di�usiveele
tron dynami
s des
ribed by the Usadel equation.Mu
h less is known on the nature of the proximity gapin ballisti
 
haoti
 systems whi
h is determined bythe 
ompetition of the mean free time, the Ehrenfesttime, and the es
ape time [34�36℄. Going beyond themean-�eld analysis and generalizing our �ndings tothat type of systems remains an open problem.We thank Ya. V. Fominov and S. E. Korshunovfor useful dis
ussions. This work was supported inpart by the Russian Ministry of Edu
ation and S
ien
e(Contra
t � 8678), the program �Quantum mesos
opi
and disordered stru
tures� of the RAS, and the RFBR(grant � 13-02-01389).APPENDIXDisorder in the singlet se
tor due to magneti
impuritiesIn this Appendix, we 
al
ulate the 
orrelation fun
-tions of e�e
tive disorder in the singlet se
tor due torandomness in h(r).1. Triplet Usadel equationIndu
ed magnetization 
an be des
ribed with thehelp of the triplet Usadel equations. FollowingRef. [37℄, we parameterize the Q matrix in terms of570
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ondu
torsthe spe
tral angle � and the magnetization ve
tor MasQ0 =M0�0(�3 
os � + �1 sin �) ++ iM � �(�3 sin � � �1 
os �); (A.1)whereM0 = p1 +M2. The resulting equations for thesinglet (�) and triplet (M) 
omponents in the Matsub-ara representation have the form [21℄D2 r2� +M0 (�" sin � +�0 
os �)� (h �M) 
os � ���0��1 + 23M2� sin � 
os � = 0; (A.2a)D2 �Mr2M0 �M0r2M�+M(" 
os � +�0 sin �)��M0h sin �0 + 13�0�M0M 
os 2� = 0: (A.2b)In the absen
e of h, we haveM = 0 and the spe
tral an-gle �0(") should be obtained from AG equation (22) an-alyti
ally 
ontinued to Matsubara energies, iE ! �".The linear response of the magnetization M to the�eld h 
an be found from triplet equation (A.2b), whi
hin the momentum representation yieldsM(q) = sin �0�2q2 + �t(") h(q)�0 ; (A.3)where�t(") = "�0 
os �0(") + sin �0(") + �3 
os 2�0(") (A.4)has the meaning of a mass of the triplet modes. Ex-panding singlet equation (A.2a) to the se
ond order inh and using Eq. (22) we then obtain� �2r2� + ("=�0) sin � �� 
os � + � sin � 
os � = �(r); (A.5)where�"(r) = ��M26 sin �0(") 
os �0(")�� h �M�0 
os �0(") (A.6)a
ts as an e�e
tive sour
e of singlet �u
tuations.A nonzero average h�"(r)i leads to a renormaliza-tion of �0 and �, while the strength of disorder in the

singlet se
tor is determined by the irredu
ible 
orrela-torhh�"�"0iiq = �2 sin 2�0 sin 2�0096(���0)2 �� Z Z"(k; q)Z"0(k; q) ddk(2�)d ; (A.7)where �0 = �0("), �00 = �0("0),Z"(k; q) = �"(k) + �"(k � q) ++ � sin2 �0(")3 �"(k)�"(k � q); (A.8)and �"(q) = 1�2q2 + �t(") (A.9)is the triplet di�usion propagator on top of the AGstate.Further analysis goes di�erently for dire
t and in-dire
t �u
tuations of �(r).2. Dire
t �u
tuations of �A

ording to Eq. (A.5), the behavior of quasiparti-
les with energy " in the �eld of a �u
tuating �"(r) and
onstant �(r) = �0 is formally equivalent to behaviorin the �eld of a �u
tuating order parameter with�(�)1 (r) = �0�"(r)
os �0(") : (A.10)For the problem of the DOS tail, we need real energiesnear the gap edge, " = �iE ! �iEg . Sin
e the tripletse
tor remains massive at the edge, we 
an simply eval-uate �" right at " = �iEg , when�t(�iEg) � �2r�2s = 43�1=3�1� 12�2=3� : (A.11)Here, rs is the spin-rigidity length at the gap edge,whi
h is �nite in 
ontrast to the divergent length LEin the singlet se
tor (Eq. (32)).Flu
tuations of the �eld �(�)1 (r) are 
hara
terizedby the irredu
ible 
orrelatorf (�)(q) = hh�(�)1 �(�)1 iiq;whi
h 
an be extra
ted from Eqs. (27), (A.7),and (A.10):f (�)(q) = �4=324(��)2 Z Z2�iEg(k; q) ddk(2�)d ; (A.12)571



M. A. Skvortsov, M. V. Feigel'man ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013where in 
al
ulating Z�iEg(k; q) it should be taken intoa

ount thatsin �0(�iEg) = 
h g = ��1=3:The 
orrelation length of the �eld �(�)1 (r) is of the or-der of rs, and the zero-momentum 
orrelation fun
tion
an be estimated asf (�)(0)�20�d � �4=3g2� �rs� �4�d ; (A.13)leading to Eq. (73).3. Indire
t �u
tuations of �The �eld �"(r) also a�e
ts quasiparti
le behaviorindire
tly by indu
ing quen
hed inhomogeneity in theorder parameter �eld. Flu
tuations of �(r) 
an be ob-tained from the linearized self-
onsisten
y equation (
f.Eq. (56)):��1�1(q) == �TX" ��F (";q)��(q) �1(q) + ÆF (";q)� ; (A.14)where ÆF (";q) = Æ sin �(";q) is a �u
tuating part ofthe anomalous Matsubara Green's fun
tion evaluatedat a 
onstant �(r) = �0. Solving for �1(q), we obtain�1(q) = L0(q)�TX" ÆF (";q); (A.15)where L0(q) is the stati
 �u
tuation propagator on topof the AG solution with a �nite � (note that Eq. (60)refers to the BCS 
ase with � = 0). It is given byL�10 (q) = �T�0 X" �sin �0(")� 
os2 �0(")�2q2 + �s(")� ; (A.16)where �s(") is the mass of the singlet modes (
f.Eq. (A.4)):�s(") = "�0 
os �0(")+ sin �0(")+� 
os 2�0("): (A.17)In the nonmagneti
 
ase (� = 0), Eq. (A.16) redu
es toEq. (60).The 
orre
tionÆF (";q) = 
os �0(") Æ�(";q)indu
ed by magneti
 disorder follows from Eq. (A.5):ÆF (";q) = 
os �0(") �"(q)�2q2 + �s(") : (A.18)

For the irredu
ible 
orrelator f(q) = hh�1�1iiq, weobtainf(q) = L20(q)(�T )2 ��X";"0 
os �0(") 
os �0("0)hh�"�"0iiq[�2q2 + �s(")℄[�2q2 + �s("0)℄ : (A.19)The �eld �1(r) is 
orrelated at the s
ale of the zero-temperature 
oheren
e length, r
 � �(0), and its 
orre-lation fun
tion at T = 0 and q = 0 is given by Eq. (74).We note that in the limit � � 1, the 
orrela-tion fun
tion of indire
t �u
tuations is mu
h smallerthan the 
orrelation fun
tion of dire
t �u
tuations(Eq. (A.13)). This is a 
onsequen
e of the fa
t that�(�)1 a

umulates �u
tuations from the region of thesize of the spin length rs, whereas �1 a

umulates �u
-tuations from the mu
h smaller region of the size of the
oheren
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