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We revise the problem of the density of states in disordered superconductors.
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Randomness of local sample

characteristics translates to the quenched spatial inhomogeneity of the spectral gap, smearing the BCS coher-
ence peak. We show that various microscopic models of potential and magnetic disorder can be reduced to a
universal phenomenological random order parameter model, whereas the details of the microscopic description
are encoded in the correlation function of the order parameter fluctuations. The resulting form of the density
of states is generally described by two parameters: the width I" measuring the broadening of the BCS peak and
the energy scale I't,;; that controls the exponential decay of the density of subgap states. We refine the existing
instanton approaches for determination of I';,;; and show that they appear as limiting cases of a unified theory
of optimal fluctuations in a nonlinear system. The application to various types of disorder is discussed.
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1. INTRODUCTION

Formation of the superconductive state is inti-
mately related to the suppression of the quasiparticle
density of states (DOS) in the vicinity of the Fermi en-
ergy. This effect is most pronounced for s-wave paring,
leading to a hard gap in the quasiparticle spectrum.
If the time-reversal invariance is not broken, the DOS
follows the standard BCS expression

prcs(E) = poRe ——or 1)
where po is the normal-metal DOS. Equation (1) ap-
plies to both clean and disordered systems [1, 2], indi-
cating that thermodynamics of superconductors is in-
sensitive to single-particle dynamics if a trajectory has
its time-reversed counterpart needed to form a Cooper
pair (the Anderson theorem).

Breaking the time-reversal symmetry (e. g., by mag-
netic impurities [3], a supercurrent [4], or a magnetic
field in small superconducting grains/films [5]) lowers
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the critical temperature of the transition and smears
the coherence peak in (1). Various depairing scenarios
are to a large extent equivalent [6] and can be described
by a single dimensionless parameter

1
)
7'depA[)

(2)

where TC;; is the depairing rate associated with a par-
ticular mechanism of time-reversal symmetry breaking
and Ag is the average value of the order parameter.
According to the general analysis of Abrikosov and
Gor’kov (AG) [3], the quasiparticle spectrum remains
gapful for a sufficiently weak pair breaking n < 1 (oth-
erwise, gapless superconductivity is expected). A new
renormalized gap edge is located at

Ey(n) = (1= n**)*2 A, (3)
with the DOS vanishing as p(E) oc (E — E;)'/? (see
dotted line in Fig. 1).

In their seminal paper in 1971, Larkin and Ovchin-
nikov recognized that the BCS-like form of the DOS
may be smeared even if the time-reversal invariance is
not broken [7]. They considered a phenomenological
model with a spatially varying Cooper-channel inter-
action constant A(r) = Ao + dA(r), and showed that
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Fig.1. Schematic view of the average DOS in a dirty
superconductor (solid line). Broadening of the BCS
peak (dashed line) is mainly described by the semiclas-
sical approximation (dotted line), with the full DOS
containing a significant tail of subgap states

short-scale disorder in A(r) has two effects on the DOS
profile: First, at the mean-field level, it is equivalent to
the AG model [3] with some effective deparing parame-
ter n, thus leading to the coherence peak smearing, but
still with the hard gap at £ = E,. Second, this hard
gap is also smeared due to optimal fluctuations of the
field A(r), leading to the Lifshitz-type [8, 9] tail of p(E)
in the subgap region E < E,.

The resulting form of the average DOS in a disor-
dered superconductor is shown schematically in Fig. 1.
Its main part is given by the AG theory (dotted line),
with the coherent peak smearing controlled by an en-
ergy scale I' = Ay — E,. This region corresponds to
uniform configurations of the superconducting order
parameter. By contrast, the DOS tail at £ < E, origi-
nates from the states localized in traps where the order
parameter is lower than its average value Ag. In this
regime, p(E) strongly fluctuates in space, with the aver-
age DOS decaying typically as a stretched exponential
at an energy scale I'jqy < T':

()
Ctait
The appearance of sufficiently deep traps is a rear
event, which is naturally identified with an instanton in
the semiclassical equations of superconductivity. Work-
ing in the dirty limit and studying optimal fluctuations
in the Usadel equation [10], Larkin and Ovchinnikov
(LO) [7] calculated the average subgap DOS,
A2 d
(10 o exp (—aaln) 52 6-01) (9

(p(E)) ox exp (4)
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which behaves as a stretched exponential of the dimen-
sionless distance ¢ from the gap edge,

_E,—E

€ )
Eg

(6)

with the power (1,0 = (8 —d)/4 dependent on the space
dimensionality dV). In Eq. (5), A is the average value
of the order parameter, £ = /D /24, is the supercon-
ducting coherence length (D is the diffusion coefficient),
f(0) is the zero Fourier harmonic of the correlation
function of the order parameter fluctuations induced
by quenched disorder in A(r) (see Eq. (17) below), and
agq(n) is a function of the dimensionless depairing pa-
rameter 7 (see Eqgs. (18) and (52) below).

The power of ¢ in Eq. (5) can be easily understood
within the optimal fluctuation approach. Near the AG
threshold, as E — FE,, the system is characterized by
a diverging length scale Lp ~ & /4 [7]. To have a
quasiparticle state with an energy E = (1—¢)E, below
the mean-field gap, one has to locally reduce the order
parameter by an amount A ~ Ay in a volume spec-
ified by the length L. The price to be paid for such
an optimal fluctuation scales as (§A)?L% ~ &2=4/* in
accordance with the result (5).

Precisely the same model of a fluctuating Cooper
constant [7] in a dirty superconductor was reconsidered
thirty years later by Meyer and Simons (MS) [11] in the
framework of the nonlinear ¢ model approach. Using
the instanton analysis of the ¢ model, they obtained
a somewhat different optimal fluctuation leading to a
different result for the tail of the subgap states:

(p(Ears x exp (=Ba(n) ge=® /), (7)

which is also a stretched exponential but with a differ-
ent power (yrs = (6 — d)/4. In addition, the instan-
ton action of Meyer and Simons is independent of the
order-parameter correlation function f(r). Instead, it
contains some function [54(n) of the depairing parame-
ter 1 (see Eq. (43) below) and the dimensionless con-
ductance g¢ (in units of e?/h) of the region of size &:

ge = 4nvDE? = 8v gl (8)

The appearance of the conductance g in the exponent
in Eq. (7) indicates that this expression cannot be ob-
tained at the level of the saddle-point (Usadel) equation
but requires the use of the full nonlinear field theory.

1) In Ref. [7] only the 3D case with weak disorder, n < 1, was
considered, but generalization of this result to arbitrary dimen-
sionality d is straightforward.
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Expression (7) for the density of subgap states has
been obtained for a variety of disordered supercon-
ducting systems [11-15], where the semiclassical ap-
proximation predicts a square-root vanishing of the
DOS, p(E) x /E — E,;. In particular, it was ob-
served in hybrid normal-metal-superconductor (NS)
systems [13, 14] and in bulk superconductors with mag-
netic impurities [12,15]. Mathematically, it bears a
close analogy to the Tracy—Widom distribution for the
DOS tail in the random matrix theory (RMT) [16], gen-
eralizing it from d = 0 to an arbitrary dimensionality
d. Based on these findings, it is widely believed that
Eq. (7) provides a universal description of the subgap
DOS tail in disordered superconductors. However, the
discrepancy with the analysis of Larkin and Ovchin-
nikov existing at least for the model of the random
Cooper channel constant remains unresolved.

The purpose of this paper is to fill this gap by clar-
ifying the origin of the two types of instantons dis-
cussed in Refs. [7] and [11] (leading to Eqgs. (5) and (7)).
We show that they correspond to different limits of a
unique instanton solution realized for small and large &,
respectively. Hence, the Larkin—Ovchinnikov instanton
can be continuously deformed into the Meyer—Simons
instanton by changing the distance to the gap, €. Such
an unusual situation is a consequence of the nonlinear-
ity of the Usadel equation. Therefore, averaging over
the random order parameter field A(r) produces a non-
linear term [8], which competes with the intrinsic non-
linearity of the problem. This should be contrasted
with the problem of fluctuation bound states in the
Schrodinger equation with a random potential [8, 9],
where the only source of nonlinearity is due to averag-
ing over disorder.

This paper is organized as follows. In Sec. 2, we
introduce the random order parameter (ROP) model
and derive its effective action in the large-scale limit.
In Sec. 3, we analyze the instanton solutions with the
broken replica symmetry and recover results (5) and (7)
in different limits. The summary and applications of
the ROP model are discussed in Sec. 4. Gap smearing
in superconductors with magnetic impurities is recon-
sidered in Sec. 5. We conclude with a discussion of the
results in Sec. 6. Technical details are relegated to the
Appendix.

2. RANDOM ORDER PARAMETER MODEL

2.1. The model

We start with the simplest example where the gap
smearing results from quenched inhomogeneity in the
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pairing potential,

A(r) = Ao + Ay (r), (9)
which is assumed to be a real Gaussian random field
specified by the correlation function

(Ar()A;(r)) = fr —1'). (10)

The function f(r) is supposed to be short-range, with
the correlation length r. shorter than the supercon-
ducting coherence length?):

re <& (11)
The superconductor is assumed to be in the dirty limit
T.m < 1, where 7 is the elastic scattering time.

The main simplification of this model, which will be
referred to as the ROP model, is that A(r) is regarded
as a given external field that should not be determined
self-consistently.

The phenomenological ROP model universally
emerges as an intermediate step in studying various
types of disorder in the singlet case, where spin effects
can be neglected [7,11,17] (a more general situation is
considered in Sec. 5). The function f(r) in Eq. (10)
then bears information on the original inhomogeneity
in a particular microscopic model, see Sec. 4.3.

2.2. Sigma model

The ROP model was treated by Larkin and Ovchin-
nikov [7] in terms of the equations of motion (Usadel
equation), and by Simons and co-authors [11,12,15]
within the nonlinear o-model formulation. Aiming to
compare the two approaches, we choose to work in the
functional language of the diffusive o-model. To study
the DOS in a field of a given A(r) at a particular en-
ergy E, one can use either its supersymmetric or replica
version. We prefer to deal with the real-energy replica
o-model formulated in terms of the field Q(r) acting
in the direct product of the replica, Nambu, and spin
spaces (the spin space is redundant in the singlet case
considered here, but is used in studying magnetic im-
purities in Sec. 5) [12,18-21].

Choosing the order parameter to be real, we write
the o-model action as

5= /dr tr [D(VQ)* +4(iErs—A(r)m)Q] , (12)

where 7; are Pauli matrices in the Nambu space.

2) The inequality (11) can be replaced by a weaker inequality
re < Lg, where L is given by Eq. (32).
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Averaging over quenched disorder in A(r) with the
help of Egs. (9) and (10), we arrive at the action for
the field Q:

S =5+ Sdis, (13)

where

S0= T2 [ [DIQP+aGER-20m)] (1

(mv)?

2
X /drdr'f(r—r') tr[m Q(r)] tr[r Q(x")].  (15)

Sdis = —

X

2.3. Effective long-wavelength action

The term Sy;s in Eq. (15) contains an additional
trace in the replica space and therefore does not con-
tribute to the replica-diagonal saddle-point equation
of motion. According to Larkin and Ovchinnikov [7],
in order to see the effects of disorder at the saddle-
point level in the long-wavelength limit (with momenta
¢ < qo), one has to average Sg;s over fast fluctuations of
the field @ (cooperons and diffusons). This procedure
generates an effective depairing term [11, 21]

TvAgn

Sy = - 1 /dr tr(m3Q)?, (16)

where the coefficient 1 is expressed in terms of the
Fourier transform of the order-parameter correlation
function

fla) = (A1A1)q (17)
_ 2 [ fla) d'q 18
"X ] D @r)d (18)

It is assumed in this derivation that the regions of
large momenta (¢ > ¢o) contributing to Eq. (18) and
small momenta (¢ < ¢o) for which we derive an effec-
tive theory are well separated. This is true in 3D [7],
marginally true in 2D [17] and wrongin 1D (see Sec. 4.2
for the details).

Having eliminated short-range degrees of freedom,
we obtain an effective long-range (r > r.) action for
the field Q:

S = SO + Sn + Sdi37 (19)

where S is given by Eq. (14), S, is given by Eq. (16),
and Sg;s can be written in the local form
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(m

2
Sdis = — ;) f(O)/dr [tr 71 Q(r)]?. (20)

At this stage, we can trace the difference between
the approaches in Refs. [7] and [11]. To reproduce
the analysis of Larkin and Ovchinnikov [7], we have
to decouple the term Sy;s (Eq. (20)) with the Gaus-
sian white-noise order parameter field A;(r) and treat
the resulting problem in the saddle-point approxima-
tion assuming the solution to be replica symmetric. As
we see in Sec. 3.4, in terms of the Q-only action in (19)
this corresponds to instanton solutions with infinitesi-
mally small replica symmetry breaking. On the other
hand, Meyer and Simons [11] did not use the saddle-
point approximation but completely neglected the term
Saqis that accounts for long-range fluctuations of the
order-parameter field. Their instanton solution orig-
inating from the nonlinearity of the underlying field
theory has a nontrivial replica structure discussed in
Sec. 3.3. Below, we analyze the action in (19) and
clarify the validity of approximations used in Refs. [7]
and [11].

3. OPTIMAL FLUCTUATIONS IN A
NONLINEAR SYSTEM

3.1. Saddle-point equations

Here, we analyze the saddle points of action (19)
that have the replica-diagonal form:

(Q0)?® = 64 [13 cOs O + T 5in 6], (21)

where Latin indices refer to the replica space and the
spectral angle #%(E) depends on the energy considered.

The simplest is the replica-symmetric saddle point,
with 8% = 6y for all @ = 1,...,n. For a replica-
symmetric solution, the actions Sp and S, are propor-
tional to the number of replicas n, whereas the action
Sgis is proportional to n? and does not contribute to
the saddle-point (Usadel) equation in the replica limit
n — 0. Then the saddle-point equation for a uniform
Qo immediately reproduces the AG equation for the
spectral angle in the model of magnetic impurities [3]:

iEsinfy + Agcosfy — Agncosbysinfy =0.  (22)

The corresponding DOS p(E) = po Recosfy, charac-
terized by the hard gap at E; (Eq. (3)), is shown by
the dotted line in Fig. 1.

The subgap states are associated with localized
saddle-point solutions with broken replica symme-
try [11]. To study them, it is convenient to write [12, 14]

0° = 1/2 + ih®. (23)

8*
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The replica-symmetric mean-field solution ¥ = 1) is
real for £ < E,, and the appearance of a finite DOS is
related to configurations with complex ).

The set of saddle-point equations for action (19) in
terms of the angle ¢ takes the form

—EVA + F(§") + kshy® > chy® =0, (24)
b

where ¢ is the coherence length, €2 = D/2A,, the pa-
rameter x is related to the low-momentum correlator
of the order parameter fluctuations:

L _ Ami(0) _ ge f(0)

== 2
Ry (25)
and the function F(v)) is given by
E
F(y) = ch + sh) —nsheychp. (26)

A

The equation F(v)) = 0 is equivalent to AG equa-
tion (22).

Behavior of the function F'(¢) for real arguments
depends on the relation between E and E,. Below the
gap (E < E,), the equation F'(1)) = 0 has two solu-
tions: ¥ (the AG solution) and 9’ > 5. They merge
at F = E,, where an analytic solution is possible, yield-

ng
chip, = n~t/3. (27)

Above the gap (E > E;), the equation F(3)) = 0 has
no real solutions. For small deviation from the gap,
E — E,, the function F(¢)) can be expanded near the
AG solution as

F(y) = Q¥ — o) — p(t — 0)*, (28)

with the dimensionless parameters

3
p= 5771/3\/1 -3, (29)

where ¢ is defined in Eq. (6).

0= (1 - 772/3)\/@7

3.2. Instantons with broken replica symmetry

We now concentrate on solutions of Eqs. (24)
with the simplest nontrivial structure in the replica
space [11]:

arn Pi(r), a=1,
w(r)_{wg(r), a=2,...,n. (30)

Such a solution is characterized by two functions, ¥ (r)
and 15 (r), which satisfy the system of two coupled non-
linear equations (24), where

> chyb = chypy — chyy (31)

b

in the replica limit (n — 0).

System (24) simplifies in the vicinity of the gap
edge, E — E,, where variations of ¢4 (r) and 12 (r) are
small and the replica-mixing term can be linearized.
To write the resulting equations in dimensionless form,
we measure distance in units of the divergent length
scale [7]

Y E 1/4
v 5~ (5 2%) o

and write
Y1,2(r) = Yo + (2/p)d1,2(r). (33)
As a result, we arrive at the system

—V2¢1 + o1 — ¢7 = K(2)(¢2 — 1),
—V20hs + ¢ — 3 = K(e)(d2 — 61).

The replica mixing is controlled by the single dimen-

(34a)
(34b)

sionless parameter K (¢):
Ex

K(e) =4/~ (35)

where the energy scale ¢, is given by

2 2 2
o % (] §0> . (36)
6774/3 24774/3 Aofd

Sufficiently close to the gap edge, at ¢ < e, the
parameter K (g) is large and equations for ¢;(r) and
¢2(r) are strongly coupled. Small values of K(g) can
be realized only for large deviations from the gap, at
€2 Eu

With the exponential accuracy, the subgap DOS is
determined by the instanton action:

(p(E)) o< exp (=7aln) ge VA5 [K(2)]) ,  (37)

where g¢ given by Eq. (8) is the dimensionless conduc-
tance of the region of size &,

4 . 1 — p2/3)2—d/2
Ya(n) = 3 6>~/ %7 (38)
and

So(K) = 5 (63 =ty ar (39)

is the dimensionless instanton action.
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We note that the energy dependence of the average
DOS in (37) comes from both the factor £(6=4/4 and
the energy dependence of the parameter K (¢). Below,
we analyze solutions of Eqs. (34) in the limit cases of
small and large values of K and identify them with the
Meyer—Simons and Larkin—Ovchinnikov instantons, re-
spectively.

3.3. Instanton in the limit K — 0

In the limit k' — 0, Eqgs. (34) decouple, yielding a
single equation

V6 +¢—-¢>=0 (40)
for both ¢1(r) and ¢2(r). This equation has three solu-
tions: two constant solutions ¢(r) = 0 (corresponding
to the AG solution) and ¢(r) = 1, and a spherically
symmetric bounce ¢£th(r) vanishing as r — oo. The
bounce solution of Eq. (40) is known explicitly in the

1D geometry:

3

(1) (o
2ch?(r/2)’

Pinst

(r) (41)
and can be obtained numerically for other dimensional-
ities. The instanton action is determined by the num-
ber

6/5, d=1,
N T RO _
Sq = 5 [Pinst(M)]°dr = < 7.75, d =2, (42)
437, d=3.

To minimize action (39), we take the trivial AG
solution ¢1(r) = 0 for the first replica and choose a
bounce solution, ¢»(r) = @EZLt(r), for the other repli-
cas. Hence, Sp(0) = s4 and Eq. (37) reproduces the
result (7) of Refs. [11] and [12] with

Ba(n) = sava(n). (43)

3.4. Instanton for K — oo, optimal fluctuation,
and dimensional reduction

In the limit X' — oo, the last terms in Eqs. (34a)
and (34b) render ¢ (r) and ¢5(r) nearly equal. So we
may expand their difference in powers of K~! and write

B(r), ¢a(r) =o(r) + K tx(r) +...

Substituting this expansion in Eqs. (34a) and (34b), we
obtain

(44)

-V +¢ -9 =y,
—V2xy 4 x — 20y =0.

(45a)
(45b)

565

Eliminating x(r), we come to a fourth-order differential
equation for ¢(r):

[-V2+1-2¢][-V?p+ ¢ — ¢*] = 0. (46)

Equation (46) naturally appears in the study of op-
timal fluctuations in the nonlinear equation

~V?¢ + F(¢) = h(r), (47)

where F(¢) = ¢—¢? and h(r) is a Gaussian é-correlated
random field [7]. Optimal fluctuation arguments [8, 9]
lead to the minimization of the functional

/thr = /[—V2¢ + F(¢)]?dr,
and hence to the saddle-point equation

[=V2 + F'(9)][-V?¢ + F(¢)] = 0, (48)

coinciding with Eq. (46). Thus we see that in the
replica formalism, the role of the random field h(r) is
played by the mismatch of solutions for different repli-
cas:

X(r) o ¢2(r) — ¢1(r).

We note that those ¢(r) solving Eq. (40) also solve
Eq. (46). But none of them correspond to an optimal
fluctuation since they have h = 0 and do not lead to
a finite DOS. Therefore, we have to look for another
solution of Eq. (46). Quite surprisingly, for the spheri-
cally symmetric solutions ¢(r), there exists an identity
valid for an arbitrary function F'(¢) and an arbitrary
d [22]:

[AY, + F'(¢)][-AYD 6 + F(¢)] =
= [-A L B (9)] [-A Do+ F()],  (49)
where
@ _ 1 9 440
rad rd—1 87"T or (50)

is the radial part of the Laplace operator in d dimen-
sions.

Hence, there is a kind of dimensional reduction: a
nontrivial optimal fluctuation in d dimensions solving
Eq. (46) is just the bounce solution of Eq. (40) in d — 2
dimensions. We note that a somewhat similar dimen-
sional reduction was obtained in Ref. [23] for the critical
behavior of spin systems in a random magnetic field.

The instanton action (39) is given by
Z’ /¢2Xdr - 22’ /X2 dr,

So(K) = (51)

2



M. A. Skvortsov, M. V. Feigel'man

MKIOT®, Tom 144, Bom. 3(9), 2013

where the last relation follows from Eqs. (45a)
and (45b). In the optimal fluctuation language,
exp[—S(K)] is just the probability density for the
Gaussian random field x(r). Substituting Eq. (51) in
the general expression (37), we arrive at the result (5),
where

aq(n) =16- 6~ ¢y (1- 172/3)2_d/27 (52)

and ¢qg = limp 00 KSo(K) is a d-dependent constant:

0.266, d=1
890(d72)(74) er i )
=9 “Yinst V) T — . =
o / ( at ) S=q200. d=2, (53)
247 /5, d=3.

In the 3D case and at n < 1, Eq. (5) coincides
with the result of Ref. [7] (where only this limit was
considered). Therefore, our instantons in the limit
K — oo directly correspond to the optimal fluctua-
tions of Larkin and Ovchinnikov, and dimensional re-
duction (49) explains why they managed to find an ex-
plicit analytic expression for the optimal fluctuation in
the 3D case: ¢(3)(r) = {1 (r), with the right-hand
side given by Eq. (41).

3.5. Intermediate values of K

Two types of instantons analyzed above continu-
ously interpolate between each other with variation of
K. As an example, we show numerical solutions of 1D
equations (34a) and (34b) for some intermediate values
of K in Fig. 2. For small but finite K, the respective

solutions ¢y (r) and ¢o(r) start to deviate from 0 and

d
(pgn)st

they are close, approaching the asymptote ¢
K — oo.

Hence, increasing the deviation from the gap edge
into the classically forbidden region leads to a grad-
ual crossover from the Larkin—Ovchinnikov to the
Meyer—Simons instanton. The crossover takes place at
the dimensionless energy e, given by Eq. (36). Equi-
valently, the energy can be estimated just by equating
the results (5) and (7).

(r), moving towards each other. Already at K =1

@2 (r) as

4. RANDOM ORDER PARAMETER MODEL:
SUMMARY AND APPLICATIONS

Having established the replica structure of the in-
stantons in the ROP model, we now comment on the
limits of validity of the above analysis and consider var-
ious applications of the ROP model in a more general
context.
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Fig.2. Numerical solutions of Eqs. (34a) and (34b) in
1D geometry (d = 1) for various values of the replica-
mixing parameter K. For K = 0, ¢1(z) = 0 and
d2(x) = 995,13”(3:) (the upper thick curve). Solutions
for intermediate values (K = 0.2 and K = 1) are
shown by the thin solid lines. In the limit X' — oo,
¢1(z) and ¢2(x) approach the asymptote gpﬁjf(x) (the
thick dashed line)

4.1. Validity of the instanton analysis

Our analysis was based on two implicit assump-
tions: 1) the large instanton action allowing the use of
the saddle-point approximation, and 2) a small devia-
tion from the gap edge, ¢ < 1, that allows expanding
Eq. (26) and obtaining the universal system (34). Once
we know the resulting expressions (5) and (7) for the
DOS tails (at ¢ < e, and ¢ > ., respectively), we
can verify these assumptions a posteriori. Depending
on the relations between the parameters of the ROP
model, we can identify the following regimes.

f(0) n
A3l < (g—e
The tail is described by Eq. (7) for all e. The Larkin—
Ovchinnikov tail does not exist because the correspond-
ing action is smaller than 1.

TIA. (’7

3

2/3
I

)(8—d)/(6—d)

2/3 2/3
<
9¢

f(0)

< Azed

) (8—d)/(6—d)

The main part of the tail (for small ¢ < e,) follows
Larkin—Ovchinnikov result (5). Tail (7) exists at large
€ > g, where it is extremely small.

£(0)
Afer

/3

9e

The tail follows Larkin-Ovchinnikov result (5) for all
e. Tail (7) does not exist.

IIB. <
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In each regime, only one type of instantons is im-
portant. The other one is either nonexistent or unob-
servable.

2. Role of dimensionality

Larkin and Ovchinnikov’s approach [7] to the ROP
model is based on the idea of separation of scales: short-
scale fluctuations of A(r) produce an effective depair-
ing n leading to the formation of the AG-like hard gap,
whereas long-scale fluctuations are responsible for the
gap smearing. Due to the presence of the diffusive pole
in the integrand in Eq. (18) for 7, the possibility of
such separation depends on the dimensionality of the
problem.

In 3D, the integral in Eq. (18) is determined by large
momenta, ¢ ~ ', where . is the correlation length
of the fluctuating field A;(r), leading to the estimate

e / T

The long-wavelength theory in (19) is then applicable
already for scales r 2 r..

£(0)

271'2A2§2rc' (54)

3D =

The 2D case is marginal because the integral in
Eq. (18) is logarithmic. Its upper cutoff is again given
by r-!, whereas the lower limit must be determined
with care. According to Ref. [17], with logarithmic ac-
curacy an appropriate cutoff is established by replacing

D¢* = D¢* + D/L3%,

where the length L is defined in Eq. (32). As a result,
the depairing factor becomes energy-dependent:

1 f(0)
%A%fQ In

min(Lg, L,)

)

nep(E) = (55)

Te

where we had to introduce an infrared length scale
L, in order to regularize the otherwise divergent
nep(E — Eg). Its appearance is related to the break-
down of the mean-field approximation in the narrow
region |E — E4| < T'qi, where proliferation of instan-
tons generates a finite correlation length

Ly~ &(Ey/Tiai)/*.

Here, the Meyer—Simons (Larkin—Ovchinnikov) expres-
sion for [y, must be used if regime I (II) is realized
(see the discussion in Sec. 4.1).

In 1D, integral (18) is divergent in the infrared, in-
dicating that analytic treatment based on the idea of
scale separation is not possible, and I'y,; ~ T'.
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4.3. Applications of the ROP model
4.3.1. Random coupling constant model

This is the model initially considered by Larkin and
Ovchinnikov [7]. It can be reduced to the ROP model
in the following way. A fluctuating Cooper constant
introduces quenched fluctuations in the order param-
eter field, which should be determined from the self-
consistency equation. The latter can be written in the
Matsubara representation and solved perturbatively.
In the linear order, we have [7]

Ao Ar(a) + 627 (@)Ag

_WTZ OF( s,q

Ai(q), (56)

where F'(e,q) is the Fourier transform of the semi-
classical Gor’kov function F'(e,r) = sinf(e,r), and its
derivative with respect to Ay can be obtained from the

Usadel equation. Solving for A;(q), we arrive at the
linear relation

Ai(q) = —AoLo(q) 50X (q),

where Lg(q) is the static propagator of superconducting
fluctuations in the BCS theory,

A2 + e; )Dq?/2

(57)

Y 0=TY olee s b
and
E(e) = /2 + A3. (59)

At zero temperature, integration over Matsubara en-
ergies ¢ can be performed analytically [7,11], leading
to

24>
Lo(q) = =
T —44/1 — §* arctg q
_ 1—mj2/4+..., §<1, (60)
1/Ing®+..., i>1,
where ¢ = ¢¢§.

We thus arrive at the ROP model specified by the
correlation function

F(a) = (A1A1)q = AFL* (@ (OAT10AT ) g

The random coupling constant model can be
mapped onto the ROP model as long as fluctuations
of A(r) are weak (the resulting depairing parameter
n < 1). Otherwise, it is not sufficient to use the
first-order perturbation theory in Eq. (56).

(61)
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4.3.2. Gap fluctuations in NS systems

The simplest setup where disorder leads to the for-
mation of subgap states is the model of the NS junc-
tion [13,14]. Here, superconductive correlations are
induced into the normal metal due to the proximity
effect, opening the (mini)gap in the excitation spec-
trum [24]. In a long diffusive junction (with a size
L > ¢), the minigap is of the order of the Thouless
energy: E, ~ Er, = D/L? [25,26]. In the normal part
of the junction, the order parameter is absent and the
only source of disorder is due to the random position
of potential impurities. These mesoscopic fluctuations
(MF) are known to be responsible for various sample-
to-sample fluctuations such as universal conductance
fluctuations [27], mesoscopic fluctuations of the Joseph-
son current [28,29], etc. [30].

The DOS tail due to mesoscopic fluctuations in NS
hybrid systems [13,14] follows the result (7). This
sheds light on the physical origin of the instanton of
the action Sp + S, discussed in Sec. 3.3: it describes
the DOS smearing due to mesoscopic fluctuations of the
quasiparticle response to a constant (for this particu-
lar problem, zero) order parameter. In other words,
randomness of the impurity positions translates into
fluctuations of the quasiparticle Green’s function Q(r).

4.3.3. Mesoscopic fluctuations of the order
parameter

In disordered superconductors, mesoscopic fluc-
tuations lead to fluctuations of the order parame-
ter [17,31]. These are generated by fluctuations of Q(r)
if the self-consistency equation is taken into account.

In the 2D case and in the presence of the Coulomb
interaction, the order parameter correlation function
was calculated in Ref. [17]. The correlation length
of these fluctuations is of the order of the zero-

temperature coherence length, r. ~ £(0). Their mag-
nitude at 7' =0 and ¢ = 0 is given by
2]\£F+C’oulomb(0) _ 2 (62)
Aj¢? 9(9—9g¢)’

where g. = ln2(h/TcoT) /27 is the critical conductance
for the fermionic mechanism of superconductivity sup-
pression [32] (T¢o is the transition temperature in the
clean system and 7 is the elastic scattering time).
Evaluating the depairing parameter from Eq. (55),
we find that regime IIB is always realized (see Sec. 4.1).
Therefore, gap smearing in homogeneously disordered
superconducting films is always described by the
Larkin—Ovchinnikov mechanism leading to Eq. (5), and
there is no room for the Meyer—Simons instanton [17].
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For completeness, we present here the general ex-
pression for the correlation function of the order pa-
rameter due to mesoscopic fluctuations at an arbitrary
space dimensionality d but in the absence of Coulomb
effects:

LT

V2
Hsa’
<2
€,€

where €(¢) is defined in Eq. (59) and

M (q) =

e’ (k B Q) ddk
(2m)4”

(k)1
A (63)

()€

.. (k) = [DE* + &(c) + ¢()] !

is the diffusion propagator on top of the BCS state. In
particular, at 7'= 0 and ¢ = 0, we obtain

o) 1

Since mesoscopic fluctuations are inevitably present in
any disordered system, Eq. (64) is the lower bound for
the order parameter fluctuations in disordered super-
conductors.

5. MAGNETIC IMPURITIES

5.1. Abrikosov—Gor’kov model

We now turn to the situation where the BCS coher-
ence peak is smeared by magnetic disorder. We restrict
ourselves to the AG model [3] of Gaussian point-like
magnetic impurities (a more general case will be con-
sidered elsewhere [33]) specified by the correlation func-
tion of the exchange field:

_ 517 (S(I' - I")

(ha(w)h (') = T (63)
where 75 is the spin-flip scattering time, which plays
the role of the pair-breaking time that determines the

pair-breaking parameter

1
n_TsAO.

(66)

The vector h is three-dimensional, while the effective
dimensionality of the sample may be different.
Formation of the subgap states in a superconduc-
tor with weak magnetic impurities was studied by
Lamacraft and Simons [12], who came to the result es-
sentially coinciding with Eq. (7). However, inspired by
the preceding analysis of the ROP model, we may ex-
pect that there should be instantons related to optimal



MIT®, Tom 144, Be. 3 (9), 2013

Subgap states in disordered superconductors

fluctuations of the exchange field h and/or the order
parameter field A(r), leading to the Larkin—Ovchinni-
kov tail (5). Below, we study this instanton contribu-
tion and demonstrate that the main part of the subgap
DOS tail can be described either by the Lamacraft—
Simons or by the Larkin—Ovchinnikov results, depend-
ing of the values of g¢ and n (see Sec. 5.4). In the
case where the tail is due to the Larkin—Ovchinnikov
optimal fluctuation, it arises as a result of mesoscopic
fluctuations of the order parameter.

5.2. Sigma-model action

We use the real-energy replica o-model introduced
in Sec. 2.2. Before averaging over magnetic disorder,
the initial action expanded to the second order in the
impurity magnetization h(r) takes the form [21]

S =50+ 51 +5s, (67)

where Sy is the action for the uniform superconductor
given by Eq. (14) and the terms S; » describe magnetic
impurities:

Sy im//dr h(r) tr(30Q), (68)

(mv)

5 / dr hi(r)hi(x') tr(r30:QT305,Q), (69)

S

where o; are Pauli matrices in the spin space.

Averaging over h with the correlation function (65)
generates two terms, S, = (S») and Sqis = —(57)/2,
with different structures in the replica space:

A
= _71'1/12077 /dr tr(moQ)?, (70)
TvAgn 5
Sdis = 12 dr (tr 30Q)”, (71)

where the depairing parameter 7 is given by Eq. (66).
As a result, the effective action describing gap fluctu-
ations in the presence of a Gaussian short-range mag-
netic disorder takes the form

S = SO + Sn + Sdis~ (72)

The structure of the terms S, (Eq. (70)) and Sg;s
(Eq. (71)) is quite similar to that of the analogous
terms, (16) and (15), in the ROP model. We note
that in contrast to the ROP model, the depairing term
Sy is generated automatically after averaging over J-
correlated magnetic disorder.

In the analysis of action (72), Lamacraft and Si-
mons [12] considered only singlet configurations of the
field Q(r). Then the term Sg;s can be discarded, while
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the term .S, just coincides with the analogous term (16)
in the ROP model. In the absence of a field responsi-
ble for optimal fluctuations, the authors of Ref. [12]
reproduced the result (7).

5.3. Effective fluctuators in the singlet sector

To go beyond the analysis of Ref. [12], we have to
identify an effective fluctuator in the singlet sector that
might be responsible for the Larkin—Ovchinnikov op-
timal fluctuation at ¢ < e, (K — o0). We focus
on the singlet sector because it becomes massless as
E — E,, whereas the triplet does not (see Eqs. (A.3)
and (A.11)). Therefore, the instanton solution with the
stretched-exponential action of type (4) can arise only
in the singlet component of Q(r).

There are several sources of fluctuations in the sin-
glet sector.

1) Mesoscopic fluctuations of the order parameter
with the correlation function given by Eq. (64). They
arise due to fluctuations of potential impurities and are
insensitive to weak magnetic disorder.

2) Fluctuations in the singlet component of the
Green’s function Q(r) generated via its triplet com-
ponent due to the nonlinearity of the Usadel equation
(referred to as direct fluctuations). These fluctuations
can be described in terms of an effective order param-
eter field qu)) (r). Tts correlation function is calculated
in the Appendix. In the limit 7"= 0 and ¢ = 0, it can
be estimated as

f(cb) (0) 77(4+d)/6
Azed T g2

(73)

3) Fluctuations of the order parameter due to ran-
domness in h (referred to as indirect fluctuations) cal-
culated in the Appendix. In the limit 7" = 0 and
q = 0, the corresponding correlation function can be
estimated as

[0
A€

Ui

2
9

(74)

The presence of the factors gg in the denominators of
Eqs. (73) and (74) can be easily explained. Due to the
vector structure of the random field h(r), an effective
fluctuator in the singlet sector is proportional to h?,
with its variance f scaling as (h?)? oc v~ 2 o< g 2.

5.4. The result

Comparing Eqs. (64), (73), and (74), we conclude
that mesoscopic fluctuations of the order parameter are
the leading source of disorder in A(r) for the magnetic
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impurities model. Therefore, there is a competition
of Larkin—Ovchinnikov result (5) with f(0) given by
Eq. (64) and Lamacraft-Simons dependence (7). Ac-
cording to Sec. 4.1, the winner depends on the values
of g¢ and .

Regime I is realized for

ge > 2B-D/34d),
The subgap DOS follows Eq. (7).
Regime II is realized for

ge < n2B-D/3=0),

The subgap DOS follows Eq. (5).

6. CONCLUSION

This work was motivated by the discrepancy be-
tween the two instanton approaches to the problem of
the subgap states in disordered superconductors. We
have analyzed the replica structure of a generic in-
stanton solution and demonstrated that the instan-
ton of Larkin and Ovchinnikov [7] can be continu-
ously deformed to the instanton of Simons and oth-
ers [11,12, 15] with decreasing the energy into the clas-
sically forbidden region.

The existence of two different instanton types is re-
lated to the presence of two types of disorder in the sys-
tem: (i) the potential disorder responsible for diffusive
motion of electrons and (ii) extra randomness in some
other characteristics of the sample, e.g., the Cooper
coupling constant, the order parameter field, the ran-
dom spin exchange field, etc. In the semiclassical the-
ory of dirty superconductors, the potential (type-i) dis-
order is averaged out at the very beginning. The re-
sulting Usadel equations are nonlinear already in the
absence of type-ii disorder. Averaging over disorder
brings an additional nonlinearity, which competes with
the intrinsic nonlinearity of the problem. The relative
strength of the two nonlinear terms is controlled by
the proximity to the gap edge. For ¢ < &,, intrinsic
nonlinearity is not important and the situation is sim-
ilar to the problem of the linear Schrodinger equation
with disorder. The instanton then corresponds to the
optimal fluctuation of the random field, yielding the
Larkin—Ovchinnikov result (5). In the opposite limit
€ > &4, only the intrinsic nonlinearity of the problem
is relevant. The nonlinear equations of motion still al-
low a bounce solution corresponding to the instanton
of Simons and others.

Physically, the instanton of Larkin and Ovchinnikov
describes an optimal fluctuation of the order parameter

field, which decreases the local value of the gap. The
instanton of Simons and others describes mesoscopic
fluctuations of quasiparticle response at a fixed value
of the order parameter.

Depending on the parameters of the problem, it
might happen that the instanton action at the crossover
energy € ~ ¢, would be smaller than 1. In this situa-
tion, the Larkin—Ovchinnikov instanton does not exist
and the density of subgap states is described by Eq. (7).
Otherwise, the main part of the tail is described by
Eq. (5), while its far asymptotic form (7) is practically
unobservable.

This general structure of the subgap DOS tail is an-
alyzed for a number of superconducting problems with
disorder. In particular, we reconsidered the gap smear-
ing in the Abrikosov—Gor’kov model of weak paramag-
netic impurities [12] and showed that depending on the
parameters of the problem, the DOS tail is described
either by Eq. (5) or by Eq. (7).

Finally, we emphasize that our analysis applies to
dirty superconductors and NS hybrids with diffusive
electron dynamics described by the Usadel equation.
Much less is known on the nature of the proximity gap
in ballistic chaotic systems which is determined by
the competition of the mean free time, the Ehrenfest
time, and the escape time [34-36]. Going beyond the
mean-field analysis and generalizing our findings to
that type of systems remains an open problem.

We thank Ya. V. Fominov and S. E. Korshunov
for useful discussions. This work was supported in
part by the Russian Ministry of Education and Science
(Contract Ne8678), the program “Quantum mesoscopic
and disordered structures” of the RAS, and the RFBR
(grant Ne13-02-01389).

APPENDIX

Disorder in the singlet sector due to magnetic
impurities

In this Appendix, we calculate the correlation func-
tions of effective disorder in the singlet sector due to
randomness in h(r).

1. Triplet Usadel equation

Induced magnetization can be described with the
help of the triplet Usadel equations. Following
Ref. [37], we parameterize the () matrix in terms of
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the spectral angle # and the magnetization vector M
as

Qo = Myoo (3 cost + 71 sinh) +

+iM - o(13sin6 — 71 cosh),

(A1)

where My = v/1 + M2. The resulting equations for the
singlet (#) and triplet (M) components in the Matsub-
ara representation have the form [21]

gVQG + Mo (—esinf + Agcosf) — (h- M) cos 6 —

—Agn <1 + §M2> sinfcosf® =0, (A.2a)

% (MV2M0 — M0V2M) + M(ecosf + Agsinf) —

1
— Mphsinfy + ngnMoM cos20 =0. (A.2b)

In the absence of h, we have M = 0 and the spectral an-
gle By (g) should be obtained from AG equation (22) an-
alytically continued to Matsubara energies, 1E — —¢.

The linear response of the magnetization M to the
field h can be found from triplet equation (A.2b), which
in the momentum representation yields

sin Oy h(q)
M(q) = , A3
(@ E¢% + e (e) Ao (4-3)
where
ue(e) = Ai cosby(e) +sinby(e) + g cos20p(c) (A4)
0

has the meaning of a mass of the triplet modes. Ex-
panding singlet equation (A.2a) to the second order in
h and using Eq. (22) we then obtain

— E2V29 + (¢/Ag) sin b —

—cosf +nsinfcosfd = d(r), (A.5)
where
M2
D, (r) = — sin By () cos By (c) —
h- M
- cosfp(c) (A.6)
Ao

acts as an effective source of singlet fluctuations.
A nonzero average (®.(r)) leads to a renormaliza-
tion of Ag and 7, while the strength of disorder in the
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singlet sector is determined by the irreducible correla-
tor

1 sin 26, sin 26},

(@®er))q = 96(rvAg)?
d
< [ 2k Ze ko g (A7)
where 6y = 0y(e), 0y = Oo(c'),
Ze(kyq) =T (k) + T (k — q) +
IO gon - g). (A8)
and
1
I (q) (A.9)

G

is the triplet diffusion propagator on top of the AG
state.

Further analysis goes differently for direct and in-
direct fluctuations of ®(r).

2. Direct fluctuations of ®

According to Eq. (A.5), the behavior of quasiparti-
cles with energy ¢ in the field of a fluctuating ®.(r) and
constant A(r) = Ay is formally equivalent to behavior
in the field of a fluctuating order parameter with

A ) = 2020

i) (A.10)

For the problem of the DOS tail, we need real energies
near the gap edge, ¢ = —iFf — —iF,. Since the triplet
sector remains massive at the edge, we can simply eval-
uate ®. right at e = —iF,, when

1
n'/? (1 - 5772/3) . (A1)

Here, r¢ is the spin-rigidity length at the gap edge,
which is finite in contrast to the divergent length Lp
in the singlet sector (Eq. (32)).

Fluctuations of the field Agé) (r) are characterized
by the irreducible correlator

4

3

F®(a) = (AP A,

which can be extracted from Egs. (27), (A.7),
and (A.10):
4/3 d9%
@y _" 2
f (q) 24(7”/)2 /Z—zEg(kaq) (271_),17 (A12)
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where in calculating Z g, (k, ¢) it should be taken into
account that

sinfy(—iE,) = chiy = n~ 3,

The correlation length of the field qu)) (r) is of the or-
der of r,, and the zero-momentum correlation function
can be estimated as
4—d
()

N A3

9

F®(0)
Agee

T's

£

(A.13)
leading to Eq. (73).

3. Indirect fluctuations of ®

The field ®.(r) also affects quasiparticle behavior
indirectly by inducing quenched inhomogeneity in the
order parameter field. Fluctuations of A(r) can be ob-
tained from the linearized self-consistency equation (cf.
Eq. (56)):

A A (q) =

—wTZPF“l (q)+5F(a,q)}, (A.14)

where §F(e,q) = dsinf(e,q) is a fluctuating part of
the anomalous Matsubara Green’s function evaluated
at a constant A(r) = Ag. Solving for A;(q), we obtain

Ai(q) = Lo(q wTZéF £,q), (A.15)

where Lo(q) is the static fluctuation propagator on top
of the AG solution with a finite 1 (note that Eq. (60)
refers to the BCS case with 7 = 0). It is given by

ZE: {sin Bo(c) —

where ps(e) is the mass of the singlet modes (cf.
Eq. (A.4)):

T
Ao

cos? By (e)

b= ST

} . (A.16)

— cos by

(€)+sin by (e)+n cos 20y (e).
Ao

pis(e) = (A17)

In the nonmagnetic case (n = 0),
Eq. (60).
The correction

Eq. (A.16) reduces to

0F(e,q) = cosby(e) d6(c,q)

induced by magnetic disorder follows from Eq. (A.5):

cosfy(e) ®-(q)

e = ¢ + psle)

(A.18)
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((A1A1))qg, we

For the irreducible correlator f(q) =

obtain
fl@) = Li(@)(nT)? x
cosby(e) cosBp(e") ((PPer)) g
; [qu +,Us ][521] +HS(EI)] . (A].g)

The field Ay (r) is correlated at the scale of the zero-
temperature coherence length, r. ~ £(0), and its corre-
lation function at "= 0 and ¢ = 0 is given by Eq. (74).

We note that in the limit n < 1, the correla-
tion function of indirect fluctuations is much smaller
than the correlation function of direct fluctuations
(Eq. (A.13)). This is a consequence of the fact that
qu)) accumulates fluctuations from the region of the
size of the spin length 74, whereas Ay accumulates fluc-
tuations from the much smaller region of the size of the
coherence length &.
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