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1. INTRODUCTION

The induced superconducting order attracts consid-
erable interest of both theorists and experimentalists
for many decades starting from the seminal works on
the proximity effect [1,2]. Recently, we see a revival of
this interest, associated with the growing number of ex-
periments carried out for a variety of new artificial sys-
tems, which include the two-dimensional electron gas,
graphene, semiconducting nanowires and carbon nan-
otubes, topological insulators, etc. Exotic electronic
properties of these systems [3-7] can cause quite un-
usual manifestations of the proximity effect. Supercon-
ducting characteristics of such low-dimensional (LD)
systems can differ strongly from those in the bulk.
The experiments on proximity-induced superconduc-
tivity provide a unique possibility to manipulate the
basic properties of the superconducting state. Control
of superconducting characteristics can be realized by
changing the doping level through the gate potential,
which, e.g., creates new types of tunable Josephson
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devices [8]. An unconventional gap potential in turn
induces unusual quasiparticle (QP) states both in ho-
mogeneous and in nonuniform superconducting phases.
For LD systems with a nontrivial topological structure,
one can possibly realize the QP modes with specific
symmetries of the electron and hole wave functions at
the Fermi level that describe the so-called Majorana
fermions in condensed matter [9, 10].

A standard way of studying the QP states in sys-
tems with a complicated superconducting order is to
look at the effects of the applied magnetic field on
the structure of the mixed state. For example, if the
bulk electrode is a type-IT superconductor (SC), one
can study the structure of vortex lines penetrating the
electrode and also threading the LD system (Fig. 1).
The goal of this paper is to review the basic properties
of the vortex matter formed in the LD layer. A similar
problem of vortex matter in the proximity layers nat-
urally arises when one faces the challenge of interpret-
ing the scanning tunneling microscopy/spectroscopy
(STM/STS) measurements in SCs. Probing the energy
and spatial dependences of the local density of states
(LDOS) by STM/STS [11] provides information on the
spectrum and the wave functions in the superconduct-
ing state. An important part of this information refers
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Fig.1. Sketch of a 2D layer with the multiple vortex

core structure induced by a bulk type-1l SC in the vortex

state. Two scales of the induced vortex are schemati-

cally depicted by two small disks in the 2D layer and a
cylinder in the bulk superconductor

to the structure of subgap QP states in the magnetic
field bound to the vortex core, which are known as
the Caroli-de Gennes—Matricon (CAGM) states [12].
A fingerprint of these states is the so-called zero-bias
anomaly [11] seen in the STM measurements. A similar
anomaly has been observed in contacts of SC and two-
dimensional (2D) electron gases with insulating bar-
riers [13] and theoretically described in Refs. [14-17].
Obviously, the intrinsic characteristics of the vortex
bound core states can be masked or even hidden by the
presence of a thin defect layer at the surface of the bulk
SC. In such a thin (possibly nonsuperconducting) sur-
face layer, the superconducting coherence is induced by
the proximity to the bulk SC. The masking effect of the
defect layer is often difficult to distinguish from more
exotic explanations based, e.g., on the assumptions of
the superconducting gap anisotropy (see [18, 19] and
the references therein) and the multicomponent struc-
ture of the order parameter [20, 21]. Despite all its
simplicity, the model assuming the presence of a defect
layer at the sample surface can explain quite a variety
of features in the vortex LDOS experimental data and
provides an instructive example of vortex matter in LD
systems with the induced superconducting order.

In our studies of vortex matter, instead of consid-
ering various phenomenological models of the induced
gap potential, we use the general microscopic approach
developed in Ref. [22] and focus on the physical mech-
anisms responsible for formation of the particular gap
potential and its symmetry. These mechanisms are
mostly determined by the nature of the electron trans-
fer between the 2D proximity system and the bulk SC.
This transfer is strongly affected by both the mismatch
of the band structures in the coupled subsystems and
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Fig.2. Matching of Fermi surfaces in the 2D layer and
in the bulk superconductor in the coherent tunneling
case. In the simple case of isotropic Fermi surfaces,
the in-plane projections of the 3D Fermi momenta Q4+
coincide with the Fermi momentum ko r in the 2D layer

by disorder in the barrier between them. Without dis-
order and neglecting the band structure effects, we ar-
rive at the coherent tunneling model according to which
the in-plane projection of the electron momentum is
conserved in the course of tunneling. The induced gap
potential is determined by matching the 2D Fermi sur-
face with the in-plane projection of the 3D Fermi sur-
face (Fig. 2).

A generalization of the above model can include
umklapp processes accounting for the Bloch-type
single-electron wave functions in both subsystems. In
this last case, the momentum of tunneling electrons is
conserved only up to certain vectors of the reciprocal
lattices. One more limit case is the so-called incoherent
tunneling model, which assumes a strong disorder in
the tunneling barrier and allows an arbitrary random
change in the momenta of tunneling electrons. The
systematic analysis of these three tunneling models
shows that the gap potential strongly depends on the
degree of disorder as well as on the band structure
effects.
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Based on these models, we consider several funda-
mental properties of vortex matter in systems with the
induced superconducting order. First, the proximity-
induced superconducting gap Asp is responsible for
the appearance of a new length scale in the vortex
structure, the 2D coherence length &p = hvap/Aap
or &op = /hDsp/Asp for clean or dirty limits, re-
spectively. Here, vop and Dsp are the Fermi velocity
and diffusion constant in the 2D layer. The energy gap
Asp depends on the tunneling rate I' [16,22-24]; for
example, Asp ~ I' for I' < A. Since Ayp < A, the
coherence length &p is usually much longer than the
coherence length in the bulk SC, £ = AVp /A for the
clean or {g = \/hDg/A for the dirty limit, where A,
Ve, and Dg are the gap, the Fermi velocity, and the
diffusion constant in the superconducting electrode. As
a result, all the effects associated with overlapping of
neighboring vortex cores as well as the normal QP scat-
tering at the boundary of the 2D system become much
more pronounced than in the primary superconduct-
ing electrode. There appears, e.g., an intriguing pos-
sibility to obtain a new type of vortex matter strongly
bonded by the intervortex QP tunneling even for mag-
netic fields well below the upper critical field of the
bulk SC.

Second, hybridization of the localized QP states in-
side much larger induced vortex cores with the core
states of primary vortices in the bulk electrode leads to
a peculiar structure of the subgap energy branches. For
coherent tunneling, the electronic spectrum of a singly
quantized vortex consists of two anomalous branches
crossing the zero energy value as functions of the im-
pact parameter b. One branch, €;(b), qualitatively fol-
lows the usual CdGM spectrum en(b) of the primary
vortex; it extends above the induced gap, where it turns
into a scattering resonance. The other branch, ex(b),
lies below the induced gap and resembles the CdGM
spectrum for a vortex with a much larger core radius
of the order of {&;p. Hence, the proximity-induced vor-
tex in a ballistic 2D layer has a “multiple core” struc-
ture characterized by the two length scales, £g and
&p. Such a two-scale feature does not appear if the
proximity vortex states are induced by a primary vor-
tex pinned at a large-size hollow cylinder 7o > &g (see
Refs. [25, 26]).

The spatial and energy dependence of the LDOS
inside the multiple core reveals a rich behavior that
depends on many parameters and on the degree of dis-
order both inside the bulk electrode and inside the 2D
layer, as well as by the barrier disorder. The barrier dis-
order suppresses the influence of the primary CdGM
spectral branch and leads to broadening of the lower

anomalous branch e»(b) due to the momentum uncer-
tainty. Impurity scattering in the bulk and/or inside
the 2D layer causes further smearing of the spectral
characteristics of the core states, which then approach
the usual dirty-SC LDOS scaled with the corresponding
coherence lengths & p.

And finally, both the nontrivial topological proper-
ties of the normal state wave functions and the induced
pairing symmetry can affect the presence of the zero-
energy states in the QP spectrum of vortices. This
phenomenon arises from the wave function symmetry
under precession of the subgap quasiclassical (QC) tra-
jectories inside the vortex core through the correspond-
ing change in the Bohr—Sommerfeld quantization rule
for the angular momentum.

The paper is organized as follows. In Sec. 2, we in-
troduce the basic model used in what follows for the
analysis of the induced superconductivity. The deriva-
tion of self-energies of 2D QC Eilenberger equations
in a vortex state of the bulk SC is given in Sec. 3.
In Sec. 4, we discuss the method used for the calcula-
tion of the subgap state structure in the induced vortex
core. The main results are presented in Sec. 5 and 6.
In particular, Sec. 5 contains the results for the subgap
spectrum and the LDOS in an induced vortex state
of a 2D layer. In Sec. 7, we discuss implications of our
analysis for induced vortex core states in graphene. We
also discuss some further implications of a large value
of the induced coherence length &p for the spectral
and spatial characteristics of various vortex configura-
tions. Some details of our calculations are given in the
Appendix.

2. THE MODEL

We consider a 2D normal metallic layer (Z = 0)
placed in a tunneling contact with a bulk supercon-
ducting half-space Z > 0 with a thin insulating barrier
between them, as it is shown in Fig. 3. The Hamilto-
nian of our system has the form H= fIS + I:I2D + I:IT,
where

> UL(X) (6sp — Er) Uo (X)+

o

+ AR (X)F] (X) + A (R)E,(X)T;(X) | (1)

is the part describing the superconductor with the s-
wave order parameter A(R), é;p is the kinetic energy
operator,
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Fig.3. 2D normal metallic layer (Z = 0) coupled to
a bulk superconducting half-space Z > 0 through a
tunneling barrier. The electron waves depicted by gray
arrows tunnel from the source placed in the 2D layer
(small circle). If the energy is smaller than the super-
conducting gap, they do not penetrate deep into the
bulk superconductor but undergo Andreev reflection to
the hole waves (black arrows) and return to the 2D
layer

HQD = d/ d27" Z &Z-(X) [€2D - EF] &tr (X) (2)

is the 2D-layer Hamiltonian, and d is the thickness of
the 2D layer. We introduce space—time variables X =
= (R, 7) and x = (r, 7), where R is a three-dimensional
vector in the bulk superconducting region and r is a
two-dimensional vector in the normal layer; 7 is an
imaginary time variable in the standard Matsubara
technique. The chemical potential Er is supposed to
be equal in the subsystems. The single-particle Hamil-
tonian in the 2D layer, é>p, includes the kinetic energy
and, in general, the lattice potential corresponding to
the crystal structure of the normal system. For sim-
plicity, we neglect the band structure of the bulk su-
perconductor. This approximation should be valid for
a wide class of heterostructures where the Fermi surface
in the bulk SC is large compared with that in the 2D
layer. We assume that tunneling is spin-independent
and occurs locally in time and in space, i.e., from a
point near the interface R = (r, Z = 0) on the super-
conductor side into the point r in the layer and back
with the amplitude #(r) that depends on the coordi-
nate of the tunneling center on the interface. Because
the tunneling amplitude accounts for a certain region
of an atomic size in the vicinity of the tunneling center,
the wave function magnitude at Z = 0 should be re-
garded as an average value near the exact boundary of
the superconducting region. The tunneling amplitude
is assumed small in the atomic scale. More detailed re-
strictions on the value of the tunneling amplitude are
discussed below. The tunneling Hamiltonian has the
form
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where the wave functions in the superconductor are
taken at the space—time point x at the interface Z = 0.
The Matsubara Green’s functions take the form

(4)

(Tr 0 (X1) UL (Xs)) = GasGs(Xi, Xos),

and
(Tria(x1)as(xs2)) = i6Y) F(x1,x2),
(T, ,4(X1)ig(x2)) = 60 Fr(Xy,x2),  (5)
(T 00 (X1)W5(X2)) = i6) Fs(X1, Xz),

etc. Equations for the Green’s functions can be more
conveniently written in the frequency representation
wyp = (2n+ 1)7T. We set 7 = 71 — 75 and write

) ir

omitting the subscript for simplicity. We also intro-
duce the Nambu matrices for the Hamiltonian and for

the Green’s functions,
. G F
b G —~ b
-Ft @

Z'7V'3wn + I:I,g,

h/T

G(ry,r2) = /G(rl,r2;7')exp(

0

W T

h

—-A(R)

ésp — EF

ésp — Er
A*(R)

and the inverse operators

G5'(R)

Gyp(r) = —ifswn + To @ [é2p — Er]

in the SC and in the 2D layer, respectively. Here, 7;

are the Pauli matrices in the Nambu space.
Equations for the mixed Green’s

7(Ry,r2) can be written in the form

functions
G
Ggl(Rl)GT(Rl,IQ) + di(RU_)G(RU_,m)&(Zl) = 0,

where Z; >0, R; = (R, Z;) and
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Neglecting the back-action of a thin 2D layer on the
superconductor, we assume that the superconduct-
ing Green’s function G s(R1,Ry) is the noninteracting
function that satisfies

G5'(R1)Gs(Ri,Ry) = 1h6(Ry — R») (6)

in the range Z; » > 0. The function G's(R1,Rs) sa-
tisfies Neumann boundary conditions at Z = 0. This
gives

Gr(Ry,12) = —%/C;’S(Rl,r')f(r')é(r',rg)d2r'. (7)

Equations for the Green’s functions in the layer can
be written as

G’;Dl(rl)é(rlvr2) +1*(r))Gr(ry,r2) =
= ihd_lé(l‘l - 1'2).

Using Eq. (7), we find

éz_Dl(rl)Cv?(rth) —/ET(rl,r')G(r',rg)d2 I =

(8)

= ]v.hdilts(l‘l — 1‘2),
where
DIV 9N

=i 5 ) B

%i* (r1)G% (ry, e)i(r').

Sr(ry,r')

(

We introduce the momentum representation of the
Green’s function [27],
PQy P*Qs

/ (2m)? (271')3GS(Q17 Q) x
x exp (iQ1 - Ry —iQs - Ro),

(9)

Gs(Ri,R2) =
(10)

and of the tunneling coefficients

/

The Fourier representation for the Green’s functions in
the 2D layer is

/

d?q i
(2m)?

f(r) (q)e’™.

d? d? -
qi qz G(qth) %

G(I‘hrg) =

(2m)? (2m)?

x exp (iqq -T1 —iqa - T2) .

(11)
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2.1. Tunneling with umklapp processes

The crystal structure of the 2D layer accounts for an
atomic-scale periodic potential in Eq. (8), which mixes
the Fourier harmonics with the momenta shifted by the
reciprocal lattice vectors b. Using the Bloch functions

U (k,w) = 0PIy
b

that diagonalize the single-particle energy operator in-
side the layer,

€p (v)hm (K, ) = em (k)¢m (k, r),

we can conveniently introduce the field operators

Ao m k-

o (r) = Z/%&a,mkwm(kvr)'

The index m enumerates the energy bands.
Introducing the corresponding Green’s functions

= 6aﬁGm1,m2 (klv k2)7

<T7'a’a,m1,k1 &6,m2,7k2> = i&slB)le,m2 (k1,k2)

. A1
<T7-aa’m1,k1a67m2,k2> (12)

allows diagonalizing the operator G’;L% in Eq. (8) in the
Bloch representation,

Gy (k) = —ihF3w, +
6m(k) - EF 0
" ( 0 em(—k) — EF) -

We assume in what follows that the amplitude Aj,q
of the induced superconducting gap Asp is small com-
pared with the interband distance €,, —€,,» and neglect
the interband scattering. Hereafter, we omit the sub-
scripts m. At the same time, the transformation from
the momentum to the quasimomentum representation
results in a mixing of Fourier harmonics in the self-
energy in Eq. (8). Finally, Eq. (8) for Green’s functions
(12) takes the form

Gode)Glie k) = [ Sl K)GU KoK
= ih&(kl - kg), (]_4)
with

d
h/t“l(kl,ch) x

Sr(ky, k') = -
x G%(Q, Q) (Q.K)d*Q d*Q',
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k)= ueni(Qu-k-b)  (15)
b

and £} (k, Q) = f;(Q,,k). Here, Q = (Qy,Q.). The
above expression for the tunneling coefficients ¢, in fact
describes the umklapp processes caused by the periodic
crystal potential in the 2D layer.

2.2. Coherent tunneling

The simplest model of tunneling assumes that the
in-plane momentum projection of electrons is conserved
during the tunneling process:

HQ. —k) = #5(Q. — k).

This is equivalent to the assumption that the tunneling
amplitude ¢(r) is independent of the coordinate along
the SC/2D interface. Of course, the quasimomentum
conservation is not exact in the presence of energy
bands because the tunneling mixes the quasimomen-
tum values that differ by a reciprocal lattice vector:

B(Qk) =Y ueynd(QL —k —b).
b

Neglecting umklapp processes for simplicity, we find

dQ- dQ’,

Sr(ky, k) = dtZ/GOk Q. kK, Q) ——2=
1 1, &2 (271')2

from Eq. (14).

From now on, we use the QC approximation for the
Green’s functions. To derive the Eilenberger equations
in the 2D layer, we follow the standard procedure de-

scribed, e. g., in Ref. [27]. First, we introduce the aver-

age k = (k1 +k2)/2, Q. = (Q1: + Q2.)/2 and relative
k_ =k; — ks, ¢. = Q1. — Q2. momenta and set
é(klka) = gv(kv k—)7

GS(k17le;k27Q22) = Gs(k7Qz§k—7qz)~

Next, we apply the operator G;ﬁ to the Green’s func-
tion G(k,k ) from the right and subtract this equation
from Eq. (14). We now transform to the semiclassical
Green’s functions by integrating the resulting equation
over d&», where & = eap(k) — Ep. The Green’s func-
tions are to be taken in the vicinity of the Fermi sur-
face. Therefore, in the mixed momentum—coordinate
representation,

&k
(2m)*’

Gk, r) = /gv(k,k,)exp (tk_ -r)
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GS(kan§r7Z) - /GS(kaQZ;kquz) X

Pk_dQ.

X exp (Zk_ W’

T+ ig.7)
we can put
Gs(k,Qz;r, Z) = gs(k,Qz; v, Z)mida (&),
G(k,r) = g(k,r)mida (&)

Here, the standard semiclassical Green’s functions are

1 .
g(kgp,l‘) = /dg?g(kvr)a (16)
i
1 -
gs(Kr,R) = p— /d€3gs(Q7R)7 (17)
& = €5(Q) — Ep is the normal QP spectrum in the

3D half-space, and da(&2,3) is a delta-function broad-
ened at the gap energy scale A. The matrix ¢ is made
out of four functions, g, f, f!, and g in the same way
the matrix G is constructed of the functions G, F, F't,
and G.

At the next step of derivation, we note that in the
mixed representation, the term

>k

/d&/zT (k, k' )G(K, k2)( 5

in the equation for the Green’s function becomes

V)

e
m;:ft déy
2 s, Quir, 0)g(0k, 1) (E3)0a (&) =
2
- 7”;” / ., 35(Q:r,0)g(kor, T)3alesn(Q) - Fr,
where Q = (kop, @.) has the in-plane projection coin-

ciding with the 2D Fermi momentum kop.
Finally, we obtain the QC Eilenberger equation for
retarded (advanced) Green’s functions

2] —
(18)

—ihvapVij(kap,r)—€[f3G(kap,r)— g(kzp, r)7
- [Erj(kor,r) — §(kor,v)S7] =0,

where hivep = Oeap(k)/0k is the 2D-layer Fermi veloc-
ity.

For isotropic Fermi surfaces in both the SC,
e3p(Q) = h2Q?/2m, and the 2D layer, €, (k) =
= h?k?/2map, the self-energy takes the form

Sr(kop,r) = — [QS(Q+J' 0) +gs(Q-;r,0)] (19)



N. B. Kopnin, I. M. Khaymovich, A. S. Mel'nikov

MIT®, Tom 144, Be. 3 (9), 2013

with the tunneling rate

T = e / oa les(kar, Q2) — Er]dQ..
0

The 3D momentum Qi+ = (kop, £Q3.) lies on the
Fermi surface of the bulk SC, k3, + Q3, = K7. If
the 2D Fermi surface is smaller than the extremal cross
section of the 3D Fermi surface, i.e., kap < Kp, the ex-
pression for the tunneling rate becomes I' = dmt?/Q3...
For large 2D Fermi surfaces with kop > Kp, the self-
energy term vanishes and the coherent tunneling is im-
possible. The case of momenta ksp ~ Kp deserves
special consideration, which should take account of a
finite delta-function width I' ~ dt*>y/m/A.

The umklapp processes should, of course, modify
the self-energy part, resulting in the additional contri-
butions:

zv:T(k2F7 I‘) =

> e 1622 (kor + b, ),
b

(20)

where i]g?) (kap,r) is given by Eq. (19).

2.3. Incoherent tunneling

The coherent tunneling model in many cases over-
simplifies the realistic experimental situation. The mo-
mentum conservation is violated, for example, by the
presence of disorder at the interface. Here, we consider
an opposite limit of strong disorder, which is sometimes
called the incoherent tunneling model. This model as-
sumes a random tunneling process of electrons through
the barrier in a way similar to the standard theory of
dirty metals within the Born approximation [28]. We
assume that the ensemble average of tunneling ampli-
tudes is

t(ry)t(ry) = t?5,0(r; — 1), (21)
where s, is the correlated area of the order of the
atomic scale. Following the standard diagrammatic
procedure, we expand the solution for the ensemble-
averaged Green’s function in a series in the scattering
field and split the multiple correlators of the ¢(r) values
into a product of the above pair correlators. Finally,
after averaging, self-energy (9) becomes

Sp(ry,r) = t2dsa(¥s(r1,r1;0)5(r1 —ry) =

= t2ds,inv3(0) (§s(Q;r,0)) 5(ry —rs), (22)

where v3(0) is the normal density of states in the
bulk material. Angular brackets denote averaging over
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3D-momentum directions. Within the QC approach,
the resulting self-energy to be used in Eilenberger equa-
tion (18) is given by

ZT(I') =40 <gS(Q7 r, 0)> ) (23)

where the tunneling rate is I' = 7v3(0)ds,t>. This
approximation coincides with that used in Ref. [22].
The tunneling rate I' ~ t2/Epr can be expressed
[22] in terms of the normal-state tunnel conductance
G = 1/RS per unit contact area, I' = G/4nGovy ~
~ EpRy/R, with the conductance quantum G, =
= e?/nh and the normal 2D density of states (DOS)
vy = map/2wh?®. Therefore, T/Er < 1 if the total
tunnel resistance R is much larger than the Sharvin re-
sistance Ry = (NGp) ™! for an ideal N-mode contact
with the contact area S. Nevertheless, there is room
for the condition T' ~ A to be fulfilled even for the large
contact resistance R > Ry.

2.4. Adiabatic approximation. Range of
validity

The above microscopic analysis allows us to com-
ment on the simplest phenomenological model that is
often used in describing the proximity-induced super-
conductivity (see, e. g., [26,29-31]). Within this model,
the Bogoliubov—de Gennes equations inside the prox-
imity superconductor include a phenomenological gap
function, which is postulated to be proportional to the
gap function A inside the superconducting electrode.
Our approach shows that this is generally not the case.
The true equation (18) includes self energies that are
complicated functions of energy, coordinates, and mo-
mentum. In fact, the effective gap function resembles
that in the usual superconductor only if the bulk SC
is homogeneous in space. In this case, the QC Green’s

1

function is
VR ( ) |

In this case, the self-energy is S = iI'jg for both co-
herent and incoherent tunneling models. This expres-
sion also holds if the superconducting gap is a slowly
varying function of coordinates on distances of the or-
der of £s. For |e| < |A], the self-energy has the form

(i )

Only for a low-transparency tunnel contact I' < A,
this self-energy is nearly off-diagonal on the scale e ~ T

A

—€

€
—A*

gf =+

.
[A(r)? — €

€

—A*(r)

A(r)

—€

ET(I‘) =
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and can be regarded as an energy-independent effective
gap function

1 & D7 exp(ifsd), (25)

where ¢ is the phase of the superconducting order pa-
rameter. We note that the resulting induced gap is
totally independent of the gap magnitude |A] in the
bulk. If the transparency is finite, the electronic spec-
trum in the induced superconductor has the gap Asp
determined by the condition [1,22]

(€+21)2—E§ =07 CZAQD. (26)
Of course, the adiabatic approximation also breaks
down if the order parameter A varies as a function of
coordinates at distances of the order of the coherence
length in the superconducting electrode, when the self-
energies are no longer determined by Eq. (24).

3. VORTEX POTENTIALS AND GREEN’s
FUNCTIONS FOR CLEAN SYSTEMS

The QC Green’s functions in the 2D layer satisfy
Eilenberger equations (18). In components,

— ihVQFVf -2 (6 + El)f + 2229 = 0,
ihvorV T —2(e+3))ff + 259 =0, (27)
—ihvyp Vg + Do ft =Sl f =0,

and the normalization condition ¢ — fff = 1 with the
self-energies in Eqs. (19) or (23) as effective potentials.

In this and the next sections, we consider the
case of isotropic Fermi surfaces. Modifications due
to the anisotropy of the spectrum are discussed in
Sec. 5.2. Quasiparticles in clean systems are conve-
niently described by the coordinates along their tra-
jectories (Fig. 4). A QC trajectory is parameterized
by its angle a with the x axis, the impact parameter
b = psin(¢ — a), and the coordinate s = pcos(¢ — «)
along the trajectory. We introduce the symmetric and
antisymmetric parts of the Green’s functions as this
was done in Refs. [27,32]:

f==1¢6s) +ib(s)] e,

. 28
f1=1¢(s) —ib(s)]e ™, %)

where ((s) = ((—s) and 6(s) = —6(—s). The normal-

Ya

2y

Fig.4. The coordinate frame near the multiple vortex

core. The primary (induced) core is shown by the inner

small (outer large) circle. The QC trajectory with an

impact parameter b (line AB) passes through the point
(p, ¢) shown by the black dot

ization condition requires g2 + 62 + (2 = 1. Eilenberger
equations (27) can be rewritten in the form

d
hszd—g +2(e+31)0 —2igZr =0, (29a)
do
hUQF%—Q(C-FEl)C—QZ’gE[:Q (29b)
dg . .
thF% + 2i(XR + 2107 = 0, (29¢)
where
22 — E efia _I_Efeia,
S 2 (30)

2% = Npe” i — nleie

In this paper, we consider the limit of low tunnel-
ing rate I' < A, which leads to a small induced gap
[22] Asp = T and long coherence length &p > &s.
We consider an isolated vortex line oriented along
the Z axis perpendicular to the SC/2D interface and
choose the gap function inside the bulk SC in the form
A = Ag(p)e’®, where (p,¢) are the cylindrical coordi-
nates; Ag(p) approaches the bulk value A, far from
the vortex core. The self-energies in the 2D layer,
Eqgs. (19) or (23), have parts with sharp peaks local-
ized at small distances p ~ s and the adiabatic long-
distance “vortex potential” tail Asp ~ Te’® at p>Es
according to Eq. (25).

In the case of a clean bulk SC, we use the condi-
tion of specular reflection at the interface. This can
be applied for both coherent and incoherent tunneling
models because any possible disorder in tunneling af-
fects only a tiny fraction of bulk electrons, whose vast
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majority reflects without tunneling. For specular re-
flection, we can use the bulk QC Green’s functions ob-
tained for an infinite space. For energies ¢ < A, the
self-energy in Eq. (25) for long distances (p > £g) is in-
dependent of the particular tunneling model and of the
disorder in the bulk SC: £; ~ 0 and ¥, ~ Te??, i.e.,
Yr~Ts/pand I; =~ T'b/p. However, the induced vor-
tex potentials close to the primary vortex core are very
sensitive to the impurity concentration and momentum
exchange during the tunneling process.

For a clean bulk SC, the Green’s function can be
parameterized similarly to (28) with f — fs, ( = (s,
and @ — 05. The Eilenberger equations have the form
of Eqs. (29) with var — v) = VF cos x,, where y,, is the
polar angle of the momentum, while ¥; =0, ¥y -+ A =
= Ag(p)e®, and S5 — A*. For energies € < Ay and
distances s of the order of or less than the core size, the
functions gs and fg are given in Refs. [27, 32], and

__ fwye®
Gs = 2A[e — o £ 0]’
p (31)
95:1/ 6_%><Sd817
h?)”
0
€o(b) = %/%64((5) ds, (32)
0
00 5 p
A= /e_K(s) ds, K(s)= W/Ao(p')dp'. (33)
I
0 |b]

For larger distances s > &g, the function (s assumes
. . . R(A) .
its asymptotic expression (g b/p corresponding
to the boundary conditions in Eq. (25).

3.1. Vortex potentials for coherent tunneling

The vortex potentials induced in the 2D layer cru-
cially depend on the tunneling mechanism. For exam-
ple, within the coherent tunneling model, we obtain

E1 - iFgS(Qar)a 22 - ZFfS(er)

in terms of the infinite-space Green’s functions, since
Js(+Q3.) = gs(—Qs3.) for specular reflection. For en-
ergies € € Ay and distances s of the order of or less
than the core size g, it follows from Eq. (28) that

¥ = _FC57

22 = F[es — iCS]eia,

E; = F[es + Z'Cs]eim,

(34)

where (s and fg are given by Eqs. (31)—(33).
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3.2. Vortex potentials for incoherent tunneling

For incoherent tunneling, we find ¥; = il (gg),
Yo = il'(fs), where averaging over the 3D momen-
tum direction is equivalent to the ensemble averaging.
To calculate the angular average, we can separate the
Green’s functions into the principal-value part and the
delta-functional contribution. For example,

)

4 Whvuef
2A

. —-K
R(A) _;oR(A) _y p [ hVre
Is s ’ .<2A(€—€0)

d(e —€0). (35)

Performing averaging over the polar x, and az-
imuthal « angles, we take the symmetry of the func-
tions under the s-inversion transformation into ac-
count. As a result, we obtain

¥ =-T(¢s(5)) (36)
e~ = Bie?® = 5,4 4+ Bk, (37)
Sad(p) = V.P.(TI(s)sign(s)/2A [e — €]}, (38)

where we set

0

The off-diagonal components of the induced potential
are split into the localized and the long-range parts,
2120‘7 and ¥,4. The long-range function ¥,4 can be re-
garded as an adiabatic induced superconducting gap,
Yaq — Tfor p> & and Y,q — 0 for p — 0. Averag-
ing over the azimuthal trajectory angle a, we find

) e K6 g

Re e =T <F“"e_K 1 -Re— 19 >
2AQp /2 = (22 .
I Sl = 47 ( Re ¢ "
? 200p\/Q2p2 — 2 |

hv”e*K

Re¥; = —sign(e)T' { Re —— ) ,
' gn(c) < 2A+/¢€? —92p2>7
IS, = 47 ( Re— "
mY; = e———— ),

! 20/ p% —€? [

where the upper (lower) sign corresponds to a retarded
(advanced) self-energy term, Q = deg/db, and we use
the notation

s

/(...)sinxpdxp

0
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for the average over the polar angle y, of the 3D
Fermi momentum. We note that our calculations are
based on the first-order approximation in the small pa-
rameter b/p. According to Eq. (30), the symmetric
Y(—s) = ¥1(s) and antisymmetric S p(—s) Sr(s)
parts of the off-diagonal self-energy term Yse™*® can
be rewritten as S = Sse ?s/p and S = Tye b/ p.

The self-energy obtained above affects the vortex
core states in the 2D layer in two different ways. The
adiabatic part of the induced vortex potential leads to
the Andreev localization of QPs with the energy smaller
than the induced superconducting gap I' within the in-
duced vortex core at distances of the order of £&p. This
forms the CdGM anomalous branch €2 (b) as in an usual
SC with the corresponding maximum intrinsic gap T
Another part of the self-energy exponentially decaying
at p ~ £g contains information about the CdGM states
in the bulk SC; it affects the 2D-layer QP behavior at
small scales. The adiabatic large-scale part of the self-
energy (at p > £g) is universal; it does not depend on
the tunneling models and on possible disorder in the
bulk SC, while the short-scale induced vortex potential
localized at small distances does crucially depend on
these factors. Both terms in the induced self-energy
form the two-scale LDOS radial profile.

4. SCALE SEPARATION METHOD

A natural way to solve Eqs. (29) is to apply the
scale separation method. We introduce a distance po
satisfying {s < po < &p and consider the Green’s
functions in two overlapping spatial intervals, p < po
and p 2 pp. Next, we match the solutions in different
spatial domains.

4.1. Large distances

At low energies € < A, and large distances p > g,
the induced vortex potential is given by Eq. (25).
Quasiparticles propagating along the trajectories with
impact parameters b > £g that miss the primary vortex
core are affected only by this long-distance (&ap > £5)
part of the induced gap potential. In the low-energy
limit ¢ < T <« A, the appropriate boundary condi-
tions far from the induced vortex core (p > &p) are

_ Ts/p ‘= -Tbv/p —ie (39)
S Vmee T ymee YT e

For both tunneling models and an arbitrary disor-
der rate inside the superconductor and for p > &g,
Eqs. (29) take the form
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h’l)z}?‘% +2e6 — 2igT's/p =0,

h’l)z}?‘% —2e¢ —2igTb/p =0, (40)

hvgp% +2i0Tb/p + 2iCTs/p = 0.

The functions ¢ and ( are even in s while 6 is odd,
and we can therefore consider only positive s values.
We obtain the solution of the above equations using the
first-order perturbation theory in the impact parame-
ter b: 1(s) = 1wo(s) + 1wy (s), where w(s) = ((,0,ig)".
As we see in what follows, this approximation holds for
|| < &p. The zeroth order in the b solution is given
by

y 1 y c .
wo(s) = \/ﬁuo(s) + \/ﬁu_(s), (41)
where
2 —e2 0
ai(s) = +e ei)\sa 110(8) = r )
+T €

and A = 2v/I'? — €2 /hvep. This solution satisfies the
boundary conditions g = —ie/V/I'2 — €2, ( =0, and § =
=T/VI2? —¢2 for s — oo and €2 < I'2. The first-order
correction w; can be written as

Co(s)ip  Cy(s)uy  C_(s)u—

wl (8) = \/F2 — 62 \/F2 — 62 \/F2 — 62 ) (42)
where
7 ds
Co(s) =2Cb | e M=
&pCo(s) /6 .
&pCi(s) = — (43)

o0
b/e”‘sﬁ,
P
s
)\sﬁ

&pC(s) = —b/e )

Sec

The lower limit of integration in C'_, s, has to be taken
as s. ~ &g for trajectories that go through the primary
vortex core, b < &g, such that the logarithmic diver-
gence be cut off at the distances of the order of g,
where the long-range vortex potential ¥,4 in (38) van-
ishes. For b > &g, we have s, = 0. The perturbation
approach holds as long as Cp < C and C} < 1, i.e.,
as long as |b| <€ &p. For s > &p, the coefficient Cy
decays faster than exponentially, while

r b
_2\/F2 — €2 ;

Ci(s)e* = C_(s)e ™ —
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and hence ¢ approaches —(b/p)I'/v/T'2 — €2 and the cor-
rections to 6 and ¢ vanish, as they should in accor-
dance with (39). For a small distance s = sy defined as
P2 = s + b%, we have

((s0) = C'+ C4(s0) + C—(s0), (44a)
B(s0) = \/% (T = C + TCol(s) +
+ €[Cy(s0) — C—(s0)]}, (44b)
g(S[)) = \/[‘Qj_g {—6 + FO — 600(30) —
— T[C4(50) = C_(so)]} . (440)

4.2. Matching for large impact parameters

Far from the primary vortex core at impact parame-
ters g € b < &p), the perturbative result in Eqs. (40)
can be applied along the entire trajectory, and we can
therefore set sp = s, = 0. The boundary condition for
an odd function requires #(0) = 0. Because C_(0) =0
in this case, we find from Eq. (44b) that

T +¢C(0) = eC' — TCo(0).

Expressing the coefficients Cp and C in terms of the
energy

arzp
 hvar

€ = €3(b) Inn (45)
of bound states in the induced vortex core, with n =
= &p/|b] and Cp = —2CC1 = Cex(b) /T, we find

Cle — e2(b)] =T — eea(b)/2T. (46)

According to Eq. (46), ex(b) is the only spectrum
branch in the energy interval |e|] < As. The Green’s
function is

. —ie irc ., ieCo(s)
ARV R e Y
/L'F s —AS
- W [O+(S)€)\ - C_ (3)6 A ] . (47)

For 5 > &p, we have Cy — 0 and Cpe? —C_e ™ —
— 0, whence it follows that the first term is the ho-
mogeneous background while the rest terms describe
the vortex contribution. To obtain the retarded func-
tion for €2 > I'?, we have to continue vI'2 — €2 ana-
lytically to the upper half-plane of complex e keeping

Re vI? — €2 > 0.

496

4.3. Matching for small impact parameters

To find the Green’s functions for small impact pa-
rameters b < g, we have to match Eqs. (44) with the
solution obtained in the vortex core region. For small
s < 8g, we assume that the even parts of the Green’s
functions ¢(s) and ((s) are nearly constant in the inter-
val 0 < s < sg. Integrating Eq. (29b) over s from 0 to
so along the trajectory, we find the matching condition

S0

O(so) = C(so)/El ds—l—ig(so)/Z] ds. (48)

0 0

S0
h'UQF

2

Equation (48) determines the constant C. Its poles
define the eigenstates of excitations as functions of en-
ergy and the impact parameter. In deriving the ef-
fective boundary condition (48) for b < {g, we need
to separate the exponentially converging parts Ell"ﬁ at
s ~ &g from the long-distance (s > £g) asymptotics of
Y11. For e € A, long-distance expressions (25) yield
¥, — 0 and 7 — T'b/p. Therefore,

50

s
/Zjdsz/

S0
b

Eﬁ,"cds+1“/—ds~
0 0 &s g

oo

|

0

$1°¢ ds + Thln z—z (49)

while [° S ds can be extended to infinity. The local-
ized self-energy parts ¥; and $¢ determine the small-
distance LDOS and the spectrum of excitations and
depend on the particular tunneling mechanism.

5. MULTIPLE VORTEX CORE IN THE CLEAN
LIMIT. QUASIPARTICLE SPECTRUM AND
DENSITY OF STATES

5.1. Isotropic Fermi surface

In this section, we consider an idealized picture
without any disorder. For large impact parameters
b > &g, the corresponding solutions for the Green’s
functions, Eq. (47), coincide with the standard CdGM
expressions where the gap value is replaced with T
The corresponding anomalous spectrum for 2D exci-
tations is given by Eq. (45) [27,32]. This modified
CdGM branch dominates in the LDOS at large dis-
tances p > &g.
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The normalized LDOS is defined as an average over
the trajectories:

27 P
! N 2 _ 2
A e AL
2r p2 — b2 ™
0
where
Ne(87b) = [gR(87b) _gA(87b)] /27
s=pcosa’, b= —psina’.

For |¢] < T', a nonzero LDOS comes only from the vor-
tex contribution of the second and third terms in (47)
due to the presence of a pole in the coefficient C' accord-
ing to Eq. (46). The Green’s functions and LDOS reach
their long-distance values g = —ie/v/I'? — €2 and N =
= Rele|]/Ve2 —T? as p — oo. For p > g, the trajecto-
ries with large impact parameters b 2> £ give the main
contribution to the LDOS. In the region {5 < p < &p,
we obtain the angle-resolved DOS in the form

VIZ — 2(T2 — €2/2) "

Ne(s,b) = T
x mo[e — e2(b)], |e|] < T, (50)
Ny = YOI =GO/ sy

SIgn( T2[e —ex(D)]

Hence, the corresponding LDOS in the energy interval
le] < T has the only peaks at € = ex(£p):

o
1
N, ~52,b) _
= [ NP
—p
p VI = (1 —&/or?)
Vap) -
For energies above the induced gap, |¢] > T, for

the same distances, the LDOS monotonically increases
with |e| to its normal-state value:

N(ﬂ,e)z\/ﬁlﬂJr (1—e€*/21?)

A2 e —&(p)

N{(p,e)

(52)

] . (53)

A trajectory with a small impact parameter b < £g
can be divided into the part far from the primary vor-
tex core and the region inside the core. Far from the
core, the solution is found using vortex potentials (25).
The self-energies of the primary vortex in Eq. (18) have
poles at the usual CAGM energy €o(b) with the corre-
sponding wave functions exponentially localized within

4 ZKST®, Bom. 3 (9)

p ~ &g and the regular parts extending over large dis-
tances p — %00 [27,32]:

Yp=Tbs, %;=-TCs. (54)

We note that the localized part $5¢ of the effec-
tive order parameter X5 has the coordinate dependence
sloe = ixloc(b, s)el™ with zero circulation, unlike its
adiabatic part (25), Sa2(p > &) = Te’®. As we see
below, it is this different angular dependence of the ef-
fective gap asymptotics, which leads to the formation
of a “shadow” of the bulk SC anomalous branch in the
excitation spectrum and LDOS in the 2D layer.

Using Eqs. (43) for the long-distance part of the
trajectory, we find

2Cb 1
Co(so) = —In —
&p Aso’
b 1 €2(b) (55)
+C_ N In— o~ — 2
O+(30) C (80) €2D In /\fS oT

We now match asymptotic solution (44) obtained for
s > so with the solution for the short-distance part of
the trajectory in Eqs. (34) and (31)—(33), using Eq. (48)

and Eq. (49). As a result,
C < &ple—e(b)]+2 [I‘ T2 _ 2 _ 662155)] y
/ Gods ¢ =&l + 26 / s — 20

(V)

b) / Cods, (56)

where (o(s) is the localized part of (s and

7 _ h’l)”
0/ Gods = g, (57)

Here, we put g = i(yp and replace the cutoff parameter
in (45) with n = &p/€s. For b > g, the contributions
from the primary vortex core proportional to [ (o ds
vanish since the trajectory misses the core, and Eq. (56)
goes over into Eq. (46).

For small b <« &p, the Green’s function has a pole
when

P(e,b) = [e = e2()][e — €o(b)] +

+ [I‘2 V2 _e - 662(b)] =0, (58)

where ¢, = v||/v2F. It can be shown that with the
higher-order terms in the parameter e»(b)/I included,
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Fig.5. Two localized branches, €;(b) and e2(b), of the

spectrum in Eq. (59), in the limit of coherent tunnel-

ing, for e < I'. Here, b" is defined as ¢, (b") =T — 0,

and b’ corresponds to Re e (') = '+ 0. The spectrum
satisfies €1,2(—b) €1,2(b)

the corresponding energy dispersion relation takes the
form

[e—e2(D)][e—€o

A QI T2 Je—e(D)]Z =0. (59)

For b < &g, the cutoff parameter in Eq. (45) should be
replaced with n = &p/Es.

The resulting two-scale spectrum is shown in Fig. 5.
There are two real-valued branches in the range |e| < T
crossing zero energy value as functions of the impact
parameter and one complex-valued branch in the range
I < |e] < Ax. The lowest-energy branch e;(b) has a
scale &p as a function of the impact parameter: for
b < &p, it is given by Eq. (45) with the proper cutoff
parameter 7 as discussed above and saturates at e =T’
for b > &p. The branch € (b) has a scale £g: for
e < T' it goes slightly below the CAGM spectrum €q(b)
of the bulk SC, €1 (b) = (1+¢,/2) eo(b). Above T, the
spectrum transforms into a scattering resonance due to
the decay into delocalized modes propagating in the 2D
layer: €;(b) = €o(b) —il'g, for |e] > I'. Since Eq. (59)
determines a pole of the retarded Green’s function in
the lower half-plane of complex €, the square root in
Eq. (59) should be analytically continued through the
cut going from —oo to —I' and from I’ to +00. As
a result, €;(b) has a discontinuity at e ' with
b'[és & 0.29 and b* /€g ~ 0.42.

The two branches appear due to the presence of two
sub-systems, the bulk SC and the 2D proximity layer,
each with its own anomalous branch. The existence
of two anomalous branches follows also from the index
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Fig.6. LDOS in a logarithmic scale for coherent tun-

neling in the clean limit. The curves, taken for different

distances p from the vortex center, are vertically shifted

for clarity. The peaks in the LDOS exist up to distances
~ &p. Here, A/T =5and ¢, =1

theorem [33, 34]. Indeed, its application requires that
both zero of the QC Hamiltonian at the Fermi surface
and its singularity at € = eg(b) be taken into account
in calculating the topological invariant. As a result,
the number of anomalous branches increases to 2 for a
single-quantum vortex.

The multiple-branch spectrum results in a multiple-
peak structure in the LDOS (Fig. 6), which appears to
be most pronounced deeply inside the primary core (at
distances p < €%/&p when €1 < T), thus illustrating
the two-scale structure of the vortex core. The LDOS is
obtained from the angle-resolved DOS (normalized by
its normal state value) N,(s,b) = [g%(s,b) — g*(s,0)]/2
averaged over the trajectory direction.

The angle-resolved DOS for small energies |¢|] < T’
and p < g is given by

N(s,b) = %ﬂ'f‘qv(S [e —e1(b)] +

1
+ -ml(qy +2)

5 0 e —ex(b)],

(60)

where we neglect the terms eex(b)/T% and e2(b) /€1 (b)
and put €g(b)/e1(b) = 1+ q,/2 according to low-energy
asymptotics. In this case, the LDOS

Lqy
i(p

F(Qv + 2)
e3(p)—€

N(p,e) = Re + Re 61
(p.6) = Re ool e (61)

reveals a two-peak structure vs energy at € = €1 2(p).
For |e| ~ T, we can neglect e2(b) and obtain

[e — €0 (D)] [F +VI? - 62] + ¢, Te=0.

(62)
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For |e] > T, the dispersion relation is complex-valued
and for the retarded functions takes the form

ele — co(0)] + @ T [r +isign(e)V/e? — r2] =0. (63)

The last equation describes the resonant states in the
2D vortex core that decay into the QP waves propaga-
ting in the 2D layer above the induced gap.

Finally, the whole spectrum structure, shown in
Fig. 5, has two anomalous branches: one of them, e5(b),
is completely real-valued and follows the CdGM spec-
trum for the superconductor with a homogeneous gap
I'; the other one is close to the bulk CAGM spectrum,
but has a discontinuity at ¢ = I', where it becomes
essentially complex.

Thus, the LDOS for energies above the induced gap
le] > T and small distances p,b < &g is given by

VIS I
N(p,e) =
lef 2|e|
2 __ 1"2 —4
x Re Ve ! (64)

\/(62 + ¢ T2 +iq,I'Ve2 —T2)2 — 2e2(p)

and has the only peak at ¢ = Reey(p) of the height
~ T%/e2(p) for p = €%/&p. In the opposite limit
of rather large distances p > ¢2/&p at |e| > T, the
spectrum reduces to the CAGM spectrum with a finite
broadening:

€1(b) = €o(b) —il'gy. (65)

The LDOS has a small difference from its normal-state
value Ny = 1:

q,I? le] —iT
5 Re : -
2e V(e +igD)? = e5(p)

The LDOS in the whole energy range, Eqs. (61) and
(64), has two or even three peaks for such distances.
The latter case is realized at the distances correspond-
ing to b’ < b < b*, where the spectrum vs the impact
parameter has three anomalous branches.

The numerical LDOS patterns have been obtained
by subsequently solving the two sets of Eilenberger
equations in the Riccati parameterization [35]: first,
we calculate the Green’s functions in the bulk SC us-
ing the approximation Ag(p) = Asp//p? + &4 and
next we solve Eq. (18) in the 2D layer using Eq. (19).

N(p,e) =1+ (66)

5.2. Anisotropic Fermi surface

Here, we briefly discuss the effects of anisotropic
Fermi surfaces in 3D and/or 2D systems. We are in-
terested only in main distinctions that the anisotropy

Vor >

2D Fermi surface

Fig.7. (a) An example of anisotropic Fermi surfaces
showing a spherical 3D Fermi surface on top of a part
of a 2D Fermi surface in the layer shifted from the cen-
ter of its Brillouin zone. The closed loops show the 2D
Fermi line and its projections onto the 3D Fermi sur-
face. The directions of the 3D Fermi velocity projection
vsr on the plane z = 0 in the bulk does not coincide
with that in the 2D layer, vor. (b) Different points ry
and r» specified by s; and s2 on a 2D trajectory with a
given impact parameter b belong to trajectories in 3D
with different impact parameters by and b2

causes within the coherent tunneling model as com-
pared to the isotropic case considered above. For
anisotropic surfaces, one can also apply the method
of scale separation in the same manner as we did in
Sec. 4. The consideration for the region of large im-
pact parameters does not differ significantly, such that
the solution for the Green’s functions together with the
matching conditions look similar to Eqgs. (41), (43), (55)
and (48), (49). But the region of small impact pa-
rameters of the order of £g gives an essentially differ-
ent result. The main distinction is that the directions
of QP trajectories determined by the group velocities
deap/0k and Oesp/0Q for a given in-plane momen-
tum in 2D and 3D systems do not coincide (Fig. 7a).
As a result, the integral in Eq. (48) along a 2D trajec-
tory involves trajectories with different impact param-
eters used to parameterize the 3D Green’s functions
(Fig. 7b). Within the QC approximation, the inte-
gral then yields an imaginary part that comes from the
delta function at the 3D core spectrum and a real con-
tribution from a smooth dependence. The spectrum
€2(b) at small impact parameters thus becomes broad-
ened and shifted from its initial position. The imag-
inary contribution appears due to the coupling of the
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QC trajectory in the 2D layer with a QC continuum
of trajectories inside the superconductor corresponding
to different impact parameters. This coupling results
from the nonconservation of the angular momentum in
the anisotropic system. The imaginary contribution is
also present if the primary-core spectrum is broadened
by disorder or inelastic scattering. The situation is in
many respects similar to that in the incoherent tun-
neling model discussed in the next section. Of course,
attributing the origin of the imaginary part of energy
in the anisotropic case to the continuum of states in
the bulk SC, we ignore the angular momentum quanti-
zation in the primary vortex core. The true quantum-
mechanical consideration accounting for the level quan-
tization could possibly change this conclusion and lead
to a real-valued energy spectrum for ideal systems with-
out disorder.

In this section, we consider the low-energy behav-
ior of the Green’s function at small impact parameters
b < &g, where the spectral energy e»(b) is very small
and can be neglected. We assume that the trajectories
in the bulk SC and in the 2D layer do not coincide;
the Fermi velocities vop and vgp are at an angle da
to each other (see Fig. 7b). The impact parameter bg
and trajectory coordinate sg in the superconductor are
coupled to the ones in the 2D layer (b and s) via

bs = psin(¢ — a + da) = beosda + ssin da,

ss = pcos(¢ —a+ da) = scosda — bsinda.

As we know, at small distances p < £g, the part (g of
the anomalous Green’s function fg in the bulk SC is
large compared with (s > 65. Neglecting the latter,
we express the self-energies in Eq. (30) as

Yr =Y sinda, (67a)

Y7 =Y cosda. (67b)

The diagonal self-energy is ¥y = il'gs ~ —I'(s. We
note that the self-energies depend on the trajectory co-
ordinate s in a 2D layer through the impact parameter
bs = bcosda + ssinda in the bulk SC and do not have
definite symmetry in s. Therefore, we need to consider
the region inside the primary core more carefully, allow-
ing for contributions from even and odd components of
the corresponding functions.

Asgin Sec. 4, we use the scale separation method and
subdivide a 2D layer trajectory with a small impact
parameter b < &g into the long-distance part far from
the primary vortex core and the region inside the core.
We introduce a distance p’ satisfying {5 < p' < &p
and consider the Green’s functions in two overlapping

spatial intervals, p < p' and p 2 p’. Next, we match
the solutions in different spatial domains. Far from
the core, the solution is found using vortex potentials
Eq. (25).

In the region inside the primary vortex core, the
self-energies play the most important role. Using the
approximation in (67) for the self-energies and neglect-
ing € at small distances s < sg, we find

(cosda —Bsinda +ig = C

from Eqgs. (29), where C} is a constant and

4 (¢sinda+6 cosda) = 2% (€ cosda—0sin da+ig) .
ds UaF
This equation yields
[ 2% (s’
(sinda + 0 cosda = O} / ﬁds' + Cs.
hvap

0

Eliminating the constants C; and Cs, we find the fol-
lowing matching conditions at s = +sq:

[C cosdar — @sin b + ig], =0, (68a)
[(sinda + @ cosdal, +
+ Ioqq {¢ cosda — 6 sin 6o + ig}SO =0, (68b)

where [z], = z(so) — z(—s0), {z},, = =(s0) + z(=50),
and the integral

S0

r
Io — ! !
T hugp /CS(S ) ds

5o
takes the form

FUH

vo2A sin da
o0

“VD / exp [-K (z ctgda — bsinda)] d
€ —eo(bcosda + z)

Toga =

zZF
’i71"U||F
_— X
+ 2Av5pQsinda

. [ectgda b
* exp {_A < Q sin5a)] » (69)

where we put ssinda = z. The second term comes
from the delta-function contribution at one of the pri-
mary core states (see Eq. (31)); the upper (lower) sign
corresponds to the retarded (advanced) function. For
da < €/A, the second term disappears while the first
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gives the real pole contribution, which is equivalent to
Eq. (57). We conclude that the imaginary part dis-
appears only for trajectories that are almost parallel
(within an angle da < €/A). For da > €/A, the first
(real) term vanishes because the integrand becomes odd
in z. For e = 0 and b = 0, the real term vanishes ex-
actly.

Equations (68) are the matching conditions with the
solution in the large-distance region s > sg. They are
generalizations of the matching condition in Eq. (48)
derived earlier in the isotropic situation. The two con-
ditions in Eqs. (68) determine the even and odd parts
of the Green’s functions.

The long-distance solution is found in the same way
as in Sec. 4. However, it no longer has a definite sym-
metry with respect to s — —s. We separate the even
and odd components W = Weypen + Woqq and consider
both s > 0 and s < 0. In this section, we only discuss
the behavior of the Green’s function for low energies
and a small impact parameter. We therefore neglect

the corrections to w proportional to b/&p. In this
case, Weyen 18 given by Eq. (41), where now
Iz —e2 0
Ui(s) = | +esigns | el wg(s) = | Tsigns
+T €
and
. C’signs B
Wodd = T_GQUJS)- (70)
Equation (68a) gives
G sin da(T — Ce) (71)

VIZ —cosda — T
Using Eqs. (41), (70), and (71), we find the combina-
tions ((s0)E{(—s0), 0(s0)E£0(—s0), and ig(so)+ig(—so)
in terms of the coefficient C'. Next, we insert these com-
binations into Eq. (68b) and find

Cle = YI,qq) =T + €lpq4 cosda, (72)
where
Y =+/I'? — €2 —Tcosda. (73)

Equations (72) and (73) are the counterparts of
Eq. (46) for the asymmetric case and transform into
Eq. (46) as da — 0.
For e < T, we have Y = T'(1 — cosda). For dar 2>
2 €/A, the integral I,4q in Eq. (69) has only the ima-
ginary part. Therefore,
r

¢= € — ex(b) £ iy’

(74)
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where

2

~ —

A

moT? tg(dar/2)

= DB exp [ (po)]

(75)

and pg = |b/sindal. In Eq. (74), we include the energy
€2(b), which can be obtained by more detailed calcula-
tions taking the corrections due to b/p into account in
the same way as in Sec. 4. The function exp[—K (po)]
decays exponentially as exp(—po/£s) for impact param-
eters larger than the primary core size, b 2 £g.

Therefore, the imaginary term in (74) does not dis-
appear unless da is very small. Tt results in a smear-
ing of the adiabatic energy level €3(b) < T and in a
Lorentzian behavior of the DOS due to tunneling into
the primary vortex core states. We recall that this re-
sult is obtained within the QC approximation.

6. DISORDER EFFECTS

6.1. Multiple core. Clean limit with incoherent
tunneling

We study the disorder effects by introducing the
momentum scattering first into the tunneling process
described by the incoherent tunneling model. Since
the tunneling is considered as a perturbation, we can
assume a specular QP scattering at the interface on
the bulk side and, thus, use the results in the pre-
ceding section for the Green’s functions. The self-
energy potentials are now obtained by averaging the
Green’s functions (31)—(33) over the trajectory direc-
tion: Y7 =il (js). Of course, this averaging does not
affect the induced gap function (25) outside the pri-
mary vortex core, and therefore the spectrum e sur-
vives the influence of the tunnel barrier disorder at least
for b > £s. On the contrary, the subgap branches local-
ized within the primary vortex core are completely de-
stroyed. This dramatic consequence of the momentum
scattering is caused by the averaging of electron wave
functions with different impact parameters and conse-
quent loss of information about the CAGM states of the
primary vortex. A natural consequence of the momen-
tum scattering is the appearance of a finite broadening
of energy levels for trajectories with small impact pa-
rameters b < £g. Matching the solutions in the core
and at large distances gives the expression for the co-
efficient C for b < &g and |e|] < I':
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N 22 — €2

h?)zp

C |e—ex(d) X

h?)zp

/ZldS—
0

oo oo
X /zl,“ds = |T-+ /Elf’cds
0 0
Since |Z;| ~ |S%¢| ~ T, the pole of the coefficient C
is located at small energies e < T'?/A <« T. Hence, for
e < T, the expression for this coefficient takes the form

2€

V2R

(76)

o0

/(z1 —2P¢) ds| =T.

0

C |e—e(b) + gi (77)

2D

The localized self-energies ¥, and !¢ can be neglected
for € ~ I They also vanish for |b] > £s. In both
these limits, Eq. (76) transforms into Eq. (46). The
integral term in the equation above can be written in
terms of its real, 5(b) = B;(b) — B1(b), and imaginary,
v(b) = v1(b) — 71 (D), parts as

/(z1 — x°) ds

&p
0

2

—B(b) £ in(b), (78)

where the upper (lower) sign corresponds to the re-
tarded (advanced) Green’s function. We next calculate
the terms of the real (31 ) and imaginary (y1 1) parts
of integral (78), which are defined by the expressions

2 o0
Ba(b) = &—D 0/Re Ya(s)ds,

2

~ &p

Ya (D) /Im Yals)ds
0
and play the respective roles of energy shifting and

spectral branch broadening

Iy(b) exp(=|s|/€p)
[e — e2(b) — B(B)]* + (D)
Since parameters 3,7 ~ I'/A and e3(b)/T < 1 are

small for b < &p and |e] > T, the LDOS reaches its
bulk value in this region:

Ne(s,b) =

(79)

Ve —12
lel
Skipping the standard calculations of integrals (78),

we give the final expressions for the parameters (see

Appendix for the details):

2
6:<F

Tqy
00
T Ay
T <W ! |Qb+el>;

N(p,e) = (80)

sign(e + Qb)> ,

z
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Fig.8. LDOS in a logarithmic scale for incoherent tun-

neling in the clean limit. The curves, taken for different

distances p from the vortex center, are vertically shifted

for clarity. The peaks in LDOS exist up to distances
~ &p. Here, A/T =5and ¢, =1

The angular brackets denote averaging over the mo-
mentum Q. along the vortex axis in the bulk, Q =
= 0€p/0b. The DOS has a peak of height T'/y at
an energy € = ez(b) + 3(b) shifted from the standard
bound state level. This shift results in a splitting of
the zero-bias anomaly [36] (Fig. 8). For calculations,
we use a numerical procedure similar to that used ear-
lier for the coherent limit; the induced potentials were
averaged over the cylindrical Fermi surface in the bulk.

6.2. Multiple core. Dirty SC with a clean 2D
layer

Smearing of the energy dependence of the induced
potentials caused by disorder becomes even stronger if
the bulk SC has a short mean free path ( < £g. In
the dirty limit, the momentum-averaged retarded (ad-
vanced) Green’s functions are parameterized as

_R(A)

gg (p) = T3sin CAS

+ 75 cos O ) exp(—iFs0).  (82)
We put OF(A) = £0, +i0,. The boundary conditions
for p — 0 are gAY — +1 and fEA) fIR(A) 5 0,
which requires ©; — 7/2 and @y — 0. At large dis-
tances, ©1 — 0, th®y — —e/Ay for € < Ay while
01 = 7/2,th@y = —A /e for e > Ay. Then, Oy =
=0 for € € Ay, and the Usadel equation becomes [37]

sin(20;)

Ds |V?0; + 27 —2Apsin®; =0.  (83)

The solution of Eq. (83) was found in Ref. [37]: ©1(p)
monotonically decays from /2 at the origin down to
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zero at p > £s. The Green’s functions (82) determine
the induced vortex potentials X7 = il'gg.

For small impact parameter values b < &g, we ob-
tain $° = 0 and the matching condition takes the
form

oo

Eapb(so) = 2i((so) /sin@) ds + 2ig(so)

0

blns—o.

84
& (84)
The coefficient C' in this case has the only broadened
pole at € = ex(b):

Cle—e(b)+iy] =T (85)

with the broadening

NV

7 h’Ug F

o0

/ sin O ds,

0

where the integral is taken along the trajectory. For

le] < T and p < &g, the angle-resolved DOS can be
written in the form

B 2 'y(b)e*)‘m
V= [e—e(D)]2+42(b)

Consequently, the LDOS has a peak of the height
~ T'/v(p) at the energy € = ea(p).

For the energies above the induced gap, € > T', and
small impact parameter values €3 (), y(b) < T, the lo-
cal DOS can be replaced by its bulk value:

m

le]

Ne(s,b) (86)

N(p,€) = (87)
For b > &g, the imaginary part of energy decays expo-
nentially, and Eq. (85) transforms into Eq. (46).

The numerical results shown in Fig. 9 clearly
demonstrate the broad peak in the LDOS; this peak
shifts and becomes sharper as the distance from the
vortex center increases. For p > &g, the LDOS ap-
proaches that obtained in the clean limit in Figs. 6
and 8. In calculations, we used the standard relaxation
method [38] for solving the Usadel equation in the bulk
and the Riccati parameterization for Eilenberger equa-
tions in the 2D layer.

6.3. Vortex core expansion. Dirty SC and 2D
layer

To complete our analysis, we briefly discuss the
case of strong disorder both in the bulk SC and in
the 2D layer. In this limit, our model reduces to the
one studied numerically in Ref. [39]. The condition
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Fig.9. The local DOS in a logarithmic scale for

the dirty limit with the parameters A/T’ 5 and

ver/VF = 1. The curves, taken for different dis-

tances p from the vortex center, are vertically shifted
for clarity

€s < &p = \/hD2p /T ensures that the short-distance
inhomogeneity in the induced vortex potentials inside
the primary core region does not disturb the adiabatic
solution based on Eq. (25). Indeed, for momentum-
orientation-averaged Green’s functions in the 2D layer,

g<p>=< >=/

we can derive the equation

&k
(27)?

f 2 e’
g2

g2
—fle—is

g(k,r),

iDsp [g2(V? = p~2) fo — [2V?gs] —

— 2(6 + El)fQ + 22292 = 0, (88)

with 5 = S,e~. This equation is similar to that
derived by Kupriyanov [40] for a contact of two dirty
SCs.

Using a standard parameterization

g(p) = m3sin ¥ + 15 cos U exp(—it30)

and the expressions for the vortex potentials, we can
obtain the equation

—2Tsin(¥ — O) — 2iecos ¥ =0,

sin 2¥

. 2
’LDQD |:VP\I, — 2—p2

(89)
where V2 = p=19,(pd,) and Dap = hwip7/2 — is the

2D diffusion coefficient. Integrating Eq. (89), multi-
plied by p, in a small region around the origin (from



N. B. Kopnin, I. M. Khaymovich, A. S. Mel'nikov

MIT®, Tom 144, Be. 3 (9), 2013

p=0toavalue {5 <€ pg < &p), we find the matching
condition for the adiabatic Green’s function (41), (42):

Po

po sin 20
+ % dp| —
0 0
Po

- Q/pdp [Csin(W — ©) + iccos¥] = 0. (90)

0

19}
D>p ﬂa—p‘l’

Considering the expansion ¥(py) = ¥y — K pg with
K =0%(py)/dp ~ & and assuming ¥, # 7/2, we ob-
tain cos Uo ~ p2/(&3pIn(po/Es)) < 1. This estimate
confirms the conclusion that the LDOS in the dirty
limit follows the bulk LDOS pattern scaled with the
2D coherence length &p to within the second-order
terms in the small parameter pg/&p.

The resulting problem at low energies ¢ < A, co-
incides with that of describing a standard vortex in a
dirty SC [41] with the gap value I'. Hence, the full dis-
ordered system should reveal the same LDOS patterns
as in the bulk case, albeit scaled with the much larger
coherence length & p instead of {g. This vortex-core
expansion can account for anomalously large vortex im-
ages observed in MgB, [42] and in high-T, cuprates [43].

7. DISCUSSION

The results described above imply that the electron
states in the induced superconducting configurations
strongly depend on the tunneling mechanism and on
the crystal structure of bulk and 2D materials. The
structure and symmetry of electron states can be essen-
tially different from those in the bulk SC. This imposes
severe restrictions on possible realizations of various
exotic proximity electron states [30, 31] including Ma-
jorana states [9] and, in particular, Majorana states in
the vortex cores. Our results directly show that the ex-
istence of zero-energy states in the proximity-induced
vortex core crucially depends on the tunneling mech-
anism underlying the proximity coupling between the
2D layer and the bulk SC. The zero-energy core state
can be expected to exist for coherent tunneling between
the SC and the 2D layer that both have isotropic Fermi
surfaces, if the symmetry of the induced superconduct-
ing order permits.

It is known that a zero-energy core state exists for
a vortex with an odd vorticity in a graphene monolayer
with intrinsic superconductivity [44—46]. The graphene
monolayer with proximity-induced superconductivity
thus would seem to be a good candidate to look for a
zero-energy state. But the Fermi surface of graphene is

highly anisotropic; it lies near the Dirac corners of the
Brillouin zone with the group velocity directed radially
from the Dirac points. This group velocity direction
does not coincide with the direction of the Fermi mo-
mentum and of the Fermi velocity in the bulk SC, as
is shown in Fig. 7. Although the results in the pre-
vious sections were obtained within the QC approxi-
mation, they still can shed a light on the possibility
of the zero-energy state in graphene, especially for a
sufficient doping level when the QC approximation for
graphene is justified [46]. In this case, the results in
Sec. 5.2 can be applied. They show that each state
in the induced vortex core with energy € is coupled to
an infinite set of levels in the primary core. The inte-
gral I,4q accounts for these states. Its real part deals
with off-resonance states with eigen-energies not equal
to €, while the imaginary part comes from the reso-
nance state with the same eigen-energy e. According
to Sec. 5.2, the real part of I,qq disappears for ¢ = 0
and b = 0. The fate of the imaginary part depends
on whether the zero energy is in resonance with any
state in the primary core. It is known that for an s-
wave clean bulk superconductor, the core levels are dis-
crete with a minigap wy ~ A2/EF and no one lies at
zero energy. Therefore, if the levels in the bulk are not
broadened by disorder or by inelastic scattering, the
imaginary part of I,44 does not appear, and the zero-
energy state seems to be intact. The discrete nature of
the core states is, of course, beyond the QC approxi-
mation. Therefore, the above consideration gives only
a hint towards the possibility of a zero-energy state.
The detailed analysis is needed that would be based on
the rigorous quantum mechanical description. We note
that an alternative possibility to save the zero-energy
states by introducing a cylindrical cavity in the bulk
superconductor was considered in Refs. [25, 26].
Another important feature of induced superconduc-
tivity in a LD system is an extremely large coherence
length &p. It provides a unique possibility to realize
vortex configurations with quite unusual parameters.
Here, we briefly discuss some configurations that are of
interest. The detailed analysis of all these situations
requires special considerations. First of all, we note
that the results in Secs. 3 and 5 and the subsequent
sections are valid for &p < min(r,, Ap), where r, is
the intervortex distance and A7 is the London pene-
tration length in the bulk SC. If the vortex lattice in
the bulk SC is sufficiently dense with the intervortex
distance &p < 71y < Ar, the induced 2D vortex cores
may start to overlap. The spectrum es is then mod-
ified due to intervortex tunneling of QPs [47]. The
effect of the intervortex QP tunneling should be im-
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portant if the splitting of the quantized energy levels
due to this tunneling exceeds the minigap value. The
splitting can be estimated as T exp[—r, /& p] while the
minigap inside the induced vortex core is of the or-
der of T'?/hvarksor. Thus, the ratio determining the
intervortex tunneling efficiency is an exponential with
a large prefactor, huapke [t exp[—r, /& p]. Just this
ratio controls the interplay between the velocity of the
trajectory precession and the QP tunneling rate. The
changes in the QP spectrum become essential when
ry < &pln(hvapksp /). The minigap in this case
should vanish according to the analysis in Ref. [47].

In some cases, the 2D coherence length {&>p can ex-
ceed the London penetration depth Ap; this depends
on the properties of the bulk SC and on the tunneling
rate ['. If &p,ry > A, the superconducting velocity
vanishes along the trajectories with b > Ar, and hence
the spectral branch e2(b) saturates already for b ~ Ap,.

Our results for coherent tunneling can be directly
generalized to clean d-wave bulk SCs with isotropic
Fermi surfaces. However, the incoherent tunneling de-
stroys the superconducting coherence in the 2D layer.
As a result, the branch e» disappears, while the QP
states for € < A have finite lifetimes for distances close
to the vortex cores in the bulk SC.

Considering possible experimental realizations of
the induced vortex states, one has to bear the finite
dimensions L of the 2D layer in mind. The large size of
the induced vortex cores can lead to the situation typ-
ical for mesoscopic superconducting samples when L is
close to several £&sps. The criterion for the vortex spec-
trum transformation caused by the boundary effects in
such systems to become important can be found us-
ing the results in Ref. [48]. We only need to replace
the gap, the coherence length, and the minigap by the
appropriate values in the 2D layer. The criterion ap-
pears to be very similar to that describing the efficiency
of intervortex tunneling: the mesoscopic fluctuations of
quantum levels in the 2D core become comparable with
the minigap for L < &p In(hoapksr/T).

In conclusion, the model of a proximity-coupled
2D layer allows theoretically studying many spatially
inhomogeneous situations including various configu-
rations of induced vortices. Based on this model, we
have presented a description of the vortex core states
for some typical tunneling mechanisms. In particular,
our results can be used for interpreting the STM data
on the vortex LDOS in superconductors through the
model of a thin proximity layer present at the surface of
the bulk SC. The effect of a thin non-superconducting
proximity layer can explain various experimentally
observed features of the vortex LDOS and reveals
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that the STM technique alone is not sufficient for
identifying a multicomponent or anisotropic energy

gap.
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APPENDIX

Calculation of self-energies for incoherent
tunneling

In this Appendix, we calculate the following inte-
grals from the main text:

2 o0
Ball) = 0/ Re S (s)ds,

oo

/Im Ya(s)ds.

B £2D
0

2

Yo ()

For this, we consider the case of the small impact pa-
rameter values b < g

2F2b i v”e*K
b) =
Bi(®) Vap /<2QQP2 8
0
x |1 —Re 4

[ bl W ds,

where p? = b? + s2. In this case, the first term in the
above integral is determined by s ~ b:

o] () o o). -
).

v”e—lx

QQp?

ﬂ'UH

200

= sign(b)D <
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The second term is determined by very small impact
parameters and is given by

bo bO

ds

32
bg — s

ds

s2 4+ b2)\/b3 — 52 -

w
2|be|’

™
27
s

where b3 = €2/Q% — b? > 0. As a result, we find

(@ )>

7T’U||

Br(b) = sign(b) r <QQ

7T’U||

1) = =sign) (i

\(e - n2b2>>7,

where x(z) is the Heaviside theta function, i.e.,
x(xz) =1 for z > 0 and x(z) =0 for 2 < 0.
After simplifying the expression for 5(b) = Sr(b) —

— [1(b), we obtain Eq. (81). For b > £g, the quantity

B(b) decays as exp(—2b/&g).

The expressions for imaginary parts hold for any
distances p because the delta functions in the integrals
select only the trajectories that pass at small impact

UHe

parameters:
2 —
<Q e _62 Qp—e)> ds =

_ F2 UH l A
/Q2b2—e2
_uae - =) ds =
Op? Q /sz _62 .
_ Ol el
V0202 — €|

F2
= sign(be)a < Ay,

We here use the following expressions for the standard
integrals:

F2 —K

VaF

71(b)

)

U2 F

v1(b)

[l

Smaz

ds _ A
Vel /e - el
bo
where S;mqee ~ g, and
e ds 0+
N Y )

bo

The imaginary terms also decay exponentially for b >
2 &s. The expression for v(b) = v1(b) — v1(b) gives
Eq. (81).
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