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VORTEX MATTER IN LOW-DIMENSIONAL SYSTEMSWITH PROXIMITY-INDUCED SUPERCONDUCTIVITYN. B. Kopnin a;b*, I. M. Khaymovih **, A. S. Mel'nikov aLounasmaa Laboratory, Aalto University, P.O. Box 1510000076, Aalto, FinlandbLandau Institute for Theoretial Physis, Russian Aademy of Sienes117940, Mosow, RussiaInstitute for Physis of Mirostrutures, Russian Aademy of Sienes603950, Nizhny Novgorod, RussiaReeived April 7, 2013Dediated to the memory of Professor Anatoly LarkinWe theoretially study the vortex matter struture in low-dimensional systems with superonduting order in-dued by proximity to a bulk superondutor. We analyze the e�ets of mirosopi oupling mehanismsbetween the two systems and the e�ets of possible mismath in the band strutures of these materials on theenergy spetrum of vortex-ore eletrons. The unusual struture of vortex ores is disussed in the ontext ofreent tunneling mirosopy/spetrosopy experiments.DOI: 10.7868/S00444510130900581. INTRODUCTIONThe indued superonduting order attrats onsid-erable interest of both theorists and experimentalistsfor many deades starting from the seminal works onthe proximity e�et [1; 2℄. Reently, we see a revival ofthis interest, assoiated with the growing number of ex-periments arried out for a variety of new arti�ial sys-tems, whih inlude the two-dimensional eletron gas,graphene, semionduting nanowires and arbon nan-otubes, topologial insulators, et. Exoti eletroniproperties of these systems [3�7℄ an ause quite un-usual manifestations of the proximity e�et. Superon-duting harateristis of suh low-dimensional (LD)systems an di�er strongly from those in the bulk.The experiments on proximity-indued superondu-tivity provide a unique possibility to manipulate thebasi properties of the superonduting state. Controlof superonduting harateristis an be realized byhanging the doping level through the gate potential,whih, e. g., reates new types of tunable Josephson*E-mail: kopnin�boojum.hut.�**E-mail: hai�ipm.si-nnov.ru

devies [8℄. An unonventional gap potential in turnindues unusual quasipartile (QP) states both in ho-mogeneous and in nonuniform superonduting phases.For LD systems with a nontrivial topologial struture,one an possibly realize the QP modes with spei�symmetries of the eletron and hole wave funtions atthe Fermi level that desribe the so-alled Majoranafermions in ondensed matter [9, 10℄.A standard way of studying the QP states in sys-tems with a ompliated superonduting order is tolook at the e�ets of the applied magneti �eld onthe struture of the mixed state. For example, if thebulk eletrode is a type-II superondutor (SC), onean study the struture of vortex lines penetrating theeletrode and also threading the LD system (Fig. 1).The goal of this paper is to review the basi propertiesof the vortex matter formed in the LD layer. A similarproblem of vortex matter in the proximity layers nat-urally arises when one faes the hallenge of interpret-ing the sanning tunneling mirosopy/spetrosopy(STM/STS) measurements in SCs. Probing the energyand spatial dependenes of the loal density of states(LDOS) by STM/STS [11℄ provides information on thespetrum and the wave funtions in the superondut-ing state. An important part of this information refers486
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Fig. 1. Sketh of a 2D layer with the multiple vortexore struture indued by a bulk type-II SC in the vortexstate. Two sales of the indued vortex are shemati-ally depited by two small disks in the 2D layer and aylinder in the bulk superondutorto the struture of subgap QP states in the magneti�eld bound to the vortex ore, whih are known asthe Caroli�de Gennes�Matrion (CdGM) states [12℄.A �ngerprint of these states is the so-alled zero-biasanomaly [11℄ seen in the STM measurements. A similaranomaly has been observed in ontats of SC and two-dimensional (2D) eletron gases with insulating bar-riers [13℄ and theoretially desribed in Refs. [14�17℄.Obviously, the intrinsi harateristis of the vortexbound ore states an be masked or even hidden by thepresene of a thin defet layer at the surfae of the bulkSC. In suh a thin (possibly nonsuperonduting) sur-fae layer, the superonduting oherene is indued bythe proximity to the bulk SC. The masking e�et of thedefet layer is often di�ult to distinguish from moreexoti explanations based, e. g., on the assumptions ofthe superonduting gap anisotropy (see [18, 19℄ andthe referenes therein) and the multiomponent stru-ture of the order parameter [20, 21℄. Despite all itssimpliity, the model assuming the presene of a defetlayer at the sample surfae an explain quite a varietyof features in the vortex LDOS experimental data andprovides an instrutive example of vortex matter in LDsystems with the indued superonduting order.In our studies of vortex matter, instead of onsid-ering various phenomenologial models of the induedgap potential, we use the general mirosopi approahdeveloped in Ref. [22℄ and fous on the physial meh-anisms responsible for formation of the partiular gappotential and its symmetry. These mehanisms aremostly determined by the nature of the eletron trans-fer between the 2D proximity system and the bulk SC.This transfer is strongly a�eted by both the mismathof the band strutures in the oupled subsystems and
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k2FFig. 2. Mathing of Fermi surfaes in the 2D layer andin the bulk superondutor in the oherent tunnelingase. In the simple ase of isotropi Fermi surfaes,the in-plane projetions of the 3D Fermi momenta Q�oinide with the Fermi momentum k2F in the 2D layerby disorder in the barrier between them. Without dis-order and negleting the band struture e�ets, we ar-rive at the oherent tunneling model aording to whihthe in-plane projetion of the eletron momentum isonserved in the ourse of tunneling. The indued gappotential is determined by mathing the 2D Fermi sur-fae with the in-plane projetion of the 3D Fermi sur-fae (Fig. 2).A generalization of the above model an inludeumklapp proesses aounting for the Bloh-typesingle-eletron wave funtions in both subsystems. Inthis last ase, the momentum of tunneling eletrons isonserved only up to ertain vetors of the reiproallatties. One more limit ase is the so-alled inoherenttunneling model, whih assumes a strong disorder inthe tunneling barrier and allows an arbitrary randomhange in the momenta of tunneling eletrons. Thesystemati analysis of these three tunneling modelsshows that the gap potential strongly depends on thedegree of disorder as well as on the band struturee�ets.487



N. B. Kopnin, I. M. Khaymovih, A. S. Mel'nikov ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013Based on these models, we onsider several funda-mental properties of vortex matter in systems with theindued superonduting order. First, the proximity-indued superonduting gap �2D is responsible forthe appearane of a new length sale in the vortexstruture, the 2D oherene length �2D = ~v2F =�2Dor �2D = p~D2D=�2D for lean or dirty limits, re-spetively. Here, v2F and D2D are the Fermi veloityand di�usion onstant in the 2D layer. The energy gap�2D depends on the tunneling rate � [16; 22�24℄; forexample, �2D � � for � � �. Sine �2D � �, theoherene length �2D is usually muh longer than theoherene length in the bulk SC, �S = ~VF =� for thelean or �S = p~DS=� for the dirty limit, where �,VF , and DS are the gap, the Fermi veloity, and thedi�usion onstant in the superonduting eletrode. Asa result, all the e�ets assoiated with overlapping ofneighboring vortex ores as well as the normal QP sat-tering at the boundary of the 2D system beome muhmore pronouned than in the primary superondut-ing eletrode. There appears, e. g., an intriguing pos-sibility to obtain a new type of vortex matter stronglybonded by the intervortex QP tunneling even for mag-neti �elds well below the upper ritial �eld of thebulk SC.Seond, hybridization of the loalized QP states in-side muh larger indued vortex ores with the orestates of primary vorties in the bulk eletrode leads toa peuliar struture of the subgap energy branhes. Foroherent tunneling, the eletroni spetrum of a singlyquantized vortex onsists of two anomalous branhesrossing the zero energy value as funtions of the im-pat parameter b. One branh, �1(b), qualitatively fol-lows the usual CdGM spetrum �0(b) of the primaryvortex; it extends above the indued gap, where it turnsinto a sattering resonane. The other branh, �2(b),lies below the indued gap and resembles the CdGMspetrum for a vortex with a muh larger ore radiusof the order of �2D . Hene, the proximity-indued vor-tex in a ballisti 2D layer has a �multiple ore� stru-ture haraterized by the two length sales, �S and�2D . Suh a two-sale feature does not appear if theproximity vortex states are indued by a primary vor-tex pinned at a large-size hollow ylinder r0 > �S (seeRefs. [25, 26℄).The spatial and energy dependene of the LDOSinside the multiple ore reveals a rih behavior thatdepends on many parameters and on the degree of dis-order both inside the bulk eletrode and inside the 2Dlayer, as well as by the barrier disorder. The barrier dis-order suppresses the in�uene of the primary CdGMspetral branh and leads to broadening of the lower

anomalous branh �2(b) due to the momentum uner-tainty. Impurity sattering in the bulk and/or insidethe 2D layer auses further smearing of the spetralharateristis of the ore states, whih then approahthe usual dirty-SC LDOS saled with the orrespondingoherene lengths �2D .And �nally, both the nontrivial topologial proper-ties of the normal state wave funtions and the induedpairing symmetry an a�et the presene of the zero-energy states in the QP spetrum of vorties. Thisphenomenon arises from the wave funtion symmetryunder preession of the subgap quasilassial (QC) tra-jetories inside the vortex ore through the orrespond-ing hange in the Bohr�Sommerfeld quantization rulefor the angular momentum.The paper is organized as follows. In Se. 2, we in-trodue the basi model used in what follows for theanalysis of the indued superondutivity. The deriva-tion of self-energies of 2D QC Eilenberger equationsin a vortex state of the bulk SC is given in Se. 3.In Se. 4, we disuss the method used for the alula-tion of the subgap state struture in the indued vortexore. The main results are presented in Se. 5 and 6.In partiular, Se. 5 ontains the results for the subgapspetrum and the LDOS in an indued vortex stateof a 2D layer. In Se. 7, we disuss impliations of ouranalysis for indued vortex ore states in graphene. Wealso disuss some further impliations of a large valueof the indued oherene length �2D for the spetraland spatial harateristis of various vortex on�gura-tions. Some details of our alulations are given in theAppendix. 2. THE MODELWe onsider a 2D normal metalli layer (Z = 0)plaed in a tunneling ontat with a bulk superon-duting half-spae Z > 0 with a thin insulating barrierbetween them, as it is shown in Fig. 3. The Hamilto-nian of our system has the form Ĥ = ĤS + Ĥ2D + ĤT ,whereĤS = Z d3R "X� 	̂y�(X) (�̂3D �EF ) 	̂�(X)++ �(R)	̂y"(X)	̂y#(X) + ��(R)	̂#(X)	̂"(X)# (1)is the part desribing the superondutor with the s-wave order parameter �(R), �̂3D is the kineti energyoperator,488
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z = 0Fig. 3. 2D normal metalli layer (Z = 0) oupled toa bulk superonduting half-spae Z > 0 through atunneling barrier. The eletron waves depited by grayarrows tunnel from the soure plaed in the 2D layer(small irle). If the energy is smaller than the super-onduting gap, they do not penetrate deep into thebulk superondutor but undergo Andreev re�etion tothe hole waves (blak arrows) and return to the 2DlayerĤ2D = d Z d2rX� ây�(x) [�̂2D �EF ℄ â�(x) (2)is the 2D-layer Hamiltonian, and d is the thikness ofthe 2D layer. We introdue spae�time variables X == (R; �) and x = (r; �), whereR is a three-dimensionalvetor in the bulk superonduting region and r is atwo-dimensional vetor in the normal layer; � is animaginary time variable in the standard Matsubaratehnique. The hemial potential EF is supposed tobe equal in the subsystems. The single-partile Hamil-tonian in the 2D layer, �̂2D, inludes the kineti energyand, in general, the lattie potential orresponding tothe rystal struture of the normal system. For sim-pliity, we neglet the band struture of the bulk su-perondutor. This approximation should be valid fora wide lass of heterostrutures where the Fermi surfaein the bulk SC is large ompared with that in the 2Dlayer. We assume that tunneling is spin-independentand ours loally in time and in spae, i. e., from apoint near the interfae R = (r; Z = 0) on the super-ondutor side into the point r in the layer and bakwith the amplitude t(r) that depends on the oordi-nate of the tunneling enter on the interfae. Beausethe tunneling amplitude aounts for a ertain regionof an atomi size in the viinity of the tunneling enter,the wave funtion magnitude at Z = 0 should be re-garded as an average value near the exat boundary ofthe superonduting region. The tunneling amplitudeis assumed small in the atomi sale. More detailed re-stritions on the value of the tunneling amplitude aredisussed below. The tunneling Hamiltonian has theform

ĤT = dX� Z ht(r)	̂y�(x)a�(x) ++t�(r)ây�(x)	̂�(x)i d2r; (3)where the wave funtions in the superondutor aretaken at the spae�time point x at the interfae Z = 0.The Matsubara Green's funtions take the formhT� â�(x1)ây�(x2)i = Æ��G(x1;x2);hT� 	̂�(X1)ây�(x2)i = Æ��GT (X1;x2);hT� 	̂�(X1)	̂y�(X2)i = Æ��GS(X1;X2); (4)and hT� â�(x1)â�(x2)i = i�̂(y)��F (x1;x2);hT�	�(X1)â�(x2)i = i�̂(y)��FT (X1;x2);hT� 	̂�(X1)	̂�(X2)i = i�̂(y)��FS(X1;X2); (5)et. Equations for the Green's funtions an be moreonveniently written in the frequeny representation!n = (2n+ 1)�T . We set � = �1 � �2 and writeG(r1; r2) = ~=TZ0 G(r1; r2; �) exp� i!n�~ � d�omitting the subsript for simpliity. We also intro-due the Nambu matries for the Hamiltonian and forthe Green's funtions,�HS =  �̂3D �EF ��(R)��(R) �̂3D �EF! ; �G =  G F�F y �G! ;and the inverse operators�G�1S (R) = �i��3!n + �HS ;�G�12D(r) = �i��3!n + ��0 
 [�̂2D �EF ℄in the SC and in the 2D layer, respetively. Here, ��iare the Pauli matries in the Nambu spae.Equations for the mixed Green's funtions�GT (R1; r2) an be written in the form�G�1S (R1) �GT (R1; r2) + d�t(R1?) �G(R1?; r2)Æ(Z1) = 0;where Z1 � 0, R1 = (R1?; Z1) and�t(r) =  t(r) 00 t�(r) ! :489



N. B. Kopnin, I. M. Khaymovih, A. S. Mel'nikov ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013Negleting the bak-ation of a thin 2D layer on thesuperondutor, we assume that the superondut-ing Green's funtion �GS(R1;R2) is the noninteratingfuntion that satis�es�G�1S (R1) �GS(R1;R2) = �1~Æ(R1 �R2) (6)in the range Z1;2 > 0. The funtion �GS(R1;R2) sa-tis�es Neumann boundary onditions at Z = 0. Thisgives�GT (R1; r2) = �d~ Z �GS(R1; r0)�t(r0) �G(r0; r2) d2r0: (7)Equations for the Green's funtions in the layer anbe written as�G�12D(r1) �G(r1; r2) + �t�(r1) �GT (r1; r2) == �1~d�1Æ(r1 � r2):Using Eq. (7), we �nd�G�12D(r1) �G(r1; r2)� Z ��T (r1; r0) �G(r0; r2) d2r0 == �1~d�1Æ(r1 � r2); (8)where��T (r1; r0) =  �1 �2��y2 ��1 ! == d~�t�(r1) �G0S(r1; r0)�t(r0): (9)We introdue the momentum representation of theGreen's funtion [27℄,�GS(R1;R2) = Z d3Q1(2�)3 d3Q2(2�)3 �GS(Q1;Q2)�� exp (iQ1 �R1 � iQ2 �R2) ; (10)and of the tunneling oe�ients�t(r) = Z d2q(2�)2 �t(q)eiq�r:The Fourier representation for the Green's funtions inthe 2D layer is�G(r1; r2) = Z d2q1(2�)2 d2q2(2�)2 �G(q1;q2)�� exp (iq1 � r1 � iq2 � r2) : (11)

2.1. Tunneling with umklapp proessesThe rystal struture of the 2D layer aounts for anatomi-sale periodi potential in Eq. (8), whih mixesthe Fourier harmonis with the momenta shifted by thereiproal lattie vetors b. Using the Bloh funtions m(k; r) =Xb ei(k+b)�rumk+bthat diagonalize the single-partile energy operator in-side the layer,�2D(r) m(k; r) = �m(k) m(k; r);we an onveniently introdue the �eld operatorsâ�;m;k: â�(r) =Xm Z d2k(2�)2 â�;m;k m(k; r):The index m enumerates the energy bands.Introduing the orresponding Green's funtionshT� â�;m1;k1 ây�;m2;k2i = Æ��Gm1;m2(k1;k2);hT� â�;m1;k1 â�;m2;�k2i = i�̂(y)��Fm1;m2(k1;k2) (12)allows diagonalizing the operator �G�12D in Eq. (8) in theBloh representation,�G�12D;m(k) = �i~��3!n ++ �m(k) �EF 00 �m(�k)�EF! : (13)We assume in what follows that the amplitude �indof the indued superonduting gap �2D is small om-pared with the interband distane �m��m0 and negletthe interband sattering. Hereafter, we omit the sub-sripts m. At the same time, the transformation fromthe momentum to the quasimomentum representationresults in a mixing of Fourier harmonis in the self-energy in Eq. (8). Finally, Eq. (8) for Green's funtions(12) takes the form�G�12D(k1) �G(k1;k2)� Z ��T (k1;k0) �G(k0;k2)d2k0 == �1~Æ(k1 � k2); (14)with��T (k1;k0) = d~ Z �tyb(k1;Q?)�� �G0S(Q;Q0)�tb(Q0?;k0) d3Qd3Q0;490



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Vortex matter in low-dimensional systems : : :�tb(Q;k) =Xb uk+b�t(Q? � k� b) (15)and �tyb(k;Q?) = �t�b(Q?;k). Here, Q = (Q?; Qz). Theabove expression for the tunneling oe�ients tb in fatdesribes the umklapp proesses aused by the periodirystal potential in the 2D layer.2.2. Coherent tunnelingThe simplest model of tunneling assumes that thein-plane momentum projetion of eletrons is onservedduring the tunneling proess:�t(Q? � k) = �tÆ(Q? � k):This is equivalent to the assumption that the tunnelingamplitude t(r) is independent of the oordinate alongthe SC/2D interfae. Of ourse, the quasimomentumonservation is not exat in the presene of energybands beause the tunneling mixes the quasimomen-tum values that di�er by a reiproal lattie vetor:�tb(Q;k) = �tXb uk+bÆ(Q? � k� b):Negleting umklapp proesses for simpliity, we �nd��T (k1;k0) = dt2~ Z �G0S(k1; Qz;k0; Q0z)dQz dQ0z(2�)2from Eq. (14).From now on, we use the QC approximation for theGreen's funtions. To derive the Eilenberger equationsin the 2D layer, we follow the standard proedure de-sribed, e. g., in Ref. [27℄. First, we introdue the aver-age k = (k1 + k2)=2, Qz = (Q1z +Q2z)=2 and relativek� = k1 � k2, qz = Q1z �Q2z momenta and set�G(k1;k2) = �G(k;k�);�GS(k1; Q1z;k2; Q2z) = �GS(k; Qz ;k�; qz):Next, we apply the operator �G�12D to the Green's fun-tion �G(k;k�) from the right and subtrat this equationfrom Eq. (14). We now transform to the semilassialGreen's funtions by integrating the resulting equationover d�2, where �2 = �2D(k) � EF . The Green's fun-tions are to be taken in the viinity of the Fermi sur-fae. Therefore, in the mixed momentum�oordinaterepresentation,�G(k; r) = Z �G(k;k�) exp (ik� � r) d2k�(2�)2 ;

�GS(k; Qz; r; Z) = Z �GS(k; Qz ;k�; qz)�� exp (ik� � r+ iqzZ) d2k�dQz(2�)3 ;we an put�GS(k; Qz; r; Z) = �gS(k; Qz; r; Z)�iÆ�(�3);�G(k; r) = �g(k; r)�iÆ�(�2):Here, the standard semilassial Green's funtions are�g(k2F ; r) = 1�i Z d�2 �G(k; r); (16)�gS(KF ;R) = 1�i Z d�3 �GS(Q;R); (17)�3 = �S(Q) � EF is the normal QP spetrum in the3D half-spae, and Æ�(�2;3) is a delta-funtion broad-ened at the gap energy sale �. The matrix �g is madeout of four funtions, g, f , fy, and g in the same waythe matrix �G is onstruted of the funtions G, F , F y,and G.At the next step of derivation, we note that in themixed representation, the termZ d�2�i Z ��T (k1;k0) �G(k0;k2) d2k0(2�)2in the equation for the Green's funtion beomes�idt2~ Z d�2 �� Z dQz2� �gS(k; Qz; r; 0)�g(k; r)Æ�(�3)Æ�(�2) == �idt2~ Z dQz2� �gS(Q; r; 0)�g(k2F ; r)Æ�[�3D(Q)�EF ℄;where Q = (k2F ; Qz) has the in-plane projetion oin-iding with the 2D Fermi momentum k2F .Finally, we obtain the QC Eilenberger equation forretarded (advaned) Green's funtions�i~v2Fr�g(k2F ; r)�� [��3�g(k2F ; r)��g(k2F ; r)��3℄�� ���T �g(k2F ; r)� �g(k2F ; r)��T � = 0; (18)where ~v2F = ��2D(k)=�k is the 2D-layer Fermi velo-ity.For isotropi Fermi surfaes in both the SC,�3D(Q) = ~2Q2=2m, and the 2D layer, �m(k) == ~2k2=2m2D, the self-energy takes the form��T (k2F ; r) = i�2 [�gS(Q+; r; 0) + �gS(Q�; r; 0)℄ (19)491



N. B. Kopnin, I. M. Khaymovih, A. S. Mel'nikov ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013with the tunneling rate� = dt2 1Z0 Æ� [�S(k2F ; Qz)�EF ℄ dQz:The 3D momentum Q� = (k2F ;�Q3z) lies on theFermi surfae of the bulk SC, k22F + Q23z = K2F . Ifthe 2D Fermi surfae is smaller than the extremal rosssetion of the 3D Fermi surfae, i. e., k2F < KF , the ex-pression for the tunneling rate beomes � = dmt2=Q3z.For large 2D Fermi surfaes with k2F > KF , the self-energy term vanishes and the oherent tunneling is im-possible. The ase of momenta k2F � KF deservesspeial onsideration, whih should take aount of a�nite delta-funtion width � � dt2pm=�.The umklapp proesses should, of ourse, modifythe self-energy part, resulting in the additional ontri-butions:��T (k2F ; r) =Xb juk2F+bj2 ��(0)T (k2F + b; r); (20)where ��(0)T (k2F ; r) is given by Eq. (19).2.3. Inoherent tunnelingThe oherent tunneling model in many ases over-simpli�es the realisti experimental situation. The mo-mentum onservation is violated, for example, by thepresene of disorder at the interfae. Here, we onsideran opposite limit of strong disorder, whih is sometimesalled the inoherent tunneling model. This model as-sumes a random tunneling proess of eletrons throughthe barrier in a way similar to the standard theory ofdirty metals within the Born approximation [28℄. Weassume that the ensemble average of tunneling ampli-tudes is t(r1)t(r2) = t2saÆ(r1 � r2); (21)where sa is the orrelated area of the order of theatomi sale. Following the standard diagrammatiproedure, we expand the solution for the ensemble-averaged Green's funtion in a series in the sattering�eld and split the multiple orrelators of the t(r) valuesinto a produt of the above pair orrelators. Finally,after averaging, self-energy (9) beomes��T (r1; r2) = t2dsa �GS(r1; r1; 0)Æ(r1 � r2) == t2dsai��3(0) h�gS(Q; r; 0)i Æ(r1 � r2); (22)where �3(0) is the normal density of states in thebulk material. Angular brakets denote averaging over

3D-momentum diretions. Within the QC approah,the resulting self-energy to be used in Eilenberger equa-tion (18) is given by��T (r) = i� h�gS(Q; r; 0)i ; (23)where the tunneling rate is � = ��3(0)dsat2. Thisapproximation oinides with that used in Ref. [22℄.The tunneling rate � � t2=EF an be expressed[22℄ in terms of the normal-state tunnel ondutaneG = 1=RS per unit ontat area, � = G=4�G0�2 �� EFR0=R, with the ondutane quantum G0 == e2=�~ and the normal 2D density of states (DOS)�2 = m2D=2�~2. Therefore, �=EF � 1 if the totaltunnel resistane R is muh larger than the Sharvin re-sistane R0 = (NG0)�1 for an ideal N -mode ontatwith the ontat area S. Nevertheless, there is roomfor the ondition � � � to be ful�lled even for the largeontat resistane R� R0.2.4. Adiabati approximation. Range ofvalidityThe above mirosopi analysis allows us to om-ment on the simplest phenomenologial model that isoften used in desribing the proximity-indued super-ondutivity (see, e. g., [26; 29�31℄). Within this model,the Bogoliubov�de Gennes equations inside the prox-imity superondutor inlude a phenomenologial gapfuntion, whih is postulated to be proportional to thegap funtion � inside the superonduting eletrode.Our approah shows that this is generally not the ase.The true equation (18) inludes self energies that areompliated funtions of energy, oordinates, and mo-mentum. In fat, the e�etive gap funtion resemblesthat in the usual superondutor only if the bulk SCis homogeneous in spae. In this ase, the QC Green'sfuntion is�gR(A)� = � 1p�2 � j�j2  � ���� �� ! :In this ase, the self-energy is ��T = i��gS for both o-herent and inoherent tunneling models. This expres-sion also holds if the superonduting gap is a slowlyvarying funtion of oordinates on distanes of the or-der of �S . For j�j < j�j, the self-energy has the form��T (r) = �pj�(r)j2 � �2  � �(r)���(r) �� ! : (24)Only for a low-transpareny tunnel ontat � � �,this self-energy is nearly o�-diagonal on the sale � � �492



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Vortex matter in low-dimensional systems : : :and an be regarded as an energy-independent e�etivegap funtion ��T � i���2 exp(i��3�); (25)where � is the phase of the superonduting order pa-rameter. We note that the resulting indued gap istotally independent of the gap magnitude j�j in thebulk. If the transpareny is �nite, the eletroni spe-trum in the indued superondutor has the gap �2Ddetermined by the ondition [1; 22℄(�+�1)2 � �22 = 0; � = �2D : (26)Of ourse, the adiabati approximation also breaksdown if the order parameter � varies as a funtion ofoordinates at distanes of the order of the oherenelength in the superonduting eletrode, when the self-energies are no longer determined by Eq. (24).3. VORTEX POTENTIALS AND GREEN'sFUNCTIONS FOR CLEAN SYSTEMSThe QC Green's funtions in the 2D layer satisfyEilenberger equations (18). In omponents,� i~v2Frf � 2 (�+�1)f + 2�2g = 0;i~v2Frfy � 2 (�+�1)fy + 2�y2g = 0;� i~v2Frg +�2fy � �y2f = 0; (27)and the normalization ondition g2� ffy = 1 with theself-energies in Eqs. (19) or (23) as e�etive potentials.In this and the next setions, we onsider thease of isotropi Fermi surfaes. Modi�ations dueto the anisotropy of the spetrum are disussed inSe. 5.2. Quasipartiles in lean systems are onve-niently desribed by the oordinates along their tra-jetories (Fig. 4). A QC trajetory is parameterizedby its angle � with the x axis, the impat parameterb = � sin(� � �), and the oordinate s = � os(� � �)along the trajetory. We introdue the symmetri andantisymmetri parts of the Green's funtions as thiswas done in Refs. [27; 32℄:f = � [�(s) + i�(s)℄ ei�;fy = [�(s) � i�(s)℄ e�i�; (28)where �(s) = �(�s) and �(s) = ��(�s). The normal-

��y B
A b � x

s v2F
�s �2D

Fig. 4. The oordinate frame near the multiple vortexore. The primary (indued) ore is shown by the innersmall (outer large) irle. The QC trajetory with animpat parameter b (line AB) passes through the point(�; �) shown by the blak dotization ondition requires g2+ �2+ �2 = 1. Eilenbergerequations (27) an be rewritten in the form~v2F d�ds + 2 (�+�1) � � 2ig�R = 0; (29a)~v2F d�ds � 2 (�+�1) � � 2ig�I = 0; (29b)~v2F dgds + 2i��R + 2i��I = 0; (29)where 2�R = �2e�i� +�y2ei�;2i�I = �2e�i� � �y2ei�: (30)In this paper, we onsider the limit of low tunnel-ing rate � � �, whih leads to a small indued gap[22℄ �2D = � and long oherene length �2D � �S .We onsider an isolated vortex line oriented alongthe Z axis perpendiular to the SC/2D interfae andhoose the gap funtion inside the bulk SC in the form� = �0(�)ei�, where (�; �) are the ylindrial oordi-nates; �0(�) approahes the bulk value �1 far fromthe vortex ore. The self-energies in the 2D layer,Eqs. (19) or (23), have parts with sharp peaks loal-ized at small distanes � � �S and the adiabati long-distane �vortex potential� tail �2D � �ei� at � � �Saording to Eq. (25).In the ase of a lean bulk SC, we use the ondi-tion of speular re�etion at the interfae. This anbe applied for both oherent and inoherent tunnelingmodels beause any possible disorder in tunneling af-fets only a tiny fration of bulk eletrons, whose vast493



N. B. Kopnin, I. M. Khaymovih, A. S. Mel'nikov ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013majority re�ets without tunneling. For speular re-�etion, we an use the bulk QC Green's funtions ob-tained for an in�nite spae. For energies � � �1, theself-energy in Eq. (25) for long distanes (�� �S) is in-dependent of the partiular tunneling model and of thedisorder in the bulk SC: �1 � 0 and �2 � �ei�, i. e.,�R � �s=� and �I � �b=�. However, the indued vor-tex potentials lose to the primary vortex ore are verysensitive to the impurity onentration and momentumexhange during the tunneling proess.For a lean bulk SC, the Green's funtion an beparameterized similarly to (28) with f ! fS , � ! �S ,and � ! �S . The Eilenberger equations have the formof Eqs. (29) with v2F ! vk = VF os�p, where �p is thepolar angle of the momentum, while �1 = 0, �2 ! � == �0(�)ei�, and �y2 ! ��. For energies � � �1 anddistanes s of the order of or less than the ore size, thefuntions gS and fS are given in Refs. [27; 32℄, and�S = ~vke�K2� [�� �0 � iÆ℄ ;�S = 2~vk sZ0 ��� b�0�0 � �Sds0; (31)�0(b) = b� 1Z0 �0� e�K(s) ds; (32)� = 1Z0 e�K(s) ds; K(s) = 2~vk �Zjbj �0(�0) d�0: (33)For larger distanes s � �S , the funtion �S assumesits asymptoti expression �R(A)S = �b=� orrespondingto the boundary onditions in Eq. (25).3.1. Vortex potentials for oherent tunnelingThe vortex potentials indued in the 2D layer ru-ially depend on the tunneling mehanism. For exam-ple, within the oherent tunneling model, we obtain�1 = i�gS(Q; r);�2 = i�fS(Q; r)in terms of the in�nite-spae Green's funtions, sine�gS(+Q3z) = �gS(�Q3z) for speular re�etion. For en-ergies � � �1 and distanes s of the order of or lessthan the ore size �S , it follows from Eq. (28) that�1 = ���S ;�2 = �[�S � i�S ℄ei�;�y2 = �[�S + i�S ℄e�i�; (34)where �S and �S are given by Eqs. (31)�(33).

3.2. Vortex potentials for inoherent tunnelingFor inoherent tunneling, we �nd �1 = i� hgSi,�2 = i� hfSi, where averaging over the 3D momen-tum diretion is equivalent to the ensemble averaging.To alulate the angular average, we an separate theGreen's funtions into the prinipal-value part and thedelta-funtional ontribution. For example,gR(A)S = i�R(A)S = V.P. i~vke�K2� (�� �0)!�� �~vke�K2� Æ(�� �0): (35)Performing averaging over the polar �p and az-imuthal � angles, we take the symmetry of the fun-tions under the s-inversion transformation into a-ount. As a result, we obtain�1 = �� h�S(s)i ; (36)�2e�i� = �y2ei� = �ad + �lo2 ; (37)�ad(�) = V.P. h�I(s) sign(s)=2� [�� �0℄i ; (38)where we setI(s) = 2 sZ0 ��� �0b� � e�K(s0) ds0:The o�-diagonal omponents of the indued potentialare split into the loalized and the long-range parts,�lo2 and �ad. The long-range funtion �ad an be re-garded as an adiabati indued superonduting gap,�ad ! � for � � �S and �ad ! 0 for � ! 0. Averag-ing over the azimuthal trajetory angle �, we �ndRe�lo2 = �*~vke�K2�
� "1�Re j�jp�2 � 
2�2#+z ;Im�lo2 = ��*Re �~vke�K2�
�p
2�2 � �2+z ;Re�1 = � sign(�)�*Re ~vke�K2�p�2 � 
2�2+z ;Im�1 = ��*Re ~vke�K2�p
2�2 � �2+z ;where the upper (lower) sign orresponds to a retarded(advaned) self-energy term, 
 = d�0=db, and we usethe notation h: : : iz = 12 �Z0 (: : : ) sin�p d�p494



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Vortex matter in low-dimensional systems : : :for the average over the polar angle �p of the 3DFermi momentum. We note that our alulations arebased on the �rst-order approximation in the small pa-rameter b=�. Aording to Eq. (30), the symmetri�I(�s) = �I(s) and antisymmetri �R(�s) = ��R(s)parts of the o�-diagonal self-energy term �2e�i� anbe rewritten as �R = �2e�i�s=� and �I = �2e�i�b=�.The self-energy obtained above a�ets the vortexore states in the 2D layer in two di�erent ways. Theadiabati part of the indued vortex potential leads tothe Andreev loalization of QPs with the energy smallerthan the indued superonduting gap � within the in-dued vortex ore at distanes of the order of �2D . Thisforms the CdGM anomalous branh �2(b) as in an usualSC with the orresponding maximum intrinsi gap �.Another part of the self-energy exponentially deayingat � � �S ontains information about the CdGM statesin the bulk SC; it a�ets the 2D-layer QP behavior atsmall sales. The adiabati large-sale part of the self-energy (at �� �S) is universal; it does not depend onthe tunneling models and on possible disorder in thebulk SC, while the short-sale indued vortex potentialloalized at small distanes does ruially depend onthese fators. Both terms in the indued self-energyform the two-sale LDOS radial pro�le.4. SCALE SEPARATION METHODA natural way to solve Eqs. (29) is to apply thesale separation method. We introdue a distane �0satisfying �S � �0 � �2D and onsider the Green'sfuntions in two overlapping spatial intervals, � . �0and � & �0. Next, we math the solutions in di�erentspatial domains.4.1. Large distanesAt low energies �� �1 and large distanes �� �S ,the indued vortex potential is given by Eq. (25).Quasipartiles propagating along the trajetories withimpat parameters b > �S that miss the primary vortexore are a�eted only by this long-distane (�2D � �S)part of the indued gap potential. In the low-energylimit � < � � �1, the appropriate boundary ondi-tions far from the indued vortex ore (�� �2D) are� = �s=�p�2��2 ; � = ��b=�p�2��2 ; g = �i�p�2��2 : (39)For both tunneling models and an arbitrary disor-der rate inside the superondutor and for � � �S ,Eqs. (29) take the form

~v2F d�ds + 2�� � 2ig�s=� = 0;~v2F d�ds � 2�� � 2ig�b=� = 0;~v2F dgds + 2i��b=�+ 2i��s=� = 0: (40)The funtions g and � are even in s while � is odd,and we an therefore onsider only positive s values.We obtain the solution of the above equations using the�rst-order perturbation theory in the impat parame-ter b: �w(s) = �w0(s) + �w1(s), where �w(s) = (�; �; ig)T .As we see in what follows, this approximation holds forjbj � �2D . The zeroth order in the b solution is givenby �w0(s) = 1p�2 � �2 �u0(s) + Cp�2 � �2 �u�(s); (41)where�u�(s) = 0B� p�2 � �2���� 1CA e��s; �u0(s) = 0B� 0�� 1CA ;and � = 2p�2 � �2=~v2F . This solution satis�es theboundary onditions g = �i�=p�2 � �2, � = 0, and � == �=p�2 � �2 for s!1 and �2 < �2. The �rst-orderorretion �w1 an be written as�w1(s) = C0(s)�u0p�2 � �2 + C+(s)�u+p�2 � �2 + C�(s)�u�p�2 � �2 ; (42)where �2DC0(s) = 2Cb 1Zs e��s ds� ;�2DC+(s) = �b 1Zs e��s ds� ;�2DC�(s) = �b sZs e�s ds� : (43)
The lower limit of integration in C�, s, has to be takenas s � �S for trajetories that go through the primaryvortex ore, b . �S , suh that the logarithmi diver-gene be ut o� at the distanes of the order of �S ,where the long-range vortex potential �ad in (38) van-ishes. For b � �S , we have s = 0. The perturbationapproah holds as long as C0 � C and C+ � 1, i. e.,as long as jbj � �2D. For s � �2D , the oe�ient C0deays faster than exponentially, whileC+(s)e�s ! C�(s)e��s ! � �2p�2 � �2 b�495



N. B. Kopnin, I. M. Khaymovih, A. S. Mel'nikov ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013and hene � approahes�(b=�)�=p�2 � �2 and the or-retions to � and g vanish, as they should in aor-dane with (39). For a small distane s = s0 de�ned as�20 = s20 + b2, we have�(s0) = C + C+(s0) + C�(s0); (44a)�(s0) = 1p�2 � �2 f�� �C + �C0(s0) ++ �[C+(s0)� C�(s0)℄g ; (44b)g(s0) = ip�2 � �2 f��+ �C � �C0(s0) �� �[C+(s0)� C�(s0)℄g : (44)4.2. Mathing for large impat parametersFar from the primary vortex ore at impat parame-ters �S � b� �2D, the perturbative result in Eqs. (40)an be applied along the entire trajetory, and we antherefore set s0 = s = 0. The boundary ondition foran odd funtion requires �(0) = 0. Beause C�(0) = 0in this ase, we �nd from Eq. (44b) that� + �C+(0) = �C � �C0(0):Expressing the oe�ients C0 and C+ in terms of theenergy � = �2(b) = 2�2b~v2F ln � (45)of bound states in the indued vortex ore, with � == �2D=jbj and C0 = �2CC+ = C�2(b)=�, we �ndC[�� �2(b)℄ = �� ��2(b)=2�: (46)Aording to Eq. (46), �2(b) is the only spetrumbranh in the energy interval j�j � �1. The Green'sfuntion isg(s) = �i�p�2 � �2 + i�Cp�2 � �2 e��s � i�C0(s)p�2 � �2 �� i�p�2 � �2 �C+(s)e�s � C�(s)e��s� : (47)For s� �2D , we have C0 ! 0 and C+e�s �C�e��s !! 0, whene it follows that the �rst term is the ho-mogeneous bakground while the rest terms desribethe vortex ontribution. To obtain the retarded fun-tion for �2 > �2, we have to ontinue p�2 � �2 ana-lytially to the upper half-plane of omplex � keepingRep�2 � �2 > 0.

4.3. Mathing for small impat parametersTo �nd the Green's funtions for small impat pa-rameters b . �S , we have to math Eqs. (44) with thesolution obtained in the vortex ore region. For smalls < s0, we assume that the even parts of the Green'sfuntions g(s) and �(s) are nearly onstant in the inter-val 0 < s < s0. Integrating Eq. (29b) over s from 0 tos0 along the trajetory, we �nd the mathing ondition~v2F2 �(s0) = �(s0) s0Z0 �1 ds+ ig(s0) s0Z0 �I ds: (48)Equation (48) determines the onstant C. Its polesde�ne the eigenstates of exitations as funtions of en-ergy and the impat parameter. In deriving the ef-fetive boundary ondition (48) for b . �S , we needto separate the exponentially onverging parts �lo1;I ats � �S from the long-distane (s� �S) asymptotis of�1;I . For �� �1, long-distane expressions (25) yield�1 ! 0 and �I ! �b=�. Therefore,s0Z0 �I ds = �SZ0 �loI ds+ � s0Z�S b� ds �� 1Z0 �loI ds+ �b ln s0�S ; (49)while R s00 �1 ds an be extended to in�nity. The loal-ized self-energy parts �1 and �loI determine the small-distane LDOS and the spetrum of exitations anddepend on the partiular tunneling mehanism.5. MULTIPLE VORTEX CORE IN THE CLEANLIMIT. QUASIPARTICLE SPECTRUM ANDDENSITY OF STATES5.1. Isotropi Fermi surfaeIn this setion, we onsider an idealized piturewithout any disorder. For large impat parametersb � �S , the orresponding solutions for the Green'sfuntions, Eq. (47), oinide with the standard CdGMexpressions where the gap value is replaed with �.The orresponding anomalous spetrum for 2D exi-tations is given by Eq. (45) [27; 32℄. This modi�edCdGM branh dominates in the LDOS at large dis-tanes �� �S .496



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Vortex matter in low-dimensional systems : : :The normalized LDOS is de�ned as an average overthe trajetories:N(r; �) = 2�Z0 N�(s; b)d�02� = �Z�� N�(p�2 � b2; b)p�2 � b2 db� ;where N�(s; b) = �gR(s; b)� gA(s; b)� =2;s = � os�0; b = �� sin�0:For j�j < �, a nonzero LDOS omes only from the vor-tex ontribution of the seond and third terms in (47)due to the presene of a pole in the oe�ient C aord-ing to Eq. (46). The Green's funtions and LDOS reahtheir long-distane values g = �i�=p�2 � �2 and N == Re j�j=p�2 � �2 as �!1. For �� �S , the trajeto-ries with large impat parameters b & �S give the mainontribution to the LDOS. In the region �S � �� �2D ,we obtain the angle-resolved DOS in the formN�(s; b) = p�2 � �2(�2 � �2=2)�2 �� �Æ[�� �2(b)℄; j�j < �; (50)N�(s; b) = p�2 � �2[�2 � �22(b)=2℄sign(�)�2[�� �2(b)℄ ; j�j > �: (51)Hene, the orresponding LDOS in the energy intervalj�j < � has the only peaks at � = �2(��):N(�; �) = 1� �Z�� N�(p�2 � b2; b) dbp�2 � b2 == Re p�2 � �2(1� �2=2�2)p�22(�)� �2 : (52)For energies above the indued gap, j�j > �, forthe same distanes, the LDOS monotonially inreaseswith j�j to its normal-state value:N(�; �) =p�2 � �2 " j�j2�2 + (1� �2=2�2)p�2 � �22(�) # : (53)A trajetory with a small impat parameter b . �San be divided into the part far from the primary vor-tex ore and the region inside the ore. Far from theore, the solution is found using vortex potentials (25).The self-energies of the primary vortex in Eq. (18) havepoles at the usual CdGM energy �0(b) with the orre-sponding wave funtions exponentially loalized within

� � �S and the regular parts extending over large dis-tanes �! �1 [27; 32℄:�R = ��S ; �I = ���S : (54)We note that the loalized part �lo2 of the e�e-tive order parameter �2 has the oordinate dependene�lo2 = i�loI (b; s)ei� with zero irulation, unlike itsadiabati part (25), �2(� � �S) = �ei�. As we seebelow, it is this di�erent angular dependene of the ef-fetive gap asymptotis, whih leads to the formationof a �shadow� of the bulk SC anomalous branh in theexitation spetrum and LDOS in the 2D layer.Using Eqs. (43) for the long-distane part of thetrajetory, we �ndC0(s0) = 2Cb�2D ln 1�s0 ;C+(s0)� C�(s0) � � b�2D ln 1��S � ��2(b)2� : (55)We now math asymptoti solution (44) obtained fors � s0 with the solution for the short-distane part ofthe trajetory in Eqs. (34) and (31)�(33), using Eq. (48)and Eq. (49). As a result,C8<:�2D [�� �2(b)℄ + 2 ���p�2 � �2 � ��2(b)� � �� 1Z0 �0 ds9=; = �2D� + 2� 1Z0 �0 ds� �2D ��2(b)2� �� �� +p�2 � �2 � �2(b)� 1Z0 �0 ds; (56)where �0(s) is the loalized part of �S and1Z0 �0 ds = ~vk2[�� �0(b)℄ : (57)Here, we put g = i�0 and replae the uto� parameterin (45) with � = �2D=�S . For b� �S , the ontributionsfrom the primary vortex ore proportional to R10 �0 dsvanish sine the trajetory misses the ore, and Eq. (56)goes over into Eq. (46).For small b� �2D , the Green's funtion has a polewhenP (�; b) = [�� �2(b)℄[�� �0(b)℄ ++ qv h�2 � �p�2 � �2 � ��2(b)i = 0; (58)where qv = vk=v2F . It an be shown that with thehigher-order terms in the parameter �2(b)=� inluded,4 ÆÝÒÔ, âûï. 3 (9) 497
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Fig. 5. Two loalized branhes, �1(b) and �2(b), of thespetrum in Eq. (59), in the limit of oherent tunnel-ing, for � < �. Here, b� is de�ned as �1(b�) = � � 0,and b0 orresponds to Re �1(b0) = �+0. The spetrumsatis�es �1;2(�b) = ���1;2(b)the orresponding energy dispersion relation takes theform[���2(b)℄[���0(b)℄�qv +��p�2�[���2(b)℄2 = 0: (59)For b . �S , the uto� parameter in Eq. (45) should bereplaed with � = �2D=�S .The resulting two-sale spetrum is shown in Fig. 5.There are two real-valued branhes in the range j�j < �rossing zero energy value as funtions of the impatparameter and one omplex-valued branh in the range� < j�j < �1. The lowest-energy branh �2(b) has asale �2D as a funtion of the impat parameter: forb . �2D , it is given by Eq. (45) with the proper uto�parameter � as disussed above and saturates at � = �for b � �2D . The branh �1(b) has a sale �S : for� < � it goes slightly below the CdGM spetrum �0(b)of the bulk SC, �1(b) = (1+qv=2)�1�0(b). Above �, thespetrum transforms into a sattering resonane due tothe deay into deloalized modes propagating in the 2Dlayer: �1(b) = �0(b) � i�qv for j�j � �. Sine Eq. (59)determines a pole of the retarded Green's funtion inthe lower half-plane of omplex �, the square root inEq. (59) should be analytially ontinued through theut going from �1 to �� and from � to +1. Asa result, �1(b) has a disontinuity at �1 = � withb0=�S � 0:29 and b�=�S � 0:42.The two branhes appear due to the presene of twosub-systems, the bulk SC and the 2D proximity layer,eah with its own anomalous branh. The existeneof two anomalous branhes follows also from the index
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ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Vortex matter in low-dimensional systems : : :For j�j > �, the dispersion relation is omplex-valuedand for the retarded funtions takes the form�[�� �0(b)℄ + qv� h� + i sign(�)p�2 � �2 i = 0: (63)The last equation desribes the resonant states in the2D vortex ore that deay into the QP waves propaga-ting in the 2D layer above the indued gap.Finally, the whole spetrum struture, shown inFig. 5, has two anomalous branhes: one of them, �2(b),is ompletely real-valued and follows the CdGM spe-trum for the superondutor with a homogeneous gap�; the other one is lose to the bulk CdGM spetrum,but has a disontinuity at � = �, where it beomesessentially omplex.Thus, the LDOS for energies above the indued gapj�j > � and small distanes �; b . �S is given byN(�; �) = p�2 � �2j�j + qv�22j�j ��Re p�2 � �2 � i�q(�2 + qv�2 + iqv�p�2 � �2)2 � �2�20(�) (64)and has the only peak at � = Re �1(�) of the height� �2=�20(�) for � & �2S=�2D. In the opposite limitof rather large distanes � > �2S=�2D at j�j > �, thespetrum redues to the CdGM spetrum with a �nitebroadening: �1(b) = �0(b)� i�qv: (65)The LDOS has a small di�erene from its normal-statevalue N0 = 1:N(�; �) = 1 + qv�22�2 Re j�j � i�p(�+ iqv�)2 � �20(�) : (66)The LDOS in the whole energy range, Eqs. (61) and(64), has two or even three peaks for suh distanes.The latter ase is realized at the distanes orrespond-ing to b0 < b < b�, where the spetrum vs the impatparameter has three anomalous branhes.The numerial LDOS patterns have been obtainedby subsequently solving the two sets of Eilenbergerequations in the Riati parameterization [35℄: �rst,we alulate the Green's funtions in the bulk SC us-ing the approximation �0(�) = �1�=p�2 + �2S andnext we solve Eq. (18) in the 2D layer using Eq. (19).5.2. Anisotropi Fermi surfaeHere, we brie�y disuss the e�ets of anisotropiFermi surfaes in 3D and/or 2D systems. We are in-terested only in main distintions that the anisotropy
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N. B. Kopnin, I. M. Khaymovih, A. S. Mel'nikov ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013QC trajetory in the 2D layer with a QC ontinuumof trajetories inside the superondutor orrespondingto di�erent impat parameters. This oupling resultsfrom the nononservation of the angular momentum inthe anisotropi system. The imaginary ontribution isalso present if the primary-ore spetrum is broadenedby disorder or inelasti sattering. The situation is inmany respets similar to that in the inoherent tun-neling model disussed in the next setion. Of ourse,attributing the origin of the imaginary part of energyin the anisotropi ase to the ontinuum of states inthe bulk SC, we ignore the angular momentum quanti-zation in the primary vortex ore. The true quantum-mehanial onsideration aounting for the level quan-tization ould possibly hange this onlusion and leadto a real-valued energy spetrum for ideal systems with-out disorder.In this setion, we onsider the low-energy behav-ior of the Green's funtion at small impat parametersb � �S , where the spetral energy �2(b) is very smalland an be negleted. We assume that the trajetoriesin the bulk SC and in the 2D layer do not oinide;the Fermi veloities v2F and v3F are at an angle Æ�to eah other (see Fig. 7b ). The impat parameter bSand trajetory oordinate sS in the superondutor areoupled to the ones in the 2D layer (b and s) viabS = � sin(� � �+ Æ�) = b os Æ�+ s sin Æ�;sS = � os(�� �+ Æ�) = s os Æ�� b sin Æ�:As we know, at small distanes �� �S , the part �S ofthe anomalous Green's funtion fS in the bulk SC islarge ompared with �S � �S . Negleting the latter,we express the self-energies in Eq. (30) as�R = �1 sin Æ�; (67a)�I = �1 os Æ�: (67b)The diagonal self-energy is �1 = i�gS � ���S . Wenote that the self-energies depend on the trajetory o-ordinate s in a 2D layer through the impat parameterbS = b os Æ�+ s sin Æ� in the bulk SC and do not havede�nite symmetry in s. Therefore, we need to onsiderthe region inside the primary ore more arefully, allow-ing for ontributions from even and odd omponents ofthe orresponding funtions.As in Se. 4, we use the sale separation method andsubdivide a 2D layer trajetory with a small impatparameter b . �S into the long-distane part far fromthe primary vortex ore and the region inside the ore.We introdue a distane �0 satisfying �S � �0 � �2Dand onsider the Green's funtions in two overlapping

spatial intervals, � . �0 and � & �0. Next, we maththe solutions in di�erent spatial domains. Far fromthe ore, the solution is found using vortex potentialsEq. (25).In the region inside the primary vortex ore, theself-energies play the most important role. Using theapproximation in (67) for the self-energies and neglet-ing � at small distanes s < s0, we �nd� os Æ�� � sin Æ�+ ig = C1from Eqs. (29), where C1 is a onstant anddds (� sin Æ�+� os Æ�) = 2�1hv2F (� os Æ��� sin Æ�+ig) :This equation yields� sin Æ�+ � os Æ� = C1 sZ0 2�1(s0)~v2F ds0 + C2:Eliminating the onstants C1 and C2, we �nd the fol-lowing mathing onditions at s = �s0:[� os Æ�� � sin Æ�+ ig℄s0 = 0; (68a)[� sin Æ�+ � os Æ�℄s0 ++ Iodd f� os Æ�� � sin Æ�+ iggs0 = 0; (68b)where [x℄s0 = x(s0)� x(�s0), fxgs0 = x(s0) + x(�s0),and the integralIodd = �~v2F s0Z�s0 �S(s0) ds0takes the formIodd = �vkv2F 2� sin Æ� ��V.P. 1Z�1 exp [�K(z tg Æ�� b sin Æ�)℄�� �0(b os Æ�+ z) dz �� i�vk�2�v2F
 sin Æ� �� exp ��K �� tg Æ�
 � bsin Æ��� ; (69)where we put s sin Æ� = z. The seond term omesfrom the delta-funtion ontribution at one of the pri-mary ore states (see Eq. (31)); the upper (lower) signorresponds to the retarded (advaned) funtion. ForÆ� . �=�, the seond term disappears while the �rst500



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Vortex matter in low-dimensional systems : : :gives the real pole ontribution, whih is equivalent toEq. (57). We onlude that the imaginary part dis-appears only for trajetories that are almost parallel(within an angle Æ� . �=�). For Æ� � �=�, the �rst(real) term vanishes beause the integrand beomes oddin z. For � = 0 and b = 0, the real term vanishes ex-atly.Equations (68) are the mathing onditions with thesolution in the large-distane region s > s0. They aregeneralizations of the mathing ondition in Eq. (48)derived earlier in the isotropi situation. The two on-ditions in Eqs. (68) determine the even and odd partsof the Green's funtions.The long-distane solution is found in the same wayas in Se. 4. However, it no longer has a de�nite sym-metry with respet to s ! �s. We separate the evenand odd omponents �w = �weven + �wodd and onsiderboth s > 0 and s < 0. In this setion, we only disussthe behavior of the Green's funtion for low energiesand a small impat parameter. We therefore negletthe orretions to �w proportional to b=�2D. In thisase, �weven is given by Eq. (41), where now�u�(s) = 0B� p�2 � �2�� sign s�� 1CA e��jsj; �u0(s) = 0B� 0� sign s� 1CAand �wodd = ~C sign sp�2 � �2 �u�(s): (70)Equation (68a) gives~C = sin Æ�(�� C�)p�2 � �2 os Æ�� � : (71)Using Eqs. (41), (70), and (71), we �nd the ombina-tions �(s0)��(�s0), �(s0)��(�s0), and ig(s0)+ig(�s0)in terms of the oe�ient C. Next, we insert these om-binations into Eq. (68b) and �ndC[�� Y Iodd℄ = � + �Iodd os Æ�; (72)where Y =p�2 � �2 � � os Æ�: (73)Equations (72) and (73) are the ounterparts ofEq. (46) for the asymmetri ase and transform intoEq. (46) as Æ�! 0.For � � �, we have Y = �(1 � os Æ�). For Æ� && �=�, the integral Iodd in Eq. (69) has only the ima-ginary part. Therefore,C = ��� �2(b)� i ; (74)

where = �vk�2 tg(Æ�=2)�v2F
 exp [�K(�0)℄ � �2� (75)and �0 = jb= sin Æ�j. In Eq. (74), we inlude the energy�2(b), whih an be obtained by more detailed alula-tions taking the orretions due to b=� into aount inthe same way as in Se. 4. The funtion exp[�K(�0)℄deays exponentially as exp(��0=�S) for impat param-eters larger than the primary ore size, b & �S .Therefore, the imaginary term in (74) does not dis-appear unless Æ� is very small. It results in a smear-ing of the adiabati energy level �2(b) � � and in aLorentzian behavior of the DOS due to tunneling intothe primary vortex ore states. We reall that this re-sult is obtained within the QC approximation.6. DISORDER EFFECTS6.1. Multiple ore. Clean limit with inoherenttunnelingWe study the disorder e�ets by introduing themomentum sattering �rst into the tunneling proessdesribed by the inoherent tunneling model. Sinethe tunneling is onsidered as a perturbation, we anassume a speular QP sattering at the interfae onthe bulk side and, thus, use the results in the pre-eding setion for the Green's funtions. The self-energy potentials are now obtained by averaging theGreen's funtions (31)�(33) over the trajetory dire-tion: ��T = i� h�gSi. Of ourse, this averaging does nota�et the indued gap funtion (25) outside the pri-mary vortex ore, and therefore the spetrum �2 sur-vives the in�uene of the tunnel barrier disorder at leastfor b > �S . On the ontrary, the subgap branhes loal-ized within the primary vortex ore are ompletely de-stroyed. This dramati onsequene of the momentumsattering is aused by the averaging of eletron wavefuntions with di�erent impat parameters and onse-quent loss of information about the CdGM states of theprimary vortex. A natural onsequene of the momen-tum sattering is the appearane of a �nite broadeningof energy levels for trajetories with small impat pa-rameters b . �S . Mathing the solutions in the oreand at large distanes gives the expression for the o-e�ient C for b . �S and j�j � �:501



N. B. Kopnin, I. M. Khaymovih, A. S. Mel'nikov ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013C 24�� �2(b) + 2p�2 � �2~v2F 1Z0 �1 ds� 2�~v2F �� 1Z0 �loI ds35 = 24�� 2�~v2F 1Z0 �loI ds35 : (76)Sine j�1j � j�loI j � �, the pole of the oe�ient Cis loated at small energies � . �2=� � �. Hene, for�� �, the expression for this oe�ient takes the formC 24�� �2(b) + 2�2D 1Z0 ��1 � �loI � ds35 = �: (77)The loalized self-energies �1 and �loI an be negletedfor � � �. They also vanish for jbj � �S . In boththese limits, Eq. (76) transforms into Eq. (46). Theintegral term in the equation above an be written interms of its real, �(b) = �I(b)� �1(b), and imaginary,(b) = I(b)� 1(b), parts as2�2D 1Z0 ��1 � �loI � ds = ��(b)� i(b); (78)where the upper (lower) sign orresponds to the re-tarded (advaned) Green's funtion. We next alulatethe terms of the real (�1;I) and imaginary (1;I) partsof integral (78), whih are de�ned by the expressions��(b) = 2�2D 1Z0 Re��(s) ds;�(b) = 2�2D 1Z0 Im��(s) dsand play the respetive roles of energy shifting andspetral branh broadeningN�(s; b) = �(b) exp(�jsj=�2D)[�� �2(b)� �(b)℄2 + 2(b) : (79)Sine parameters �;  � �=� and �2(b)=� � 1 aresmall for b � �2D and j�j > �, the LDOS reahes itsbulk value in this region:N(�; �) = p�2 � �2j�j : (80)Skipping the standard alulations of integrals (78),we give the �nal expressions for the parameters (seeAppendix for the details):� = ��2�qvQ
 sign(�+
b)�z ; = ��2qvQ
 ln �1j
b+ �j�z : (81)
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ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Vortex matter in low-dimensional systems : : :zero at � � �S . The Green's funtions (82) determinethe indued vortex potentials ��T = i��gS.For small impat parameter values b � �S , we ob-tain �loI = 0 and the mathing ondition takes theform�2D�(s0) = 2i�(s0) 1Z0 sin� ds+ 2ig(s0)b ln s0�S : (84)The oe�ient C in this ase has the only broadenedpole at � = �2(b):C [�� �2(b) + i℄ = � (85)with the broadening = 2�p�2 � �2~v2F 1Z0 sin� ds;where the integral is taken along the trajetory. Forj�j < � and � < �S , the angle-resolved DOS an bewritten in the formN�(s; b) = �2p�2 � �2 (b)e��jsj[�� �2(b)℄2 + 2(b) : (86)Consequently, the LDOS has a peak of the height� �=(�) at the energy � = �2(�).For the energies above the indued gap, � > �, andsmall impat parameter values �2(b); (b) � �, the lo-al DOS an be replaed by its bulk value:N(�; �) = p�2 � �2j�j : (87)For b� �S , the imaginary part of energy deays expo-nentially, and Eq. (85) transforms into Eq. (46).The numerial results shown in Fig. 9 learlydemonstrate the broad peak in the LDOS; this peakshifts and beomes sharper as the distane from thevortex enter inreases. For � � �S , the LDOS ap-proahes that obtained in the lean limit in Figs. 6and 8. In alulations, we used the standard relaxationmethod [38℄ for solving the Usadel equation in the bulkand the Riati parameterization for Eilenberger equa-tions in the 2D layer.6.3. Vortex ore expansion. Dirty SC and 2DlayerTo omplete our analysis, we brie�y disuss thease of strong disorder both in the bulk SC and inthe 2D layer. In this limit, our model redues to theone studied numerially in Ref. [39℄. The ondition
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N. B. Kopnin, I. M. Khaymovih, A. S. Mel'nikov ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013� = 0 to a value �S � �0 � �2D), we �nd the mathingondition for the adiabati Green's funtion (41), (42):D2D 24� ���	�����00 + �0Z0 sin 2	2� d�35�� 2 �0Z0 � d� [� sin(	��) + i� os	℄ = 0: (90)Considering the expansion 	(�0) = 	0 �K�0 withK = �	(�0)=�� � ��12D and assuming 	0 6= �=2, we ob-tain os	0 � �20=(�22D ln (�0=�S))� 1. This estimateon�rms the onlusion that the LDOS in the dirtylimit follows the bulk LDOS pattern saled with the2D oherene length �2D to within the seond-orderterms in the small parameter �0=�2D .The resulting problem at low energies � � �1 o-inides with that of desribing a standard vortex in adirty SC [41℄ with the gap value �. Hene, the full dis-ordered system should reveal the same LDOS patternsas in the bulk ase, albeit saled with the muh largeroherene length �2D instead of �S . This vortex-oreexpansion an aount for anomalously large vortex im-ages observed in MgB2 [42℄ and in high-T uprates [43℄.7. DISCUSSIONThe results desribed above imply that the eletronstates in the indued superonduting on�gurationsstrongly depend on the tunneling mehanism and onthe rystal struture of bulk and 2D materials. Thestruture and symmetry of eletron states an be essen-tially di�erent from those in the bulk SC. This imposessevere restritions on possible realizations of variousexoti proximity eletron states [30, 31℄ inluding Ma-jorana states [9℄ and, in partiular, Majorana states inthe vortex ores. Our results diretly show that the ex-istene of zero-energy states in the proximity-induedvortex ore ruially depends on the tunneling meh-anism underlying the proximity oupling between the2D layer and the bulk SC. The zero-energy ore statean be expeted to exist for oherent tunneling betweenthe SC and the 2D layer that both have isotropi Fermisurfaes, if the symmetry of the indued superondut-ing order permits.It is known that a zero-energy ore state exists fora vortex with an odd vortiity in a graphene monolayerwith intrinsi superondutivity [44�46℄. The graphenemonolayer with proximity-indued superondutivitythus would seem to be a good andidate to look for azero-energy state. But the Fermi surfae of graphene is

highly anisotropi; it lies near the Dira orners of theBrillouin zone with the group veloity direted radiallyfrom the Dira points. This group veloity diretiondoes not oinide with the diretion of the Fermi mo-mentum and of the Fermi veloity in the bulk SC, asis shown in Fig. 7. Although the results in the pre-vious setions were obtained within the QC approxi-mation, they still an shed a light on the possibilityof the zero-energy state in graphene, espeially for asu�ient doping level when the QC approximation forgraphene is justi�ed [46℄. In this ase, the results inSe. 5.2 an be applied. They show that eah statein the indued vortex ore with energy � is oupled toan in�nite set of levels in the primary ore. The inte-gral Iodd aounts for these states. Its real part dealswith o�-resonane states with eigen-energies not equalto �, while the imaginary part omes from the reso-nane state with the same eigen-energy �. Aordingto Se. 5.2, the real part of Iodd disappears for � = 0and b = 0. The fate of the imaginary part dependson whether the zero energy is in resonane with anystate in the primary ore. It is known that for an s-wave lean bulk superondutor, the ore levels are dis-rete with a minigap !0 � �2=EF and no one lies atzero energy. Therefore, if the levels in the bulk are notbroadened by disorder or by inelasti sattering, theimaginary part of Iodd does not appear, and the zero-energy state seems to be intat. The disrete nature ofthe ore states is, of ourse, beyond the QC approxi-mation. Therefore, the above onsideration gives onlya hint towards the possibility of a zero-energy state.The detailed analysis is needed that would be based onthe rigorous quantum mehanial desription. We notethat an alternative possibility to save the zero-energystates by introduing a ylindrial avity in the bulksuperondutor was onsidered in Refs. [25; 26℄.Another important feature of indued superondu-tivity in a LD system is an extremely large oherenelength �2D . It provides a unique possibility to realizevortex on�gurations with quite unusual parameters.Here, we brie�y disuss some on�gurations that are ofinterest. The detailed analysis of all these situationsrequires speial onsiderations. First of all, we notethat the results in Ses. 3 and 5 and the subsequentsetions are valid for �2D � min(rv ; �L), where rv isthe intervortex distane and �L is the London pene-tration length in the bulk SC. If the vortex lattie inthe bulk SC is su�iently dense with the intervortexdistane �2D . rv � �L, the indued 2D vortex oresmay start to overlap. The spetrum �2 is then mod-i�ed due to intervortex tunneling of QPs [47℄. Thee�et of the intervortex QP tunneling should be im-504



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Vortex matter in low-dimensional systems : : :portant if the splitting of the quantized energy levelsdue to this tunneling exeeds the minigap value. Thesplitting an be estimated as � exp[�rv=�2D℄ while theminigap inside the indued vortex ore is of the or-der of �2=~v2F k2F . Thus, the ratio determining theintervortex tunneling e�ieny is an exponential witha large prefator, ~v2F k2F��1 exp[�rv=�2D℄. Just thisratio ontrols the interplay between the veloity of thetrajetory preession and the QP tunneling rate. Thehanges in the QP spetrum beome essential whenrv . �2D ln(~v2F k2F =�). The minigap in this aseshould vanish aording to the analysis in Ref. [47℄.In some ases, the 2D oherene length �2D an ex-eed the London penetration depth �L; this dependson the properties of the bulk SC and on the tunnelingrate �. If �2D ; rv � �L, the superonduting veloityvanishes along the trajetories with b > �L, and henethe spetral branh �2(b) saturates already for b � �L.Our results for oherent tunneling an be diretlygeneralized to lean d-wave bulk SCs with isotropiFermi surfaes. However, the inoherent tunneling de-stroys the superonduting oherene in the 2D layer.As a result, the branh �2 disappears, while the QPstates for � < � have �nite lifetimes for distanes loseto the vortex ores in the bulk SC.Considering possible experimental realizations ofthe indued vortex states, one has to bear the �nitedimensions L of the 2D layer in mind. The large size ofthe indued vortex ores an lead to the situation typ-ial for mesosopi superonduting samples when L islose to several �2Ds. The riterion for the vortex spe-trum transformation aused by the boundary e�ets insuh systems to beome important an be found us-ing the results in Ref. [48℄. We only need to replaethe gap, the oherene length, and the minigap by theappropriate values in the 2D layer. The riterion ap-pears to be very similar to that desribing the e�ienyof intervortex tunneling: the mesosopi �utuations ofquantum levels in the 2D ore beome omparable withthe minigap for L . �2D ln(~v2F k2F =�).In onlusion, the model of a proximity-oupled2D layer allows theoretially studying many spatiallyinhomogeneous situations inluding various on�gu-rations of indued vorties. Based on this model, wehave presented a desription of the vortex ore statesfor some typial tunneling mehanisms. In partiular,our results an be used for interpreting the STM dataon the vortex LDOS in superondutors through themodel of a thin proximity layer present at the surfae ofthe bulk SC. The e�et of a thin non-superondutingproximity layer an explain various experimentallyobserved features of the vortex LDOS and reveals

that the STM tehnique alone is not su�ient foridentifying a multiomponent or anisotropi energygap.We thank A. Buzdin, G. Volovik and A. Smirnovfor the stimulating disussions. This work was sup-ported in part by EU 7th Framework Programme(FP7/2007-2013) under Grant agreements No. 228464(Mirokelvin) and No. 308850, by the Aademy ofFinland though its LTQ CoE grant (projet no.250280), by the Russian Foundation for Basi Re-searh (grant No. 12-02-00421), by the Program �Quan-tum Physis of Condensed Matter� of the RussianAademy of Sienes, by the Russian president founda-tion (SP-1491.2012.5), and by Federal Target Program�Sienti� and eduational personnel of innovative Rus-sia in 2009�2013�. APPENDIXCalulation of self-energies for inoherenttunnelingIn this Appendix, we alulate the following inte-grals from the main text:��(b) = 2�2D 1Z0 Re��(s)ds;�(b) = 2�2D 1Z0 Im��(s)ds:For this, we onsider the ase of the small impat pa-rameter values b� �S :�I(b) = 2�2bv2F 1Z0 * vke�K2Q
�2 �� "1�Re j�jp�2 � 
2�2 #+z ds;where �2 = b2 + s2. In this ase, the �rst term in theabove integral is determined by s � b:�b 1Z0 *vke�KQ
�2 +z ds = �b 1Z0 � vkQ
(s2 + b2)�z ds == sign(b)�� �vk2Q
�z :505



N. B. Kopnin, I. M. Khaymovih, A. S. Mel'nikov ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013The seond term is determined by very small impatparameters and is given byb0Z0 dspb20 � s2 = �2 ; b0Z0 ds(s2 + b20)pb20 � s2 = �
2jb�j ;where b20 = �2=
2 � b2 > 0. As a result, we �nd�I(b) = sign(b) �2v2F ��vkQ
�(
2b2 � �2)�z ;�1(b) = � sign(�) �2v2F ��vkQ
�(�2 � 
2b2)�z ;where �(x) is the Heaviside theta funtion, i. e.,�(x) = 1 for x > 0 and �(x) = 0 for x < 0.After simplifying the expression for �(b) = �I(b)�� �1(b), we obtain Eq. (81). For b & �S , the quantity�(b) deays as exp(�2b=�S).The expressions for imaginary parts hold for anydistanes � beause the delta funtions in the integralsselet only the trajetories that pass at small impatparameters:1(b) = �2v2F 1Z0 * vke�KQp
2�2 � �2�(
2�2 � �2)+z ds == �2v2F * vkQ
 ln �1pj
2b2 � �2j+z ;I(b) = �2bv2F �� 1Z0 * �
�2 vke�KQp
2�2 � �2�(
2�2 � �2)+z ds == sign(b�) �2v2F * vkQ
 ln 
jbj+ j�jpj
2b2 � �2j+z :We here use the following expressions for the standardintegrals: smaxZb0 dsps2 � b20 = ln �pj
2b2 � �2j ;where smax � �S , andsmaxZb0 dsps2 � b20(s2 + b2) = 
jb�j ln 
jbj+ j�jpj
2b2 � �2j :The imaginary terms also deay exponentially for b && �S . The expression for (b) = 1(b) � I(b) givesEq. (81).
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