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VORTEX MATTER IN LOW-DIMENSIONAL SYSTEMSWITH PROXIMITY-INDUCED SUPERCONDUCTIVITYN. B. Kopnin a;b*, I. M. Khaymovi
h 
**, A. S. Mel'nikov 
aLounasmaa Laboratory, Aalto University, P.O. Box 1510000076, Aalto, FinlandbLandau Institute for Theoreti
al Physi
s, Russian A
ademy of S
ien
es117940, Mos
ow, Russia
Institute for Physi
s of Mi
rostru
tures, Russian A
ademy of S
ien
es603950, Nizhny Novgorod, RussiaRe
eived April 7, 2013Dedi
ated to the memory of Professor Anatoly LarkinWe theoreti
ally study the vortex matter stru
ture in low-dimensional systems with super
ondu
ting order in-du
ed by proximity to a bulk super
ondu
tor. We analyze the e�e
ts of mi
ros
opi
 
oupling me
hanismsbetween the two systems and the e�e
ts of possible mismat
h in the band stru
tures of these materials on theenergy spe
trum of vortex-
ore ele
trons. The unusual stru
ture of vortex 
ores is dis
ussed in the 
ontext ofre
ent tunneling mi
ros
opy/spe
tros
opy experiments.DOI: 10.7868/S00444510130900581. INTRODUCTIONThe indu
ed super
ondu
ting order attra
ts 
onsid-erable interest of both theorists and experimentalistsfor many de
ades starting from the seminal works onthe proximity e�e
t [1; 2℄. Re
ently, we see a revival ofthis interest, asso
iated with the growing number of ex-periments 
arried out for a variety of new arti�
ial sys-tems, whi
h in
lude the two-dimensional ele
tron gas,graphene, semi
ondu
ting nanowires and 
arbon nan-otubes, topologi
al insulators, et
. Exoti
 ele
troni
properties of these systems [3�7℄ 
an 
ause quite un-usual manifestations of the proximity e�e
t. Super
on-du
ting 
hara
teristi
s of su
h low-dimensional (LD)systems 
an di�er strongly from those in the bulk.The experiments on proximity-indu
ed super
ondu
-tivity provide a unique possibility to manipulate thebasi
 properties of the super
ondu
ting state. Controlof super
ondu
ting 
hara
teristi
s 
an be realized by
hanging the doping level through the gate potential,whi
h, e. g., 
reates new types of tunable Josephson*E-mail: kopnin�boojum.hut.�**E-mail: hai�ipm.s
i-nnov.ru

devi
es [8℄. An un
onventional gap potential in turnindu
es unusual quasiparti
le (QP) states both in ho-mogeneous and in nonuniform super
ondu
ting phases.For LD systems with a nontrivial topologi
al stru
ture,one 
an possibly realize the QP modes with spe
i�
symmetries of the ele
tron and hole wave fun
tions atthe Fermi level that des
ribe the so-
alled Majoranafermions in 
ondensed matter [9, 10℄.A standard way of studying the QP states in sys-tems with a 
ompli
ated super
ondu
ting order is tolook at the e�e
ts of the applied magneti
 �eld onthe stru
ture of the mixed state. For example, if thebulk ele
trode is a type-II super
ondu
tor (SC), one
an study the stru
ture of vortex lines penetrating theele
trode and also threading the LD system (Fig. 1).The goal of this paper is to review the basi
 propertiesof the vortex matter formed in the LD layer. A similarproblem of vortex matter in the proximity layers nat-urally arises when one fa
es the 
hallenge of interpret-ing the s
anning tunneling mi
ros
opy/spe
tros
opy(STM/STS) measurements in SCs. Probing the energyand spatial dependen
es of the lo
al density of states(LDOS) by STM/STS [11℄ provides information on thespe
trum and the wave fun
tions in the super
ondu
t-ing state. An important part of this information refers486
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Fig. 1. Sket
h of a 2D layer with the multiple vortex
ore stru
ture indu
ed by a bulk type-II SC in the vortexstate. Two s
ales of the indu
ed vortex are s
hemati-
ally depi
ted by two small disks in the 2D layer and a
ylinder in the bulk super
ondu
torto the stru
ture of subgap QP states in the magneti
�eld bound to the vortex 
ore, whi
h are known asthe Caroli�de Gennes�Matri
on (CdGM) states [12℄.A �ngerprint of these states is the so-
alled zero-biasanomaly [11℄ seen in the STM measurements. A similaranomaly has been observed in 
onta
ts of SC and two-dimensional (2D) ele
tron gases with insulating bar-riers [13℄ and theoreti
ally des
ribed in Refs. [14�17℄.Obviously, the intrinsi
 
hara
teristi
s of the vortexbound 
ore states 
an be masked or even hidden by thepresen
e of a thin defe
t layer at the surfa
e of the bulkSC. In su
h a thin (possibly nonsuper
ondu
ting) sur-fa
e layer, the super
ondu
ting 
oheren
e is indu
ed bythe proximity to the bulk SC. The masking e�e
t of thedefe
t layer is often di�
ult to distinguish from moreexoti
 explanations based, e. g., on the assumptions ofthe super
ondu
ting gap anisotropy (see [18, 19℄ andthe referen
es therein) and the multi
omponent stru
-ture of the order parameter [20, 21℄. Despite all itssimpli
ity, the model assuming the presen
e of a defe
tlayer at the sample surfa
e 
an explain quite a varietyof features in the vortex LDOS experimental data andprovides an instru
tive example of vortex matter in LDsystems with the indu
ed super
ondu
ting order.In our studies of vortex matter, instead of 
onsid-ering various phenomenologi
al models of the indu
edgap potential, we use the general mi
ros
opi
 approa
hdeveloped in Ref. [22℄ and fo
us on the physi
al me
h-anisms responsible for formation of the parti
ular gappotential and its symmetry. These me
hanisms aremostly determined by the nature of the ele
tron trans-fer between the 2D proximity system and the bulk SC.This transfer is strongly a�e
ted by both the mismat
hof the band stru
tures in the 
oupled subsystems and
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k2FFig. 2. Mat
hing of Fermi surfa
es in the 2D layer andin the bulk super
ondu
tor in the 
oherent tunneling
ase. In the simple 
ase of isotropi
 Fermi surfa
es,the in-plane proje
tions of the 3D Fermi momenta Q�
oin
ide with the Fermi momentum k2F in the 2D layerby disorder in the barrier between them. Without dis-order and negle
ting the band stru
ture e�e
ts, we ar-rive at the 
oherent tunneling model a

ording to whi
hthe in-plane proje
tion of the ele
tron momentum is
onserved in the 
ourse of tunneling. The indu
ed gappotential is determined by mat
hing the 2D Fermi sur-fa
e with the in-plane proje
tion of the 3D Fermi sur-fa
e (Fig. 2).A generalization of the above model 
an in
ludeumklapp pro
esses a

ounting for the Blo
h-typesingle-ele
tron wave fun
tions in both subsystems. Inthis last 
ase, the momentum of tunneling ele
trons is
onserved only up to 
ertain ve
tors of the re
ipro
allatti
es. One more limit 
ase is the so-
alled in
oherenttunneling model, whi
h assumes a strong disorder inthe tunneling barrier and allows an arbitrary random
hange in the momenta of tunneling ele
trons. Thesystemati
 analysis of these three tunneling modelsshows that the gap potential strongly depends on thedegree of disorder as well as on the band stru
turee�e
ts.487
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h, A. S. Mel'nikov ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013Based on these models, we 
onsider several funda-mental properties of vortex matter in systems with theindu
ed super
ondu
ting order. First, the proximity-indu
ed super
ondu
ting gap �2D is responsible forthe appearan
e of a new length s
ale in the vortexstru
ture, the 2D 
oheren
e length �2D = ~v2F =�2Dor �2D = p~D2D=�2D for 
lean or dirty limits, re-spe
tively. Here, v2F and D2D are the Fermi velo
ityand di�usion 
onstant in the 2D layer. The energy gap�2D depends on the tunneling rate � [16; 22�24℄; forexample, �2D � � for � � �. Sin
e �2D � �, the
oheren
e length �2D is usually mu
h longer than the
oheren
e length in the bulk SC, �S = ~VF =� for the
lean or �S = p~DS=� for the dirty limit, where �,VF , and DS are the gap, the Fermi velo
ity, and thedi�usion 
onstant in the super
ondu
ting ele
trode. Asa result, all the e�e
ts asso
iated with overlapping ofneighboring vortex 
ores as well as the normal QP s
at-tering at the boundary of the 2D system be
ome mu
hmore pronoun
ed than in the primary super
ondu
t-ing ele
trode. There appears, e. g., an intriguing pos-sibility to obtain a new type of vortex matter stronglybonded by the intervortex QP tunneling even for mag-neti
 �elds well below the upper 
riti
al �eld of thebulk SC.Se
ond, hybridization of the lo
alized QP states in-side mu
h larger indu
ed vortex 
ores with the 
orestates of primary vorti
es in the bulk ele
trode leads toa pe
uliar stru
ture of the subgap energy bran
hes. For
oherent tunneling, the ele
troni
 spe
trum of a singlyquantized vortex 
onsists of two anomalous bran
hes
rossing the zero energy value as fun
tions of the im-pa
t parameter b. One bran
h, �1(b), qualitatively fol-lows the usual CdGM spe
trum �0(b) of the primaryvortex; it extends above the indu
ed gap, where it turnsinto a s
attering resonan
e. The other bran
h, �2(b),lies below the indu
ed gap and resembles the CdGMspe
trum for a vortex with a mu
h larger 
ore radiusof the order of �2D . Hen
e, the proximity-indu
ed vor-tex in a ballisti
 2D layer has a �multiple 
ore� stru
-ture 
hara
terized by the two length s
ales, �S and�2D . Su
h a two-s
ale feature does not appear if theproximity vortex states are indu
ed by a primary vor-tex pinned at a large-size hollow 
ylinder r0 > �S (seeRefs. [25, 26℄).The spatial and energy dependen
e of the LDOSinside the multiple 
ore reveals a ri
h behavior thatdepends on many parameters and on the degree of dis-order both inside the bulk ele
trode and inside the 2Dlayer, as well as by the barrier disorder. The barrier dis-order suppresses the in�uen
e of the primary CdGMspe
tral bran
h and leads to broadening of the lower

anomalous bran
h �2(b) due to the momentum un
er-tainty. Impurity s
attering in the bulk and/or insidethe 2D layer 
auses further smearing of the spe
tral
hara
teristi
s of the 
ore states, whi
h then approa
hthe usual dirty-SC LDOS s
aled with the 
orresponding
oheren
e lengths �2D .And �nally, both the nontrivial topologi
al proper-ties of the normal state wave fun
tions and the indu
edpairing symmetry 
an a�e
t the presen
e of the zero-energy states in the QP spe
trum of vorti
es. Thisphenomenon arises from the wave fun
tion symmetryunder pre
ession of the subgap quasi
lassi
al (QC) tra-je
tories inside the vortex 
ore through the 
orrespond-ing 
hange in the Bohr�Sommerfeld quantization rulefor the angular momentum.The paper is organized as follows. In Se
. 2, we in-trodu
e the basi
 model used in what follows for theanalysis of the indu
ed super
ondu
tivity. The deriva-tion of self-energies of 2D QC Eilenberger equationsin a vortex state of the bulk SC is given in Se
. 3.In Se
. 4, we dis
uss the method used for the 
al
ula-tion of the subgap state stru
ture in the indu
ed vortex
ore. The main results are presented in Se
. 5 and 6.In parti
ular, Se
. 5 
ontains the results for the subgapspe
trum and the LDOS in an indu
ed vortex stateof a 2D layer. In Se
. 7, we dis
uss impli
ations of ouranalysis for indu
ed vortex 
ore states in graphene. Wealso dis
uss some further impli
ations of a large valueof the indu
ed 
oheren
e length �2D for the spe
traland spatial 
hara
teristi
s of various vortex 
on�gura-tions. Some details of our 
al
ulations are given in theAppendix. 2. THE MODELWe 
onsider a 2D normal metalli
 layer (Z = 0)pla
ed in a tunneling 
onta
t with a bulk super
on-du
ting half-spa
e Z > 0 with a thin insulating barrierbetween them, as it is shown in Fig. 3. The Hamilto-nian of our system has the form Ĥ = ĤS + Ĥ2D + ĤT ,whereĤS = Z d3R "X� 	̂y�(X) (�̂3D �EF ) 	̂�(X)++ �(R)	̂y"(X)	̂y#(X) + ��(R)	̂#(X)	̂"(X)# (1)is the part des
ribing the super
ondu
tor with the s-wave order parameter �(R), �̂3D is the kineti
 energyoperator,488
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z = 0Fig. 3. 2D normal metalli
 layer (Z = 0) 
oupled toa bulk super
ondu
ting half-spa
e Z > 0 through atunneling barrier. The ele
tron waves depi
ted by grayarrows tunnel from the sour
e pla
ed in the 2D layer(small 
ir
le). If the energy is smaller than the super-
ondu
ting gap, they do not penetrate deep into thebulk super
ondu
tor but undergo Andreev re�e
tion tothe hole waves (bla
k arrows) and return to the 2DlayerĤ2D = d Z d2rX� ây�(x) [�̂2D �EF ℄ â�(x) (2)is the 2D-layer Hamiltonian, and d is the thi
kness ofthe 2D layer. We introdu
e spa
e�time variables X == (R; �) and x = (r; �), whereR is a three-dimensionalve
tor in the bulk super
ondu
ting region and r is atwo-dimensional ve
tor in the normal layer; � is animaginary time variable in the standard Matsubarate
hnique. The 
hemi
al potential EF is supposed tobe equal in the subsystems. The single-parti
le Hamil-tonian in the 2D layer, �̂2D, in
ludes the kineti
 energyand, in general, the latti
e potential 
orresponding tothe 
rystal stru
ture of the normal system. For sim-pli
ity, we negle
t the band stru
ture of the bulk su-per
ondu
tor. This approximation should be valid fora wide 
lass of heterostru
tures where the Fermi surfa
ein the bulk SC is large 
ompared with that in the 2Dlayer. We assume that tunneling is spin-independentand o

urs lo
ally in time and in spa
e, i. e., from apoint near the interfa
e R = (r; Z = 0) on the super-
ondu
tor side into the point r in the layer and ba
kwith the amplitude t(r) that depends on the 
oordi-nate of the tunneling 
enter on the interfa
e. Be
ausethe tunneling amplitude a

ounts for a 
ertain regionof an atomi
 size in the vi
inity of the tunneling 
enter,the wave fun
tion magnitude at Z = 0 should be re-garded as an average value near the exa
t boundary ofthe super
ondu
ting region. The tunneling amplitudeis assumed small in the atomi
 s
ale. More detailed re-stri
tions on the value of the tunneling amplitude aredis
ussed below. The tunneling Hamiltonian has theform

ĤT = dX� Z ht(r)	̂y�(x)a�(x) ++t�(r)ây�(x)	̂�(x)i d2r; (3)where the wave fun
tions in the super
ondu
tor aretaken at the spa
e�time point x at the interfa
e Z = 0.The Matsubara Green's fun
tions take the formhT� â�(x1)ây�(x2)i = Æ��G(x1;x2);hT� 	̂�(X1)ây�(x2)i = Æ��GT (X1;x2);hT� 	̂�(X1)	̂y�(X2)i = Æ��GS(X1;X2); (4)and hT� â�(x1)â�(x2)i = i�̂(y)��F (x1;x2);hT�	�(X1)â�(x2)i = i�̂(y)��FT (X1;x2);hT� 	̂�(X1)	̂�(X2)i = i�̂(y)��FS(X1;X2); (5)et
. Equations for the Green's fun
tions 
an be more
onveniently written in the frequen
y representation!n = (2n+ 1)�T . We set � = �1 � �2 and writeG(r1; r2) = ~=TZ0 G(r1; r2; �) exp� i!n�~ � d�omitting the subs
ript for simpli
ity. We also intro-du
e the Nambu matri
es for the Hamiltonian and forthe Green's fun
tions,�HS =  �̂3D �EF ��(R)��(R) �̂3D �EF! ; �G =  G F�F y �G! ;and the inverse operators�G�1S (R) = �i��3!n + �HS ;�G�12D(r) = �i��3!n + ��0 
 [�̂2D �EF ℄in the SC and in the 2D layer, respe
tively. Here, ��iare the Pauli matri
es in the Nambu spa
e.Equations for the mixed Green's fun
tions�GT (R1; r2) 
an be written in the form�G�1S (R1) �GT (R1; r2) + d�t(R1?) �G(R1?; r2)Æ(Z1) = 0;where Z1 � 0, R1 = (R1?; Z1) and�t(r) =  t(r) 00 t�(r) ! :489
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h, A. S. Mel'nikov ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013Negle
ting the ba
k-a
tion of a thin 2D layer on thesuper
ondu
tor, we assume that the super
ondu
t-ing Green's fun
tion �GS(R1;R2) is the nonintera
tingfun
tion that satis�es�G�1S (R1) �GS(R1;R2) = �1~Æ(R1 �R2) (6)in the range Z1;2 > 0. The fun
tion �GS(R1;R2) sa-tis�es Neumann boundary 
onditions at Z = 0. Thisgives�GT (R1; r2) = �d~ Z �GS(R1; r0)�t(r0) �G(r0; r2) d2r0: (7)Equations for the Green's fun
tions in the layer 
anbe written as�G�12D(r1) �G(r1; r2) + �t�(r1) �GT (r1; r2) == �1~d�1Æ(r1 � r2):Using Eq. (7), we �nd�G�12D(r1) �G(r1; r2)� Z ��T (r1; r0) �G(r0; r2) d2r0 == �1~d�1Æ(r1 � r2); (8)where��T (r1; r0) =  �1 �2��y2 ��1 ! == d~�t�(r1) �G0S(r1; r0)�t(r0): (9)We introdu
e the momentum representation of theGreen's fun
tion [27℄,�GS(R1;R2) = Z d3Q1(2�)3 d3Q2(2�)3 �GS(Q1;Q2)�� exp (iQ1 �R1 � iQ2 �R2) ; (10)and of the tunneling 
oe�
ients�t(r) = Z d2q(2�)2 �t(q)eiq�r:The Fourier representation for the Green's fun
tions inthe 2D layer is�G(r1; r2) = Z d2q1(2�)2 d2q2(2�)2 �G(q1;q2)�� exp (iq1 � r1 � iq2 � r2) : (11)

2.1. Tunneling with umklapp pro
essesThe 
rystal stru
ture of the 2D layer a

ounts for anatomi
-s
ale periodi
 potential in Eq. (8), whi
h mixesthe Fourier harmoni
s with the momenta shifted by there
ipro
al latti
e ve
tors b. Using the Blo
h fun
tions m(k; r) =Xb ei(k+b)�rumk+bthat diagonalize the single-parti
le energy operator in-side the layer,�2D(r) m(k; r) = �m(k) m(k; r);we 
an 
onveniently introdu
e the �eld operatorsâ�;m;k: â�(r) =Xm Z d2k(2�)2 â�;m;k m(k; r):The index m enumerates the energy bands.Introdu
ing the 
orresponding Green's fun
tionshT� â�;m1;k1 ây�;m2;k2i = Æ��Gm1;m2(k1;k2);hT� â�;m1;k1 â�;m2;�k2i = i�̂(y)��Fm1;m2(k1;k2) (12)allows diagonalizing the operator �G�12D in Eq. (8) in theBlo
h representation,�G�12D;m(k) = �i~��3!n ++ �m(k) �EF 00 �m(�k)�EF! : (13)We assume in what follows that the amplitude �indof the indu
ed super
ondu
ting gap �2D is small 
om-pared with the interband distan
e �m��m0 and negle
tthe interband s
attering. Hereafter, we omit the sub-s
ripts m. At the same time, the transformation fromthe momentum to the quasimomentum representationresults in a mixing of Fourier harmoni
s in the self-energy in Eq. (8). Finally, Eq. (8) for Green's fun
tions(12) takes the form�G�12D(k1) �G(k1;k2)� Z ��T (k1;k0) �G(k0;k2)d2k0 == �1~Æ(k1 � k2); (14)with��T (k1;k0) = d~ Z �tyb(k1;Q?)�� �G0S(Q;Q0)�tb(Q0?;k0) d3Qd3Q0;490



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Vortex matter in low-dimensional systems : : :�tb(Q;k) =Xb uk+b�t(Q? � k� b) (15)and �tyb(k;Q?) = �t�b(Q?;k). Here, Q = (Q?; Qz). Theabove expression for the tunneling 
oe�
ients tb in fa
tdes
ribes the umklapp pro
esses 
aused by the periodi

rystal potential in the 2D layer.2.2. Coherent tunnelingThe simplest model of tunneling assumes that thein-plane momentum proje
tion of ele
trons is 
onservedduring the tunneling pro
ess:�t(Q? � k) = �tÆ(Q? � k):This is equivalent to the assumption that the tunnelingamplitude t(r) is independent of the 
oordinate alongthe SC/2D interfa
e. Of 
ourse, the quasimomentum
onservation is not exa
t in the presen
e of energybands be
ause the tunneling mixes the quasimomen-tum values that di�er by a re
ipro
al latti
e ve
tor:�tb(Q;k) = �tXb uk+bÆ(Q? � k� b):Negle
ting umklapp pro
esses for simpli
ity, we �nd��T (k1;k0) = dt2~ Z �G0S(k1; Qz;k0; Q0z)dQz dQ0z(2�)2from Eq. (14).From now on, we use the QC approximation for theGreen's fun
tions. To derive the Eilenberger equationsin the 2D layer, we follow the standard pro
edure de-s
ribed, e. g., in Ref. [27℄. First, we introdu
e the aver-age k = (k1 + k2)=2, Qz = (Q1z +Q2z)=2 and relativek� = k1 � k2, qz = Q1z �Q2z momenta and set�G(k1;k2) = �G(k;k�);�GS(k1; Q1z;k2; Q2z) = �GS(k; Qz ;k�; qz):Next, we apply the operator �G�12D to the Green's fun
-tion �G(k;k�) from the right and subtra
t this equationfrom Eq. (14). We now transform to the semi
lassi
alGreen's fun
tions by integrating the resulting equationover d�2, where �2 = �2D(k) � EF . The Green's fun
-tions are to be taken in the vi
inity of the Fermi sur-fa
e. Therefore, in the mixed momentum�
oordinaterepresentation,�G(k; r) = Z �G(k;k�) exp (ik� � r) d2k�(2�)2 ;

�GS(k; Qz; r; Z) = Z �GS(k; Qz ;k�; qz)�� exp (ik� � r+ iqzZ) d2k�dQz(2�)3 ;we 
an put�GS(k; Qz; r; Z) = �gS(k; Qz; r; Z)�iÆ�(�3);�G(k; r) = �g(k; r)�iÆ�(�2):Here, the standard semi
lassi
al Green's fun
tions are�g(k2F ; r) = 1�i Z d�2 �G(k; r); (16)�gS(KF ;R) = 1�i Z d�3 �GS(Q;R); (17)�3 = �S(Q) � EF is the normal QP spe
trum in the3D half-spa
e, and Æ�(�2;3) is a delta-fun
tion broad-ened at the gap energy s
ale �. The matrix �g is madeout of four fun
tions, g, f , fy, and g in the same waythe matrix �G is 
onstru
ted of the fun
tions G, F , F y,and G.At the next step of derivation, we note that in themixed representation, the termZ d�2�i Z ��T (k1;k0) �G(k0;k2) d2k0(2�)2in the equation for the Green's fun
tion be
omes�idt2~ Z d�2 �� Z dQz2� �gS(k; Qz; r; 0)�g(k; r)Æ�(�3)Æ�(�2) == �idt2~ Z dQz2� �gS(Q; r; 0)�g(k2F ; r)Æ�[�3D(Q)�EF ℄;where Q = (k2F ; Qz) has the in-plane proje
tion 
oin-
iding with the 2D Fermi momentum k2F .Finally, we obtain the QC Eilenberger equation forretarded (advan
ed) Green's fun
tions�i~v2Fr�g(k2F ; r)�� [��3�g(k2F ; r)��g(k2F ; r)��3℄�� ���T �g(k2F ; r)� �g(k2F ; r)��T � = 0; (18)where ~v2F = ��2D(k)=�k is the 2D-layer Fermi velo
-ity.For isotropi
 Fermi surfa
es in both the SC,�3D(Q) = ~2Q2=2m, and the 2D layer, �m(k) == ~2k2=2m2D, the self-energy takes the form��T (k2F ; r) = i�2 [�gS(Q+; r; 0) + �gS(Q�; r; 0)℄ (19)491
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h, A. S. Mel'nikov ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013with the tunneling rate� = dt2 1Z0 Æ� [�S(k2F ; Qz)�EF ℄ dQz:The 3D momentum Q� = (k2F ;�Q3z) lies on theFermi surfa
e of the bulk SC, k22F + Q23z = K2F . Ifthe 2D Fermi surfa
e is smaller than the extremal 
rossse
tion of the 3D Fermi surfa
e, i. e., k2F < KF , the ex-pression for the tunneling rate be
omes � = dmt2=Q3z.For large 2D Fermi surfa
es with k2F > KF , the self-energy term vanishes and the 
oherent tunneling is im-possible. The 
ase of momenta k2F � KF deservesspe
ial 
onsideration, whi
h should take a

ount of a�nite delta-fun
tion width � � dt2pm=�.The umklapp pro
esses should, of 
ourse, modifythe self-energy part, resulting in the additional 
ontri-butions:��T (k2F ; r) =Xb juk2F+bj2 ��(0)T (k2F + b; r); (20)where ��(0)T (k2F ; r) is given by Eq. (19).2.3. In
oherent tunnelingThe 
oherent tunneling model in many 
ases over-simpli�es the realisti
 experimental situation. The mo-mentum 
onservation is violated, for example, by thepresen
e of disorder at the interfa
e. Here, we 
onsideran opposite limit of strong disorder, whi
h is sometimes
alled the in
oherent tunneling model. This model as-sumes a random tunneling pro
ess of ele
trons throughthe barrier in a way similar to the standard theory ofdirty metals within the Born approximation [28℄. Weassume that the ensemble average of tunneling ampli-tudes is t(r1)t(r2) = t2saÆ(r1 � r2); (21)where sa is the 
orrelated area of the order of theatomi
 s
ale. Following the standard diagrammati
pro
edure, we expand the solution for the ensemble-averaged Green's fun
tion in a series in the s
attering�eld and split the multiple 
orrelators of the t(r) valuesinto a produ
t of the above pair 
orrelators. Finally,after averaging, self-energy (9) be
omes��T (r1; r2) = t2dsa �GS(r1; r1; 0)Æ(r1 � r2) == t2dsai��3(0) h�gS(Q; r; 0)i Æ(r1 � r2); (22)where �3(0) is the normal density of states in thebulk material. Angular bra
kets denote averaging over

3D-momentum dire
tions. Within the QC approa
h,the resulting self-energy to be used in Eilenberger equa-tion (18) is given by��T (r) = i� h�gS(Q; r; 0)i ; (23)where the tunneling rate is � = ��3(0)dsat2. Thisapproximation 
oin
ides with that used in Ref. [22℄.The tunneling rate � � t2=EF 
an be expressed[22℄ in terms of the normal-state tunnel 
ondu
tan
eG = 1=RS per unit 
onta
t area, � = G=4�G0�2 �� EFR0=R, with the 
ondu
tan
e quantum G0 == e2=�~ and the normal 2D density of states (DOS)�2 = m2D=2�~2. Therefore, �=EF � 1 if the totaltunnel resistan
e R is mu
h larger than the Sharvin re-sistan
e R0 = (NG0)�1 for an ideal N -mode 
onta
twith the 
onta
t area S. Nevertheless, there is roomfor the 
ondition � � � to be ful�lled even for the large
onta
t resistan
e R� R0.2.4. Adiabati
 approximation. Range ofvalidityThe above mi
ros
opi
 analysis allows us to 
om-ment on the simplest phenomenologi
al model that isoften used in des
ribing the proximity-indu
ed super-
ondu
tivity (see, e. g., [26; 29�31℄). Within this model,the Bogoliubov�de Gennes equations inside the prox-imity super
ondu
tor in
lude a phenomenologi
al gapfun
tion, whi
h is postulated to be proportional to thegap fun
tion � inside the super
ondu
ting ele
trode.Our approa
h shows that this is generally not the 
ase.The true equation (18) in
ludes self energies that are
ompli
ated fun
tions of energy, 
oordinates, and mo-mentum. In fa
t, the e�e
tive gap fun
tion resemblesthat in the usual super
ondu
tor only if the bulk SCis homogeneous in spa
e. In this 
ase, the QC Green'sfun
tion is�gR(A)� = � 1p�2 � j�j2  � ���� �� ! :In this 
ase, the self-energy is ��T = i��gS for both 
o-herent and in
oherent tunneling models. This expres-sion also holds if the super
ondu
ting gap is a slowlyvarying fun
tion of 
oordinates on distan
es of the or-der of �S . For j�j < j�j, the self-energy has the form��T (r) = �pj�(r)j2 � �2  � �(r)���(r) �� ! : (24)Only for a low-transparen
y tunnel 
onta
t � � �,this self-energy is nearly o�-diagonal on the s
ale � � �492
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an be regarded as an energy-independent e�e
tivegap fun
tion ��T � i���2 exp(i��3�); (25)where � is the phase of the super
ondu
ting order pa-rameter. We note that the resulting indu
ed gap istotally independent of the gap magnitude j�j in thebulk. If the transparen
y is �nite, the ele
troni
 spe
-trum in the indu
ed super
ondu
tor has the gap �2Ddetermined by the 
ondition [1; 22℄(�+�1)2 � �22 = 0; � = �2D : (26)Of 
ourse, the adiabati
 approximation also breaksdown if the order parameter � varies as a fun
tion of
oordinates at distan
es of the order of the 
oheren
elength in the super
ondu
ting ele
trode, when the self-energies are no longer determined by Eq. (24).3. VORTEX POTENTIALS AND GREEN'sFUNCTIONS FOR CLEAN SYSTEMSThe QC Green's fun
tions in the 2D layer satisfyEilenberger equations (18). In 
omponents,� i~v2Frf � 2 (�+�1)f + 2�2g = 0;i~v2Frfy � 2 (�+�1)fy + 2�y2g = 0;� i~v2Frg +�2fy � �y2f = 0; (27)and the normalization 
ondition g2� ffy = 1 with theself-energies in Eqs. (19) or (23) as e�e
tive potentials.In this and the next se
tions, we 
onsider the
ase of isotropi
 Fermi surfa
es. Modi�
ations dueto the anisotropy of the spe
trum are dis
ussed inSe
. 5.2. Quasiparti
les in 
lean systems are 
onve-niently des
ribed by the 
oordinates along their tra-je
tories (Fig. 4). A QC traje
tory is parameterizedby its angle � with the x axis, the impa
t parameterb = � sin(� � �), and the 
oordinate s = � 
os(� � �)along the traje
tory. We introdu
e the symmetri
 andantisymmetri
 parts of the Green's fun
tions as thiswas done in Refs. [27; 32℄:f = � [�(s) + i�(s)℄ ei�;fy = [�(s) � i�(s)℄ e�i�; (28)where �(s) = �(�s) and �(s) = ��(�s). The normal-

��y B
A b � x

s v2F
�s �2D

Fig. 4. The 
oordinate frame near the multiple vortex
ore. The primary (indu
ed) 
ore is shown by the innersmall (outer large) 
ir
le. The QC traje
tory with animpa
t parameter b (line AB) passes through the point(�; �) shown by the bla
k dotization 
ondition requires g2+ �2+ �2 = 1. Eilenbergerequations (27) 
an be rewritten in the form~v2F d�ds + 2 (�+�1) � � 2ig�R = 0; (29a)~v2F d�ds � 2 (�+�1) � � 2ig�I = 0; (29b)~v2F dgds + 2i��R + 2i��I = 0; (29
)where 2�R = �2e�i� +�y2ei�;2i�I = �2e�i� � �y2ei�: (30)In this paper, we 
onsider the limit of low tunnel-ing rate � � �, whi
h leads to a small indu
ed gap[22℄ �2D = � and long 
oheren
e length �2D � �S .We 
onsider an isolated vortex line oriented alongthe Z axis perpendi
ular to the SC/2D interfa
e and
hoose the gap fun
tion inside the bulk SC in the form� = �0(�)ei�, where (�; �) are the 
ylindri
al 
oordi-nates; �0(�) approa
hes the bulk value �1 far fromthe vortex 
ore. The self-energies in the 2D layer,Eqs. (19) or (23), have parts with sharp peaks lo
al-ized at small distan
es � � �S and the adiabati
 long-distan
e �vortex potential� tail �2D � �ei� at � � �Sa

ording to Eq. (25).In the 
ase of a 
lean bulk SC, we use the 
ondi-tion of spe
ular re�e
tion at the interfa
e. This 
anbe applied for both 
oherent and in
oherent tunnelingmodels be
ause any possible disorder in tunneling af-fe
ts only a tiny fra
tion of bulk ele
trons, whose vast493
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ts without tunneling. For spe
ular re-�e
tion, we 
an use the bulk QC Green's fun
tions ob-tained for an in�nite spa
e. For energies � � �1, theself-energy in Eq. (25) for long distan
es (�� �S) is in-dependent of the parti
ular tunneling model and of thedisorder in the bulk SC: �1 � 0 and �2 � �ei�, i. e.,�R � �s=� and �I � �b=�. However, the indu
ed vor-tex potentials 
lose to the primary vortex 
ore are verysensitive to the impurity 
on
entration and momentumex
hange during the tunneling pro
ess.For a 
lean bulk SC, the Green's fun
tion 
an beparameterized similarly to (28) with f ! fS , � ! �S ,and � ! �S . The Eilenberger equations have the formof Eqs. (29) with v2F ! vk = VF 
os�p, where �p is thepolar angle of the momentum, while �1 = 0, �2 ! � == �0(�)ei�, and �y2 ! ��. For energies � � �1 anddistan
es s of the order of or less than the 
ore size, thefun
tions gS and fS are given in Refs. [27; 32℄, and�S = ~vke�K2� [�� �0 � iÆ℄ ;�S = 2~vk sZ0 ��� b�0�0 � �Sds0; (31)�0(b) = b� 1Z0 �0� e�K(s) ds; (32)� = 1Z0 e�K(s) ds; K(s) = 2~vk �Zjbj �0(�0) d�0: (33)For larger distan
es s � �S , the fun
tion �S assumesits asymptoti
 expression �R(A)S = �b=� 
orrespondingto the boundary 
onditions in Eq. (25).3.1. Vortex potentials for 
oherent tunnelingThe vortex potentials indu
ed in the 2D layer 
ru-
ially depend on the tunneling me
hanism. For exam-ple, within the 
oherent tunneling model, we obtain�1 = i�gS(Q; r);�2 = i�fS(Q; r)in terms of the in�nite-spa
e Green's fun
tions, sin
e�gS(+Q3z) = �gS(�Q3z) for spe
ular re�e
tion. For en-ergies � � �1 and distan
es s of the order of or lessthan the 
ore size �S , it follows from Eq. (28) that�1 = ���S ;�2 = �[�S � i�S ℄ei�;�y2 = �[�S + i�S ℄e�i�; (34)where �S and �S are given by Eqs. (31)�(33).

3.2. Vortex potentials for in
oherent tunnelingFor in
oherent tunneling, we �nd �1 = i� hgSi,�2 = i� hfSi, where averaging over the 3D momen-tum dire
tion is equivalent to the ensemble averaging.To 
al
ulate the angular average, we 
an separate theGreen's fun
tions into the prin
ipal-value part and thedelta-fun
tional 
ontribution. For example,gR(A)S = i�R(A)S = V.P. i~vke�K2� (�� �0)!�� �~vke�K2� Æ(�� �0): (35)Performing averaging over the polar �p and az-imuthal � angles, we take the symmetry of the fun
-tions under the s-inversion transformation into a
-
ount. As a result, we obtain�1 = �� h�S(s)i ; (36)�2e�i� = �y2ei� = �ad + �lo
2 ; (37)�ad(�) = V.P. h�I(s) sign(s)=2� [�� �0℄i ; (38)where we setI(s) = 2 sZ0 ��� �0b� � e�K(s0) ds0:The o�-diagonal 
omponents of the indu
ed potentialare split into the lo
alized and the long-range parts,�lo
2 and �ad. The long-range fun
tion �ad 
an be re-garded as an adiabati
 indu
ed super
ondu
ting gap,�ad ! � for � � �S and �ad ! 0 for � ! 0. Averag-ing over the azimuthal traje
tory angle �, we �ndRe�lo
2 = �*~vke�K2�
� "1�Re j�jp�2 � 
2�2#+z ;Im�lo
2 = ��*Re �~vke�K2�
�p
2�2 � �2+z ;Re�1 = � sign(�)�*Re ~vke�K2�p�2 � 
2�2+z ;Im�1 = ��*Re ~vke�K2�p
2�2 � �2+z ;where the upper (lower) sign 
orresponds to a retarded(advan
ed) self-energy term, 
 = d�0=db, and we usethe notation h: : : iz = 12 �Z0 (: : : ) sin�p d�p494
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al
ulations arebased on the �rst-order approximation in the small pa-rameter b=�. A

ording to Eq. (30), the symmetri
�I(�s) = �I(s) and antisymmetri
 �R(�s) = ��R(s)parts of the o�-diagonal self-energy term �2e�i� 
anbe rewritten as �R = �2e�i�s=� and �I = �2e�i�b=�.The self-energy obtained above a�e
ts the vortex
ore states in the 2D layer in two di�erent ways. Theadiabati
 part of the indu
ed vortex potential leads tothe Andreev lo
alization of QPs with the energy smallerthan the indu
ed super
ondu
ting gap � within the in-du
ed vortex 
ore at distan
es of the order of �2D . Thisforms the CdGM anomalous bran
h �2(b) as in an usualSC with the 
orresponding maximum intrinsi
 gap �.Another part of the self-energy exponentially de
ayingat � � �S 
ontains information about the CdGM statesin the bulk SC; it a�e
ts the 2D-layer QP behavior atsmall s
ales. The adiabati
 large-s
ale part of the self-energy (at �� �S) is universal; it does not depend onthe tunneling models and on possible disorder in thebulk SC, while the short-s
ale indu
ed vortex potentiallo
alized at small distan
es does 
ru
ially depend onthese fa
tors. Both terms in the indu
ed self-energyform the two-s
ale LDOS radial pro�le.4. SCALE SEPARATION METHODA natural way to solve Eqs. (29) is to apply thes
ale separation method. We introdu
e a distan
e �0satisfying �S � �0 � �2D and 
onsider the Green'sfun
tions in two overlapping spatial intervals, � . �0and � & �0. Next, we mat
h the solutions in di�erentspatial domains.4.1. Large distan
esAt low energies �� �1 and large distan
es �� �S ,the indu
ed vortex potential is given by Eq. (25).Quasiparti
les propagating along the traje
tories withimpa
t parameters b > �S that miss the primary vortex
ore are a�e
ted only by this long-distan
e (�2D � �S)part of the indu
ed gap potential. In the low-energylimit � < � � �1, the appropriate boundary 
ondi-tions far from the indu
ed vortex 
ore (�� �2D) are� = �s=�p�2��2 ; � = ��b=�p�2��2 ; g = �i�p�2��2 : (39)For both tunneling models and an arbitrary disor-der rate inside the super
ondu
tor and for � � �S ,Eqs. (29) take the form

~v2F d�ds + 2�� � 2ig�s=� = 0;~v2F d�ds � 2�� � 2ig�b=� = 0;~v2F dgds + 2i��b=�+ 2i��s=� = 0: (40)The fun
tions g and � are even in s while � is odd,and we 
an therefore 
onsider only positive s values.We obtain the solution of the above equations using the�rst-order perturbation theory in the impa
t parame-ter b: �w(s) = �w0(s) + �w1(s), where �w(s) = (�; �; ig)T .As we see in what follows, this approximation holds forjbj � �2D . The zeroth order in the b solution is givenby �w0(s) = 1p�2 � �2 �u0(s) + Cp�2 � �2 �u�(s); (41)where�u�(s) = 0B� p�2 � �2���� 1CA e��s; �u0(s) = 0B� 0�� 1CA ;and � = 2p�2 � �2=~v2F . This solution satis�es theboundary 
onditions g = �i�=p�2 � �2, � = 0, and � == �=p�2 � �2 for s!1 and �2 < �2. The �rst-order
orre
tion �w1 
an be written as�w1(s) = C0(s)�u0p�2 � �2 + C+(s)�u+p�2 � �2 + C�(s)�u�p�2 � �2 ; (42)where �2DC0(s) = 2Cb 1Zs e��s ds� ;�2DC+(s) = �b 1Zs e��s ds� ;�2DC�(s) = �b sZs
 e�s ds� : (43)
The lower limit of integration in C�, s
, has to be takenas s
 � �S for traje
tories that go through the primaryvortex 
ore, b . �S , su
h that the logarithmi
 diver-gen
e be 
ut o� at the distan
es of the order of �S ,where the long-range vortex potential �ad in (38) van-ishes. For b � �S , we have s
 = 0. The perturbationapproa
h holds as long as C0 � C and C+ � 1, i. e.,as long as jbj � �2D. For s � �2D , the 
oe�
ient C0de
ays faster than exponentially, whileC+(s)e�s ! C�(s)e��s ! � �2p�2 � �2 b�495
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e � approa
hes�(b=�)�=p�2 � �2 and the 
or-re
tions to � and g vanish, as they should in a

or-dan
e with (39). For a small distan
e s = s0 de�ned as�20 = s20 + b2, we have�(s0) = C + C+(s0) + C�(s0); (44a)�(s0) = 1p�2 � �2 f�� �C + �C0(s0) ++ �[C+(s0)� C�(s0)℄g ; (44b)g(s0) = ip�2 � �2 f��+ �C � �C0(s0) �� �[C+(s0)� C�(s0)℄g : (44
)4.2. Mat
hing for large impa
t parametersFar from the primary vortex 
ore at impa
t parame-ters �S � b� �2D, the perturbative result in Eqs. (40)
an be applied along the entire traje
tory, and we 
antherefore set s0 = s
 = 0. The boundary 
ondition foran odd fun
tion requires �(0) = 0. Be
ause C�(0) = 0in this 
ase, we �nd from Eq. (44b) that� + �C+(0) = �C � �C0(0):Expressing the 
oe�
ients C0 and C+ in terms of theenergy � = �2(b) = 2�2b~v2F ln � (45)of bound states in the indu
ed vortex 
ore, with � == �2D=jbj and C0 = �2CC+ = C�2(b)=�, we �ndC[�� �2(b)℄ = �� ��2(b)=2�: (46)A

ording to Eq. (46), �2(b) is the only spe
trumbran
h in the energy interval j�j � �1. The Green'sfun
tion isg(s) = �i�p�2 � �2 + i�Cp�2 � �2 e��s � i�C0(s)p�2 � �2 �� i�p�2 � �2 �C+(s)e�s � C�(s)e��s� : (47)For s� �2D , we have C0 ! 0 and C+e�s �C�e��s !! 0, when
e it follows that the �rst term is the ho-mogeneous ba
kground while the rest terms des
ribethe vortex 
ontribution. To obtain the retarded fun
-tion for �2 > �2, we have to 
ontinue p�2 � �2 ana-lyti
ally to the upper half-plane of 
omplex � keepingRep�2 � �2 > 0.

4.3. Mat
hing for small impa
t parametersTo �nd the Green's fun
tions for small impa
t pa-rameters b . �S , we have to mat
h Eqs. (44) with thesolution obtained in the vortex 
ore region. For smalls < s0, we assume that the even parts of the Green'sfun
tions g(s) and �(s) are nearly 
onstant in the inter-val 0 < s < s0. Integrating Eq. (29b) over s from 0 tos0 along the traje
tory, we �nd the mat
hing 
ondition~v2F2 �(s0) = �(s0) s0Z0 �1 ds+ ig(s0) s0Z0 �I ds: (48)Equation (48) determines the 
onstant C. Its polesde�ne the eigenstates of ex
itations as fun
tions of en-ergy and the impa
t parameter. In deriving the ef-fe
tive boundary 
ondition (48) for b . �S , we needto separate the exponentially 
onverging parts �lo
1;I ats � �S from the long-distan
e (s� �S) asymptoti
s of�1;I . For �� �1, long-distan
e expressions (25) yield�1 ! 0 and �I ! �b=�. Therefore,s0Z0 �I ds = �SZ0 �lo
I ds+ � s0Z�S b� ds �� 1Z0 �lo
I ds+ �b ln s0�S ; (49)while R s00 �1 ds 
an be extended to in�nity. The lo
al-ized self-energy parts �1 and �lo
I determine the small-distan
e LDOS and the spe
trum of ex
itations anddepend on the parti
ular tunneling me
hanism.5. MULTIPLE VORTEX CORE IN THE CLEANLIMIT. QUASIPARTICLE SPECTRUM ANDDENSITY OF STATES5.1. Isotropi
 Fermi surfa
eIn this se
tion, we 
onsider an idealized pi
turewithout any disorder. For large impa
t parametersb � �S , the 
orresponding solutions for the Green'sfun
tions, Eq. (47), 
oin
ide with the standard CdGMexpressions where the gap value is repla
ed with �.The 
orresponding anomalous spe
trum for 2D ex
i-tations is given by Eq. (45) [27; 32℄. This modi�edCdGM bran
h dominates in the LDOS at large dis-tan
es �� �S .496
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tories:N(r; �) = 2�Z0 N�(s; b)d�02� = �Z�� N�(p�2 � b2; b)p�2 � b2 db� ;where N�(s; b) = �gR(s; b)� gA(s; b)� =2;s = � 
os�0; b = �� sin�0:For j�j < �, a nonzero LDOS 
omes only from the vor-tex 
ontribution of the se
ond and third terms in (47)due to the presen
e of a pole in the 
oe�
ient C a

ord-ing to Eq. (46). The Green's fun
tions and LDOS rea
htheir long-distan
e values g = �i�=p�2 � �2 and N == Re j�j=p�2 � �2 as �!1. For �� �S , the traje
to-ries with large impa
t parameters b & �S give the main
ontribution to the LDOS. In the region �S � �� �2D ,we obtain the angle-resolved DOS in the formN�(s; b) = p�2 � �2(�2 � �2=2)�2 �� �Æ[�� �2(b)℄; j�j < �; (50)N�(s; b) = p�2 � �2[�2 � �22(b)=2℄sign(�)�2[�� �2(b)℄ ; j�j > �: (51)Hen
e, the 
orresponding LDOS in the energy intervalj�j < � has the only peaks at � = �2(��):N(�; �) = 1� �Z�� N�(p�2 � b2; b) dbp�2 � b2 == Re p�2 � �2(1� �2=2�2)p�22(�)� �2 : (52)For energies above the indu
ed gap, j�j > �, forthe same distan
es, the LDOS monotoni
ally in
reaseswith j�j to its normal-state value:N(�; �) =p�2 � �2 " j�j2�2 + (1� �2=2�2)p�2 � �22(�) # : (53)A traje
tory with a small impa
t parameter b . �S
an be divided into the part far from the primary vor-tex 
ore and the region inside the 
ore. Far from the
ore, the solution is found using vortex potentials (25).The self-energies of the primary vortex in Eq. (18) havepoles at the usual CdGM energy �0(b) with the 
orre-sponding wave fun
tions exponentially lo
alized within

� � �S and the regular parts extending over large dis-tan
es �! �1 [27; 32℄:�R = ��S ; �I = ���S : (54)We note that the lo
alized part �lo
2 of the e�e
-tive order parameter �2 has the 
oordinate dependen
e�lo
2 = i�lo
I (b; s)ei� with zero 
ir
ulation, unlike itsadiabati
 part (25), �2(� � �S) = �ei�. As we seebelow, it is this di�erent angular dependen
e of the ef-fe
tive gap asymptoti
s, whi
h leads to the formationof a �shadow� of the bulk SC anomalous bran
h in theex
itation spe
trum and LDOS in the 2D layer.Using Eqs. (43) for the long-distan
e part of thetraje
tory, we �ndC0(s0) = 2Cb�2D ln 1�s0 ;C+(s0)� C�(s0) � � b�2D ln 1��S � ��2(b)2� : (55)We now mat
h asymptoti
 solution (44) obtained fors � s0 with the solution for the short-distan
e part ofthe traje
tory in Eqs. (34) and (31)�(33), using Eq. (48)and Eq. (49). As a result,C8<:�2D [�� �2(b)℄ + 2 ���p�2 � �2 � ��2(b)� � �� 1Z0 �0 ds9=; = �2D� + 2� 1Z0 �0 ds� �2D ��2(b)2� �� �� +p�2 � �2 � �2(b)� 1Z0 �0 ds; (56)where �0(s) is the lo
alized part of �S and1Z0 �0 ds = ~vk2[�� �0(b)℄ : (57)Here, we put g = i�0 and repla
e the 
uto� parameterin (45) with � = �2D=�S . For b� �S , the 
ontributionsfrom the primary vortex 
ore proportional to R10 �0 dsvanish sin
e the traje
tory misses the 
ore, and Eq. (56)goes over into Eq. (46).For small b� �2D , the Green's fun
tion has a polewhenP (�; b) = [�� �2(b)℄[�� �0(b)℄ ++ qv h�2 � �p�2 � �2 � ��2(b)i = 0; (58)where qv = vk=v2F . It 
an be shown that with thehigher-order terms in the parameter �2(b)=� in
luded,4 ÆÝÒÔ, âûï. 3 (9) 497
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Fig. 5. Two lo
alized bran
hes, �1(b) and �2(b), of thespe
trum in Eq. (59), in the limit of 
oherent tunnel-ing, for � < �. Here, b� is de�ned as �1(b�) = � � 0,and b0 
orresponds to Re �1(b0) = �+0. The spe
trumsatis�es �1;2(�b) = ���1;2(b)the 
orresponding energy dispersion relation takes theform[���2(b)℄[���0(b)℄�qv +��p�2�[���2(b)℄2 = 0: (59)For b . �S , the 
uto� parameter in Eq. (45) should berepla
ed with � = �2D=�S .The resulting two-s
ale spe
trum is shown in Fig. 5.There are two real-valued bran
hes in the range j�j < �
rossing zero energy value as fun
tions of the impa
tparameter and one 
omplex-valued bran
h in the range� < j�j < �1. The lowest-energy bran
h �2(b) has as
ale �2D as a fun
tion of the impa
t parameter: forb . �2D , it is given by Eq. (45) with the proper 
uto�parameter � as dis
ussed above and saturates at � = �for b � �2D . The bran
h �1(b) has a s
ale �S : for� < � it goes slightly below the CdGM spe
trum �0(b)of the bulk SC, �1(b) = (1+qv=2)�1�0(b). Above �, thespe
trum transforms into a s
attering resonan
e due tothe de
ay into delo
alized modes propagating in the 2Dlayer: �1(b) = �0(b) � i�qv for j�j � �. Sin
e Eq. (59)determines a pole of the retarded Green's fun
tion inthe lower half-plane of 
omplex �, the square root inEq. (59) should be analyti
ally 
ontinued through the
ut going from �1 to �� and from � to +1. Asa result, �1(b) has a dis
ontinuity at �1 = � withb0=�S � 0:29 and b�=�S � 0:42.The two bran
hes appear due to the presen
e of twosub-systems, the bulk SC and the 2D proximity layer,ea
h with its own anomalous bran
h. The existen
eof two anomalous bran
hes follows also from the index
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Fig. 6. LDOS in a logarithmi
 s
ale for 
oherent tun-neling in the 
lean limit. The 
urves, taken for di�erentdistan
es � from the vortex 
enter, are verti
ally shiftedfor 
larity. The peaks in the LDOS exist up to distan
es� �2D. Here, �=� = 5 and qv = 1theorem [33, 34℄. Indeed, its appli
ation requires thatboth zero of the QC Hamiltonian at the Fermi surfa
eand its singularity at � = �0(b) be taken into a

ountin 
al
ulating the topologi
al invariant. As a result,the number of anomalous bran
hes in
reases to 2 for asingle-quantum vortex.The multiple-bran
h spe
trum results in a multiple-peak stru
ture in the LDOS (Fig. 6), whi
h appears tobe most pronoun
ed deeply inside the primary 
ore (atdistan
es � . �2S=�2D when �1 < �), thus illustratingthe two-s
ale stru
ture of the vortex 
ore. The LDOS isobtained from the angle-resolved DOS (normalized byits normal state value)N�(s; b) = [gR(s; b)� gA(s; b)℄=2averaged over the traje
tory dire
tion.The angle-resolved DOS for small energies j�j � �and � . �S is given byN�(s; b) = 12��qvÆ [�� �1(b)℄ ++ 12��(qv + 2)Æ [�� �2(b)℄ ; (60)where we negle
t the terms ��2(b)=�2 and �2(b)=�1(b)and put �0(b)=�1(b) = 1+ qv=2 a

ording to low-energyasymptoti
s. In this 
ase, the LDOSN(�; �) = Re �qv2p�21(�)��2+Re �(qv + 2)2p�22(�)��2 (61)reveals a two-peak stru
ture vs energy at � = �1;2(�).For j�j � �, we 
an negle
t �2(b) and obtain[�� �0(b)℄ h� +p�2 � �2 i+ qv�� = 0: (62)498
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omplex-valuedand for the retarded fun
tions takes the form�[�� �0(b)℄ + qv� h� + i sign(�)p�2 � �2 i = 0: (63)The last equation des
ribes the resonant states in the2D vortex 
ore that de
ay into the QP waves propaga-ting in the 2D layer above the indu
ed gap.Finally, the whole spe
trum stru
ture, shown inFig. 5, has two anomalous bran
hes: one of them, �2(b),is 
ompletely real-valued and follows the CdGM spe
-trum for the super
ondu
tor with a homogeneous gap�; the other one is 
lose to the bulk CdGM spe
trum,but has a dis
ontinuity at � = �, where it be
omesessentially 
omplex.Thus, the LDOS for energies above the indu
ed gapj�j > � and small distan
es �; b . �S is given byN(�; �) = p�2 � �2j�j + qv�22j�j ��Re p�2 � �2 � i�q(�2 + qv�2 + iqv�p�2 � �2)2 � �2�20(�) (64)and has the only peak at � = Re �1(�) of the height� �2=�20(�) for � & �2S=�2D. In the opposite limitof rather large distan
es � > �2S=�2D at j�j > �, thespe
trum redu
es to the CdGM spe
trum with a �nitebroadening: �1(b) = �0(b)� i�qv: (65)The LDOS has a small di�eren
e from its normal-statevalue N0 = 1:N(�; �) = 1 + qv�22�2 Re j�j � i�p(�+ iqv�)2 � �20(�) : (66)The LDOS in the whole energy range, Eqs. (61) and(64), has two or even three peaks for su
h distan
es.The latter 
ase is realized at the distan
es 
orrespond-ing to b0 < b < b�, where the spe
trum vs the impa
tparameter has three anomalous bran
hes.The numeri
al LDOS patterns have been obtainedby subsequently solving the two sets of Eilenbergerequations in the Ri

ati parameterization [35℄: �rst,we 
al
ulate the Green's fun
tions in the bulk SC us-ing the approximation �0(�) = �1�=p�2 + �2S andnext we solve Eq. (18) in the 2D layer using Eq. (19).5.2. Anisotropi
 Fermi surfa
eHere, we brie�y dis
uss the e�e
ts of anisotropi
Fermi surfa
es in 3D and/or 2D systems. We are in-terested only in main distin
tions that the anisotropy
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Fig. 7. (a) An example of anisotropi
 Fermi surfa
esshowing a spheri
al 3D Fermi surfa
e on top of a partof a 2D Fermi surfa
e in the layer shifted from the 
en-ter of its Brillouin zone. The 
losed loops show the 2DFermi line and its proje
tions onto the 3D Fermi sur-fa
e. The dire
tions of the 3D Fermi velo
ity proje
tionv3F on the plane z = 0 in the bulk does not 
oin
idewith that in the 2D layer, v2F . (b) Di�erent points r1and r2 spe
i�ed by s1 and s2 on a 2D traje
tory with agiven impa
t parameter b belong to traje
tories in 3Dwith di�erent impa
t parameters b1 and b2
auses within the 
oherent tunneling model as 
om-pared to the isotropi
 
ase 
onsidered above. Foranisotropi
 surfa
es, one 
an also apply the methodof s
ale separation in the same manner as we did inSe
. 4. The 
onsideration for the region of large im-pa
t parameters does not di�er signi�
antly, su
h thatthe solution for the Green's fun
tions together with themat
hing 
onditions look similar to Eqs. (41), (43), (55)and (48), (49). But the region of small impa
t pa-rameters of the order of �S gives an essentially di�er-ent result. The main distin
tion is that the dire
tionsof QP traje
tories determined by the group velo
ities��2D=�k and ��3D=�Q for a given in-plane momen-tum in 2D and 3D systems do not 
oin
ide (Fig. 7a).As a result, the integral in Eq. (48) along a 2D traje
-tory involves traje
tories with di�erent impa
t param-eters used to parameterize the 3D Green's fun
tions(Fig. 7b ). Within the QC approximation, the inte-gral then yields an imaginary part that 
omes from thedelta fun
tion at the 3D 
ore spe
trum and a real 
on-tribution from a smooth dependen
e. The spe
trum�2(b) at small impa
t parameters thus be
omes broad-ened and shifted from its initial position. The imag-inary 
ontribution appears due to the 
oupling of the499 4*
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tory in the 2D layer with a QC 
ontinuumof traje
tories inside the super
ondu
tor 
orrespondingto di�erent impa
t parameters. This 
oupling resultsfrom the non
onservation of the angular momentum inthe anisotropi
 system. The imaginary 
ontribution isalso present if the primary-
ore spe
trum is broadenedby disorder or inelasti
 s
attering. The situation is inmany respe
ts similar to that in the in
oherent tun-neling model dis
ussed in the next se
tion. Of 
ourse,attributing the origin of the imaginary part of energyin the anisotropi
 
ase to the 
ontinuum of states inthe bulk SC, we ignore the angular momentum quanti-zation in the primary vortex 
ore. The true quantum-me
hani
al 
onsideration a

ounting for the level quan-tization 
ould possibly 
hange this 
on
lusion and leadto a real-valued energy spe
trum for ideal systems with-out disorder.In this se
tion, we 
onsider the low-energy behav-ior of the Green's fun
tion at small impa
t parametersb � �S , where the spe
tral energy �2(b) is very smalland 
an be negle
ted. We assume that the traje
toriesin the bulk SC and in the 2D layer do not 
oin
ide;the Fermi velo
ities v2F and v3F are at an angle Æ�to ea
h other (see Fig. 7b ). The impa
t parameter bSand traje
tory 
oordinate sS in the super
ondu
tor are
oupled to the ones in the 2D layer (b and s) viabS = � sin(� � �+ Æ�) = b 
os Æ�+ s sin Æ�;sS = � 
os(�� �+ Æ�) = s 
os Æ�� b sin Æ�:As we know, at small distan
es �� �S , the part �S ofthe anomalous Green's fun
tion fS in the bulk SC islarge 
ompared with �S � �S . Negle
ting the latter,we express the self-energies in Eq. (30) as�R = �1 sin Æ�; (67a)�I = �1 
os Æ�: (67b)The diagonal self-energy is �1 = i�gS � ���S . Wenote that the self-energies depend on the traje
tory 
o-ordinate s in a 2D layer through the impa
t parameterbS = b 
os Æ�+ s sin Æ� in the bulk SC and do not havede�nite symmetry in s. Therefore, we need to 
onsiderthe region inside the primary 
ore more 
arefully, allow-ing for 
ontributions from even and odd 
omponents ofthe 
orresponding fun
tions.As in Se
. 4, we use the s
ale separation method andsubdivide a 2D layer traje
tory with a small impa
tparameter b . �S into the long-distan
e part far fromthe primary vortex 
ore and the region inside the 
ore.We introdu
e a distan
e �0 satisfying �S � �0 � �2Dand 
onsider the Green's fun
tions in two overlapping

spatial intervals, � . �0 and � & �0. Next, we mat
hthe solutions in di�erent spatial domains. Far fromthe 
ore, the solution is found using vortex potentialsEq. (25).In the region inside the primary vortex 
ore, theself-energies play the most important role. Using theapproximation in (67) for the self-energies and negle
t-ing � at small distan
es s < s0, we �nd� 
os Æ�� � sin Æ�+ ig = C1from Eqs. (29), where C1 is a 
onstant anddds (� sin Æ�+� 
os Æ�) = 2�1hv2F (� 
os Æ��� sin Æ�+ig) :This equation yields� sin Æ�+ � 
os Æ� = C1 sZ0 2�1(s0)~v2F ds0 + C2:Eliminating the 
onstants C1 and C2, we �nd the fol-lowing mat
hing 
onditions at s = �s0:[� 
os Æ�� � sin Æ�+ ig℄s0 = 0; (68a)[� sin Æ�+ � 
os Æ�℄s0 ++ Iodd f� 
os Æ�� � sin Æ�+ iggs0 = 0; (68b)where [x℄s0 = x(s0)� x(�s0), fxgs0 = x(s0) + x(�s0),and the integralIodd = �~v2F s0Z�s0 �S(s0) ds0takes the formIodd = �vkv2F 2� sin Æ� ��V.P. 1Z�1 exp [�K(z 
tg Æ�� b sin Æ�)℄�� �0(b 
os Æ�+ z) dz �� i�vk�2�v2F
 sin Æ� �� exp ��K �� 
tg Æ�
 � bsin Æ��� ; (69)where we put s sin Æ� = z. The se
ond term 
omesfrom the delta-fun
tion 
ontribution at one of the pri-mary 
ore states (see Eq. (31)); the upper (lower) sign
orresponds to the retarded (advan
ed) fun
tion. ForÆ� . �=�, the se
ond term disappears while the �rst500
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ontribution, whi
h is equivalent toEq. (57). We 
on
lude that the imaginary part dis-appears only for traje
tories that are almost parallel(within an angle Æ� . �=�). For Æ� � �=�, the �rst(real) term vanishes be
ause the integrand be
omes oddin z. For � = 0 and b = 0, the real term vanishes ex-a
tly.Equations (68) are the mat
hing 
onditions with thesolution in the large-distan
e region s > s0. They aregeneralizations of the mat
hing 
ondition in Eq. (48)derived earlier in the isotropi
 situation. The two 
on-ditions in Eqs. (68) determine the even and odd partsof the Green's fun
tions.The long-distan
e solution is found in the same wayas in Se
. 4. However, it no longer has a de�nite sym-metry with respe
t to s ! �s. We separate the evenand odd 
omponents �w = �weven + �wodd and 
onsiderboth s > 0 and s < 0. In this se
tion, we only dis
ussthe behavior of the Green's fun
tion for low energiesand a small impa
t parameter. We therefore negle
tthe 
orre
tions to �w proportional to b=�2D. In this
ase, �weven is given by Eq. (41), where now�u�(s) = 0B� p�2 � �2�� sign s�� 1CA e��jsj; �u0(s) = 0B� 0� sign s� 1CAand �wodd = ~C sign sp�2 � �2 �u�(s): (70)Equation (68a) gives~C = sin Æ�(�� C�)p�2 � �2 
os Æ�� � : (71)Using Eqs. (41), (70), and (71), we �nd the 
ombina-tions �(s0)��(�s0), �(s0)��(�s0), and ig(s0)+ig(�s0)in terms of the 
oe�
ient C. Next, we insert these 
om-binations into Eq. (68b) and �ndC[�� Y Iodd℄ = � + �Iodd 
os Æ�; (72)where Y =p�2 � �2 � � 
os Æ�: (73)Equations (72) and (73) are the 
ounterparts ofEq. (46) for the asymmetri
 
ase and transform intoEq. (46) as Æ�! 0.For � � �, we have Y = �(1 � 
os Æ�). For Æ� && �=�, the integral Iodd in Eq. (69) has only the ima-ginary part. Therefore,C = ��� �2(b)� i
 ; (74)

where
 = �vk�2 tg(Æ�=2)�v2F
 exp [�K(�0)℄ � �2� (75)and �0 = jb= sin Æ�j. In Eq. (74), we in
lude the energy�2(b), whi
h 
an be obtained by more detailed 
al
ula-tions taking the 
orre
tions due to b=� into a

ount inthe same way as in Se
. 4. The fun
tion exp[�K(�0)℄de
ays exponentially as exp(��0=�S) for impa
t param-eters larger than the primary 
ore size, b & �S .Therefore, the imaginary term in (74) does not dis-appear unless Æ� is very small. It results in a smear-ing of the adiabati
 energy level �2(b) � � and in aLorentzian behavior of the DOS due to tunneling intothe primary vortex 
ore states. We re
all that this re-sult is obtained within the QC approximation.6. DISORDER EFFECTS6.1. Multiple 
ore. Clean limit with in
oherenttunnelingWe study the disorder e�e
ts by introdu
ing themomentum s
attering �rst into the tunneling pro
essdes
ribed by the in
oherent tunneling model. Sin
ethe tunneling is 
onsidered as a perturbation, we 
anassume a spe
ular QP s
attering at the interfa
e onthe bulk side and, thus, use the results in the pre-
eding se
tion for the Green's fun
tions. The self-energy potentials are now obtained by averaging theGreen's fun
tions (31)�(33) over the traje
tory dire
-tion: ��T = i� h�gSi. Of 
ourse, this averaging does nota�e
t the indu
ed gap fun
tion (25) outside the pri-mary vortex 
ore, and therefore the spe
trum �2 sur-vives the in�uen
e of the tunnel barrier disorder at leastfor b > �S . On the 
ontrary, the subgap bran
hes lo
al-ized within the primary vortex 
ore are 
ompletely de-stroyed. This dramati
 
onsequen
e of the momentums
attering is 
aused by the averaging of ele
tron wavefun
tions with di�erent impa
t parameters and 
onse-quent loss of information about the CdGM states of theprimary vortex. A natural 
onsequen
e of the momen-tum s
attering is the appearan
e of a �nite broadeningof energy levels for traje
tories with small impa
t pa-rameters b . �S . Mat
hing the solutions in the 
oreand at large distan
es gives the expression for the 
o-e�
ient C for b . �S and j�j � �:501
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h, A. S. Mel'nikov ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013C 24�� �2(b) + 2p�2 � �2~v2F 1Z0 �1 ds� 2�~v2F �� 1Z0 �lo
I ds35 = 24�� 2�~v2F 1Z0 �lo
I ds35 : (76)Sin
e j�1j � j�lo
I j � �, the pole of the 
oe�
ient Cis lo
ated at small energies � . �2=� � �. Hen
e, for�� �, the expression for this 
oe�
ient takes the formC 24�� �2(b) + 2�2D 1Z0 ��1 � �lo
I � ds35 = �: (77)The lo
alized self-energies �1 and �lo
I 
an be negle
tedfor � � �. They also vanish for jbj � �S . In boththese limits, Eq. (76) transforms into Eq. (46). Theintegral term in the equation above 
an be written interms of its real, �(b) = �I(b)� �1(b), and imaginary,
(b) = 
I(b)� 
1(b), parts as2�2D 1Z0 ��1 � �lo
I � ds = ��(b)� i
(b); (78)where the upper (lower) sign 
orresponds to the re-tarded (advan
ed) Green's fun
tion. We next 
al
ulatethe terms of the real (�1;I) and imaginary (
1;I) partsof integral (78), whi
h are de�ned by the expressions��(b) = 2�2D 1Z0 Re��(s) ds;
�(b) = 2�2D 1Z0 Im��(s) dsand play the respe
tive roles of energy shifting andspe
tral bran
h broadeningN�(s; b) = �
(b) exp(�jsj=�2D)[�� �2(b)� �(b)℄2 + 
2(b) : (79)Sin
e parameters �; 
 � �=� and �2(b)=� � 1 aresmall for b � �2D and j�j > �, the LDOS rea
hes itsbulk value in this region:N(�; �) = p�2 � �2j�j : (80)Skipping the standard 
al
ulations of integrals (78),we give the �nal expressions for the parameters (seeAppendix for the details):� = ��2�qvQ
 sign(�+
b)�z ;
 = ��2qvQ
 ln �1j
b+ �j�z : (81)
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 s
ale for in
oherent tun-neling in the 
lean limit. The 
urves, taken for di�erentdistan
es � from the vortex 
enter, are verti
ally shiftedfor 
larity. The peaks in LDOS exist up to distan
es� �2D. Here, �=� = 5 and qv = 1The angular bra
kets denote averaging over the mo-mentum Qz along the vortex axis in the bulk, 
 == ��0=�b. The DOS has a peak of height �=
 atan energy � = �2(b) + �(b) shifted from the standardbound state level. This shift results in a splitting ofthe zero-bias anomaly [36℄ (Fig. 8). For 
al
ulations,we use a numeri
al pro
edure similar to that used ear-lier for the 
oherent limit; the indu
ed potentials wereaveraged over the 
ylindri
al Fermi surfa
e in the bulk.6.2. Multiple 
ore. Dirty SC with a 
lean 2DlayerSmearing of the energy dependen
e of the indu
edpotentials 
aused by disorder be
omes even stronger ifthe bulk SC has a short mean free path ` � �S . Inthe dirty limit, the momentum-averaged retarded (ad-van
ed) Green's fun
tions are parameterized as�gR(A)S (�) = ��3 sin�R(A) ++ ��2 
os�R(A) exp(�i��3�): (82)We put �R(A) = ��1+ i�2. The boundary 
onditionsfor � ! 0 are gR(A) ! �1 and fR(A); fyR(A) ! 0,whi
h requires �1 ! �=2 and �2 ! 0. At large dis-tan
es, �1 ! 0, th�2 ! ��=�1 for � < �1 while�1 ! �=2, th�2 ! ��1=� for � > �1. Then, �2 == 0 for �� �1, and the Usadel equation be
omes [37℄DS �r2�1 + sin(2�1)2�2 �� 2�0 sin�1 = 0: (83)The solution of Eq. (83) was found in Ref. [37℄: �1(�)monotoni
ally de
ays from �=2 at the origin down to502
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tions (82) determinethe indu
ed vortex potentials ��T = i��gS.For small impa
t parameter values b � �S , we ob-tain �lo
I = 0 and the mat
hing 
ondition takes theform�2D�(s0) = 2i�(s0) 1Z0 sin� ds+ 2ig(s0)b ln s0�S : (84)The 
oe�
ient C in this 
ase has the only broadenedpole at � = �2(b):C [�� �2(b) + i
℄ = � (85)with the broadening
 = 2�p�2 � �2~v2F 1Z0 sin� ds;where the integral is taken along the traje
tory. Forj�j < � and � < �S , the angle-resolved DOS 
an bewritten in the formN�(s; b) = �2p�2 � �2 
(b)e��jsj[�� �2(b)℄2 + 
2(b) : (86)Consequently, the LDOS has a peak of the height� �=
(�) at the energy � = �2(�).For the energies above the indu
ed gap, � > �, andsmall impa
t parameter values �2(b); 
(b) � �, the lo-
al DOS 
an be repla
ed by its bulk value:N(�; �) = p�2 � �2j�j : (87)For b� �S , the imaginary part of energy de
ays expo-nentially, and Eq. (85) transforms into Eq. (46).The numeri
al results shown in Fig. 9 
learlydemonstrate the broad peak in the LDOS; this peakshifts and be
omes sharper as the distan
e from thevortex 
enter in
reases. For � � �S , the LDOS ap-proa
hes that obtained in the 
lean limit in Figs. 6and 8. In 
al
ulations, we used the standard relaxationmethod [38℄ for solving the Usadel equation in the bulkand the Ri

ati parameterization for Eilenberger equa-tions in the 2D layer.6.3. Vortex 
ore expansion. Dirty SC and 2DlayerTo 
omplete our analysis, we brie�y dis
uss the
ase of strong disorder both in the bulk SC and inthe 2D layer. In this limit, our model redu
es to theone studied numeri
ally in Ref. [39℄. The 
ondition

−∆ −Γ 0 Γ ∆

ǫ

15ξS

2.5ξS

0.5ξS

0.3ξS

ρ = 0

N

Fig. 9. The lo
al DOS in a logarithmi
 s
ale forthe dirty limit with the parameters �=� = 5 andv2F =VF = 1. The 
urves, taken for di�erent dis-tan
es � from the vortex 
enter, are verti
ally shiftedfor 
larity�S � �2D =p~D2D=� ensures that the short-distan
einhomogeneity in the indu
ed vortex potentials insidethe primary 
ore region does not disturb the adiabati
solution based on Eq. (25). Indeed, for momentum-orientation-averaged Green's fun
tions in the 2D layer,�g(�) =  g2 f2ei��fy2e�i� �g2 ! = Z d2k(2�)2 �g(k; r);we 
an derive the equationiD2D �g2(r2 � ��2)f2 � f2r2g2��� 2(�+�1)f2 + 2~�2g2 = 0; (88)with ~�2 = �2e�i�. This equation is similar to thatderived by Kupriyanov [40℄ for a 
onta
t of two dirtySCs.Using a standard parameterization�g(�) = �3 sin	 + �2 
os	 exp(�i�3�)and the expressions for the vortex potentials, we 
anobtain the equationiD2D �r2�	� sin 2	2�2 ��� 2� sin(	��)� 2i� 
os	 = 0; (89)where r2 = ��1��(���) and D2D = ~v22F �=2 � is the2D di�usion 
oe�
ient. Integrating Eq. (89), multi-plied by �, in a small region around the origin (from503
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h, A. S. Mel'nikov ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013� = 0 to a value �S � �0 � �2D), we �nd the mat
hing
ondition for the adiabati
 Green's fun
tion (41), (42):D2D 24� ���	�����00 + �0Z0 sin 2	2� d�35�� 2 �0Z0 � d� [� sin(	��) + i� 
os	℄ = 0: (90)Considering the expansion 	(�0) = 	0 �K�0 withK = �	(�0)=�� � ��12D and assuming 	0 6= �=2, we ob-tain 
os	0 � �20=(�22D ln (�0=�S))� 1. This estimate
on�rms the 
on
lusion that the LDOS in the dirtylimit follows the bulk LDOS pattern s
aled with the2D 
oheren
e length �2D to within the se
ond-orderterms in the small parameter �0=�2D .The resulting problem at low energies � � �1 
o-in
ides with that of des
ribing a standard vortex in adirty SC [41℄ with the gap value �. Hen
e, the full dis-ordered system should reveal the same LDOS patternsas in the bulk 
ase, albeit s
aled with the mu
h larger
oheren
e length �2D instead of �S . This vortex-
oreexpansion 
an a

ount for anomalously large vortex im-ages observed in MgB2 [42℄ and in high-T
 
uprates [43℄.7. DISCUSSIONThe results des
ribed above imply that the ele
tronstates in the indu
ed super
ondu
ting 
on�gurationsstrongly depend on the tunneling me
hanism and onthe 
rystal stru
ture of bulk and 2D materials. Thestru
ture and symmetry of ele
tron states 
an be essen-tially di�erent from those in the bulk SC. This imposessevere restri
tions on possible realizations of variousexoti
 proximity ele
tron states [30, 31℄ in
luding Ma-jorana states [9℄ and, in parti
ular, Majorana states inthe vortex 
ores. Our results dire
tly show that the ex-isten
e of zero-energy states in the proximity-indu
edvortex 
ore 
ru
ially depends on the tunneling me
h-anism underlying the proximity 
oupling between the2D layer and the bulk SC. The zero-energy 
ore state
an be expe
ted to exist for 
oherent tunneling betweenthe SC and the 2D layer that both have isotropi
 Fermisurfa
es, if the symmetry of the indu
ed super
ondu
t-ing order permits.It is known that a zero-energy 
ore state exists fora vortex with an odd vorti
ity in a graphene monolayerwith intrinsi
 super
ondu
tivity [44�46℄. The graphenemonolayer with proximity-indu
ed super
ondu
tivitythus would seem to be a good 
andidate to look for azero-energy state. But the Fermi surfa
e of graphene is

highly anisotropi
; it lies near the Dira
 
orners of theBrillouin zone with the group velo
ity dire
ted radiallyfrom the Dira
 points. This group velo
ity dire
tiondoes not 
oin
ide with the dire
tion of the Fermi mo-mentum and of the Fermi velo
ity in the bulk SC, asis shown in Fig. 7. Although the results in the pre-vious se
tions were obtained within the QC approxi-mation, they still 
an shed a light on the possibilityof the zero-energy state in graphene, espe
ially for asu�
ient doping level when the QC approximation forgraphene is justi�ed [46℄. In this 
ase, the results inSe
. 5.2 
an be applied. They show that ea
h statein the indu
ed vortex 
ore with energy � is 
oupled toan in�nite set of levels in the primary 
ore. The inte-gral Iodd a

ounts for these states. Its real part dealswith o�-resonan
e states with eigen-energies not equalto �, while the imaginary part 
omes from the reso-nan
e state with the same eigen-energy �. A

ordingto Se
. 5.2, the real part of Iodd disappears for � = 0and b = 0. The fate of the imaginary part dependson whether the zero energy is in resonan
e with anystate in the primary 
ore. It is known that for an s-wave 
lean bulk super
ondu
tor, the 
ore levels are dis-
rete with a minigap !0 � �2=EF and no one lies atzero energy. Therefore, if the levels in the bulk are notbroadened by disorder or by inelasti
 s
attering, theimaginary part of Iodd does not appear, and the zero-energy state seems to be inta
t. The dis
rete nature ofthe 
ore states is, of 
ourse, beyond the QC approxi-mation. Therefore, the above 
onsideration gives onlya hint towards the possibility of a zero-energy state.The detailed analysis is needed that would be based onthe rigorous quantum me
hani
al des
ription. We notethat an alternative possibility to save the zero-energystates by introdu
ing a 
ylindri
al 
avity in the bulksuper
ondu
tor was 
onsidered in Refs. [25; 26℄.Another important feature of indu
ed super
ondu
-tivity in a LD system is an extremely large 
oheren
elength �2D . It provides a unique possibility to realizevortex 
on�gurations with quite unusual parameters.Here, we brie�y dis
uss some 
on�gurations that are ofinterest. The detailed analysis of all these situationsrequires spe
ial 
onsiderations. First of all, we notethat the results in Se
s. 3 and 5 and the subsequentse
tions are valid for �2D � min(rv ; �L), where rv isthe intervortex distan
e and �L is the London pene-tration length in the bulk SC. If the vortex latti
e inthe bulk SC is su�
iently dense with the intervortexdistan
e �2D . rv � �L, the indu
ed 2D vortex 
oresmay start to overlap. The spe
trum �2 is then mod-i�ed due to intervortex tunneling of QPs [47℄. Thee�e
t of the intervortex QP tunneling should be im-504



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Vortex matter in low-dimensional systems : : :portant if the splitting of the quantized energy levelsdue to this tunneling ex
eeds the minigap value. Thesplitting 
an be estimated as � exp[�rv=�2D℄ while theminigap inside the indu
ed vortex 
ore is of the or-der of �2=~v2F k2F . Thus, the ratio determining theintervortex tunneling e�
ien
y is an exponential witha large prefa
tor, ~v2F k2F��1 exp[�rv=�2D℄. Just thisratio 
ontrols the interplay between the velo
ity of thetraje
tory pre
ession and the QP tunneling rate. The
hanges in the QP spe
trum be
ome essential whenrv . �2D ln(~v2F k2F =�). The minigap in this 
aseshould vanish a

ording to the analysis in Ref. [47℄.In some 
ases, the 2D 
oheren
e length �2D 
an ex-
eed the London penetration depth �L; this dependson the properties of the bulk SC and on the tunnelingrate �. If �2D ; rv � �L, the super
ondu
ting velo
ityvanishes along the traje
tories with b > �L, and hen
ethe spe
tral bran
h �2(b) saturates already for b � �L.Our results for 
oherent tunneling 
an be dire
tlygeneralized to 
lean d-wave bulk SCs with isotropi
Fermi surfa
es. However, the in
oherent tunneling de-stroys the super
ondu
ting 
oheren
e in the 2D layer.As a result, the bran
h �2 disappears, while the QPstates for � < � have �nite lifetimes for distan
es 
loseto the vortex 
ores in the bulk SC.Considering possible experimental realizations ofthe indu
ed vortex states, one has to bear the �nitedimensions L of the 2D layer in mind. The large size ofthe indu
ed vortex 
ores 
an lead to the situation typ-i
al for mesos
opi
 super
ondu
ting samples when L is
lose to several �2Ds. The 
riterion for the vortex spe
-trum transformation 
aused by the boundary e�e
ts insu
h systems to be
ome important 
an be found us-ing the results in Ref. [48℄. We only need to repla
ethe gap, the 
oheren
e length, and the minigap by theappropriate values in the 2D layer. The 
riterion ap-pears to be very similar to that des
ribing the e�
ien
yof intervortex tunneling: the mesos
opi
 �u
tuations ofquantum levels in the 2D 
ore be
ome 
omparable withthe minigap for L . �2D ln(~v2F k2F =�).In 
on
lusion, the model of a proximity-
oupled2D layer allows theoreti
ally studying many spatiallyinhomogeneous situations in
luding various 
on�gu-rations of indu
ed vorti
es. Based on this model, wehave presented a des
ription of the vortex 
ore statesfor some typi
al tunneling me
hanisms. In parti
ular,our results 
an be used for interpreting the STM dataon the vortex LDOS in super
ondu
tors through themodel of a thin proximity layer present at the surfa
e ofthe bulk SC. The e�e
t of a thin non-super
ondu
tingproximity layer 
an explain various experimentallyobserved features of the vortex LDOS and reveals

that the STM te
hnique alone is not su�
ient foridentifying a multi
omponent or anisotropi
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ulation of self-energies for in
oherenttunnelingIn this Appendix, we 
al
ulate the following inte-grals from the main text:��(b) = 2�2D 1Z0 Re��(s)ds;
�(b) = 2�2D 1Z0 Im��(s)ds:For this, we 
onsider the 
ase of the small impa
t pa-rameter values b� �S :�I(b) = 2�2bv2F 1Z0 * vke�K2Q
�2 �� "1�Re j�jp�2 � 
2�2 #+z ds;where �2 = b2 + s2. In this 
ase, the �rst term in theabove integral is determined by s � b:�b 1Z0 *vke�KQ
�2 +z ds = �b 1Z0 � vkQ
(s2 + b2)�z ds == sign(b)�� �vk2Q
�z :505



N. B. Kopnin, I. M. Khaymovi
h, A. S. Mel'nikov ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013The se
ond term is determined by very small impa
tparameters and is given byb0Z0 dspb20 � s2 = �2 ; b0Z0 ds(s2 + b20)pb20 � s2 = �
2jb�j ;where b20 = �2=
2 � b2 > 0. As a result, we �nd�I(b) = sign(b) �2v2F ��vkQ
�(
2b2 � �2)�z ;�1(b) = � sign(�) �2v2F ��vkQ
�(�2 � 
2b2)�z ;where �(x) is the Heaviside theta fun
tion, i. e.,�(x) = 1 for x > 0 and �(x) = 0 for x < 0.After simplifying the expression for �(b) = �I(b)�� �1(b), we obtain Eq. (81). For b & �S , the quantity�(b) de
ays as exp(�2b=�S).The expressions for imaginary parts hold for anydistan
es � be
ause the delta fun
tions in the integralssele
t only the traje
tories that pass at small impa
tparameters:
1(b) = �2v2F 1Z0 * vke�KQp
2�2 � �2�(
2�2 � �2)+z ds == �2v2F * vkQ
 ln �1pj
2b2 � �2j+z ;
I(b) = �2bv2F �� 1Z0 * �
�2 vke�KQp
2�2 � �2�(
2�2 � �2)+z ds == sign(b�) �2v2F * vkQ
 ln 
jbj+ j�jpj
2b2 � �2j+z :We here use the following expressions for the standardintegrals: smaxZb0 dsps2 � b20 = ln �pj
2b2 � �2j ;where smax � �S , andsmaxZb0 dsps2 � b20(s2 + b2) = 
jb�j ln 
jbj+ j�jpj
2b2 � �2j :The imaginary terms also de
ay exponentially for b && �S . The expression for 
(b) = 
1(b) � 
I(b) givesEq. (81).
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