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Vortices in magnetic superconductors polarize spins nonuniformly and repolarize them when moving. At a low
spin relaxation rate and at low bias currents vortices carrying magnetic polarization clouds become polaron-like
and their velocities are determined by the effective drag coefficient that is significantly bigger than the Bardeen—
Stephen (BS) one. As the current increases, vortices release polarization clouds and the velocity as well as
the voltage in the I-V characteristics jump to values corresponding to the BS drag coefficient at a critical
current J.. The nonuniform components of the magnetic field and magnetization drop as the velocity increases,
resulting in weaker polarization and a discontinuous dynamic dissociation depinning transition. Experimentally,
the jump shows up as a depinning transition and the corresponding current at the jump is the depinning cur-
rent. As the current decreases, on the way back, vortices are retrapped by polarization clouds at the current
Jr» < J.. As a result, the polaronic effect suppresses dissipation and enhances the critical current. Borocarbides
(RE)NiyB2C with a short penetration length and highly polarizable rare earth spins seem to be optimal systems
for a detailed study of vortex polaron formation by measuring I-V characteristics. We also propose to use a
superconductor-magnet multilayer structure to study polaronic mechanism of pinning with the goal to achieve
high critical currents. The magnetic layers should have large magnetic susceptibility to enhance the coupling
between vortices and magnetization in magnetic layers while the relaxation of the magnetization should be slow.

For Nb and a proper magnet multilayer structure, we estimate the critical current density .J. ~ 10° A/m

the magnetic field B~ 1 T.
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1. INTRODUCTION

The conception of vortex as a polaron [1] was initi-
ated by experimental data on the critical current in Er
borocarbide, and we first discuss these data. The fam-
ily of quaternary nickel borocarbides (RE)Ni»B>C (RE
is a rare earth magnetic ion) is an interesting class of
crystals that exhibit both singlet superconductivity and
magnetic order at low temperatures [2—4]. A number
of crystals in that family develop antiferromagnetic or-
der below the Néel temperature T, which is below the
superconducting critical temperature 7,.. Because the
spatial periodicity of magnetic moments is well below
the superconducting correlation length, superconduc-
tivity coexists quite peacefully with the antiferromag-
netic order. By contrast, the ferromagnetic order, an-
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tagonistic to Cooper pairing, leads to dramatic changes
in both magnetic and superconducting orders in the co-
existence phase of singlet superconductors (see Ref. [5]
for a review).

The compound ErNi,B,C with 7. = 11 K and
Ty = 6 K attracted much attention when it was real-
ized that below the phase transition from an incommen-
surate spin density wave (SDW) to a commensurate
SDW at T* = 2.3 K, the phase with a weak ferromag-
netic ordering can emerge [6, 7]. It was concluded that
the incommensurate SDW develops in ErNi;B,C below
Tn with effective Ising spins oriented along the a axis
and with the wave vector @) = 0.5526 b* from neutron
scattering measurements [8,9]. Here, b* = 27/b and b
is the lattice period along the b axis. At T*, the transi-
tion to the commensurate phase with ¢ = 0.55b* leaves
one out of 20 spins free of the SDW molecular field.
These Er spins with the magnetic moment p = 7.8up
are easily polarizable by the magnetic field along the a
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direction. The spin magnetization in the magnetic field
H = 2000 G in the temperature range 2—4 K follows the
law M, /H ~ uM;/kpT, where M, ~ 56 G (see Fig. 4
in Ref. [7]). The value My = un corresponds to the
magnetization at which all “free” spins with the con-
centration n order ferromagnetically. The same value
M was obtained by extrapolation of the magnetization
at the temperature 2 K in fields H > 1500 G to H — 0
[10]. Nevertheless, the Hall probe measurements with-
out an applied field below T™* found an internal mag-
netic field much lower than M, and no spontaneous
vortex lattice was seen [11]. High polarizability of the
spin system in ErNiyB,C is a key point of our discus-
sion in what follows.

As the hope to observe remarkable consequences of
a weak ferromagnetic phase coexisting with supercon-
ductivity waned, the puzzle of the ErNiyBoC critical
current behavior at low temperatures remained. It was
discovered by measuring the hysteresis in M —H loops
and transport measurements that new pinning mech-
anism develops below 3 K for which the critical cur-
rent increases as the temperature decreases to ~ 1.5 K
following approximately the enhancement of magnetic
susceptibility [10,12].

To explain these data, the conception of a vortex
as a polaron was proposed, i.e., formation of polaron-
like vortices dressed by the polarization cloud of mag-
netic moments [1]. Generally, the polaronic mechanism
is inherent to all magnetic superconductors, but it is
most pronounced when the magnetic system is highly
polarizable, as in the case of ErNiyBoC below 2.3 K.
To clarify this mechanism, we recall that the mag-
netic field is nonuniform within the vortex lattice and is
the strongest near the vortex cores. Consequently, the
polarization of the magnetic moments is also nonuni-
form. When vortices move, they should repolarize the
magnetic system, otherwise they would lose the energy
gained by polarization (the Zeeman energy). The pro-
cess of repolarization depends on the dynamics of the
magnetic system. In what follows, we consider the re-
laxation dynamics of free spins in ErNiyBoC. The repo-
larization process is controlled by the relaxation time 7
that should be compared with the characteristic time
a/v needed to shift the vortex lattice moving with the
velocity v by the vortex lattice period a = (®¢/B)'/2.
Here, ®q is the flux quantum, B is the magnetic in-
duction, and we assume a square vortex lattice. For
T > a/v, the magnetic moments strongly slow down
the vortex motion.

At some critical velocity and critical current J,., the
vortices are stripped off the polarization clouds. The
corresponding jump in velocity is more evident for large
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7. As the current decreases, the vortices become re-
trapped again at a current .J, < J.. Because the volt-
age V o v, the I-V characteristics show hysteresis.
The physics here is similar to that of a polaron, with
vortices playing the role of electrons and the magnetic
polarization the role of phonons [13].

2. GENERAL EQUATIONS

The ErNiy B> C crystals have an orthorhombic struc-
ture below T with domains where ¢ and b axes change
by 90° in neighboring domains. We consider a clean
single-domain crystal. In multi-domain crystals, the
domain walls also provide the pinning of vortices, which
is sharply peaked when vortex lines are aligned with
the domain walls [14]. We consider the vortex lattice
induced by the applied magnetic field H tilted by an
angle 6 with respect to the crystal ¢ axis. As revealed
by neutron scattering, vortices form a square lattice in
EI’NiQBQC [15]

We choose the z axis along the direction of vortex
lines at rest and the 2 axis in the ac plane (see Fig. 1).
A vortex line deviates from the applied field H due to
the magnetic moments [15]. The system is assumed
to be uniform along the direction of vortex lines. In a

Vortex lattice

Fig.1. Schematic view of the vortex lattice in the pres-
ence of free Ising magnetic moments along the a axis.
The vortex lattice is tilted with respect to the applied
magnetic fields in the ac plane due to the polarization
of the magnetic moments. The vertical columns show
the vortex cores. The polarized magnetic moments are
nonuniform in space due to the spatial modulation of
the vortex lattice magnetic field. Due to the Lorentz
force Fr,, vortices move along the z axis. In the mov-
ing lattice, there is a phase shift between the magnetic
induction B, (dashed line) associated with the vortex
lattice and the magnetization M, (solid line) caused by
the retardation in the response of magnetic moments
to the vortex magnetic field
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static situation, the direction of vortex lines is deter-
mined by the effective field H 4+ 4rM, where M is the
spatial average of the magnetization. We let o denote
the angle between vortex lines and the ¢ axis.

The Lagrangian L{R;(t), M.(r,t)} for the whole
system is given by

L{R;(t), M (r,t)} = Lar{M.(r,t)}+L,{R;(t) }+
+ Eint{Mz(ra t)v Rl(t)} + ‘CUU{RZ} + EF{J}?

where

(1)

MZ(r,t)

2X 2z
is the Lagrangian for the magnetic subsystem and

L, {Ri(t),r;} = — ZU(Ri —rj)

dr

Lar{M.(x,1)} 2)

(3)

is the Lagrangian for the interaction between vortices
and the pinning potential due to quenched disorder.
Here, U(R; — r;) is the pinning potential at r;. Fur-
ther, £,,{R;} is the vortex—vortex interaction,

)
Lr{T} =ZJ-Ri70

is the Lagrangian due to the Lorentz force in the pres-
ence of a bias current density J, and ., is the magnetic
susceptibility at the working external magnetic field. It
describes response of magnetic moments to the nonuni-
form component of the field induced by vortices.

In the London approximation, the magnetic field of
the vortex lattice inside the crystal is (r = x,y)

cos(G -r)
z 2 2 Y
o VG2 +1

B.(r)=B (4)
where B. is the averaged magnetic induction, G are
reciprocal vectors of the square lattice, and )\ is the
superconducting penetration length renormalized by
the magnetic moments. It is given by the expres-
sion A> = A2 (1 — 47my,.), where \;, describes mag-
netic field penetration in the absence of the mag-
netic moments [5,16-19]. We note that the mag-
netic susceptibility x.. = M,/B, is smaller than
1/4x, i.e., x:» < 1/4w. The magnetic fluctuations
(M, M.) ~ X.:/(1 — 4mxs.) diverge as x.. — 1/4m,
which indicates instability of the magnetic system [20].
We here also ignore anisotropy of the penetration
length.

In the Lagrangian, the interaction between a vor-
tex line at R; = (x;,y;) and the magnetic moments is
determined by the term

Lo {Ri, M.} = / it / drB.(Ri — v, ) M. (v, 1), (5)

ATT

where we describe the magnetic moments in the contin-
uous approximation via the magnetization M, (r,t), be-
cause the distance between free spins, equal to 35 nm [9]
is much smaller than the London penetration length A,
about 500 nm [15]. We ignore the pair breaking effect of
the magnetic moments because they suppress Cooper
pairing uniformly as the distance between free spins is
much smaller than the coherence length, and hence the
pair breaking effect by the moments does not introduce
pinning.

Both the magnetization and vortices are governed
by a relaxation dynamics characterized by the dissipa-
tion function

RAR;(t), M.(r,t)} = Rp. + Ry,

where

1

= 27'/dr]\.422(r)7

. 1.
Rof{Ri} =n)_ 5R22~
i

Rt AM:(r)}
(6)

Here, 7 is the relaxation time for a single spin and

n = ®2/2mE%c2p,, is the Bardeen—Stephen drag coeffi-

cient per unit vortex length with p, being the normal

resistivity slightly above T,. The equation of motion

for vortices is the Euler-Lagrange equation of motion
d oL oL 0R

—.:0,

a5, R SR, @

which gives

OLint{Ri, M}
OR;
8U(Rz - I‘j)
OR;

OR, OL,.{RiR;}

¢ R,
+>

J

+FL7

(8)

with F;, = ®,J/c being the Lorentz force.

We here neglect the effect of quenched disorder be-
cause the vortex motion quickly averages out the disor-
der and the lattice ordering is improved [21,22]. In the
lattice phase, £,, = 0 due to symmetry. The equation
of motion for vortex lines is then

OR; 0Lt {R;, M.} n
Tar T OR;

Fr. 9)

The magnetization dynamics is governed by

OM.(r,t) _ _
ot

M.(r.1)
Xzz

- Bz (I‘) (10)

It follows from Eq. (10) that the relaxation time of the
magnetization measured experimentally in the crystal
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is xz.7. The force due to magnetic moments is the
same for all lines and the vortex lattice moves as a
whole. The motion of the vortex lattice center of mass,
u(t), along the z axis is described by the equation

ou

0
"5 = B [/drBz(x+u7y,t)MZ(r,t) + Fr. (11)

Using the linear response approach to relate mag-
netization to the magnetic field, we obtain

ou 0 ,
"5t = 9a /drdr B.(z+u,y,t) x
t
></dt'xzz(r—r',t—t')BZ(r',t')+FL. (12)
0

The vortex lattice moves with the constant velocity
u = vt in the steady state t > 7. Integrating over
coordinates and time, we obtain

Y22 (G, v G)

7()\2(}2 P + Fy,, (13)
G

nv =

where y..(k,w) is the dynamic magnetic susceptibil-
ity in the Fourier representation. We see that the
magnetic moments affect the vortex motion strongly
if either a) the resonance Cherenkov radiation condi-
tion v - G = Q(G) is fulfilled, where Q(k) is the fre-
quency of magnetic excitations with the momentum k
and Q(k) > I'(k), where I'(k) is the relaxation rate of
the excitation, or b) dynamics of the magnetic system
is dominated by relaxation, Q(k) < I'(k). In the former
case, discussed in Refs. [23-25], the magnetic moments
renormalize the vortex viscosity at high velocities when
the alternating magnetic field of vortices is able to ex-
cite magnons. Here, we consider the latter case of free
moments described by the relaxation dynamics accord-
ing to Eq. (10) with x..(k,w) given by

. 1 M
po k, = in? T, = 0,
Xeslleow) =xsint s, X=Eop

(14)
at temperatures T below 3 K for ErNiyB,C.

Renormalizing time in units of 7y, length in unit of
1/G4, force per unit vortex length in unit of /7Gx
we obtain the equation for velocity

v
v+ Fy—— = Fp, 15
Po2 41 g (15)
where we take only the dominant lattice wave vector
G = (27/a,0,0) into account and introduce the mag-
netic pinning force per unit vortex length
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Fig.2. Calculated I-V curves for F), = 20 and F), = 2.

For F}, = 20, the system shows hysteresis in the -V

curve, while for F, = 2, no hysteresis is present. The
dotted line denotes the unstable solution
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Fig.3. Dependence of the critical current .J. and re-

trapping current .J,, and the corresponding electric

fields E. and E,, on F,. When F, < 8, hysteresis
in the I-V curve disappears

At a low bias current (low FJ,), the velocity is propor-
tional to F7, but with an enhanced effective viscosity,
v~ Fr/(1+ F,). At large F1, (large v), the renor-
malization disappears and the I-V characteristic be-
comes the usual Bardeen—Stephen one. Importantly, at
F, > 8, the change occurs through a sharp transition,
as is shown in Fig. 2. Equation (15) at F,, > 8 for an
intermediate .J has three real solutions: the largest vs
corresponds to decoupled motion of the vortex lattice
and magnetization, the smallest v; corresponds to the
vortex—polaron motion, and the intermediate solution
v9 corresponds to an unstable state.
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The jump at J., identified experimentally as the
depinning transition, is caused by the dissociation of
the vortex—magnon polaron. It is very similar to the
dissociation of the usual electron—phonon polaron in
high electric fields, as is described theoretically in [26]
and confirmed experimentally in metal oxides in [27].
Upon decreasing the current, the vortices are retrapped
by the polarization clouds at a threshold current J,.
and the vortex lattice moves with a significantly en-
hanced viscosity at lower currents. The calculated J.
and .J, and the corresponding electric fields are shown
in Fig. 3. At large F), the critical current is indepen-
dent of T,

xed sin’ o

Je ~ 003,

(16)
J. decreases with the temperature as J. ~ 1/T, and
decreases with the magnetic field as J. ~ 1/ VB.

We explain the origin of the jumps at J. and J,.
The dependence of the magnetization on the velocity
of moving vortices is

M.(r,v,t) = yBsin® a x
" Z cos[G - r — [3(v)]
(A2G2 + 1)[1 + (GoTy)2]3/?

(17)

with tg8 = Gyvry. The nonuniform component of
the magnetization and hence the polarization effect de-
crease with velocity. On the other hand, the retarda-
tion between the magnetic field and the magnetization,
described by the phase shift 3(v), increases with the ve-
locity. This positive feedback and the increase in retar-
dation with velocity ensure discontinuous transitions at
J. and J,.

3. DISCUSSION OF EXPERIMENTAL DATA
FOR ERBIUM BOROCARBIDE

A large parameter F), is required to have a strong
pinning due to the polaron mechanism. It is expressed
in terms of 7 as F}, ~ 10! y7sin” a s~ ', where we use
the coherence length £ ~ 13 nm [15] and the normal
resistivity p, = 5 pufd-cm at T, [28]. The relaxation
rate Y7 in ErNiyBoC is long because the dynamics of
majority of spins is strongly suppressed by the for-
mation of the SDW molecular field, as was found by
the Mossbauer measurements in [29]. The relaxation
rate drops very fast below 10 K and reaches the value
XT ~5-1071% s at T = 5 K. The data at lower temper-
atures were not measured, however. Hence, the only
information we have so far is F}, > 50sin” a.

The critical current for ErNi;B>C reported in
Ref. [10] is about 250 A/cm? for B = 0.1 T and T =
= 2 K, which corresponds to a = 2.5° according to
Eq. (16). The applied magnetic field was close to the
¢ axis in experiment, but the precise angle 6 was not
reported [10]. The estimate of the order of 1° is reason-
able, but the quantitative comparison is not convincing
because we do not know 7 and therefore F}, below 2.3 K.
We predict hysteretic behavior in ErNisB,C, a strong
dependence of the voltage and of the critical current
on the angle 6, at least for 6 > 0.15°. Hence, the real
check of the polaronic mechanism should be by mea-
suring the I-V characteristics. We estimate that the
critical current reaches values as high as 106 A /cm? at
large angles at 7 =1 K and B =0.1 T.

The effect of ordered spins on the vortex motion is
similar to that described in Refs. [23-25] for an anti-
ferromagnet. When the Cherenkov radiation condition
v-G = Q(QG) is satisfied, excitation of magnons results
in an enhanced drag coefficient by transferring energy
from vortex motion to the magnetic subsystem. This
occurs at high velocities (high currents) of vortices, due
to a gap in the magnon spectrum and a large velocity
of a magnon, leading to a voltage drop in comparison
with the bare Bardeen—Stephen (BS) result.

In the incommensurate SDW with 7" > T™*, some
spins experience a quite weak SDW molecular field.
Hence, they are polarized by vortices and exhibit the
polaronic effect and pinning. This accounts for the in-
crease in pinning in ErNi;BoC as T decreases below
Tn (see Ref. [10]), and also the pinning in the holmium
borocarbide below T [30].

We next discuss the effect of quenched disorder. In
the presence of quenched disorder, the vortex lines ad-
just themselves to take the advantage of the pinning
potential, which destroys the long-range lattice order.
Below a threshold current, vortices remain pinned (they
actually creep between pinning centers due to fluctu-
ations) and the polaronic mechanism does not play a
role in that region. When the current is high enough
to depin the vortices from quenched disorder, vortices
start to move and the lattice ordering is improved. The
vortex viscosity is enhanced by formation of a polaron
with a nonuniformly induced magnetization. The po-
laron dissociates and the system jumps to the conven-
tional BS branch at a critical velocity (current). Pin-
ning due to quenched disorder works in the static region
and the polaronic pinning works in the dynamic region.
The critical current of the whole system is therefore
the sum of these two threshold currents. We note that
magnetostriction in combination with quenched disor-
der enhance the polaronic pinning mechanism.
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Fig.4. Dependence of (a) the normalized dissipation power D(w)/Do, and (b) the effective viscosity 7. (lower curve at
right) and the pinning strength a,, on the driving frequency w in the linear regime F,. < w(1 + F,). Here, F, =20

4. RESPONSE OF THE VORTEX LATTICE TO
AN ac DRIVING CURRENT

Here, we study the response of a vortex polaron to
an ac driving current [31]. We write the equations of
motion for the magnetization

m(t) = M(G1,)N°G}/®ox
and the vortex lattice center of mass u(t) as

Oym(t) = —[m(t) — exp(—iu(t))], (18)

Owu = Fr, — Im [F exp(iu)m(t)], (19)

with an ac Lorentz force Fj, = F,.sin(wt). Eliminating
m(t), we obtain the equation for u(¢):

"sinfu(t)—u(t)] exp(t'—t).  (20)

We first consider the ac current regime with a low
amplitude F,./[w(1+F))] < 1. Then the vortex lattice
oscillates, u = Re[uq. exp(iwt)], with the amplitude

Uge = Foe(ineprw + ap)_l, (21)

Negs = 1+Fp(w?+1)7Y,  ap = Fu?(W?+1) 71 (22)

For a high frequency w > 1, the effect of magnetiza-
tion is to introduce the pinning potential Uy = F,u?/2
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with the strength Fj,. In this case, the vortex lattice
follows the driving force much faster than the magne-
tization does, which remains almost time independent.
The polarization of the magnetization results in a pe-
riodic pinning potential with the vortex lattice peri-
odicity because it was induced by the same lattice at
previous positions and previous instants of time. For a
low frequency w < 1, the effect of magnetization is to
renormalize the drag coefficient from 7 to nesr = 14 F),.
In this polaron region, the magnetization follows vortex
motion by formation of a vortex polaron, as in the dc
case w = 0, resulting in the enhancement of viscosity
and suppression of ac dissipation.

The dissipation power of the whole system, aver-
aged over time, D(w) = (Fp(t)v(t))¢, is reduced due to
the presence of magnetic moments. In the linear region
with a vortex polaron, we obtain

Foe _ @esy

D(w) = _—
(w) 2 ozf,+nszw2

(23)
This dissipation power should be compared with that
the case without magnetic moments (at F, = 0), Dy =
= F2./2. Forw > 1, we have D/Dg ~ 1 and for w < 1,
we have D/Dy = (1 + Fp)~!. The frequency depen-
dence of the normalized dissipation power D(w)/Dy,
the effective viscosity 7es¢, and the pinning strength
ap is shown in Fig. 4. The dissipation of the system
in the presence of the magnetic subsystem is strongly
reduced in the linear regime F,. < Fp., which might
be useful for applications.
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We next consider larger driving force amplitudes.
In this hysteretic regime, we describe the system an-
alytically in the adiabatic limit, w < 1. At the time
instant t., when Fr(t) = Fr. ~ 0.5F),, polaron disso-
ciation leaves the magnetization and the vortex lattice
weakly coupled because the lattice now moves with a
high velocity. The magnetization component m(t) after
that instant relaxes as m(t) = exp(—t+t.), and motion
of the vortex lattice is determined by the equation

du

e Fre + Fpsinuexp(—t + t.). (24)

When t — t. < 1, the vortex lattice velocity oscillates
with the frequency 2 = FT.,

v = Fr.+ F,sin(Fp.t) exp(—t + t.), (25)

but the oscillations relax on the time scale of unity.
These post-dissociation oscillations are caused by the
motion of the vortex lattice in the periodic potential
induced by the remnant retarded magnetization.

To take both the retardation and nonlinearity into
account for an arbitrary w, we solve Egs. (18) and (19)
numerically. We consider the interesting region F}, > 8§,
where the dissociation of a vortex polaron is possible
due to nonlinear effects at v > 1. We set F}, = 20 in
the discussion in what follows. The hysteretic behavior
of the vortex lattice velocity vs. the driving force is
shown in Fig. 5. At frequencies w < 1, which are simi-
lar to the de case w = 0, we see the following sequence
of events during the period of F,(t): polaron formation
near low |Fp| (the interval of low vortex velocity); po-
laron dissociation (a sharp increase in velocity) followed
by the region of vortex oscillations on the background
of the average high velocity; a decrease in velocity as
the Lorentz force drops and vortex retrapping (a sharp
drop in the vortex velocity); and, again, dissociation at
a negative —Fp,. (a sharp drop in velocity). The results
for the behavior of the vortex velocity in time, v(t), are
shown in Fig. 6 at F,. = 20 > Fp. and different w.

At all frequencies w < 1, we see post-dissociation
oscillations caused by the motion of decoupled vortices
with respect to the periodic potential created by the
nonuniform magnetization induced by the same lattice
just before decoupling (when the velocity was still low)
and frozen for some period of time after decoupling due
to the retardation effect. This self-induced pinning due
to the retardation, and the amplitude of corresponding
vortex oscillations reach a maximum at w ~ 1. In a
rough approximation, we describe them by the equa-
tion

d
d_1tt ~ Fr. + Fymgsin(u — ug), (26)

3 ZKST®, Bem. 3 (9)
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Fig.5. Dependence of the vortex velocity v(t) on the
driving force Fr(t) = Facsin(wt) with F,. = 20. Here,
F, =20

assuming approximately constant m and F1, = FI. in
the regions of maxima and minima of the Lorentz force.
Here, ug and mg4 are the vortex lattice position and the
magnetization amplitude at the instant of decoupling.
This gives the approximate solution

v(t) = Fr. + Fymgsin(Fr.t), (27)

which provides rough estimate for the oscillation fre-
quency Q =~ Fp., when the number of velocity oscilla-
tions per the half period of F7,(t) is significantly larger
than unity. This expression for the frequency in the
original units becomes Q & 27F,./an. Such a relation
is anticipated for a decoupled vortex moving in the pin-
ning potential with periodicity a.

5. ENHANCEMENT OF THE CRITICAL
CURRENT DENSITY IN
SUPERCONDUCTING/MAGNETIC
MULTI-LAYERS

The polaronic mechanism of pinning is promising
for achieving a high critical current. We propose us-
ing a superconducting (S) and magnetic (M) multilayer
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structure shown in Fig. 7 for optimizing such a pinning
mechanism [32]. To achieve a high critical current, the
magnetic layers must have a slow relaxation of the mag-
netization. The magnetic layers must also have a high
magnetic susceptibility at the working magnetic field
to ensure a strong coupling between magnetic moments
and vortices. In addition, the penetration depth of the
superconducting layers must be small, such that the
magnetization polarization varies rapidly in space.

The vortex lattice is induced inside the S layers un-
der external magnetic fields. The vortex lattice moves
in response to the Lorentz force when a transport cur-
rent is present. In the quasistatic approximation, the
motion of the vortex lattice is given by

NVXVxB+B=8 Y d[r—ri(t)]z, (28)

where z is the unit vector along the z axis and
r;(t) = ro —vt is the vortex ¢ coordinate. The magnetic
field inside the M layers is governed by the Maxwell
equations

-20 I I ! ]
300 350 400 450 500
11y Vx(B-47M) =0, V-B=0. (29)

The dependence of the magnetization M on B is
determined by the material properties. With a strong
field and in static case, M is a nonlinear function of B

Fig.6. Time evolution of the vortex velocity v(¢) and
of magnetization |m(¢)| in the presence of the ac driving
force F(t) = Facsin(wt) at several frequencies w = 10

(a), 1 (b), 0.1 (). We take F,. = 20 and F, = 20 and generally can be expressed as

M(r) = /dr3f[r—r',B(r')].

The characteristic length of the magnetic subsystem is
much smaller than A and we use the local approxima-
tion

flr =/, B()] = o(r — ') f(B().
The induction B(r) has a component uniform in space,
By, and the nonuniform component B(r) < By.
Hence, the spatially nonuniform magnetization is

Magnetic layer
Superconducting layer

Magnetic layer

Superconducting layer 1\7I(r) N 3f(Bo)]~3(r) — XO(BO)E(T)
Magnetic layer 0By

Superconducting layer ; In what follows, we consider an isotropic magnetic sub-
Magnetic layer system characterized by a susceptibility xo(Bg) at Bg

Superconducting layer _ in the static case. The magnetic field inside the M

layer is determined by the equation V2B = 0. Since
only the spatially nonuniform components M and B
are responsible for pinning, we focus on the nonuniform
components in the calculations and omit the tilde. At
sisting of alternating magnetic (M) layers (dark grey) the interface between the M and S layers, we use the
with thickness d,, and superconducting (S) layers (light standard boundary condition for the field B* parallel

grey) with thickness d, to the z axis and the field Bll parallel to the interface:

y

Fig.7. Schematic view of a multi-layer structure con-

B?|ls = B*|y, Blls=(1—4mx0)Bly.  (30)
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Then we obtain the magnetic field inside the M layers:

B (G > 0,z2) = afexp(G2")+ exp(—G (' +dn))] X
Dy exp (—1GLv,t)
1+ X627

(31)

Bl (G > 0,2) = ia[exp(Gz")— exp(=G (2" +dpm))] x
D exp (—1GLvu,t)
1+ A2G2 ’

(32)

a = —exp(dnG) (—1 + exp(dsks)) X' x
X {(1 - XI) (exp(dsks) — exp(Gdyy)) +
+ (1) (1= exp(dnG + dsky))}

with
ks = VA2 4+ G2,

X =(01- 47rX0)_1ks/G.

2=z —n(ds +dn),

Here, n is the layer index and the vortex motion is as-
sumed to be along the x direction. We consider a square
lattice G = (mg2m/a, m,2m/a) with a = \/®¢/Byp be-
ing the lattice constant and m, and m, integers.

We assume a relaxational dynamics for the M layers,
M(w) = x(w)By(w), with the dynamic susceptibility
governed by a single relaxation time yo7 as in Eq. (10).
In the steady state, we have

!

XoT

t
M (G, z,t) =Tﬁl/exp B (G, z, t)dt'. (33)

0

For a slow relaxation of magnetization, M depends on
the history of vortex motion and there is retardation
between the time variation of the induced nonuniform
magnetization and vortex motion. As a result, the mag-
netization exerts a drag force to the vortex, which is
opposite to the driving force. The pinning force acting
on a single vortex due to the induced magnetization in
one M layer is given by

0
FMzaro/dxdy / dzM - B,,,
_dm

which yields

X

Fuy = Z [1 —exp (—2Gd,,)]
G

o 2a%vo Guxor®?2
(14 X2G2)% a2 14 (Guxor)?’

(34)

The I-V curve is determined by the equation of motion
for the vortex dsnv = dsFr, — Fyy with the electric field
E = Buv/c and the Lorentz force Fi, = J®q/c. We con-
sider a realistic case where a/27 < d,,,d;s. Taking only
the dominant contribution G, = 27/a and G, = 0 into
account in the summation, we obtain the same equa-
tion as Eq. (15), but with a different parameter

2 2052
T 1 Xga®g
F, = 35
=g (o) N @

after introducing the same dimensionless units as be-
fore.

Hysteresis is developed when Fj, > 8. For typical
parameters for an Nb superconductor, £ ~ A ~ 40 nm,
pn ~ 107 O-m and @ = 40 nm at B ~ 1 T, and
Xo = 0.05, F}, > 8 requires yo7 > 1 ps. For the re-
laxation time of the order of yo7 &~ 1 us, the effective
viscosity is enhanced by a factor of 10% compared to
the bare BS one at v < a/xo7. The effective critical
current density for the whole system is given by

T~ 1 XoC dga?
CTN\2—drxe/) (2n)N dy+dy

(36)

For ds = dp, = 100 nm, we obtain .J. ~ 10 A/m?. The
retrapping current .J,. is

1 nads ac 1
T AN2472 dy 4+ d,y,

J, (37)

11— 2mx0
For the parameters used above and yor = 1 us, we
estimate J, ~ 2105 A/m?2.

We discuss the optimal materials for the S and M
layers. Superconductors with a smaller \ are preferred
because the critical current decreases as A~*. The
smaller A, the more nonuniform is the magnetic field
distribution inside the M layers, and hence the stronger
the pinning. The viscosity in the branch with a vortex
polaron is proportional to 7 while the critical current is
independent of 7 for sufficiently large 7. The slow mag-
netic dynamics can be realized in certain spin glasses,
where the magnetization relaxation is governed by a
broad spectrum of time scales, with the average time
of the order of 0.1 us [33, 34]. For CuMnyg s, xo ~ 0.002
at B =1 T [35]. We can enhance yq by tuning the con-
centration of magnetic metal in alloys [36]. We can also
use superparamagnets with 7 as large as 1 s and with a
huge Yo due to large magnetic moments in superpara-
magnets [37-39] and the recently synthesized cobalt-
based and rare-earth-based single-chain magnets with
Yo~ 005at B=1Tand 107% s < yor < 107* s
[40—-43].
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We now discuss the optimal thickness of M and S
layers. For d,, > a, we have

B (G > 0) = exp(—27d,, /a)

if —d,, < 2’ < 0 according to Eqs. (31) and (32). The
magnetic induction and the magnetization are almost
uniform in the lateral direction in the middle of the M
layer. As a result, the pinning force becomes practi-
cally independent of d,, in this case. In other words,
the pinning is effective only near the boundaries be-
tween S and M layers in the area of thickness of the
order a. On the other hand, the Lorentz force is pro-
portional ds;. Therefore, the effective critical current of
the whole system .J. is proportional to 1/(ds + d,) as
described by Eq. (36). Hence, the thinner both M and
S layers, the higher is the critical current of the system.

The M/S multilayer structure is naturally real-
ized in certain superconducting single crystals, such
as (RE)B&QCUgO'r [44,45] and RuSI'QGdCUQOs [46]
For (RE)BayCu3zO7, magnetic RE ions interact weakly
with superconducting electrons because they are po-
sitioned between the superconducting layers. They
order at very low Néel temperatures of the order of
Tn ~ 1 K. The polaronic mechanism is important at
T > Ty, where spins are free. The London penetration
depth of cuprate superconductors is large, A &~ 200 nm,
and hence the critical current is reduced significantly
compared to that for the Nb multilayer structure, be-
cause J. decreases as 1/\*. Another natural realiza-
tion is the recently discovered iron-based superconduc-
tors, such as (RE)FeAsO;_,F,, where RE ions are
ordered antiferromagnetically below T ~ 1 K [47].
In RuSryGdCuyOg, the magnetic moments order fer-
romagnetically above T, and therefore the dominant
enhancement of vortex viscosity is due to the radiation
of magnons [23-25].

6. CONCLUSIONS

Vortices in magnetic superconductors polarize mag-
netic moments and become dressed and polaron-like.
At low currents and a long spin relaxation time, the
nonuniform polarization induced by vortices slows their
motion at currents for which pinning by crystal lattice
disorder becomes ineffective. As the current increases
above the critical one, vortices release the nonuniform
part of the polarization, and the velocity as well as the
voltage in the I-V characteristics jump to much higher
values. At a decreasing current, vortices are retrapped
by polarized magnetic moments at the retrapping cur-
rent which is smaller than the critical one. The results
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of such a polaronic mechanism are in qualitative agree-
ment with the experimental data [10, 15], but measure-
ments of the I-V characteristics are needed to estab-
lish the quantitative agreement and confirm the valid-
ity of such a model for Er borocarbide. The polaronic
mechanism should also operate in Gd and Tb boro-
carbides superconductors in the commensurate SDW
phase and a strong effect can be present in Tm boro-
carbide above T.

We derive the response of the magnetic supercon-
ductors in the vortex state to the ac Lorentz force
Fp,(t) = F,sin(wt), taking the polaronic effect into ac-
count. At low amplitudes of the driving force F., the
dissipation in the system is suppressed due to the en-
hancement of the effective viscosity at low frequencies
and due to formation of the magnetic pinning at high
frequencies w. In the adiabatic limit with low frequen-
cies w and a high amplitude of the driving force F.,
the vortex and magnetic polarization form a vortex po-
laron when FJ (t) is small. As F}, increases, the vortex
polaron accelerates and at a threshold driving force it
dissociates, i.e., the vortex motion and the magnetiza-
tion relaxation decouple. As Fj, decreases, the vortex
is retrapped by the background of remnant magneti-
zation and they again form a vortex polaron. This
process repeats when Fp,(t) increases in the opposite
direction. Remarkably, after dissociation, decoupled
vortices move in the periodic potential induced by mag-
netization, which remains for some periods of time due
to retardation of magnetization after the decoupling.
At this stage, vortices oscillate with high frequencies
determined by the amplitude of the Lorentz force at
the instant of dissociation.

We propose fabricating multilayer system M/S
where superconducting and magnetic layers can be
optimized to achieve high critical current.
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